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ABSTRACT

Pancontinental droughts in North America, or droughts that simultaneously affect a large percentage of

the geographically and climatically distinct regions of the continent, present significant on-the-ground

management challenges and, as such, are an important target for scientific research. The methodology of

paleoclimate-model data comparisons is used herein to provide a more comprehensive understanding of

pancontinental drought dynamics. Models are found to simulate pancontinental drought with the frequency

and spatial patterns exhibited by the paleoclimate record. They do not, however, agree on the modes of

atmosphere–ocean variability that produce pancontinental droughts because simulated El Niño–Southern
Oscillation (ENSO), Pacific decadal oscillation (PDO), and Atlantic multidecadal oscillation (AMO) dy-

namics, and their teleconnections to North America, are different between models and observations. Despite

these dynamical differences, models are able to reproduce large-magnitude centennial-scale variability in the

frequency of pancontinental drought occurrence—an important feature of the paleoclimate record. These

changes do not appear to be tied to exogenous forcing, suggesting that simulated internal hydroclimate

variability on these time scales is large in magnitude. Results clarify our understanding of the dynamics that

produce real-world pancontinental droughts while assessing the ability of models to accurately characterize

future drought risks.

1. Introduction

North America spans three countries, nearly 10 million

square miles, and multiple geographical regions with dis-

tinct climates, seasonalities, and connections to the wider

atmosphere–land–ocean system. While each of the dis-

tinct geographic and climatic regions in North America

(e.g., the southwest, 328–408N, 1258–1058W; versus the

central plains, 348–468N, 1028–928W)experience recurrent

drought (e.g., Cook et al. 2007;McCabe et al. 2004; Nigam

et al. 2011; Schubert et al. 2004a,b; Seager et al. 2005;

Seager and Hoerling 2014), drought simultaneously af-

fecting multiple regions (hereinafter pancontinental

drought) has also been shown to be a consistent, albeit

infrequent, occurrence over the last millennium (Cook

et al. 2014b). The most recent pancontinental drought

event occurred in 2012 (Hoerling et al. 2014) with 62% of

the contiguous United States being classified as moder-

ately or extremely dry (NCDC 2013a). Events such as

these pose significant management challenges because of

the simultaneous drought impacts across regions with

distinct water resource constraints (e.g., irrigation from

rivers versus groundwater), ecosystems (e.g., forests and
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grasslands), and crops. Understanding the dynamics that

drive pancontinental drought is therefore critical, but there

are two fundamental reasons why a comprehensive char-

acterization of pancontinental droughts, and their causes,

proves challenging. First, regional hydroclimate is

characterized by distinct atmosphere–ocean dynamics,

for instance, southwestern hydroclimate is controlled

primarily by winter precipitation variability coupled to

the tropical Pacific (e.g., Herweijer et al. 2006; Seager

et al. 2008; Schubert et al. 2009), while the Great Plains

has predominantly summer hydroclimate variability that

is driven by the tropical and subtropical Atlantic (e.g.,

Sutton and Hodson 2005; Kushnir et al. 2010) in addition

to the tropical Pacific (Seager et al. 2005). Second, the

relative rarity of pancontinental drought and the short

(;150yr) observational record means that there are few

events by which to diagnose how relatively distinct re-

gional hydroclimate dynamics can combine to produce

pancontinental drought. The limitations of the short ob-

servational recordwere partially addressed by Cook et al.

(2014b), who employ a tree-ring-based reconstruction of

North American hydroclimate over the last millennium

(the NorthAmerican Drought Atlas, NADA; Cook et al.

2007) to better characterize the statistics of pan-

continental drought occurrence. The paleoclimate re-

cord, however, does not provide a complete picture of the

atmosphere–ocean state during pancontinental droughts.

Extending the analyses of Cook et al. (2014b) to the

model space using the methodology of paleoclimate-

model data comparisons (e.g., Anchukaitis et al. 2012;

Ault et al. 2013, 2014; Coats et al. 2013a, 2015; Fernández-
Donado et al. 2012; Phipps et al. 2013; Schmidt et al. 2013)

can provide additional characterizations of past pan-

continental droughts (albeit with the caveat of model

bias) and potentially help clarify our understanding of the

dynamics that produce these features. Additionally, the

frequency of pancontinental drought occurrence is likely

to increase in the future as much of North America is

expected to dry over the coming century (e.g., Seager

et al. 2013; Cook et al. 2014a; Maloney et al. 2014). Be-

cause atmosphere–ocean general circulation models

(AOGCMs) are used to make these future hydroclimate

projections, determining if AOCCMs are capable of re-

producing the statistics of past pancontinental drought

occurrence, and as a consequence of the correct dynam-

ical drivers, is necessary to assess whether state-of-the-art

AOGCMs can accurately constrain future drought risks.

We build off the proxy analyses of Cook et al. (2014b)

by employing coupled model simulations to further as-

sess the dynamics of pancontinental drought in North

America. We use the same gridded tree-ring-based re-

construction of hydroclimate variability (Cook et al.

2007) over North America from 1000 to 2005 common

era (CE) used by Cook et al. (2014b) and compare it to

pancontinental drought statistics and dynamics in forced

transient simulations of the last millennium (850–1850

CE) and the historical interval (1850–2005 CE), as well

as in 500-yr control simulations from the same models—

all from the Coupled and Paleo Model Intercomparison

Projects Phases 5 and 3 (CMIP5/PMIP3; Taylor et al.

2012; Schmidt et al. 2011). Four fundamental questions

are addressed:

1) Do models simulate the major modes of atmosphere–

ocean variability that impact North American hydro-

climate (section 3a)?

2) Are models able to reproduce the statistics of

pancontinental drought occurrence (section 3b)?

3) Do the models have centennial-scale variability in the

occurrence of pancontinental droughts, and if so, is this

driven by forced or internal variability (section 3c)?

4) What are the simulated atmosphere–ocean dynamics

that drive pancontinental droughts (section 3d)?

2. Data and methods

a. Model and paleoclimate inputs

All employed model output is from the CMIP5/

PMIP3 archive (Table 1).We use six ‘‘Last Millennium’’

(LM) simulations spanning the period 850–1850 CE that

are forced with reconstructed time-varying exogenous

forcings (Schmidt et al. 2011). These simulations have

been appended to CMIP5 historical runs that span the

period 1850–2005 CE to produce a model record from

850 to 2005 CE Although these simulations are not

TABLE 1. Model information for the analyzed CMIP5 simulations.

Modeling center Institute ID Model name

Beijing Climate Center,

China Meteorological

Administration

BCC BCC-CSM1.1

National Center for

Atmospheric Research

NCAR CCSM4

NASA Goddard Institute

for Space Studies

NASA GISS GISS-E2-R

Institute Pierre-Simon Laplace IPSL IPSL-CM5A-LR

Japan Agency for Marine–

Earth Science and

Technology, Atmosphere

and Ocean Research Institute

(University of Tokyo), and

National Institute for

Environmental Studies

MIROC MIROC-ESM

Max-Planck-Institut für
Meteorologie (Max Planck
Institute for Meteorology)

MPI-M MPI-ESM-LR,

MPI-ESM-P
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continuous, both of the paired simulations (historical

and LM) have been generated using the same model

configurations and resolutions. Consequently, if the sim-

ulations have no drift, the discontinuity at 1850CE should

fall within the range of simulated climate variability. A

large temperature drift in the MIROC LM simulation

(Sueyoshi et al. 2013) likely violates this assumption,

while a drift in the early centuries of the GISS LM sim-

ulation (Bothe et al. 2013) is likely to have less of an

impact. While model drift undoubtedly impacts the hy-

droclimate variables assessed in this study, the effects are

presumed to be moderate given the absence of drift in

precipitation (Sen Gupta et al. 2013). The 500-yr control

simulations with constant preindustrial forcings (also

from CMIP5) were additionally analyzed to aid in the

interpretation of the LMmodel results. All model output

has been regridded onto a common 2.58 3 2.58 latitude–
longitude grid to allow for homogenous comparisons (this

represents a coarsening of the model resolution for four

out of six models).

For each model simulation we calculate the Palmer

drought severity index (PDSI; Palmer 1965). PDSI is an

offline estimate of soil moisture balance, and has been

established as a robust estimator of soil moisture vari-

ability that compares well with other soil moisture metrics

(e.g., the standardized precipitation evapotranspiration

index, SPEI; Vicente Serrano et al. 2010; Cook et al.

2014a) and inherent model soil moisture (Cook et al.

2014a; Smerdon et al. 2015). PDSI is calculated from

supply via precipitation and losses due to evapotrans-

piration (ET). In this case, ET is calculated by means of

scaling potential evapotranspiration (PET), estimated

from surface net radiation (RNET), by a fixed beta

function meant to represent vegetative controls on

transpiration. There are multiple ways to compute PET,

with the ideal method being Penman–Monteith (PM),

which includes the effect of the vapor pressure deficit

along with the impact of RNET (a more detailed treat-

ment of PM PDSI can be found in Sheffield et al. 2012;

Cook et al. 2014a; Smerdon et al. 2015). The necessary

model fields needed to compute PM PET were only

available for three out of the six analyzed LM simula-

tions and as a consequence RNET instead has been used

to calculate PET by assuming that RNET is exactly

balanced by latent heat through ET (with sensible heat

flux equal to zero). Importantly, PDSI calculated with

PET estimated from RNET compares well with PM

PDSI on both interannual and decadal time scales

(Coats et al. 2015).

For the analyses herein, model PDSI is derived on an

even 2.58 3 2.58 latitude–longitude grid. At each grid

point, PDSI was calculated and then standardized against

an instrumental normalization period (1931–90 CE)

for the forced simulations, and the full 500-yr period

for the control simulations. The instrumental normali-

zation period is the same time interval used by the

National Oceanographic and Atmospheric Adminis-

tration for normalization of their PDSI calculations,

which were subsequently used as the target PDSI for the

paleoclimate reconstructions described below. Soil

moisture capacities were specified as 25.4 and 127mm in

the top and bottom layers of the PDSI calculation, re-

spectively. The PDSI was averaged over June–August

(JJA) to produce a single average for each year; here-

inafter any mention of PDSI will be with regard to the

JJA average values. PDSI with an absolute value greater

than 10 was removed by replacement with the average

PDSI of the eight neighboring grid points at that time

step as a means of removing unrealistically anomalous

PDSI values. This method for removing data errors is

consistent with that used by van der Schrier et al. (2011)

in the calculation of their observed PDSI dataset. For

a more detailed analysis of the PDSI data used herein,

see Coats et al. (2015). Additionally, for a full treatment

of the impact of inherent model resolution on the sim-

ulation of hydroclimate over the study region see

Sheffield et al. (2013) and Langford et al. (2014), and for

a discussion of how these resolution biases may impact

the PDSI data described above, and used herein, see

Coats et al. (2015).

Reconstructed PDSI data are from an updated version

of NADA (version 2a), with improved spatial coverage

and resolution, the full details of which can be found

in Cook et al. (2014b). The data are reconstructed on a

0.58 3 0.58 latitude–longitude grid of JJA-average PDSI

values for the United States, as well as parts of Canada

and northern Mexico.

Observed monthly PDSI data are from a global

dataset for the period 1870–2012 CE (Dai et al. 2004).

This dataset was derived on an even 2.58 3 2.58 latitude–
longitude grid using observed precipitation and tem-

perature data as inputs. For the analyses herein the JJA

monthly PDSI values have been averaged to create

a single PDSI anomaly for each year. Additionally, only

the period after 1950 will be employed herein, as this is

the period over which the full North American PDSI

grid is available.

JJA PDSI reflects hydroclimate conditions for the

past 12–18 months because of persistence built into the

PDSI calculation and, as a consequence, will integrate

both the winter and summer hydroclimate states in any

given year. Nevertheless, tree-ring-reconstructed PDSI

has been shown to predominately reflect winter season

precipitation variability over the western United States,

and both winter and summer precipitation variability

over the central and eastern United States (St. George
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et al. 2010), a characteristic that may be shared by the

models. Given uncertainty with respect to the seasonal

hydroclimate influences on PDSI, no attempt is made

herein to analyze the seasonality of pancontinental drought

dynamics.

b. Climate indices

All climate indices are calculated using either the

inherent surface temperature output from the control

simulations or observations from the National Oceanic

and Atmospheric Administration (NOAA) extended

reconstructed sea surface temperature (SST) dataset

(Smith and Reynolds 2003). The Niño-3.4 index was
calculated by averaging December–February (DJF)

SST over the region 58S–58N, 1708–1208W. The Pacific

decadal oscillation (PDO) was evaluated by calculating

the EOFs of SST over the extratropical Pacific basin

(208–908N, 608W–758E), and subsequently using the

DJF average of the principle component time series

corresponding to the EOF that best matches the first

EOF of the observed record [which is defined as the

observed PDO following Mantua et al. (1997)] when

comparing the EOF patterns over the full (Northern

and Southern Hemisphere) Pacific basin. This was the

first EOF for all models except the BCC model, in

which the second EOF was more representative of the

observed PDO pattern. In all cases the model patterns

exhibit hemispheric symmetry and a tropical expres-

sion, as is characteristic of the observed PDO. The

Atlantic multidecadal oscillation (AMO) was calcu-

lated by averaging JJA Atlantic SSTs over the region

08–608N, 808W–08 and then subtracting the global JJA

SST average between 608S and 608N (following Enfield

et al. 2001). All correlations between simulated PDSI

and climate indices will be calculated using the JJA

gridpoint PDSI and either the preceding DJF average

ENSO or PDO indices or the contemporaneous JJA

average AMO index.

FIG. 1. Correlations between gridpoint PDSI from the NADA or models and the (top) DJF Niño-3.4 index, (middle) DJF PDO index,
and (bottom) JJA AMO index. For the PDO and AMO, correlations are based on filtered [(10-yr locally weighted scatterplot smoothing
(LOWESS)] PDSI and climate indices. The observed–reconstruction correlations (RECON) are from the overlapping period (1854–2005)

between the NADA and the observed SST dataset (Smith and Reynolds 2003) and the observed correlations (OBS) are from the 1950–

2005 period in an observed PDSI dataset (Dai 2004) and the same SST dataset. For the models, the teleconnection pattern was calculated

for a sliding 152-yr window (the length of the observed record). The plotted pattern is the 152-yr segment with the teleconnection pattern

that best matches the observed–reconstruction pattern as determined by the CPCS between the two fields. The middle panel shows the

range in CPCS between the model pattern for each 152-yr segment and the observation-to-reconstruction pattern. The bottom panel

shows the range in the sum of squared correlation coefficients over North America for the model segments with the value from the

observations and observation-to-reconstruction record plotted as dashed gray and black lines, respectively.
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c. Analysis

Following Cook et al. (2014b), the regional bound-

aries used in this paper are the southwest (SW), 328–
408N, 1258–1058W; the central plains (CP), 348–468N,

1028–928W; the northwest (NW), 428–508N, 1258–1108W;

and the southeast (SE), 308–398N, 928–758W(see regions

in Fig. 1). Similar to results shown for the NADA in

Cook et al. (2014b), the designated regions in themodels

do not have climate variability that is completely in-

dependent. Nevertheless, correlation maps between the

four regional-average time series and gridpoint PDSI

indicate that the hydroclimate within each region is

homogenous and that variability between individual

regions is largely independent (not shown).

Again following Cook et al. (2014b), droughts are

characterized to have occurred in the regional-mean

time series when PDSI falls to a value of20.5 or lower in

any individual year. Pancontinental droughts are then

defined as occurring when any three [SW, CP, and SE

(hereinafter SW1CP1SE); SW,CP, andNW(hereinafter

SW1CP1NW); SW, NW, and SE (hereinafter SW1
NW1SE); or CP, NW, and SE (hereinafter CP1NW1
SE)] or all four [SW, CP, NW, and SE (hereinafter

SW1CP1NW1SE)] of the regional mean time series

simultaneously have PDSI values of20.5 or lower in the

same year. By this definition, the four-region droughts

will overlap with, and also be counted as, three-region

droughts. For some of the analyses noted in the results

section the three- and four-region droughts were treated

as distinct events.

To determine the significance of the pancontinental

drought teleconnections (Niño-3.4, PDO, and AMO),
climate index composites are computed for all years that
exhibit pancontinental drought. A 5000-member en-
semble resampling of the climate indices is then per-
formed to generate 90th percentile confidence limits. For
example, for the full CCSM control simulation there are
83 yr that qualify as SW1CP1SE droughts. An average

of the Niño-3.4 values for these 83 yr gives a composite

Niño-3.4 anomaly associated with these events. We then
draw 83 random years from the Niño-3.4 time series and

FIG. 2. (left) Correlation between theDJFNiño-3.4 index and the DJF SST field for eachmodel and the observed
SST dataset. (right) The autocorrelation of the Niño-3.4 index for 1–6-yr lags is plotted, with the red line indicating

significance at the 95% level (2 times the large-lag standard error). The plotted domain is longitudinally global

beginning at 08 and spans the latitudes 408S–408N.
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average them, repeating this process 5000 times. If the
original composited Niño-3.4 anomaly exceeds the 90th
percentile thresholds of the ensemble resampling, the
association between pancontinental drought and the
dynamic teleconnection is characterized as significant.

3. Results and discussion

a. Model dynamics

To diagnose the dynamical drivers of pancontinental

drought, the Niño-3.4, PDO, and AMO indices are used
to assess the relationships between pancontinental drought
and the major modes of atmosphere–ocean variability that
impact North American hydroclimate. In this section, we

investigate the model expression of the ENSO, PDO, and

AMO to determine if the simulated modes of variability

are a reasonable representation of real-world dynamics.

For ENSO, negative values of the Niño-3.4 index, or La
Niña conditions, have been associated with drought in the

SW, southern CP, and the SE. The PDO may not be fully
separable from ENSO; the two modes of variability are
negatively correlated (Newman et al. 2003) and therefore

have similar spatial expressions. Nevertheless, the PDO

has been shown to have important hydroclimate impacts

over North America (e.g., McCabe and Dettinger 2002;

McCabe et al. 2004, 2008). A positive AMO, with warm

Atlantic SSTs, is associated with drying in the CP and SE

(Kushnir et al. 2010;McCabe et al. 2004, 2008; Nigam et al.

2011) and, unlike, the ENSO and PDO has considerable

persistence up to multidecadal time scales.

Figure 1 shows the teleconnection patterns calculated

as the correlation between the Niño-3.4, PDO, andAMO
indices and PDSI over North America. These patterns
have been calculated for both the NADA and an ob-
served PDSI dataset (Dai et al. 2004) during the over-

lapping period with the observed SST dataset (1854–2005

CE and 1950–2005 CE, respectively), and for a sliding

152-yr window (the length of the observed/reconstruction

FIG. 3. (left) The PDO pattern for each model and the observed SST dataset, calculated as the correlation

between the DJF PDO index and the DJF SST field. (right) The autocorrelation of the PDO index for 1–6-yr lags is

plotted with the red line indicating significance at the 95% level (2 times the large-lag standard error). These values

are plotted for both the control (black) and forced (blue) simulations from each model. The plotted domain is

longitudinally global beginning at 08 and spans the latitudes 208S–708N.
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overlap) across the full control model simulations. The

model pattern in Fig. 1 plots the 152-yr period in which

the simulated teleconnection pattern best represents the

pattern between the observed SST dataset and the re-

construction (hereafter observation-to-reconstruction),

as determined by the maximum centered pattern corre-

lation statistic (CPCS; Santer et al. 1995) between the two

fields. The CPCS is a quantitative measure of the simi-

larity of the simulated and observation-to-reconstruction

teleconnection patterns, with the range in the CPCS for

all of the 152-yr periods in the models being a measure of

the stationarity of that simulated teleconnection (Fig. 1,

middle). Additionally, the bottom panel of Fig. 1 shows

the strength of the ENSO, PDO, and AMO tele-

connections. To do so, the sum of the squared tele-

connection correlation coefficients was calculated for

each of the model segments and the range in these values

was then plotted as a boxplot. For comparison, the sum of

the squared teleconnection correlation coefficients was

also calculated for the full observation-to-reconstruction

and observational records. This analysis was limited to

the grid points common to each dataset over the plotted

North American domain in the top panels of Fig. 1.

The reconstruction-to-observation ENSO and AMO

dynamics are largely characteristic of those in the ob-

served PDSI dataset with CPCS values between the

patterns of 0.75 and 0.50 and of nearly equal strengths.

The PDO teleconnection, however, is significantly

weaker in the reconstruction, despite having a similar

spatial pattern (CPCS of 0.52). While this may suggest

a deficiency in the reconstruction, it is more likely in-

dicative of an inconsistent impact of the PDO over the

much longer reconstructed record (152 versus 56 yr for

the observed PDSI).

The models are able to simulate 152-yr periods that

have a realistic ENSO teleconnection pattern to North

America (with the exception of BCC); however the

strength of this teleconnection varies greatly, with

FIG. 4. (left) Correlation between the JJA AMO index and the JJA SST field for each model and the observed

SST dataset. (right) The autocorrelation of the AMO index for 1–6-yr lags is plotted with the red line indicating

significance at the 95% level (2 times the large-lag standard error). These values are plotted for both the control

(black) and forced (blue) simulations from each model. The plotted domain is longitudinally global beginning at

1808 and spans the latitudes 208S–708N.
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CCSM having far too strong of a teleconnection and

BCC and GISS having an ENSO teleconnection that is

too weak. The stationarity of this teleconnection, like-

wise, varies significantly between the models; the CCSM

ENSO teleconnection, for instance, is highly stationary

while the ENSO teleconnections in BCC and MIROC

are highly nonstationary. The AMO and PDO tele-

connections in the models are much less realistic, with

none of the models simulating a 152-yr period with

a CPCS value over 0.6 and the teleconnection strength

being weaker than the observations for each model and

both modes. These teleconnections are also non-

stationary, with the largest CPCS range occurring in

MIROC for the PDO and BCC for the AMO, but with

a CPCS range of at least 0.4 for all of the models.

Figures 2–4 show the SST spatial pattern and auto-

correlation of the ENSO, PDO, and AMO for the full

model simulations and observations. To assess the

model skill in reproducing the observed ENSO, PDO,

and AMO spatial patterns, Fig. 5 shows the range in the

CPCS between simulated spatial patterns calculated for

a sliding 152-yr window (length of the observed SST

dataset) across the full control model simulations and

the observed spatial patterns. Finally, Fig. 6 shows the

variance of, or variance explained by, these dynamic

modes. As suggested by the teleconnections, models are

generally successful at simulating a reasonable ENSO

spatial pattern (with the highest pattern correlation

values of the three modes; see Fig. 5), although the SST

anomalies extend too far west in all of the models

(Fig. 2). Additionally, the simulated ENSO autocorre-

lation structures are largely characteristic of the obser-

vations, with oscillatory behavior that varies between

negative and positive. This oscillation looks to be most

realistic in CCSM, IPSL, and MPI, with a cycle of vari-

ability that is too short and regular in BCC and GISS.

The magnitude of the ENSO variability is not consistent

across the models, with CCSM having too much vari-

ance, while GISS, IPSL, and MIROC have too little, as

compared to the observations (Fig. 6). Interestingly, the

simulated PDO and AMO behavior is largely consistent

between the models with a highly nonstationary, but at

times realistic, PDO pattern (every model simulates

a PDO pattern CPCS of at least 0.6), and a more sta-

tionary, but generally unrealistic, AMO pattern (Fig. 5).

In both cases, however, the PDO and AMO patterns in

the models are less characteristic of the observed pat-

terns than for ENSO. Additionally, the BCC and GISS

FIG. 5. (top) The range in the CPCS between the simulated ENSO, PDO, and AMO spatial

patterns calculated for a sliding 125-yr window (length of the observed SST dataset) across the

full model simulations and the observed spatial patterns. (bottom) The observed target pat-

terns. The plotted domain is longitudinally global beginning at 08 and spans the latitudes 308S–
808N. The boxes over which the CPCS values were calculated for each region are designated by

the black dashed lines.
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models fail at simulating the magnitude of the observed

tropical expression of the PDO, with all of the models

overestimating the high-latitude North Pacific expres-

sion of the PDO relative to the expression in the tropics.

This is critical because the PDO forcing of hydroclimate

variability has been shown to originate in the tropical

Pacific (Seager 2015).

The persistence characteristics of the PDO and AMO

are plotted for both the forced and control simulations in

the right-hand panels of Figs. 3 and 4, respectively.

While the models have a reasonable PDO autocorrela-

tion structure (with the exception of BCC and the forced

GISS and IPSL simulations—each having too much

persistence), with the exception of CCSM and GISS

they struggle at simulating the AMO with enough per-

sistence [this is consistent with the behavior of the

CMIP3 model ensemble (Ting et al. 2011)]. This lack of

persistence suggests that models will have difficulty in

simulating the observed drought recurrence interval (or

alternatively drought persistence) in the CP and SE re-

gions, which are tightly coupled to the AMO in the real

world (Kushnir et al. 2010; McCabe et al. 2004, 2008;

Nigam et al. 2011; Ting et al. 2011). Finally, the magni-

tude of the PDO and AMO will partially determine the

impact of these modes of variability, relative to the im-

pact of ENSO and purely atmospheric variability, on

North American hydroclimate. There is a large inter-

model spread in the variance or variance explained by

both modes, with CCSM and MIROC having too much

and BCC, GISS, IPSL, and MPI having too little PDO

variability compared to observations, and BCC, CCSM,

GISS, and MPI having less AMO variability than ob-

served (Fig. 6).

In aggregate, the models exhibit different tele-

connections between the oceanic boundary conditions

and North America, with no individual model matching

the observed atmosphere–ocean dynamics particularly

well. Together, this suggests that models are not likely to

agree on the modes of atmosphere–ocean variability that

are associated with pancontinental drought. Addition-

ally, the models have a stronger andmore realistic ENSO

and associated teleconnections, as compared to the PDO

and AMO and are therefore expected to be more suc-

cessful at simulating the pancontinental drought dynam-

ics associated with this mode of variability. Nevertheless,

the simulated dynamical relationships are largely non-

stationary, and the observed dynamics have been inferred

from the short 152-yr instrumental interval. The observed

dynamics, thus, may themselves be time variable or in-

adequately characterized (particularly given the large

persistence and consequently the small number of de-

grees of freedom for the PDO and AMO). It is therefore

difficult to attribute differences between the models and

observations as solely associated with the model charac-

teristics, as opposed to some combination of model mis-

representations and poorly characterized observational

teleconnections due to undersampling of low-frequency

modes and nonstationarity.

FIG. 6. The (left) variance of the Niño-3.4 index, (middle) percent variance explained in Pacific SSTs by the PDO
mode of variability, and (right) variance of the 10-yr low-pass-filteredAMO index. These were computed for each full
control run and for the observed dataset over the period 1854–2005 CE.
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b. Pancontinental drought occurrence

Figure 7 shows the drought recurrence interval for the

individual geographic regions in both the forced and

control simulations from the models (dark and light

bars, respectively) and the NADA. Models, in general,

are able to simulate the correct recurrence interval for

drought in each of the regions. The model ensemble,

however, slightly overestimates the occurrence of SW

and NW drought, and underestimates the occurrence of

drought in the CP and SE. This model behavior may be

suggestive ofmore realistic, and in some cases overactive,

ENSO variability and teleconnections (e.g., CCSM) rel-

ative to other modes of coupled atmosphere–ocean var-

iability, because ENSO-driven hydroclimate variability

tends to load heavily on the western United States and

thus predominantly affects the SW and NW regions.

The model ensemble is also largely successful at sim-

ulating the pancontinental drought recurrence intervals

characterized by the NADA (again for both forced and

control simulations; see Fig. 8). Taken individually,

however, the models appear split into two categories,

with CCSM, IPSL, andMPI slightly underestimating the

recurrence interval of pancontinental drought of all

types and GISS and MIROC overestimating the re-

currence interval of these droughts by a much larger

margin (BCC has realistic recurrence intervals for three

of the five pancontinental drought types). Nevertheless,

the spread of the model ensemble encompasses the pan-

continental drought recurrence interval of the NADA for

each drought type. Furthermore, eachmodel is individually

successful at capturing the relative occurrence of the

different types of pancontinental drought, for instance,

the SW1CP1SE combination being the most common

and the SW1CP1NW1SE combination being the least

common.

The recurrence intervals for the droughts in the in-

dividual regions and for pancontinental droughts are not

consistently different for the forced and control simu-

lations (Figs. 7 and 8). This suggests that the simulated

pancontinental drought dynamics are not dependent on

the exogenous forcing and, as such, provide confidence

in the use of control simulations to assess simulated

atmosphere–ocean variability and its connection to pan-

continental drought (sections 3a and 3d). These findings

are consistent with previous work that has specifically

focused on the dynamics of persistent droughts in the

southwest (Coats et al. 2013, 2015).

The composite PDSI patterns of each pancontinental

drought type for the control model simulations and re-

construction are plotted in Fig. 9. The bottom panel of

Fig. 9 shows the CPCS calculated between the com-

posite PDSI pattern from the NADA and each in-

dividual pattern of that pancontinental drought type.

The range in CPCS is thus a measure of the consistency

of individual drought patterns (small range being more

consistent), with the average magnitude of the CPCS

FIG. 7. Drought recurrence intervals for each region. Re-

construction results are shown in black. Model results are shown in

color, where the lighter-shaded bars of the paired colors represent

the recurrence value for a control simulation from each model,

while the darker-shaded bars are from the associated forced

simulation.

FIG. 8. Drought recurrence intervals for each type of pan-

continental drought. Reconstruction results are shown in black.

Model results are shown in color, where the lighter-shaded bars of

the paired colors represent the recurrence value for a control

simulation from eachmodel, while the darker-shaded bars are from

the associated forced simulation. To maintain consistency with

Cook et al. (2014b), drought years were allowed to overlap be-

tween the three- and four-region droughts.
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values for each model being indicative of how well the

model composite matches the NADA composite. These

values have been calculated separately for the three-

and four-region droughts (unlike in previous analyses).

The composite model patterns compare well with the

NADA composite for all but the SW1NW1SE

droughts, which are the least common of the pan-

continental drought types. The CPCS range in the

models and theNADAare likewise consistent for all but

the SW1NW1SE combination. Nevertheless, it is im-

portant to note that for all drought types there is a large

CPCS range in both the models and the NADA. This

indicates that individual pancontinental droughts can

have different spatial patterns. Pancontinental droughts

driven by a consistent dynamical drivermight be expected

to have a consistent pattern. If this is the case, the large

CPCS range may then suggest that multiple dynamical

drivers are capable of producing each type of pan-

continental drought. Equally likely, however, is that

pancontinental droughts are influenced not just by SST

variations but also by internal atmospheric variability that

can create different spatial patterns, as was argued by

Hoerling et al. (2014) for the 2012 drought. A third pos-

sibility is that a large CPCS range would also be expected

if pancontinental droughts were driven by consistent dy-

namical drivers but with teleconnection dynamics that are

variable through time. The question of pancontinental

drought dynamical drivers will be addressed in section 3d.

c. Centennial variability in pancontinental drought
occurrence

Perhaps the starkest characteristic of the NADA

drought record is the centennial-scale variability in the

number of pancontinental droughts, punctuated by an

FIG. 9. In the top five rows, PDSI composites or averages over all pancontinental drought years of each type are shown. (bottom)The range in

CPCS for individual droughts with the NADA composite pattern. Boxplot colors indicate the associated control model simulation or re-

construction. Unlike in previous figures, drought years were not allowed to overlap between the three- and four-region droughts.
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increased rate of occurrence in the Medieval Climate

Anomaly (MCA) relative to the Little Ice Age (LIA;

Cook et al. 2014b).

The relative timing of hydroclimate change in the

models—if such changes are present in the CMIP5

models—and the NADA is of particular interest be-

cause exogenous forcing may, or may not, have played

a role in driving the MCA-to-LIA transition (e.g., Mann

et al. 2009; González-Rouco et al. 2011; Goosse et al.

2012). If, in fact, radiative forcing produced this transi-

tion, it would be relevant to our understanding of cur-

rent and future radiatively forced climate change.

Because the models are driven with similar forcing se-

ries (see Schmidt et al. 2011), a strong role for exogenous

forcing in driving periods with increased pancontinental

drought frequency should lead to these periods being

contemporaneous in time across the model simulations.

The role of radiative forcing in driving the variability of

pancontinental drought frequency on centennial time

scales can therefore be tested to potentially better un-

derstand the origin of this variability in the NADA. It

must be noted, however, that the CMIP5 models have

different climate sensitivities and, in particular, different

parameterizations of land surface and aerosol processes

that may drive compensating feedbacks and mask the

model response to external forcing. If these differences

are large, they would impact our ability to test the hy-

pothesized role of forcing as posed above, a possibility

that is outside the scope of this paper.

The number of pancontinental droughts for each cen-

tury relative to the mean number of droughts per century

between 1000 and 2000CE is plotted for the forcedmodel

simulations and the reconstruction in Fig. 10. For the

NADA, the increase in the number of pancontinental

droughts, relative to mean conditions, during the twelfth

century averages to 60%, with a maximum increase of

75% for the SW1CP1NWdrought type and a minimum

of 40% for the SW1NW1SE type. This period of in-

creased drought frequency does not appear to be cap-

tured by the models, nor do the individual models agree

on the timing of hydroclimate change, suggesting that

these changes are not tied in any coherent way to the

exogenous forcing. A possible exception is the CCSM

model, which exhibits increased aridity during the elev-

enth and twelfth centuries (particularly manifest in the

number of SW1CP1SE drought occurrences, although

the number of droughts in both centuries is within the

range from the CCSM control simulation); changes that

are contemporaneous with those in the NADA. The

models do, however, appear to simulate a large range in

the number of pancontinental droughts. To test if this

range is of the magnitude observed in the NADA, the

number of each pancontinental drought type was calcu-

lated for a sliding 100-yr window across the forced model

simulations andNADArecord and the range is plotted in

Fig. 11. Each model is individually capable of simulating

centennial-scale variability in the frequency of pan-

continental drought occurrence that is characteristic of

FIG. 10. Number of pancontinental drought years in each century relative to themean number of droughts per century between 1000 and

2000 CE, calculated for all possible types of pancontinental drought. Tomaintain consistency with Cook et al. (2014b), drought years were

allowed to overlap between the three- and four-region drought categories. Bar color indicates the associated forced model simulation or

reconstruction.

2036 JOURNAL OF CL IMATE VOLUME 28



the NADA. The fact that models simulate large differ-

ences in the number of pancontinental drought features

for different 100-yr periods, and that these changes are

not tied in any coherent way to the exogenous forcing, is

suggestive of a large amount of internal variability on

centennial time scales. This model behavior is consistent

with previous work that has focused on the dynamics of

persistent drought in the southwest specifically (Coats

et al. 2013, 2015). Additionally, if themodel dynamics are

in fact representative of the real atmosphere–ocean sys-

tem, then this result indicates that the observed pre-

ponderance of pancontinental droughts in the medieval

period could have arisen from internal variability, as

opposed to changes in radiative forcing.

d. Simulated pancontinental drought dynamics

Figure 12 shows the composite of the Niño-3.4, PDO,
and AMO indices during each type of pancontinental
drought for the model control simulations and for the
overlapping period between the NADA and the ob-
served SST dataset (1854–2005 CE), with this analysis

completed separately for the three- and four-region

droughts. Significance at the 90% level using the boot-

strapping test described in section 2c is indicated with an

asterisk. Importantly, the models do not agree with each

other or the observations on the dynamics that drive the

different types of pancontinental drought, despite the

fact that they produce patterns and recurrence intervals

that are consistent with the NADA (Figs. 8–10). The

one exception appears to be the importance of ENSO

to the SW1CP1SE, SW1CP1NW, SW1NW1SE,

and SW1CP1NW1SE pancontinental drought types,

FIG. 11. Ranges in the number of drought years for each pan-

continental drought type. This was calculated for a sliding 100-yr

window across the model record or reconstruction. Boxplot colors

indicate the associated forced model simulation or reconstruction.

FIG. 12. Mean values of climate indices during pancontinental drought years for the full control simulations and the overlapping period

between the observed SST dataset and the NADA (1854–2005 CE). (top) The Niño-3.4 index, (middle) the PDO index, and (bottom) the
AMO index. Significance at the 90% level is indicated by an asterisk and was calculated using the resampling test described in section 2c.

Unlike in previous figures, drought years were not allowed to overlap between the three- and four-region droughts.
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which is exhibited to varying degrees by all of themodels

and for the observation-to-reconstruction. Additionally,

with the exception of CCSM and MPI, the models and

the observations individually have pancontinental drought

types with no significant connection to the major modes of

atmosphere–ocean variability. Together these results im-

ply what was suggested by the large CPCS range in the

bottom panel of Fig. 9 and by the characteristic model

behavior outlined in section 3a, namely that multiple dy-

namical drivers are capable of producing each type of

pancontinental drought.

The left-hand panel in Fig. 13 shows the observed

Niño-3.4, PDO, and AMO indices with the timing of
each pancontinental drought occurrence marked with a
gray bar. While the ENSO behavior appears to be con-
sistent throughout the instrumental interval, the vari-
ability in the early part of the PDO and AMO records is
subdued. This behavior may explain the weaker PDO
and AMO teleconnections in the reconstructed PDSI,
relative to observations (Fig. 1, bottom) as the re-

construction spans the length of the 152-yr instrumental

SST record. The observed PDSI, by contrast, is analyzed

only over the 1950–2005 period, for which both modes

exhibit consistently large variability.

The right-hand panels in Figs. 13 and 14 analyze the

associations between pancontinental droughts and the

dynamical drivers using the observation-to-reconstruction

and the models, respectively, but allowing for a more

robust statistical assessment of the possibility that it is

a combination of dynamical modes that produces pan-

continental drought features. To do so, all pan-

continental drought types are treated as the same, and

considered to be Bernoulli processes (with 1 for drought

years and 0 for nondrought years), with the drought

frequency then defined as the number of pancontinental

drought occurrences over the number of analyzed years

(152 yr for the observations–reconstruction and 500 yr

for the model control simulations). Within a Bayesian

framework, the posterior distribution of the drought

frequency can be calculated for subsets of the data that

have different phases of the dynamic modes (e.g.,

a negative or LaNiña–like state in theNiño-3.4 index) or
some combination of phases of the dynamic modes (e.g.,
a negative Niño-3.4 index, positive AMO, and negative
PDO). If, following Kam et al. (2014), we assume that

the prior distribution is a uniform beta distribution or

uninformative, then the posterior distribution is easily

derived with the alpha and beta parameters being equal

to the number of drought occurrences plus one and the

number of years minus the number of drought occur-

rences plus one, respectively. The observation-to-

reconstruction posterior distributions in the right-hand

panel of Fig. 13 indicate that the frequency of pan-

continental drought occurrence is greatest when there

are simultaneously negative Niño-3.4 and PDO indices
and a positive AMO index (with pancontinental drought

FIG. 13. (left) The observedDJFNiño-3.4, DJF PDO, and JJAAMO indices for the period 1854–2005CE are plotted as solid black lines.

For the PDO andAMO, the filled regions (red for positive, blue for negative) are the smoothed time series using a 10-yr LOWESS spline,

while for the Niño-3.4 index the filled regions are the unfiltered interannual data. The timing of each pancontinental drought occurrence is
indicated with a gray bar (all five types of pancontinental drought are considered together). (right) The posterior distribution of the
frequency of pancontinental drought occurrence (all types considered together) for the full data (black) and for the subset of data with
a positive AMO (red), negative PDO (blue), or negative Niño-3.4 (green) index and years with combinations of two or all three of these
conditions. The distributions for combinations of two conditions are dashed using the two respective colors while the distribution for the
combination of all three conditions is plotted in purple. The distributions were computed using a Bayesian framework with an un-
informative prior and pancontinental drought occurrences treated as a Bernoulli process.
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occurring nearly 40%of the timewhen these conditions are
met). Interestingly, for the observation-to-reconstruction
record the individual impacts of the three modes of
variability on the frequency of pancontinental drought
are roughly equal. The models, by contrast, tend to
overestimate the impact of ENSO on pancontinental
drought occurrence (with the main exception being
BCC; see Fig. 14). This result is likely indicative of the

more realistic, and in some cases overactive, ENSO

variability and teleconnections (e.g., CCSM) relative to

other modes of coupled atmosphere–ocean variability.

The model split between slightly underestimating the

recurrence interval of pancontinental drought of all

types (CCSM, IPSL, and MPI) and moderately over-

estimating the recurrence interval of these droughts

(BCC, GISS, and MIROC) in Fig. 8 can also be ex-

plained by the results in Figs. 13 and 14. CCSM, IPSL,

and MPI all overestimate the impact of ENSO on the

frequency of pancontinental drought occurrence and, as

a consequence, produce more of these features than is

realistic (Fig. 14). In CCSM this behavior appears to

result from ENSO variability that is too strong (Figs. 1

and 2), while in IPSL and MPI the ENSO variability is

more realistic (though slightly too strong) but the hy-

droclimate response to ENSO is too homogenous over

the North American continent (Fig. 1). BCC, despite

underestimating the impact of ENSO on pancontinental

drought occurrence, is able to largely reproduce the

impact of the AMO, while slightly overestimating the

PDO impact (Fig. 1), and has a posterior distribution of

ocean-forced pancontinental drought occurrence that is

similar to the observation-to-reconstruction (Fig. 14).

The same is true of GISS, which exhibits the most re-

alistic impact (as compared to the observations) of the

three modes of atmosphere–ocean variability (and the

oceanic boundary conditions in general; see Fig. 14) on

pancontinental drought occurrence (although it slightly

underestimates the AMO impact relative to the PDO).

The fact that GISS, and to a lesser degree BCC, un-

derestimate the overall occurrence of pancontinental

drought (e.g., Fig. 8), therefore, appears to be related to

the frequency with which the simulated ocean produces a

simultaneously positive AMO, negative PDO, and neg-

ative ENSO. MIROC also underestimates the frequency

FIG. 14. The posterior distributions for each model of the frequency of pancontinental drought occurrence (all types considered to-

gether) for the full data (black) and for the subset of data with a positive AMO (red), negative PDO (blue), or negative Niño-3.4 (green)
index and years with combinations of two or all three of these conditions. The distributions for combinations of two conditions are dashed
using the two respective colors while the distribution for the combination of all three conditions is plotted in purple. The distributions were
computed using a Bayesian framework with an uninformative prior and pancontinental drought occurrence treated as a Bernoulli process.
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of pancontinental drought occurrence, and while it sim-

ulates a reasonable impact of a negative Niño-3.4 index
on the frequency of pancontinental drought occurrence,
the PDO and AMO impacts are too weak (Fig. 14).
It must be noted that between the short instrumental

record, which limits our knowledge of real-world pan-

continental drought dynamics, and the general lack of

consistency in the significance of connections between

the dynamical modes and pancontinental drought events

in both the models and the NADA, it is difficult to make

conclusions about the veracity of the simulated dynamics.

Nevertheless, attempting to understand the simulated

pancontinental drought dynamics within the context of

the characteristic model behavior outlined in section 3a

may help determine if models will be able to properly

constrain the risk of future drought over North America.

In particular, the patterns of behavior of CCSM and

BCC are an interesting juxtaposition of pancontinental

drought dynamics. CCSM has significant connections

between four of the pancontinental drought types and

the tropical Pacific (Fig. 12) and, in general, greatly

overestimates the impact of ENSO on pancontinental

drought occurrence (Fig. 14). BCC, on the other hand,

has no significant connections between pancontinental

drought and the tropical Pacific (Fig. 12) and, generally,

underestimates the impact of ENSO on pancontinental

drought occurrence (Fig. 14). This behavior can perhaps

be understood in terms of the model dynamics outlined

in section 3a. While BCC has a somewhat realistic

ENSO spatial pattern (Fig. 5), and variability that is

moderate (but too regular, e.g., the large negative lag-1

autocorrelation value; see Fig. 2), the ENSO tele-

connection to North America is the least realistic,

weakest, andmost nonstationary of themodels analyzed

herein (Fig. 1). By contrast, the PDO and AMO tele-

connections are more realistic, stronger (Fig. 1), and

consequently more strongly connected to pancontinental

drought (Fig. 14). CCSM, on the other hand, has a very

realistic and stationary ENSO teleconnection (Fig. 1),

along with ENSO variability and spatial patterns that are

too strong (Figs. 5 and 6). As a consequence, nearly all of

the pancontinental drought types exhibit a connection to

the tropical Pacific. Interestingly, the PDO and AMO in

CCSM are less realistic and exhibit relatively large and

small variability (Figs. 5 and 6), respectively; yet both

have a significant connection to three of the pancontinental

drought types (Fig. 12).

The behavior of the other models is less clear but will

be considered separately for models with weak ENSO

(GISS and MIROC) and strong ENSO (IPSL and MPI)

connections to pancontinental drought in Fig. 14. For

weak ENSO, GISS, while only exhibiting a significant

connection betweenENSO and two of the pancontinental

drought types (Fig. 12), largely captures the oceanic im-

pact on the frequency of pancontinental drought oc-

currence (Fig. 14). This is surprising given that the GISS

model underestimates the overall frequency of pan-

continental drought occurrence and has generally weak

ocean variability (e.g., Coats et al. 2015). MIROC also

has a weak connection between the tropical Pacific and

pancontinental droughts (with just the connection be-

tween SW1CP1SE and ENSO being significant at the

90% level; see Fig. 12), and this is likely related to the

highly nonstationary and unrealistic ENSO teleconnection

within the model (Fig. 1).

MPI, like CCSM, has a strong connection between

ENSO and pancontinental droughts with all of the

drought types exhibiting significance (Fig. 12).While the

ENSO teleconnection in MPI is less realistic than in

CCSM (Fig. 1), the model also exhibits relatively large-

magnitude tropical Pacific variability (Fig. 6). IPSL, like

CCSM and MPI, overestimates the impact of ENSO on

pancontinental drought occurrence (Fig. 14); it also ex-

hibits a moderate connection between the individual

pancontinental drought types and ENSO, with the

SW1CP1SE and SW1CP1NW1SE time series being

significant at the 90% level (Fig. 12). The ENSO tele-

connection in IPSL is likewise moderately realistic, as

well as highly stationary and driven by moderate vari-

ability in the tropical Pacific (Figs. 1 and 6).

4. Conclusions

Simulated ENSO, PDO, and AMO dynamics, and

their teleconnections to North America, differ between

models and in their comparisons to observations. As

a consequence, models do not agree on the modes of

atmosphere–ocean variability that are associated with

pancontinental droughts. The models do, however,

simulate pancontinental droughts with the frequency

and spatial patterns exhibited by the NADA. Addi-

tionally, the models display centennial-scale variability

in the occurrence of pancontinental droughts that is

similar to the magnitude observed in the NADA. These

changes do not appear to be tied to the exogenous

forcing, suggesting that simulated internal hydroclimate

variability on these time scales is large in magnitude.

These results have implications for efforts to project

future hydroclimate over North America and to un-

derstand past hydroclimate change. First, if centennial-

scale internal variability is large in magnitude, the

MCA-to-LIA transition and other periods of past

hydroclimate change may have resulted from internal

variability of the atmosphere–ocean system. If true, this

would suggest that the projection of certain character-

istics of future hydroclimate is potentially complicated
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in terms of the impact of trace gas concentrations.

Nevertheless, internal variability, if manifest in changes

to the oceanic boundary conditions that in turn drive

hydroclimate change, may be predictable if interannual-

to-multidecadal modes of Pacific and Atlantic Ocean

variability can be predicted. While operational pre-

diction of the tropical Pacific, for instance, has yet to

exceed the seasonal time scale (e.g., Barnston et al. 2012;

Zhu et al. 2012), the slowly varying nature of the PDO

and AMO suggests that it is a potential target for pre-

dictability on decadal time scales (e.g., Smith et al.

2012). Within the context of the results presented

herein, PDO and AMO predictability would help con-

strain risk assessments of future pancontinental drought

occurrence, given that a negative PDO and a positive

AMO are associated with an increased frequency of

pancontinental drought occurrence (Fig. 13). In partic-

ular, decadal AMO and PDO predictability along with

seasonal ENSO prediction has the potential to provide

robust annual projections of the risk of pancontinental

drought occurrence.

Second, models reproduce the statistics of pan-

continental drought occurrence, but they do not agree

on the dynamics that drive these features. The ENSO

(e.g., Clement et al. 1996) and AMO (e.g., Ting et al.

2009) both potentially respond to radiative forcing. If

these responses are large in magnitude, the simulated

hydroclimate change over North America will be dif-

ferent for each model. In CCSM, for instance, a large

forced response in the tropical Pacific would be ex-

pected to drive large hydroclimate impacts over North

America. The same change in BCC, however, would

yield smaller impacts. It is difficult to determinewhich of

these model responses is realistic, and by consequence,

which model projection should be considered the most

accurate, because even in models that are successful at

simulating the observed atmosphere–ocean dynamics,

the dynamical relationships are often nonstationary and

their connections to radiative forcings are not well

constrained. This issue is compounded by the fact that

the observed dynamics themselves have been inferred

from a 152-yr instrumental interval that cannot provide a

full assessment of the stationarity of real-world dynamics.

Understanding whether teleconnection nonstationarity is

physically reasonable, and whether the instrumental in-

terval is sufficient to characterize the full range of real-

world atmosphere–ocean dynamics, is thus essential for

constraining the risk of hydroclimate change in North

America. This will require, at a minimum, longer records

of proxy-estimated SSTs [e.g., Emile-Geay et al. (2013)

for the tropical Pacific] and other regional records of

hydroclimate variability over the last millennium [e.g.,

Cook et al. (2010) for monsoonal Asia].

A characterization of the full range of real-world

atmosphere–ocean dynamics, and their connections to

pancontinental droughts, will help determine which

models exhibit realistic dynamics and thus can be in-

terpreted as projecting the future hydroclimate of North

America with some accuracy. We have demonstrated

that models simulate pancontinental droughts that are

characteristic of a paleoclimate estimate (in spatial

character and frequency of occurrence), but driven by

different atmosphere–ocean dynamics, and that these

models simulate a large degree of variability in the oc-

currence of pancontinental droughts on centennial time

scales. These results, and further efforts to characterize

relevant model dynamics, will help clarify the in-

terpretation of future hydroclimate projections by pro-

viding, in particular, an understanding of the reasons for

the differences between model projections of hydro-

climate responses to increased greenhouse gas forcing.

This understanding, in turn, will help determine what

information from the future projections is useful for

planning adaptation and management strategies for the

impacts of climate change.
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