
JULY 2013AMERICAN METEOROLOGICAL SOCIETY |JULY 2013| 997PB

AFFILIATIONS: Donat, Alexander, and Yang—Climate 
Change Research Centre, and ARC Centre of Excellence for 
Climate System Science, University of New South Wales, Sydney, 
Australia; Durre and Vose—NOAA’s National Climatic Data 
Center, Asheville, North Carolina; Caesar—Met Office Hadley 
Centre, Exeter, United Kingdom
CORRESPONDING AUTHOR: Markus Donat, Climate Change 
Research Centre, University of New South Wales, Sydney, 
Australia
E-mail: m.donat@unsw.edu.au

DOI: 10.1175/BAMS-D-12-00109.1

©2013 American Meteorological Society

the results of HadEX. For these reasons, the authors 
set out to develop a new dataset to address these issues 
using the world’s largest repository of daily in situ 
observations of temperature and precipitation—the 
National Climatic Data Center (NCDC)’s Global His-
torical Climatology Network (GHCN)-Daily dataset. 
This article describes the resulting dataset, termed 
GHCNDEX—an operationally updated, global land 
gridded dataset of climate extremes. We also dem-
onstrate the application of the dataset for climate 
change and climate monitoring purposes in addition 
to assessing some issues regarding uncertainty by 
comparing the results with existing datasets.

OBSERVATIONAL DATA. GHCN-Daily is the 
premier source of daily observations of maximum 
and minimum temperatures as well as daily precipita-
tion amounts from various regions of the globe. The 
dataset is composed of observations from numerous 
data sources that have been integrated and undergone 
extensive quality assurance reviews. As of October 
2012, GHCN-Daily contains roughly 29,000 stations 
with daily maximum and minimum temperature 
and more than 80,000 stations with daily precipita-
tion amounts (version 3.00-upd-2012100507—see 
Fig. 1a,c,e). Although the database is updated regu-
larly over Europe, North America, and Australia as 
well as at several hundred synoptic stations across 
numerous countries, many records from Asia, Africa, 
and South America do not contain data from the 
most recent years. In addition, while many records 
are short or incomplete, many others—especially in 
North America, Europe, and Australia—date back 
well into the nineteenth century. At present, there 
are no bias adjustments available for GHCN-Daily 
to account for historical changes in instrumentation, 
observing practice, station location, or site conditions.

CLIMATE INDICES ON GLOBAL GRIDS. 
GHCNDEX contains 26 of the indices recommended 
by the ETCCDI (see Table 1). Of these, 16 are temper-

F or more than a decade, the World Meteorological 
Organization (WMO) Commission for Climatol-
ogy (CCl)/CLIVAR/JCOMM Expert Team on 

Climate Change Detection and Indices (ETCCDI) 
has been facilitating the international coordination 
of a suite of indices that primarily represent the more 
extreme aspects of climate. The main aim of this team 
has been to fill in data gaps using a consistent and 
traceable approach in order to provide a clear global 
picture of the long-term variability of extremes, to 
provide the necessary data to perform appropriate 
“detection and attribution” studies, and to be able 
to evaluate climate models and assess their efficacy 
in simulating and projecting the future of climate 
extremes. To this end, the ETCCDI held a number 
of regional workshops over many years, the data 
from which were used to help create HadEX, the first 
global land-based, gridded dataset of temperature and 
precipitation extremes covering the second half of the 
twentieth century.

While HadEX facilitated the analysis of trends in 
extremes, its relatively short record (1951–2003) and 
static nature (i.e., it is not updated) presents critical 
gaps in our ability to adequately assess and monitor 
changes in extremes. Furthermore, much of the data 
from the regional workshops is not publically avail-
able, making it difficult to independently reproduce 
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ature-based and 10 are precipitation-based. Table 1 
also notes which indices are calculated monthly and 
annually (e.g., hottest/wettest day, coldest night) and 
which only produce one value per year (e.g., frost day 
frequency, precipitation intensity). Most of the indices 
themselves are intended to measure some of the more 
extreme aspects of climate, characterizing the inten-
sity, duration, or frequency of various climate events.

Each of the 26 indices is computed separately for 
each station. The station-based indices are then av-
eraged together in a manner that accounts for their 
uneven distribution in space and time, minimizing 

data quality issues at individual stations, and facili-
tating comparisons with climate model output. In 
particular, global gridded fields, with a grid box size 
of 2.5° of latitude by 2.5° of longitude, are calculated 
for each climate index over land surface areas (note 
that the grid box area varies for different latitudes: 
at the equator, a grid box covers an area of approxi-
mately 275 × 275 km, with smaller grid box sizes at 
higher latitudes). To create gridded values, spatial in-
terpolation of the station-based indices is performed 
using an algorithm that considers the underlying 
spatial correlation structure of the data, a modified 

Fig. 1. Locations of station observations in the GHCN-Daily archive. Left-hand side: All stations which provide 
daily data to calculate the climate indices based on (a) Tmax, (c) Tmin, (e) precipitation. Right-hand side: Sta-
tions which provide at least 40 years of calculated index data—for example, (b) TXx based on Tmax, (d) TNn 
based on Tmin, and (f) Rx1day based on daily precipitation amounts (see Table 1).
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version of Shepard’s angular 
distance weighting (Shepard 
1968; see Alexander et al. 
2006 for details).

While indices are calcu-
lated for the stations’ full 
period of record, we only 
calculate gridded fields from 
1951 onward since coverage 
is reasonably good over most 
of the land areas of the globe 
after 1950. Also, to help min-
imize the effect of varying 
station density, we only use 
stations with at least 40 years 
of valid data after 1950 (see 
Fig. 1b,d,f). This step reduces 
the number of stations used 
for gridding by a factor of 
six or seven. For example, we 
keep roughly 5,000 tempera-
ture stations for gridding the 
warmest maximum tem-
perature (TXx), and about 
12,000 precipitation stations 
for gridding the maximum 
one-day precipitation total 
(Rx1day).

GHCNDEX genera l ly 
compares well with other 
observat ion-based data-
sets of climate extremes, 
such as HadEX (Alexander 
et al. 2006) and temperature 
extremes calculated from 
HadGHCND (Caesar et al. 
2006), a daily gridded tem-
perature dataset that also 
uses GHCN-Daily as input 
(Fig. 2). For the precipita-
tion indices, the agreement 
with HadEX is somewhat 
less robust, but this is al-
most entirely a function of 
the underlying source data 
(and thus spat ia l cover-
age); masking HadEX to the 
sparser coverage provided by 
GHCNDEX (dashed line in 
Fig. 2e) significantly increas-
es the agreement between the 

Fig. 2. Global average time series (left) for the different datasets and (right) 
difference maps showing GHCNDEX minus HadGHCND for selected ex-
tremes indices. Annual values (thin lines) and 21-yr Gaussian filtered values 
(thick lines) are shown as anomalies from the respective 1961–90 average. 
For comparison, global average time series from HadEX (data period 
1951–2003) are also included. Solid lines represent the area-weighted aver-
age in each dataset of all available grid boxes with at least 40 years of data, 
the blue dashed line in (e) shows the average of HadEX grid boxes masked 
to where GHCNDEX contains valid data. Difference maps use the 60-yr 
period 1951–2010, stippling indicates local Spearman rank correlation coef-
ficients above 0.8. Note that for all grid boxes, differences are not significant 
at the 5% level (Kolmogorov-Smirnov-Test). For comparison, GHCNDEX 
was interpolated to the 3.75° x 2.5° grid used by HadGHCND and HadEX. 
Units as indicated in Table 1.
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Table 1. List of the temperature and precipitation indices recommended by the ETCCDI and calculated for 
this study based on GHCN-Daily station data (index based on a user-defined threshold is omitted). Percentile 
values used as threshold for some of the indices are calculated for the base period 1961–90. See http://etccdi 
.pacificclimate.org/list_27_indices.shtml for exact definitions. A “ * ” indicates indices with monthly and annual 
output intervals; all other indices provide only annual output. Decadal trend estimates of global averages are 
also shown for the annual index values, significant trends (p ≤ 0.05, Mann-Kendall test) are indicated in bold. 
Only grid boxes with at least 40 years of data are used for the global average calculation.

Index (A) Temperature Definition Unit Decadal trend: 1951–2011

Intensity GHCNDEX HadGHCND

TXn* Min Tmax Coldest daily maximum temperature °C 0.28 0.27

TNn* Min Tmin Coldest daily minimum temperature °C 0.45 0.39

TXx* Max Tmax Warmest daily maximum temperature °C 0.11 0.10

TNx* Max Tmin Warmest daily minimum temperature °C 0.12 0.17

DTR* Diurnal  
temperature  

range

Mean difference between daily maximum 
and daily minimum temperature

°C -0.09 -0.06

Duration

GSL Growing season 
length

Annual number of days between the first 
occurrence of 6 consecutive days with Tmean 
> 5°C and first occurrence of consecutive 6 
days with Tmean < 5°C. For the Northern 
Hemisphere, this is calculated from 1 Jan to 
31 Dec while for the Southern Hemisphere it 
is calculated from 1 Jul to 30 Jun.

days 1.01 1.25

CSDI Cold spell  
duration  
indicator

Annual number of days with at least 
6 consecutive days when Tmin < 10th 
percentile

days -0.62 -1.03

WSDI Warm spell  
duration  
indicator

Annual number of days with at least 6 
consecutive days when Tmax > 90th 
percentile

days 1.18 2.37

Frequency

TX10p* Cool days Share of days when Tmax < 10th percentile % of 
days

-0.67 -0.86

TN10p* Cool nights Share of days when Tmin < 10th percentile % of 
days

-1.09 -1.26

TX90p* Warm days Share of days when Tmax > 90th percentile % of 
days

0.80 1.14

TN90p* Warm nights Share of days when Tmin > 90th percentile % of 
days

1.17 1.79

FD Frost days Annual number of days when Tmin < 0°C days -1.80 -1.72

http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
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Index (A) Temperature Definition Unit Decadal trend: 1951–2011

Frequency

ID Icing days Annual number of days when Tmax < 0°C days -1.23 -1.18

SU Summer days Annual number of days when Tmax > 25°C days 0.47 0.54

TR Tropical nights Annual number of days when Tmin > 20°C days 0.91 1.05

(B) Precipitation

Intensity

Rx1day* Max 1-day 
precipitation

Maximum 1-day precipitation total mm 0.04 N/A

Rx5day* Max 5-day 
precipitation

Maximum 5-day precipitation total mm -0.31 N/A

SDII Simple daily  
intensity index

Annual total precipitation divided  
by the number of wet days  
(i.e., when precipitation ≥ 1.0 mm)

mm/
day

-0.07 N/A

R95p Annual contribution 
from very wet days

Annual sum of daily precipitation > 95th 
percentile

mm 1.98 N/A

R99p Annual contribution 
from extremely  

wet days

Annual sum of daily precipitation > 99th 
percentile

mm 1.42 N/A

PRCPTOT Annual contribution 
from wet days

Annual total precipitation from days ≥ 1 mm mm 0.23 N/A

Duration

CWD Consecutive wet days Maximum annual number of consecutive 
wet days (i.e., when precipitation ≥ 1 mm)

days 0.02 N/A

CDD Consecutive dry days Maximum annual number of consecutive dry 
days (i.e., when precipitation < 1 mm)

days -1.66 N/A

Frequency

R10mm Heavy  
precipitation  

days

Annual number of days when  
precipitation ≥ 10 mm

days -0.07 N/A

R20mm Very heavy 
precipitation days

Annual number of days when  
precipitation ≥ 20 mm

days -0.03 N/A

globally averaged indices from both datasets. This 
also shows that spatial coverage is one of the major 
sources of uncertainty when calculating global trends, 
particularly for the precipitation indices whose 
changes are spatially more complex, and thus global 
changes are more sensitive to regional coverage. As 
already noted, the spatial coverage of HadEX is more 

complete because it incorporated data collected from 
a number of regional workshops. In these cases, only 
climate indices were provided for these regions and 
thus the daily data are not available via the GHCN-
Daily archive. Therefore, we recommend that appro-
priate masks for data completeness should be applied 
when analyzing time series of area averages.
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The comparison with indices derived from 
HadGHCND allows us to learn about the sensitiv-
ity of the results to two different computational 
approaches: the GHCNDEX approach of gridding 
indices computed from station data and the alterna-
tive approach (in this case using HadGHCND) of 
first gridding daily station observations and then 
computing indices from those gridded fields. This 
comparison is of particular interest because indi-
ces from climate model simulations, for example, 
are also calculated from daily gridded fields, and 
it remains to be determined to what extent indices 
computed in this way are comparable to datasets 
that interpolate grids of the extremes indices cal-
culated at station locations. Figure 2 shows some 
regional differences in absolute values between 
GHCNDEX and HadGHCND, although the null 
hypothesis that data are drawn from the same 
distribution can generally not be rejected at the 
5% level (Kolmogorov–Smirnov test). Particularly 
for the frequencies of warm days and warm nights 
(Fig. 2c,d), the 60-year average is somewhat larger 
in HadGHCND compared to GHCNDEX, and this 
is related to a stronger increase in these indices 
after around 1980 in HadGHCND. For the indices 
defined as absolute temperature values, there are 
some systematic differences, with monthly and an-
nual maximum values (e.g., TXx, TNx) being gen-
erally higher in GHCNDEX than in HadGHCND, 
whereas minimum values (e.g., TXn, TNn) tend to 
be lower in GHCNDEX (not shown). Despite biases 
in absolute values, the local correlations of indices 
from GHCNDEX and HadGHCND are generally 
high (greater than 0.8 using Spearman’s rank) and 
significant at almost all grid boxes. Some larger 
differences between both datasets are found around 
30°N [e.g., HadGHCND has fewer warm nights than 
GHCNDEX (see Fig. 2c)], and this also coincides 
with a lower correlation (although still significant) 
between the datasets.

TRENDS IN CLIMATE EXTREMES. To high-
light the usefulness of these index datasets, we show 
time series and trends from a selection of the gridded 
products from 1951 to 2011 (see Figs. 2, 3). For com-
parison, we additionally show trends of temperature 
indices based on HadGHCND, and we also compare 
with global average time series from HadEX. Linear 
trends are calculated here using Sen’s trend estimator 
(Sen 1968) and trend significance is estimated using 
the Mann-Kendall test (Kendall 1975). These meth-

ods do not make assumptions about the underlying 
distribution, and this is particularly important for 
the precipitation extremes, which do not necessarily 
follow a Gaussian distribution.

In general, the temperature-related indices display 
warming trends during the past 60 years over most 
of the land areas covered in this study, with generally 
stronger increases in minimum temperature than 
in maximum temperature. Most significantly, the 
frequency of cool nights is found to have decreased 
significantly during the past 60 years over almost 
all covered land areas (Fig. 3a), with the converse 
generally being true for warm nights (Fig. 3c). The 
frequencies of warm days and cool days also show 
clear warming trends over large areas (Fig. 3b,d). 
However, in some regions cooling is found in tem-
perature extremes. In particular, the maximum-
temperature-related indices (such as the frequency of 
warm days, Fig. 3d) also show the apparent “warming 
hole” over eastern North America, displaying a re-
gional (generally not significant) cooling trend that 
is also obvious from average temperatures. In some 
regions, the warming trends seem to be stronger in 
HadGHCND than in GHCNDEX—for example, over 
large parts of Eurasia as reflected by the frequency 
of cold days and warm days (Fig. 3b,d). This also 
explains the stronger warming of the global average 
in HadGHCND (Fig. 2). Note that for some regions 
outside of Europe, North America, and Australia, 
Fig. 3 does not show actual 60-year trends, due to 
limited availability of recent observations. However, 
for most regions shown, the trends represent changes 
during 50+ years after 1951.

Changes in precipitation extremes are spatially 
less consistent compared to the dominant warming 
observed in the temperature indices over the last 
60 years, and are also mostly less significant. Many 
of the precipitation indices consistently indicate (in 
some cases significant) increases in precipitation ex-
tremes over eastern North America, eastern Europe 
and Scandinavia, tropical northern Australia, and 
Brazil (e.g., Figure 3e for heavy precipitation days). 
Generally nonsignificant drying trends are reflected 
in the precipitation extremes indices over eastern 
Asia, northwestern North America, southwest 
Europe, and some regions in eastern and southwest-
ern Australia. On average, over the global land areas 
with data, some of the precipitation indices display 
slight trends toward wetter conditions (see Table 1), 
such as significant increases in precipitation amounts 
above the 95th and 99th percentiles.
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U T I L I T Y  F O R  C L I M AT E 
MONITORING. A key purpose 
of GHCNDEX is as an operational 
monitoring product for extreme cli-
matic events related to temperature 
and precipitation. This not only allows 
us to see the magnitude and extent of 
extreme events in near-real time, but 
also to place them in the context of 
longer-term changes at both global 
and regional scales. An additional 
advantage is the ability to view analo-
gous changes in minimum and maxi-
mum temperature and precipitation 
extremes. To demonstrate the suit-
ability of the gridded climate indices 
for climate monitoring applications, 
here we present three different events 
affecting different regions in the re-
cent past characterized by particularly 
warm or cool and wet conditions.

Euro-Russian heat wave of 2010. Large 
parts of eastern Europe and western 
Russia experienced exceptionally 
warm conditions during July and Au-
gust 2010 related to persistent atmo-
spheric blocking, with the most severe 
impacts over Russia. GHCNDEX indi-
cates strong departures from normal 
(i.e., the 1961–90 climate average) for 
most of the temperature indices. For 
example, over large parts of western 
Russia, the frequency of warm days 
(i.e., those above the 90th percentile) 
in July 2010 was five times higher than 
the 1961–90 average (Fig. 4a). This was 
related to record maximum tempera-
tures, the warmest day in July 2010 
being more than 5°C warmer than 
the average warmest July day during 
1961–90. Indeed, the area-averaged 
maximum temperature over west-
ern Russia (45°N–65°N, 30°E–55°E) 
in July 2010 was the highest (area-
averaged) July temperature during the 
entire period covered by GHCNDEX.

Australian f loods of 2010–11. The 
E l  Ni ño –Sout her n Osc i l lat ion 
(ENSO) was characterized by ex-

Fig. 3. Linear decadal trend estimates (following Sen 1968) for se-
lected extremes indices: (left) GHCNDEX; (right) HadGHCND. 
Trends are only shown for grid boxes with at least 40 years of data. 
Hatching indicates significant trends with p ≤ 0.05 (Mann-Kendall 
test). Units: (a)–(d) annual % of days per decade; (e) annual number 
of days per decade.
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traordinarily strong positive Southern Oscillation 
index values during the boreal winter in 2011–12, 
leading to an anomalously wet and cool summer in 
the eastern part of Australia. This resulted in disas-
trous f looding in parts of Queensland, while parts 
of Western Australia were drier and warmer than 
usual (Fig. 4b). This was ref lected by particularly 
high total precipitation amounts over the entire east-
ern half of Australia, where an anomalously large 
number of heavy precipitation days also occurred. 
In addition, exceptionally high values of 1-day and 
consecutive 5-day precipitation amounts were ex-

perienced. For example, area-averaged over eastern 
Australia, the highest consecutive 5-day precipita-
tion amount for December 2010 was higher than in 
any other December during 1951–2011. Similarly 
high December precipitation amounts only occurred 
in 1975. The wet conditions over the eastern part of 
Australia were accompanied by cooler-than-normal 
temperatures, as reflected by the reduced number of 
warm days, for example. The cooling effect of the 
La Niña conditions is also visible in lower nighttime 
temperatures, although to a lesser extent than in 
daytime temperatures.

Fig. 4. Anomalies relative to the 1961–90 climate average of selected indices for three recent extreme events 
and time series of area-averages for the relevant region. The green boxes indicate the regions for which area-
averaged time series are presented. (a) Euro-Russian heatwave of 2010: anomalies of warm days (TX90p) 
and warmest daily maximum temperature (TXx) during Jul and time series of TXx in Jul, area average for 
45°N–65°N, 30°E–55°E; (b) Australian floods of 2010: anomalies of consecutive 5-day precipitation (Rx5day) 
and warm days (TX90p) and time series of Rx5day during Dec, area average for 38°S–11°S, 137.5°E–155°E; 
and (c) North American heatwave of 2012: anomalies of coldest daily minimum (i.e., nighttime) temperature 
(TNn) and warmest daily maximum temperature (TXx) during Jul and time series of TXx in Jul, area average 
for 30°N–50°N, 100°W–75°W.
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North American heatwave of 2012. Large parts of 
eastern North America experienced an unusually 
long period of very high daytime and nighttime tem-
peratures during the 2012 boreal summer. Among 
the GHCNDEX temperature indices for July of that 
year, this heat wave is represented by large positive 
departures from the respective 1961–90 average 
(Fig. 4c). The largest positive anomalies occurred 
over the eastern United States, where both the cold-
est night (TNn), for example, and the highest daily 
maximum temperature (TXx) were up to 5°C warmer 
than the 1961–90 average. Averaged over the eastern 
United States (30°N–50°N, 100°W–75°W), TXx was 
higher during July 2012 than at any other time since 
1951. Strong positive anomalies were also found for 
the frequency of warm nights and warm days, with 
values up to four times more frequent than during 
1961–90 (not shown). A second center of large positive 
anomalies in the same temperature indices during 
July 2012 was located over central Canada.

WEB-BASED APPLICATION/PRODUCT 
AVAILABILITY. The complete suite of datasets 
related to GHCNDEX, which forms part of a wider 
project, CLIMDEX, is being made publicly available at 
www.climdex.org. This includes both the calculated 
climate indices at all stations and the gridded fields. 
The website also provides a number of tools to explore 
the data and to download them in different formats. 
This enables interested users to investigate the data-
sets according to their specific needs and also offers 
transparency toward reproduction of the results.

CONCLUSIONS. We present GHCNDEX, a 
suite of global gridded datasets of climate extremes, 
which is operationally updated. This enhances pre-
viously available climate extremes datasets, which 
were static in nature. Also, we show good agree-
ment between GHCNDEX and previous datasets 
with regard to variability and trends in the climate 
indices. This suggests a robustness of the analyzed 
changes across different data sources (HadEX) and 
processing procedures (HadGHCND). With respect 
to global-scale trends, the main source of differ-
ences between the datasets seems to be related to 
spatial coverage. All data used in the production of 
GHCNDEX are freely available via the GHCN-Daily 
archive, which ensures complete reproducibility of 
the results. However, using only freely available data 
means that spatial coverage may be more limited in 
comparison to other complementary datasets that 

incorporate nonpublic data sources to add spatial 
coverage in data-sparse regions.

In addition to the presented applications, GHCNDEX 
may serve as a basis for regional climate change assess-
ments, model evaluation, and detection and attribution 
studies of changes in climate extremes. As such, it may 
also be of use for upcoming studies that aim to under-
stand the mechanisms behind the observed changes.
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We think this discovery is a game-chang-
er in the world of alternative energy.”
—Virginia Tech Professor Y. H. PerCIVal ZHang, speak-

ing about new research in which he and colleagues 
were able to produce large amounts of high-quality 

hydrogen from plants with almost no release of green-
house gases through the use of xylose, the second-
most common sugar found in plants. The scientists 

extracted enzymes from a number of different micro-
organisms, then added xylose and a polyphosphate to 
create a reaction that not only releases the hydrogen 
from the xylose in amounts three times greater than 
other hydrogen-producing microorganisms but also 
does so at a relatively low temperature (122°F) and 

under normal atmospheric pressure. The new method 
is highly effi cient and results in a net energy gain—

something that is not possible with other processes 
that convert sugar into biofuels such as ethanol and 

butanol. The research, which was recently published in 
the online version of Angewandte Chemie, International 

Edition, “could help end our dependence on fossil 
fuels,” according to Zhang. (sourCe: Virginia Tech)
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