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ABSTRACT

Rainfall intensity displays relationships with atmospheric conditions such as surface temperature, and these

relationships have implications for how the intensity of rainfall varies with climate. Here, hourly gauge

measurements of rainfall over the contiguous United States (CONUS) are related to atmospheric variables

taken from theNorthAmericanRegional Reanalysis for the period 1979–2012. This analysis extends previous

work relating the rainfall process to the environment by including a wider range of variables in univariate and

bivariate quantile regressions. Known covariate relationships are used to quantify the regional contributions

of different weather regimes to rainfall occurrence and to identify preferential atmospheric states for rainfall

occurrence. The efficiency of different sets of regressors is evaluated, and the results show that both moisture

availability and vertical instability should be taken into account, with CAPE in combination with specific

humidity or dewpoint temperature being the most powerful regressors. Different regions and seasons behave

differently, pointing to the challenges of constructing global or CONUS-wide models for representing the

rainfall process. In particular, the relationships between environment and rainfall in the west of the United

States are different from other regions, reflecting nonlocal rainfall processes. Most of the coastal and eastern

United States display relatively low regional variability in the relationships between rainfall and environment.

1. Introduction

Rainfall processes occur in response to both synoptic

and mesoscale forcing on preexisting conditions within

the atmospheric column. However, the relationship

between these atmospheric conditions and extreme

precipitation is not well understood, especially on a re-

gional basis. Several studies have recently examined the

dependence of rainfall on ambient atmospheric vari-

ables (Berg et al. 2009; DeGaetano 2009;Groisman et al.

2005; Haerter and Berg 2009; Lenderink and Van

Meijgaard 2008; Lenderink and van Meijgaard 2009;

Shaw et al. 2011; Utsumi et al. 2011), primarily focusing

on the dependence of precipitation intensity on near-

surface temperature. These analyses were driven by the

question of whether rainfall intensity and extremes will

increase at theClausius–Clapeyron (CC) rate of;7%K21

as the climate warms.

TheCC rate, however, is not expected to represent the

regional precipitation response to warming everywhere.

In regions with appreciable access to moisture, such as

the tropics or continental margins, the total rainfall will

likely increase at approximately the CC rate. In certain

areas, extreme rainfall intensity, especially for short-

duration intense rainfall events, can increase at a higher

rate, often referred to as a super-CC rate. One possible

explanation for the super-CC rate of extreme rainfall is

that a greater release of latent heat in a warmer climate
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may producemore intense updrafts (Lenderink andVan

Meijgaard 2008). Another interpretation is that the

fraction of convective precipitation increases with

higher surface temperatures (Haerter and Berg 2009).

The influence of a warmer climate on extreme rainfall

intensity appears to be more complex over moisture-

limited regions or those where advective processes are

important (Lepore et al. 2015).

Comparatively little attention has been given in the

literature to the dependence of precipitation on nonther-

modynamic atmospheric variables or regional character-

istics. Several authors have explored the relationships of

daily and seasonal rainfall properties with atmospheric

states including sea level pressure, geopotential heights,

RH, wind components, and CAPE (Molini et al. 2011;

Myoung andNielsen-Gammon 2010; Hertig and Jacobeit

2013), and a few other analyses have looked at both dy-

namic and thermodynamic predictors of vertical structure

in precipitation (Rudolph and Friedrich 2014). In an

analysis of eastern U.S. hourly rainfall intensities, Lepore

et al. (2015) examined dependencies on both dynamic

and thermodynamic predictors, such as temperature,

dewpoint temperature, and CAPE, finding that higher

quantiles of precipitation (p. 0.75) are highly dependent

on CAPE. These findings suggest the need to investigate

the relationship of rainfall extremes with a wider spec-

trumof atmospheric variables. Interestingly, Lepore et al.

(2015) found that rainfall intensity is better correlated

with CAPE from reanalysis than with CAPE computed

from atmospheric soundings. This result can be explained

by considering the relative proximity of a reanalysis

vertical sounding profile compared to observed sounding

data. Radiosonde observations are unevenly spaced,

typically taken twice daily, and can potentially fail. In

contrast, reanalysis data are a model assimilation of

available observations and are sampled on a 6- or 3-

hourly gridded basis, meaning the environment is often

more proximal, both in time and space, to the rainfall

measurements (Brooks et al. 2003; Allen and Karoly

2014; Gensini et al. 2014). However, during reanalysis,

topographically induced processes, as well as synoptic

and mesoscale boundaries, can be temporally and spa-

tially displaced, meaning that small-scale features are not

as well represented as in a local sounding profile. Despite

these limitations, the greater availability of reliable prox-

imity profiles and evaluations compared to soundings has

suggested that quantities such as CAPE, convective in-

hibition (CIN), and wind vectors are representative in re-

analysis data, especially within the context of the analysis

presented here, and that they can provide useful atmo-

spheric profiles prior to and during rainy hours.

The concept of relating extremes to environmental

descriptors, often referred to as an ‘‘ingredients based’’

approach, has been extensively used in short-range

forecasting. A seminal work by Doswell et al. (1996)

applied this methodology to flash flood prediction.

Other authors have extended similar approaches to es-

tablish the effect of the large-scale environment on the

seasonal and annual numbers of tropical cyclones

(Camargo et al. 2007; Vecchi et al. 2011; Tippett et al.

2011) and to make projections under climate change

scenarios (Camargo et al. 2014). For continental convec-

tion, a similar approach has been used to understand the

influence of climate variations on severe thunderstorms

(Brooks et al. 2003; Trapp et al. 2007; Diffenbaugh et al.

2013), tornadoes (Tippett et al. 2012, 2014), and hail

(Allen et al. 2015a). Finally, this approach is also valuable

for connecting severe weather events with large-scale

climate variations (e.g., Allen et al. 2015b).

The motivation behind this work is to establish re-

lationships between the environment and the rainfall

intensity process. A deeper understanding of these links

can be used for a variety of scientific applications, for

example, to develop new models for the assessment of

hydrological hazards. In fact, simple statistical models,

such as linear regressions based on these relationships,

can provide a way to overcome the spatial limitations of

gauge networks and to quantify extreme precipitation

risk where there are no gauges.

Here, we link the distribution of hourly rainfall rates

with environmental variables (sections 2a and 2b)

through the use of univariate and multivariate quantile

regressions and conditional distributions (section 3). In

particular, we focus on the extremes of the hourly

rainfall rate distribution corresponding to percentiles

equal or higher than the 75th percentile. The atmo-

spheric variables included in our analysis describe

moisture availability (i.e., dewpoint temperature, spe-

cific humidity, and RH), vertical instability (i.e., CAPE,

CIN, and vertical wind shear), and advective processes

(i.e., surface and higher winds). Some of these variables

(e.g., CAPE and wind shear) are commonly used in the

description of environments favorable to severe weather,

and have been used to establish the contribution of con-

vection and severe convection to rainfall extremes

(Hitchens et al. 2013). Here, they allow us to gain some

understanding of the role of nonconvective, convective,

and severe convective processes in the precipitation

process as a whole for the entire CONUS (section 4a).

We use covariate relationships (section 4a) to discrimi-

nate between typically nonconvective, convective, and

severe weather environments.

The results (sections 4b–d) compile a wide catalog of

rainfall-atmospheric variable dependencies and explore

how these dependencies vary regionally and seasonally.

This set of results represents a necessary first step
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toward the development of statistical models that link

extreme rainfall to atmospheric variables, which is key

to the assessment of hydrologic hazards within a non-

stationary framework.

2. Data

a. Hourly gauge data

Hourly precipitation intensity values (denoted I) are

taken from the NCDC gauge network (available online

at http://www.ncdc.noaa.gov/cdo-web/). The data used

here cover the period 1979–2012. There are stations in

all 50 states, and the number of recording stations varies

in time, with recent increases taking the gauge network

to almost 5000 sites (Groisman et al. 2012). Eliminating

stations with missing or replaced values as in Lepore

et al. (2015) results in the 278 stations that are used here

and whose locations are shown in Fig. 1. The number of

years of complete data available at each station ranges

from 1 to 31 with half of the stations having at least 29

years of data. Station data are pooled over the eight

regions shown in Fig. 1, to allow more robust estimates

of higher quantiles. The region definitions take into ac-

count the spatial distribution of available stations and

the similarity of rainfall characteristics (Lepore et al.

2015). Data are analyzed on a calendar year and

seasonal basis. The four seasons considered are NH

winter [December–February (DJF)], spring [March–

May (MAM)], summer [June–August (JJA)], and fall

[September–November (SON)].

b. North American Regional Reanalysis

Environmental parameters are taken from the North

American Regional Reanalysis (NARR Mesinger et al.

2006) over the contiguous United States (CONUS). The

NARR data have a native horizontal grid spacing of

32 km, 45 vertical layers, and a temporal resolution of

3 h. Here, the NARR data are first interpolated onto a

18 3 18 grid centered on each NCDC station. The 3-

hourly data are taken to be piece-wise constant from one

analysis time to the next for association with the hourly

gauge data; for instance, the 1800 UTC reanalysis values

are associated with hourly rainfall rates at 1800, 1900,

and 2000 UTC. Interpolation of the reanalysis data onto

the 18 3 18 grid captures large-scale atmospheric fea-

tures from the reanalysis in the vicinity of the observed

rainfall and removes some of the smallest-scale features.

Table 1 lists the NARR variables used. They include

variables representative of moisture availability (i.e.,

surface temperature Ts, dewpoint temperature Td,

boundary layer specific humidity Qm, and RH), vertical

instability [i.e., CAPE, CIN, and 0–6-km vertical wind

shear (S06)], and advective processes (i.e., the wind di-

rection f). Where variables involve averaging in their

formulation, the interpolation is performed first, fol-

lowed by the calculation step. This collection of variables

has the potential to identify the relative importance re-

gionally and seasonally of moisture availability, local in-

stability, and advective processes.

Several issues influence the quality of NARR atmo-

spheric profiles positively and negatively (Tippett et al.

2014; Allen et al. 2015a). Gensini et al. (2014) and

Baldwin et al. (2002) identified moisture biases in the

midlayers, particularly over the western Great Plains

associated with mixing from the shallow convective

scheme. West et al. (2007) identified areas of overly

moist surface profiles. On the other hand, wind profiles

from reanalysis above the boundary layer are considered

FIG. 1. Locations of the 278 stations (colored circles) with complete records during 1979–2012 and

the eight regions. The color coding indicates the annual mean frequency of rainy hours (%).
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to be equivalent with rawinsonde profiles (Allen and

Karoly 2014; Gensini et al. 2014), and the assimilation of

observed rainfall as latent heat profiles may contribute to

an improved product. This quality has been illustrated in

examination of convective variables and other common

parameters that suggest thermodynamic atmospheric

properties are generally well represented (Mesinger et al.

2006; Gensini et al. 2014). Finally, by matching the

NARR products with rainfall gauge data, rather than

rainfall reanalysis products, we make use of a ground-

observed and more reliable rainfall measurement

(Bukovsky and Karoly 2007).

3. Methods

Calculation of conditional distributions and their
analysis

We define rainy hours at each station as those hours

when the station precipitation and the reanalysis surface

temperature are both positive, and restrict our analysis

to rainy hour precipitation intensity, where by intensity

we mean hourly rainfall rate. There is no analysis of

rainfall amounts accumulated from one hour to the next.

Requiring positive surface temperature restricts the

analysis almost exclusively to surface liquid pre-

cipitation. We abbreviate the condition I. 0 and Ts . 0,

as I1. For any reanalysis variable V, the distribution of

rainy hour precipitation intensities conditional on the

value of V is denoted p(I j I1, V) and is computed as in

Lepore et al. (2015) by binning rainy hour precipitation

intensities according to the corresponding value of the

variable V. We use 20 bins, equally spaced over the

range of V. For instance, the distribution of rainy hour

precipitation intensity conditional on surface tempera-

ture, p(I j I1, Ts), is computed using 20 equally spaced

bins over the range of Ts from 08 to 408C. The p-

percentile values for each of these 20 conditional

distributions are computed for p5 0:75, 0:8, 0:85, 0:9,

0:95, 0:98, 0:99, 0:995, 0:998, 0:999. The percentile values

of the conditional distribution p(I j I1, V) depend on the

percentile probability p and the variable V and are de-

noted as I1p,V . In the case of the variables CAPEs, CINs,

andQm, the natural logarithm is applied to the variables

[in the case of CIN, which has negative values, we use

2ln(2CINs)]. The other variables are not transformed.

Bivariate conditional distributions p(I j I1, V1, V2) are

calculated in the same way by binning rainy hour pre-

cipitation rates conditional on the values of the two

variables V1 and V2 and again using 20 equally spaced

bins for each variable. The percentiles of the bivariate

conditional distributions are denoted I1p,V1,V2
.

The dependence of the distribution of rainy hour

precipitation rate on the variable V is shown by plotting

the conditional percentiles I1p,V as a function of V, and

this graph is referred to as a quantile plot. In several

cases, the conditional percentiles have a log-linear de-

pendence on the variable V. This dependence is sum-

marized by the slope sp, which is found by fitting a linear

regression of the form

lnI1p,V 5 s
p
V1 constant , (1)

which linearly relates the natural logarithm of the con-

ditional percentile with the variable V over a range of

values of V for which the linear assumption is adequate.

For untransformed variables, Eq. (1) describes condi-

tional percentiles that scale exponentially with the at-

mospheric variable; for logarithmically transformed

variables, the conditional percentiles scale with a power

of the atmospheric variable. The dependence of the

slopes sp on the percentile probability p is shown in slope

plots. The dependence of the bivariate conditional dis-

tribution on V1 and V2 is summarized in a similar man-

ner by fitting, for each p, a multiple linear regression of

the form

lnI1p,V1,V2
5 s

p,1
V

1
1 s

p,2
V

2
1 constant . (2)

4. Results

a. Frequency of rainy hours and convective rainy
hours

The annual frequency of rainy hours in Fig. 1 shows

that rainy hours are most frequent in the northern part

of the West region along with the East and Northeast

regions. Figure 2 shows the annual and seasonal fre-

quency of rainy hours for the eight regions. The annual

CONUS frequency of rainy hours is;6%, with regional

values ranging from a low of 2% for the Southwest to a

TABLE 1. List of variables and their units included in the analysis.

Name Unit Variable

I, I1p,V mmh21 Rainfall intensity

Ts 8C Surface temp (2m)

CAPEs J kg21 Avg surface convective available

potential energy (CAPE)

CINs J kg21 Avg surface convective inhibition (CIN)

Td,s 8C Dewpoint temp at 2m

RHs, RH70 % Relative humidity at 2m and 70 hPa

above ground

S06 m s21 Wind shear between 10m and 6 km

above ground

Qm g kg21 Avg boundary layer specific humidity

fs, f70 m s21 Meteorological wind direction at 10m

and 70 hPa above ground
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high of 9% for the Northeast. Seasonality is strongest in

the coastal and eastern regions (Northeast, West, and

East), with the most rainy hours in winter and the fewest

in summer. The frequency of rainy hours in the Central,

Midwest, South, and Southwest regions shows sub-

stantially less seasonality. Spring and fall values in each

region are generally similar to the annual values.

The simplest characterization of rainfall type used

here is CAPEs $ 1 J kg21, (denoted CAPE11). The

fraction of rainy hours with CAPE11 is presented in

Fig. 3 and can be interpreted as a zero-order indicator of

the frequency of convection. The annual fraction of

rainy hours with CAPE11 is greatest in the South (90%)

and lower frequencies are found for the Southwest

(70%), East, Central, Rockies, and West (’60%), and

about 50% for the Northeast and Midwest (Fig. 3a). All

regions except the West show strong seasonality with

rainy hours, with CAPE11 being most common in

summer (100% of the South rainy hours) and least

common in winter.

We consider also three multivariate characterizations

of rainfall type that have been applied in the literature to

convective or severe convective storms (Table 2). Allen

et al. (2011) used linear discriminant analysis to separate

between severe convective storms [defined as those

producing 2 cm1 diameter hail, 50 kt or greater winds

(where 1 kt 5 0.51m s21), or any tornado] and non-

severe convective storms, while other discriminants

have sought to identify ‘‘significant’’ severe convection

[responsible for 5 cm1 diameter hail, 65 kt or greater

winds, and F21 tornadoes; Brooks et al. (2003); Allen

et al. (2011)]. The product of CAPE and S06 or S06

raised to a power greater than one is common tomany of

FIG. 2. Annual (Y; circles) and seasonal (MAM–DJF; lines) re-

gional frequencies of rainy hours (%). Regions are indicated by the

color given in the legend.

FIG. 3. Annual (Y; circles) and seasonal (MAM–DJF; lines) fractions of convective rainy hours as definedby (a)CAPE.
1 and discriminants (b) d1, (c) d2, and (d) d3. Regions are indicated by the color given in the legend.
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these severe thunderstorm discriminants (Marsh et al.

2007; Trapp et al. 2007). The first discriminant, denoted

d1, depends on the product of CAPE, S06, andQm and is

adapted from the linear discriminant of Li and Colle

(2014), which was developed to identify the environmental

conditions favorable to convective storms regardless of se-

verity using radar observations and convective precipitation

data for the northeast United States. The other two dis-

criminants, denoted d2 and d3, depend only on CAPE and

S06 and were used in Marsh et al. (2007) and Allen and

Karoly (2014), respectively, to characterize severe thun-

derstorm environments.

The annual and seasonal fractions of rainy hours sat-

isfying d1–d3 are shown in Figs. 3b–d. The three dis-

criminants give a mostly consistent ordering of the

annual fraction of convective rainy hours with the

highest values in the South and Central regions; fol-

lowed by the Midwest, East and Northeast regions; and

finally the Southwest, Rockies and West regions. The

highest fraction of convective rainy hours occurs in

summer for all discriminants and regions except the

South. Convective rainy hours in the South region are

most frequent in summer according to CAPE11 and d1,

but in spring according to the two discriminants d2 and

d3, which do not include moisture Qm. The West region

shows little seasonality according to any of the three

discriminants. Overall, the convective rainy hours are

most frequent according to d1 and least frequent ac-

cording to d2.

b. Univariate dependence of rainy hour rainfall
intensity on environment

The distribution of rainy hour rainfall rates condi-

tional on the surrounding environment is characterized

by the dependence of the conditional percentiles I1p,V on

the value of the reanalysis variable V in Fig. 4. Starting

with Ts (Fig. 4, first row), in most of the regions the

natural logarithm of the rainfall percentiles ln(I1p )

shows an overall positive relationship with surface

temperature Ts, indicating exponential sensitivity to

surface temperature. The slopes [see Eq. (1)] of the

percentiles are shown in Fig. 5 and indicate slope values

well below the CC rate (6.8% K21) for the lower per-

centiles (p, 0.95), which then increase and plateau at or

just above the CC rate for the higher percentiles. This

differing pattern of behavior shows the increasing

sensitivity to temperature of higher quantiles of hourly

rainfall intensities. The highest sensitivities are seen for

the South, Central, Midwest, and Northeast regions, and

the lowest for theWest region. The surface temperature

slope values are slightly lower than those in Lepore et al.

(2015), but are overall similar in their shape and range

of values.

The percentile plots for dewpoint temperature Td,s

(Fig. 4, second row) display a more linear behavior than

do the ones for surface temperature, with no inflection

point. Percentiles for theWest region show amuchmore

linear scaling with dewpoint temperature than with

surface temperature for percentile levels greater than

0.95. The slope values for dewpoint temperature are

mostly at or slightly above the CC rate (Fig. 5; Td,s), in

contrast to those for surface temperature. The regional

dependence of the slopes is somewhat less for dewpoint

temperature (excluding the West and Rockies regions)

than for surface temperature, a finding that may be

relevant for statistical modeling.

Percentiles of rainy hour intensities conditional on

CAPE (Fig. 4, third row) show threshold behavior with

ln(I1p ) scaling linearly with ln(CAPEs) for values of

CAPE greater than 50 J kg21, except for the West re-

gion, where there is little dependence on CAPE. The

slope values for CAPE in Fig. 5 are mostly in the

neighborhood of 0.2; this value is lower than the theo-

retical value of 0.5, which comes from the idealized

scaling of updraft velocity with the square root of

CAPE. Values lower than 0.5 are expected in non-

idealized conditions (Singh and O’Gorman 2014;

Lepore et al. 2015). There is some indication of a re-

duced sensitivity to CAPE at higher percentiles in the

Midwest and East. The contrasting negative relationship

between convective inhibition CINs and rainfall is

therefore expected given it parameterizes resistance to

atmospheric destabilization. In our analysis, where we

consider rainy hours only, higher CINs values do not

completely inhibit rainfall, but rather work as a re-

tardant to the development of convection; in the envi-

ronment preceding convection, greater CINs allows for a

stronger moisture convergence before convective initi-

ation and, thus, can promote higher rainfall intensities

when convection does develop. In the case of nonrainy

hours, CINs can preclude convective processes and

cloud formation altogether. The negative relationship is

found throughout the CONUS but varies in degree; the

corresponding slope plots (Fig. 5; CINs) do not depend

on the percentile levels, but mostly on the geographic

location; the highest negative slopes being for the in-

terior western United States (Rockies and Southwest),

and the lowest values for the South andWest, suggesting

that the different range of slope values seen in Fig. 5 for

TABLE 2. The three multivariate discriminants of convectivity.

Name Discriminant

d1 (CAPE)(S06)1 23:3Qm . 5667

d2 (CAPE)(S06). 10 000

d3 (CAPE)(S061:67). 25 000
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CINs reflects the differing degree of dependence of

convective rainfall on CIN within the United States.

In all regions east of the Rockies, rainy hour pre-

cipitation intensity has a clear overall negative re-

lationship with S06 (Fig. 4, fifth row), a quantity that

appears in the linear discriminants d1–d3 for convective

and severe convective storms. The conditional percen-

tiles show either little sensitivity or positive sensitivity

(Midwest and Northeast regions) to S06 when its values

are less than about 10ms21. There is a linear regime for

values of S06 between 10 and 45m s21 where the

Rockies region shows no clear slope, the West region

shows a positive slope, and all other regions show a

negative relation between rainfall percentiles and S06.

An explanation for this behavior is that increased S06

can reflect an increased 6-km wind velocity, which has

the consequence of a faster cloud or storm motion,

which would reduce the residence time over a gauge of

any rain-bearing cloud. Another possible explanation is

that convection with insufficient CAPEs will be unable

to sustain its updraft in the presence of increasing en-

trainment from midlayer wind shear. This hypothesis is

evaluated in the next section when we consider the

combined effect of CAPE and S06 on the rainfall pro-

cess. In the corresponding slope plots (Fig. 5; S06), the

negative relationship between S06 and ln(I1) is variable

but fairly robust in regions east of the Rockies.

The sensitivities of rainy hour rainfall intensity to

boundary layer specific humidity Qm and surface rela-

tive humidity RHs are quite different. The overall re-

lation of boundary layer specific humidity Qm with

rainfall rate is positive in all regions, at almost all per-

centile levels (Fig. 4, sixth row). The slope plots [Fig. 5,

ln(Qm)] show that the transformation rates of specific

FIG. 4. Percentiles of the regional distribution of rainy hour rainfall intensity conditional on reanalysis variables. Each row corresponds

to a reanalysis variable (labeled on the left), and each column to a region (labeled at the top). The natural logarithms of the conditional

percentiles ln(I1p,V) (y axis) are plotted as a function of the reanalysis variableV (x axis) for the percentile levels p5 0.75, 0.95, 0.99, 0.998,

and 0.9995 with lighter colors corresponding to lower percentiles and darker colors to higher percentiles. The two gray vertical dashed

lines in each plot (except surface wind direction fs) show the range of values used to calculate the slopes in Fig. 5.
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humidity into rainfall intensity are on the order of 1 for

percentile probabilities between p5 0.75 and 0.90 for all

regions except the West. Percentile slopes increase for

all regions for percentile probabilities greater than 0.95,

and all slopes exceed 1 for the highest percentiles except

in the West region. Slope values greater than 1 indicate

that moisture is added compared to the average avail-

able moisture for a region. This additional moisture can

be due to stronger moisture convergence, and in par-

ticular it could be induced by other water/energy con-

version mechanisms (i.e., CAPE). In addition, RHs is

related to surface temperature and available moisture,

but has a less straightforward relation with rainy hour

rainfall rate, except in the West region, where it is an

overall positive and mostly linear relation. For low

values of RHs, most regions show a positive relation

with rainy hour rainfall rate, and a negative relation for

high values of RHs. Overall, RHs shows weaker re-

lationships with hourly rainfall intensity compared to

other measures of temperature and moisture, such as

Td,s and ln(Qm).

Finally, the relationship between the wind direction

f and hourly rainfall intensities (Fig. 4, eighth row) is

used to highlight the preferential wind direction, or the

lack of wind (0 wind identifies nowind), formore intense

rainfall occurrences in each region. Because of the shape

of these relationships, slope values were not calculated

for this quantity. The synoptic flow patterns associated

with prefrontal warm-air advection and postfrontal wind

regimes from the west or south are preferential for

rainfall in most regions. Regional variations can also

reflect the climatological wind direction of higher

moisture content, favoring southerly flow in the central

plains, South, and Midwest for intense rainfall, or

southeasterly flow (Northeast and East).

Overall, hourly rainfall intensity in the West region

displays different sensitivities compared to the other

regions. Rainfall percentiles over the West region do

show clear sensitivity to dewpoint temperature Td, S06,

and boundary layer moisture Qm, but the slope values

(Fig. 5) are substantially different from those of the

other regions, and in the case of S06, the sign of the slope

FIG. 5. The vertical axis reports the slope values [sp in Eq. (1)] of the linear regression calculated on the quantile plots presented in Fig. 4.

The horizontal axis is for percentile levels; the titles indicate the variables considered in the panel. The black horizontal lines in Ts, Td,

ln(CINs), and S06 highlight the zero-slope line, in ln(Qm), the one-slope line.
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is different. The distinct dependence of the West region

rainfall rate on the environment is consistent with as-

sessments that intense rainfall processes in this region

are heavily driven by nonlocal processes such as atmo-

spheric rivers (e.g., Steinschneider and Lall 2015), re-

flected by the sensitivity to boundary layer moisture, the

positive relation with vertical wind shear, and prefer-

ential wind directions during intense rainfall from the

west and southwest.

Repeating these analyses at the seasonal time scale

reveals that the relationships to atmospheric variables in

fall (SON) and spring (MAM) are very similar to the

results found when using the entire year. In contrast,

winter (DJF) and summer (JJA) show considerable

differences, with the rainy hour rainfall rate being in-

sensitive to ln(CAPE) in winter. The slopes for Td and

Qm in winter are closer to the annual case. For the

summer months, the ln(CAPE) slope values are similar

to those shown for the entire year, and the West region

appears to have slopes comparable to the other regions,

as well. Repeating the analysis on six 5-yr subsets con-

firms that the relationships for rainfall percentiles with

atmospheric variables are robust with no significant

change over the past 30 yr.

c. Bivariate dependence of rainy hour rainfall
intensity on environment

We first consider the bivariate distributions of atmo-

spheric variables V1 and V2 conditioned on rainfall oc-

currence and CAPE11, denoted p(V1, V2 j I1, CAPE11)

and displayed in Fig. 6, for various choices of V1 and V2.

This quantity shows the joint frequency of environments

during rainy hours with CAPEs . 1. The joint distribu-

tion of S06 and ln(CAPEs) reveals notable regional

features in the source of precipitation (Fig. 6, row 1). In

the South, environment occurrence during rainy hours

with CAPE11 is concentrated along or above the dis-

criminant thresholds, as reflected by the greater fraction

FIG. 6. The bivariate distribution of environments V1 and V2 conditional on rainy hour occurrence and CAPEs . 1, denoted

p(V1, V2 j I1, CAPE11). Each column corresponds to one of the eight regions, labeled at the top. Each row corresponds to a different pair

of variables, V1 and V2, given in the leftmost label and corresponding to the horizontal and vertical axes, respectively [i.e., in the first row,

the label S062 ln(CAPEs) indicates that S06 corresponds to the x axis and ln(CAPEs) to the y axis]. White areas correspond to values of

V1 andV2 that do not occur during rainy hours with CAPE11, while red and blue areas correspond to values ofV1 andV2 that occur rarely

and most commonly, respectively. In the first row, the dashed lines show the linear discriminants d2 (black) and d3 (red). Dashed lines in

the third to fifth rows identify the southerly direction. In the last row the solid line identifies the discriminant d1 and the black dashed line

corresponds to d2.
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of rainfall events in blue, which is in line with the con-

vective characteristics of the rainfall process in this re-

gion. The Central, Midwest, and Southwest regions also

show a considerable proportion of rainfall linked to the

environmental phase space corresponding to severe

convection. In the West, little to none of the rainfall is

found within severe convection conditions, with the

majority of the rainfall distribution located in a part of

environmental phase space that rarely produces con-

vection. This lack of dependence on convection for

producing the majority of the rainfall in the region is

consistent with the observation that the main rainfall

source for the West is via moisture advection and at-

mospheric rivers, or large-scale orographic uplift (Ralph

et al. 2005, 2006; Smith et al. 2010; Steinschneider and

Lall 2015, and reference therein), and is consistent with

the weak dependence on local atmospheric states found

for the univariate case. A relatively narrow and con-

centrated area of blue (high) frequency for the South

region is also evident for the joint probability of [Td,s,

ln(CAPEs)] (Fig. 6, row 2). For the West region, the

lack of dependence on convective processes is further

emphasized by the sensitivity toTd,s but not CAPEs. The

other regions considered show a similar shape in joint

[Td,s, ln(CAPEs)] probability phase space, as well as

comparable occurrence values.

In addition to parameters typically related to con-

vection, rainfall processes can be also related to the

advection of moisture at various levels in the atmo-

sphere. These can be visualized by considering variables

describing moisture (i.e., RH and Td) and the meteo-

rological wind direction f at 10m (surface) and 70hPa

above ground (Fig. 6, rows 3–5). The modulations of the

regional rainfall process by surfacemoisture advection is

visualized using the joint distribution of (fs, RHs), and

identifies higher rainfall occurrence across a range of

conditions (Fig. 6, rows 3). Predominantly, east of the

Rockies, moisture advection is associated with south-to-

southeasterly flow. The Southwest displays much lower

RH values, and for theWest, we identify a very localized

regime for rainfall production, which corresponds to

high RH values and S-to-SSWwinds, which is consistent

with the prevailing winds during atmospheric river

events (Steinschneider and Lall 2015).

At 70 hPa above ground (Fig. 6, row 4), themajority of

the rainfall is linked to the southwesterly-to-westerly

wind direction, associated with the large-scale flow

patterns. For the West, Southwest, and Rockies, the

wide distribution over both RH and f values suggests

that the rainfall process is less likely to originate from a

single preferential flow pattern, perhaps reflecting a re-

duced dependence on synoptic-scale systems, in contrast

with the behavior over the Central, South, East, and

Northeast, and to a lesser extent the Midwest, where

rainfall occurrence strongly responds to increasing RH

values and prevailing SW-to-W winds, suggesting a strong

synoptic contribution.

The fs versus Td,s plots resemble the (fs, RHs) de-

piction (Fig. 6, row 5), but add an additional piece of

information: the temperature of the advected moisture

[consideringTd ’T forT, 22; see Lepore et al. (2015)].

The codependence on temperature and fs is very pro-

nounced for the majority of the eastern regions, but is

less prevalent in the western regions, as identified in the

univariate case.

Finally, we examine the joint behavior of

ln[(CAPE)(S06)] and ln(Qm) and its effect on rainfall

occurrence; these three variables are used in the dis-

criminant targeting primarily convection (d1; Table 2,

Fig. 6, row 6). The joint behavior of these variables

suggests the overall shape of the distribution can be split

into two parts, below and above ln[(CAPE)(S06)]’ 7;

in the latter case, I1 shows a positive relationship be-

tween ln(Qm) and the product of the other quantities.

This feedback is of particular interest and in line with the

results presented in the univariate section; higher Qm

values (which ultimately correspond to higher rainfall

intensity values) occur when ln[(CAPE)(S06)] values

are high, and when combined with stronger updraft ve-

locities and organized storm modes, drive moisture

convergence and the higher precipitation trans-

formation rates seen in Fig. 5. Again, the majority of

rainfall for the South is located in the convective region,

whereas in the West rainfall occurrence is nearly ex-

clusively below both thresholds.

This set of figures confirms the strong differences in

rainfall properties between the eastern United States

and the western part of the continent, in contrast with a

more moderate regionality of precipitations over the

eastern United States. An equivalent analysis per-

formed using rainy hours with CAPE,1 (not shown)

gives similar results for (f, RH) and (f, Td,s) joint ana-

lyses. The only noticeable difference is a more limited

temperature range for Td,s, as would be expected with

negligible values of CAPE.

Seasonality is also of interest in precipitation pro-

cesses, and the joint distributions of environments for

rainy hours with CAPEs . 1 in winter (DJF) and sum-

mer (JJA) are presented in Fig. 7. In winter there are

fewer hours with T. 0 and CAPEs $ 1 J kg21, and

therefore, these results represent only part of the pre-

cipitation process that takes place during winter months,

especially for regions where snowfall is important. For

the winter months (Figs. 7a,c,e,g), environment occur-

rence during rainy hours with CAPEs . 1 is confined

below the severe weather discriminants for the Rockies,
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particularly for the West, and, to a lesser degree, for the

Southwest, Northeast, and Midwest, reflecting the very

low likelihood of encountering severe convection in the

western United States during winter months; the oppo-

site is true for the summer months, when much of the

environment occurrence, especially for the eastern

United States, happens in the convective or severe

convective regimes (Figs. 7b,h). These differing patterns

of behavior in winter and summer validate how repre-

sentative this discriminant can be for identifying sea-

sonality within severe convection.

Overall, winter precipitation occurrence appears to

have a reduced dependence on the local atmospheric

state, with Figs. 7a,g displaying less preferential rain-

fall areas compared to the whole-year analysis in

Fig. 6. There is instead a pronounced dependence on

the wind direction and moisture, with very distinct

blue areas in the plots of Figs. 7c,e, reflecting the

prevalence of frontal storms during this season. Summer

precipitation occurrence, however, is well described

using the local atmospheric conditions and thermody-

namic parameters Figs. 7b,h. For the CAPE,1 case (not

shown here), the winter results are very similar to the

CAPE11 case, whereas the sample size in summer is

too small.

The previous figures explore how atmospheric variables

are distributed during rainy hours with CAPEs . 1, which

is influenced by the climatological distribution p(V1, V2)

as well. In Fig. 8, we show the likelihood of rainy hours

conditional on the two variables V1 and V2 and

CAPEs . 1. If the likelihood of rainy hours were in-

dependent of the environment, the values would be

constant and equal to the regional likelihood of rainy

hours. Figure 8 shows this analysis for two sets of vari-

ables, [Td, ln(CAPEs)], and surface moisture advection

(fs, RHs); hatched grid points represent no significant

difference from the regional likelihood of rainy hours.

For [Td, ln(CAPEs)], the likelihood of rainy hours does

FIG. 7. As in Fig. 6, but for seasonal results: (a),(c),(e),(g) DJF and (b),(d),(f),(h) JJA. In (a) and (b), the dashed lines show the two

discriminants d2 (black) and d3 (red). In the (c)–(f), the dashed line identifies the southerly direction. In (g) and (h), the solid line identifies

the convective discriminant d1 and the dashed line corresponds to d2.
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not vary noticeably, staying within about 50% of the

regional likelihood, and a relatively lower occurrence

forTd , 0. In comparison, in the second row of Fig. 8, for

the variables (fs, RHs), we find a large degree of vari-

ability. In particular, there appear to be different ranges

of likely rainfall-producing states, corresponding to a

rainy hours likelihoods greater than 20%. In all regions,

RHs . 80%, almost independently of the wind di-

rection, corresponds to a high probability of rainfall

occurrence. The influence of wind direction is more

noticeable when RHs , 80%, and represents specific

flow directions associated with extratropical storms (and

can reflect potential moisture advection) and their in-

fluence on rainfall occurrence. In the West, high rainfall

occurrence is tied to SE-to-SW wind directions, typical

of atmospheric rivers or moisture of a tropical origin,

while for the Southwest, rainfall occurrence is consistent

with the prevailing winds during the North American

monsoon. Finally, we notice two ‘‘pockets’’ of high

%I1V1,V2
for the East and Northeast regions (a portion of

which is not significant), a result of easterly prevailing

winds mostly due to winter precipitation. This last set of

results shows how f has different explanatory power

compared to the other thermodynamic and dynamic

variables, capable of modeling the occurrence of rainfall.

d. Multivariate conditional percentiles

We extend the univariate results presented in Figs. 4

and 5, showing the dependence of rainy hour rainfall-

rate percentiles on the environment to the multivariate

setting and compute the conditional percentiles I1p,V1,V2
.

Based on the results presented in Fig. 5, where we show

the coefficients of the univariate linear regression fitted

to the quantile plots, we expect to see somewhat limited

regional variability (especially for some variables, e.g.,

Td,s) with most of the differences in the West region and

the highest intensity values in the South. The results

are presented in Fig. 9 for three pairs of variables: S06

and ln(CAPEs), fs and Td,s, and ln[(CAPE)(S06)] and

ln(Qm).

Starting from the first set in Fig. 9 [S06– ln(CAPEs)],

there is an increasing contribution from severe thun-

derstorms with increasing intensity (as we move left to

right, from p 5 0.95 to 0.999). Outside of the Rockies

and theWest regions, darker blues, and any of the colors

in general, are located above the severe weather dis-

criminant. This trend hold particularly for the Central

and South regions, where the highest rainfall intensities

(p $ 0.999) are at or above the discriminant dashed

lines. This result is also true for the third block of plots,

ln[(CAPE)(S06)]– ln(Qm), where both variables have

an effect on the rainfall intensity. The relationship of

intensity to moisture advection, shown in the fs–Td,s

block, instead, reveals dependence mostly on Td,s, with a

vertical color gradient, whereas wind direction shows its

strong effect on rainfall occurrence, similar to Fig. 6.

Similar implications are found for the respective seasons

(not shown).

The South displays overall higher intensity values

(darker blue) than the other regions, while the West

shows a negligible gradient, suggesting little dependence

on the set of variables. The results shown in this last set

of panels further suggest moderate regional dependence

for the conditional intensity distribution, outside of the

West region outlier, and to some degree the South.

The first set of Fig. 9 [S06– ln(CAPEs)] confirms some

of the conclusions drawn in the univariate case. In par-

ticular, the negative slopes found in row 5 in Fig. 4 (S06),

which we explained as being due to insufficient CAPEs,

are unable to sustain updrafts in the presence of in-

creasing wind shear; by looking at the relationships be-

tween log-intensity versus S06 and ln(CAPEs), we

notice how the highest intensities (blue/green color) are

those related to higher CAPE values, which becomes

less frequent with increasing shear (hence the tilted

shape of the green/yellow areas in Fig. 9). Therefore, the

highest intensities are able to develop when there is

sufficient CAPE to sustain updraft during high wind

shear, which is however not often found for high values

of shear.

FIG. 8. The expected rainfall occurrence conditioned to a specific atmospheric state, %I1V1,V2
; hatched grid points represent no significant

difference from the average regional value of %I1 (shown in Fig. 2). These results are for CAPE11.
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We evaluate the coefficients of the multivariate re-

gression in Eq. (2) to quantify the best set of regressors

and their relative efficiency in describing the intensity

process. The results of various variable combinations are

presented in Fig. 10. We first inspect the coefficients for

[Td,s, ln(CAPEs)]; this combination was also used in

Lepore et al. (2015), and our results, as in the univariate

case, are in line with the previous analysis. The co-

efficients for CAPE are half of those found in the uni-

variate case (Fig. 5), going from about 0.3 to 0.15, and

decreasing for percentiles p . 0.9 (Fig. 10, row 1). Re-

gional variability of the coefficients is also more limited

compared to the univariate case, as seen in Td,s. Similar

results are obtained where in place of dewpoint tem-

perature we use specific humidity, ln(Qm) (Fig. 10, row

2). The thermodynamic components of these two re-

gressions, Td,S and ln(Qm), display similar ranges of

coefficients as in the univariate case. In both cases the

quantitative evaluation of regressions via the percentage

of the explained sum of squares (%ESS) is very high,

with a slightly higher value from using ln(Qm). For both

combinations, both regressors are highly significant

(with p values � 0.05), and with about 70% of the total

%ESS due to the thermodynamic component. For the

West region, %ESS values are lower and the coefficient

of ln(CAPEs) is not significant (p values ’0.1).

These regressions represent two pathways through

which changes in atmospheric temperature can affect

the rainfall process; while very relevant to the process,

they exclude other types of processes not strictly related

to the local temperature (i.e., S06,U, and V), which may

be relevant to the description of the regional rainfall

process. To analyze the contributions of other factors,

we consider alternatives (Fig. 10, rows 3 and 4) that

FIG. 9. Natural logarithms (colors) of the rainy hour rainfall rate percentiles with CAPEs . 1 and conditional on [S06, ln(CAPEs)], (fs,

Td,s), and f ln[(CAPE)(S06)], ln(Qm)g. The percentile levels shown are p 5 0.95, 0.99, 0.995, and 0.999. In the first set of panels [S06,

ln(CAPEs)], the dashed lines show the two discriminants, d2 (black) and d3 (red). In the second set (fs, Td,s), the dashed lines identify the

southerly wind direction. In the last set f ln[(CAPE)(S06)], ln(Qm)g, the solid line identifies the convective discriminant, d1, and the black

dashed line corresponds to d2.
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FIG. 10. The first two columns show the coefficients of the regressions between log-intensity percentiles, ln(I1p ), and two or more

regressors for a range of percentile levels (horizontal axis). The title indicates the regressor. In the fourth row, second column, the dashed

lines are for U, whereas the solid lines are for V. The last column shows %ESS, with different colors for different regions. The bottom

panel shows the%ESS for all considered regressionmodels:A for [Td,S, ln(CAPEs)],B for [ln(Qm), ln(CAPEs)],C for [Td,S, ln(CAPEs)],

D for (Td,S, U, V), E for [Td,S, ln(CAPEs), S06], and F for [ln(Qm), ln(CAPEs), S06]. Here R, C, S, E, W, SW, MW and NE are short for

the Rockies, Central, South, East, West, Southwest, Midwest and Northeast regions, respectively.
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match one of the previous variables, ln(CAPEs) or Td,s,

with other regressors. Both regressions show lower total

%ESS compared to the previous cases. The S06 co-

efficients are significant for the regions east of the

Rockies only, and where significant, the S06 contribu-

tion to%ESS is small (,10%). TheU andV coefficients

are significant in all regions (p value , 0.05). In partic-

ular, in the West region, the meridional wind

contributes a third of the total %ESS.

Finally, we compare the %ESS for these four models

and include two other trivariate regressions: [Td,s,

ln(CAPEs), S06] and fln[Qm, ln(CAPEs), S06]g. We

note that adding a third component to the different

models generates a different set of conditional quantiles

(i.e., Ip,Td,s ,CAPEs
is different from Ip,Td,s ,CAPEs ,S06). Within

the last two trivariate models, S06 is a significant re-

gressor for the eastern United States only, and about

90% of the total %ESS is due to the first two variables.

In summary, we confirm the importance of including

both a thermodynamic and a dynamic variable in the

description of the rainfall intensity process, for most of

the regions in the United States. For the West, the best

results are given by considering percentiles conditional

onTd,s and theU, V wind components. The addition of a

third regressor for the other regions appears to add little

explanatory power to the regression and results in an

overall less powerful model.

5. Conclusions

We have analyzed the dependence of high percentiles

of hourly rainfall rate (intensity) on relevant atmo-

spheric variables, using hourly gauge rainfall data and

atmospheric quantities from reanalyses. This investiga-

tion extends the approach of relating the rainfall process

and intensity to the environment by including a wider

range of thermodynamic and meteorological variables,

providing additional insight into the large- and regional-

scale atmospheric contributions to the rainfall process.

In addition, the consideration of common variables has

allowed validation of previous results obtained using an

alternative reanalysis over a more limited region, fur-

ther supporting the statistical robustness of those find-

ings (Lepore et al. 2015).

Two sets of analyses were considered: (i) the re-

lationships of the hourly rainfall intensity conditioned

on atmospheric drivers and (ii) how these drivers mod-

ulate the occurrence of the rainfall process. The ther-

modynamic variables CAPE, T, Td, and ln(Q) were

confirmed as being among the most important variables

in the description of the rainfall intensity process and its

extremes. Moreover, one of the key results for most

regions of the United States is the need to consider both

thermodynamic and dynamic variables for a complete

description of the rainfall intensity process. A third re-

gressor added little information to our regressionmodel,

and other variables such as ln(CIN), S06, and U and V

identified more subtle properties of the regional rainfall

intensity and occurrence process.

The regional variability of the relationships between

rainfall intensity and atmospheric drivers is moderate

east of the Rocky Mountains, while the western United

States has relatively unique features. In this analysis, we

find no strong relation in the West of local thermody-

namic and dynamic properties with rainfall intensity,

whereas moisture advection plays a dominant role. In

contrast, the occurrence of rainfall has a strong regional

signature. The differences observed in Figs. 6 and 7 can

be used to extrapolate the major drivers of the regional

properties of the precipitation process in the CONUS.

These results suggest the possibility of consolidating the

eight regions in three macroregional behaviors. The first

macroregion encompasses the eastern regions (Mid-

west, Northeast, Central, East, and South), which show

similar seasonal convective climatology, with the South

displaying the highest values. The second region includes

the Southwest and Rockies, which have very similar sea-

sonality and are found in the middle of the regional range.

Finally, theWest appears to form amacroregion of its own

at the other tail of the distribution.

These findings indicate some of the challenges in

constructing global or even CONUS-wide statistical

rainfall models. A single approach is not appropriate for

describing these processes when exploring the rela-

tionships to the climate system, particularly for theWest

Coast of the United States.

Our approach reveals the utility of combining a vari-

ety of information in a simple image that encapsulates

the rainfall process, as seen in Figs. 6–9. Furthermore,

we couple this analysis with established linear discrimi-

nants to identify the contributions of specific weather

states (i.e., nonconvective, convective, and severe con-

vective) to the yearly and seasonal rainfall regimes for

the whole CONUS. Our approach represents a novel

and compact methodology for looking at the rainfall

process and its generation throughout the United States

at the annual and seasonal scales. The analysis also

catalogs a wide range of regional and seasonal rainfall-

atmospheric variables dependencies, which provide the

basis for future comparison and improved understand-

ing of how both natural and anthropogenic climate

variability will affect the properties of the regional

rainfall process.
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