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ABSTRACT

Potential biases in tree-ring reconstructed Palmer drought severity index (PDSI) are evaluated using

Thornthwaite (TH), Penman–Monteith (PM), and self-calibrating Penman–Monteith (SC) PDSI in three diverse

regions of theUnited States and tree-ring chronologies from theNorthAmerican drought atlas (NADA).Minimal

differences are found between the three PDSI reconstructions and all compare favorably to independently re-

constructed Thornthwaite-based PDSI from the NADA. Reconstructions are bridged with model-derived

PDSI_TH and PDSI_PM, which both closely track modeled soil moisture (near surface and full column) during

the twentieth century. Differences betweenmodeledmoisture-balancemetrics only emerge in twenty-first-century

projections. These differences confirm the tendency of PDSI_TH to overestimate drying when temperatures ex-

ceed the range of the normalization interval; the more physical accounting of PDSI_PM compares well with

modeled soil moisture in the projection interval. Remaining regional differences in the secular behavior of pro-

jected soil moisture and PDSI_PM are interpreted in terms of underlying physical processes and temporal sam-

pling. Results demonstrate the continued utility of PDSI as a metric of surface moisture balance while additionally

providing two recommendations for future work: 1) PDSI_PM (or similarmoisture-balancemetrics) compare well

to modeled soil moisture and are an appropriate means of representing soil-moisture balance inmodel simulations

and 2) although PDSI_PM is more physically appropriate than PDSI_TH, the latter metric does not bias tree-ring

reconstructions of past hydroclimate variability and, as such, reconstructions targeting PDSI_TH can be used with

confidence in data–model comparisons. These recommendations and the collective results of this study thus pro-

vide a framework for comparing hydroclimate variability within paleoclimatic, observational, and modeled data.

1. Introduction

The increasing availability of forced-transient simula-

tions over the last millennium (e.g., Fernández-Donado

et al. 2013; Masson-Delmotte et al. 2014) from fully

coupled general circulation models (GCMs) has drasti-

cally improved our ability to compare paleoclimate

reconstructions with model output and to investigate

multidecadal to centennial-scale climate dynamics (Schmidt

et al. 2014). Among the currently available collection of

simulations, the phase 5 of the Coupled Model Inter-

comparison Project (CMIP5) and phase 3 of the Paleo-

climate Modelling Intercomparison Project (PMIP3)

have for the first time producedmultiple last-millennium,

historical, and future simulations using the same model

configurations and resolutions (Taylor et al. 2012). This

important development makes comparisons between
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paleoclimatic data and last-millennium simulations di-

rectly applicable to historical simulations and future

projections. Coincident with these advances in modeling

efforts, the number of gridded or regional mean proxy

reconstructions of multiple climatic variables is also in-

creasing (e.g., Mann et al. 2009; Cook et al. 2010; PAGES

2k Consortium 2013; Wahl and Smerdon 2012; Neukom

et al. 2010, 2011; Trouet et al. 2009), as is our un-

derstanding of the methods used to perform these re-

constructions (e.g., Jones et al. 2009; Smerdon 2012;

Tingley et al. 2012), expanding the detail and accuracy

with which the actual climate of the last several mil-

lennia is characterized. This collective progress opens

the possibility that comparisons between paleoclimatic

reconstructions and model simulations can be used to

improve understanding of decadal to centennial climate

dynamics and to constrain model projections of twenty-

first-century climate change in truly direct and quanti-

tative ways (e.g., Schmidt 2010; Ault et al. 2014).

Many paleoclimate data–model comparison studies

are emerging that both interpret comparison results and

work to refine the methods by which the comparisons

are made (e.g., Phipps et al. 2013; Schmidt et al. 2014;

Hind et al. 2012; Hind and Moberg 2013; Coats et al.

2013a,b, 2015b; Anchukaitis et al. 2010; Seager et al.

2008; Fernández-Donado et al. 2013; Ault et al. 2013a,b;

Lehner et al. 2012; Goosse et al. 2010, 2012; Sundberg

et al. 2012). This collection of studies, inter alia, has

highlighted numerous considerations for how compari-

sons should accommodate the unique strengths, weak-

nesses, and uncertainties of paleoclimatic reconstructions

and model simulations. Each new comparison requires

attention to the type of proxies used, the climatic vari-

ables considered, the means by which different models

and model experiments are incorporated, and ultimately

how to statistically characterize an ensemble of compar-

ison results.

Among the collection of studies, paleoclimate data–

model comparisons of hydroclimatic variability over the

last millennium (e.g., Seager et al. 2008; Coats et al.

2013b, 2015b; Ault et al. 2013a; Tierney et al. 2013) is one

emerging and important area of focus, given the critical

social and ecological implications of hydroclimate vari-

ability and change (e.g., Allen and Ingram 2002; Hoerling

et al. 2013, 2014; Ding et al. 2011; Headey 2011; Li et al.

2011; Lobell et al. 2011; Peng et al. 2011; Seager et al.

2013). Robust, high-resolution, and gridded drought atlas

reconstructions that span most, if not all, of the last mil-

lennium and part of the first millennium of the Common

Era are one critical tool for efforts on these time scales

(Cook et al. 2007, 2010; Cook et al. 2014b). Comparisons

between models and drought atlases are nevertheless

complicated by the fact that the reconstructions have

targeted the Palmer drought severity index (PDSI;

Palmer 1965), an integrated estimate of soil-moisture

balance that is not a simulated state variable in model

integrations. In addition to the fact that model data must

therefore be used in offline calculations that estimate

PDSI for comparison to hydroclimate reconstructions

[emerging capabilities using process-based tree-growth

models (e.g., Anchukaitis et al. 2006; Evans et al. 2006)

may provide an alternative approach inwhichmodel data

are used to directly estimate tree growth chronologies

that are not calibrated on PDSI or other climate vari-

ables], a growing debate has emerged around the efficacy

of PDSI as a metric of soil-moisture balance in observa-

tions andmodel simulations (e.g., Guttman 1998; Vicente-

Serrano et al. 2010b; Burke et al. 2006; Burke and Brown

2008; Burke 2011; Dai 2011a,b, 2013; vander Schrier et al.

2011, 2013; Seneviratne 2012;Hoerling et al. 2012; Sheffield

et al. 2012; Trenberth et al. 2014; Cook et al. 2014a).

Much of the discussion and criticism of PDSI has

hinged on its different formulations and more specifi-

cally on the means by which potential evapotranspira-

tion (PET) is estimated within the PDSI calculation. A

common method for estimating PET, the Thornthwaite

formulation (Thornthwaite 1948), scales PET as a func-

tion of temperature and latitude only, and associated

Thornthwaite-based PDSI estimates (PDSI_TH) can

consequently overestimate drying when temperatures

exceed the range of variability spanned by the PDSI

normalization interval (Hoerling et al. 2012; Sheffield

et al. 2012; Dai 2013). This effect has been shown to be

significant for PDSI_TH estimates at the end of the

twentieth century in observational records (Sheffield

et al. 2012) and in the use of PDSI_TH as a moisture-

balance metric in twenty-first-century model projections

(Hoerling et al. 2012; Dai 2013; Schmidt et al. 2014).

PDSI estimates that use the Penman–Monteith (PM)

formulation (PDSI_PM) for PET alternatively have

been proposed as more physically appropriate (e.g., van

der Schrier et al. 2011), along with additional modifica-

tions using self-calibrating PDSI (PDSI_SC) that em-

ploy both the Penman–Monteith PET formulation and

regionally estimated soil and vegetation properties

(Wells et al. 2004; van der Schrier et al. 2013). Additional

metrics, such as the standardizedprecipitation–evaporation

index, which can incorporate Penman–Monteith estimated

PET, also have beendeveloped (e.g., Vicente-Serrano et al.

2010a; Hernandez and Uddameri 2014) and compare well

with PDSI_PM inmodel projections (Cook et al. 2014a).

Despite the above discussions, PDSI remains a useful

metric of soil-moisture balance for several reasons.

While soil moisture is ultimately the applicable state

variable for evaluating model-simulated changes in

hydroclimate and drought, the land surface models in
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coupled GCMs vary widely in their sophistication (e.g.,

soil depth, number of layers), tunings, and parameteri-

zations (e.g., soil texture, rooting depths, vegetation

types), thus complicating the meaningful comparison of

direct soil-moisture variables across models. Offline

metrics like PDSI therefore serve to homogenize ac-

counting of soil-moisture balance and rely principally on

atmospheric variables in their computation. Well-

distributed records of observed soil moisture also are

not widely available over many decades, making soil

moisture a difficult quantity on which to validate simu-

lated hydroclimate variability over the twentieth cen-

tury. Recent work additionally has demonstrated the

benefit of separating PET or PDSI into the constituent

influences on these variables (Scheff and Frierson 2014;

Cook et al. 2014a). The separation of such influences in

coupled GCMs is not easily accomplished for model-

simulated soil moisture in which variables such as tem-

perature or precipitation cannot be held constant

independent of other coupled variables. With regard to

paleoclimatic data–model comparisons specifically, the

currently available collection of drought atlases also

have used PDSI as the reconstructed target variable,

making it necessary to use model-derived PDSI for

comparisons between simulations and reconstructions.

Concerns about paleoclimatic drought atlases never-

theless have been raised because tree-ring-derived

products have traditionally targeted PDSI_TH (e.g.,

Cook et al. 2007, 2010). Sheffield et al. (2012) most re-

cently noted that ‘‘paleoclimate reconstructions of

drought may be particularly susceptible because they are

often developed by scaling tree-ring data to match the

calculated [PDSI] for their overlap period’’ (p. 437). The

authors go on to surmise that such reconstructions may

overestimate past changes while underestimating ‘‘recent

trends in the context of the past’’ (p. 437). Such concerns

are indeed serious, given the degree to which tree-ring-

derived drought atlases have been used to characterize

previous droughts and pluvials (e.g., Cook et al. 2007,

2010) and the extent towhich such information has helped

define potential multidecadal risk factors associated with

hydroclimatic variability and change.

Herein we evaluate the dependence of regional re-

constructions targeting different PDSI formulations

using the same dendroclimatic chronologies used in the

North American drought atlas (NADA) and observa-

tionally estimated PDSI_TH, PDSI_PM, and PDSI_SC.

We derive new reconstructions in three diverse regions

of the United States for each of these PDSI formula-

tions, analyze their respective similarities and differ-

ences, and compare them to previous NADA estimates

of PDSI_TH over the same regions, the latter of which

are derived using a different reconstruction method,

different predictor processing steps, and a spatially ex-

plicit PDSI_TH target on a 0.58 3 0.58 latitude–longitude
grid (in contrast to the regional indices that are targeted

herein). We subsequently turn to bridging paleoclimatic

estimates of hydroclimate variability with modeled

twentieth-century climate simulations and twenty-first-

century climate projections. This challenge is addressed

by analyzing model-derived estimates of PDSI_TH;

PDSI_PM; and two soil-moisture estimates from the

CanESM2 and CCSM4GCMs, which are both available

through the CMIP5 data archive. In addition to com-

paring simulations and reconstructions, we characterize

where and how the simulated PDSI and soil-moisture

estimates agree within each model simulation. It is

critically noted that the parameterized impacts of sim-

ulated CO2 fertilization have implications for secular

soil-moisture trends and may be an important source of

uncertainty in comparisons between multiple PDSI and

soil-moisture variables in twenty-first-century climate

projections. Our investigation culminates with guidance

on how to interpret our results as a framework for

comparing hydroclimate variability across overlapping

observational and modeling intervals and to ultimately

use this framework to place future hydroclimate pro-

jections into a longer paleoclimatic context.

2. Data and methods

a. PDSI calculations

We focus on three areas of the United States that are

representative of diverse hydroclimatic and vegetation

regimes: the Four Corners (4C), northern plains (NP),

and southeast (SE) regions as indicated in Fig. 1. These

areas also contain well-documented and abundant tree-

ring chronologies that will be used to derive regional

reconstructions. Three different formulations of obser-

vational PDSI over the three regions are used: PDSI_TH,

PDSI_PM, and PDSI_SC. The first two have been calcu-

lated using standard formulations (Thornthwaite 1948;

Penman 1948; Xu and Singh 2002), while the third is taken

from the self-calibrating PDSI dataset of van der Schrier

et al. (2013). PET in PDSI_TH has the advantage of only

requiring temperature and latitude data but is effectively

a rescaling of these variables as an estimate of PET [see,

e.g., the discussion in van der Schrier et al. (2011)],

PET5 16

�
10T

I

�a

, (1)

where PET is in millimeters per month, T is the monthly

mean of daily averaged temperature (8C), I is the heat

index, and a is a third-order polynomial of the heat index
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(Thornthwaite 1948). This expression is scaled in the

Thornthwaite calculation of PDSI to account for lat-

itudinal variations in the length of months and days as

PETTH 5PET(u/30)(h/12) , (2)

where u is the length of the month (in days) and h is the

duration of daylight (in hours) on the 15th day of the

month (e.g., van der Schrier et al. 2011; Willmott et al.

1985). The dependence of PET on T in Eq. (1) is thus

the origin of the excessive drying estimated by PDSI_TH

when temperatures are significantly outside the range

of variability defined by the baseline normalization

period.

The Penman–Monteith PDSI formulation (Penman

1948; Xu and Singh 2002) has been suggested as a phys-

ically appropriate alternative method for calculating

PET in twenty-first-century projections (Dai 2013;

Hoerling et al. 2012; van der Schrier et al. 2013; Sheffield

et al. 2012; Cook et al. 2014a). The Penman–Monteith

formulation is based on surface moisture and energy-

balance considerations (Xu and Singh 2002) and a com-

monly used formulation is defined by the Food and

Agricultural Organization (FAO) of the United Nations

(Allen et al. 1998). In the FAO formulation, PET in

millimeters per day is given by

PET5

0:408D(Rn 2G)1 g
900

Ta1 273
u2(es2 ea)

D1 g(11 0:34u2)
, (3)

whereD is the slope of the vapor pressure curve (kPa 8C21),

Rn is the surface net radiation (MJm22 day21), G is the

soil heat flux density (MJm22 day21), g is the psycho-

metric constant (kPa 8C21), Ta is the air temperature

at 2m (8C), u2 is the wind speed at 2m (ms21), es is the

saturation vapor pressure (kPa), and ea is the actual

vapor pressure (kPa). Although there have been some

suggestions that PDSI_PM also may be susceptible to

overestimated drying trends (Hoerling et al. 2012),

this has not been widely observed in multiple studies

(e.g., Sheffield et al. 2012; van der Schrier et al. 2011;

Cook et al. 2014a) and reported differences in observa-

tionally based PDSI_PM estimates are more likely re-

lated to differences in the precipitation datasets used as

inputs for various observational PDSI_PM calculations

(Trenberth et al. 2014).

For both PDSI_TH and PDSI_PM calculations pre-

sented herein, the normalization interval is 1901–2012.

Soil-moisture capacities for the top and bottom soil

layers are set to the standard values of 25.4mm (1 in.)

and 127mm (5 in.). Our observational PSDI_PM cal-

culations use the estimate of PET from the updated

version (3.21) of the latest CRU TS dataset, which has

been derived using the FAO formulation of PET (Harris

et al. 2014) given in Eq. (3). The Harris et al. (2014)

CRUTS dataset is similarly the source for all other input

variables used to calculate PDSI_TH and PDSI_PM.

The PDSI_SC dataset of van der Schrier et al. (2013)

also uses the FAOPET formulation and differs from our

calculated version of PDSI_PM only in its incorporation

FIG. 1. Map of the contiguous United States and those states chosen to represent the Four Corners, Northern Plains, and Southeast

(designated with gray shading). The tree-ring sites used in the regional reconstructions are shown as red dots. Plotted time series are the

area-weighted mean PDSI estimates for each of the three regions estimated from observational data and three PDSI formulations: PDSI

Thornthwaite, PDSI Penman–Monteith, and self-calibrating PDSI with Penman–Monteith.
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of regionally specific soil and vegetation properties and

a snow model (van der Schrier et al. 2013); similar to

PDSI_PM, the PDSI_SC estimates use climate data

from the updated version (3.21) of the latest CRU TS

dataset for observational forcing variables (Harris et al.

2014).

Area-weighted regional indices were calculated from

the 0.58 3 0.58 gridded datasets of PDSI_TH, PDSI_PM,

and PDSI_SC during the summer season (JJA) over the

4C, NP, and SE regions; all of the regional PDSI series

begin in the year 1901 and extend to 2012. These re-

gional series thus comprise the JJA PDSI calibration

targets for the reconstructions discussed in the following

subsections.

For calculations of PDSI_TH and PDSI_PM from the

model simulations over the historical and projection

intervals, we use the same conventions described above,

with several additional applied choices.Modeled PET in

the Penman–Monteith formulation is again calculated

using the FAO version. Relative to changes in energy

availability and the vapor pressure deficit, Penman–

Monteith PET is relatively insensitive to near-surface

wind speed (Scheff and Frierson 2014; Cook et al.

2014a), which we set equal to a constant 1m s21 in the

PDSI_PM model calculations. Ground heat fluxes sim-

ilarly are only a small fraction of the total surface energy

budget, typically totaling about 10%–15% (Betts et al.

1996; Sellers et al. 1997). We therefore set the ground

heat flux equal to 0Wm22 in the model-derived esti-

mates of PDSI_PM, a choice that has been found to

yield little impact (Cook et al. 2014a).

We do not calculate model-derived estimates of

PDSI_SC. Although the PDSI_SC calculation can be

done in principle, it additionally includes a snow model

and regionally varying vegetation and soil parameters.

These considerations further remove the PDSI calcula-

tion from model-derived quantities (in the case of the

snow model) and involve poorly constrained or un-

available model fields (vegetation and soil properties).

In light of these factors and the good agreement that is

later shown for PDSI_PM and PDSI_SC, we do not

additionally calculate PDSI_SC fields for the models.

b. Tree-ring chronologies and the NADA

Weuse tree-ring width chronologies from the regional

collection of states shown in Fig. 1. These chronologies

are taken from the same network used in the NADA

database to derive version 2a of the drought atlas (Cook

et al. 2007). A total of 283, 36, and 26 chronologies are

employed in the 4C, NP, and SE regions, respectively.

The start and end dates vary across the collection of

chronologies in each region, several of which extend to

the first century of the first millennium of the common

era, whereas many only begin in the eighteenth or

nineteenth centuries. For our purposes herein, we only

employ chronologies back to the year 1000; all chro-

nologies extend to at least 1979. These constraints define

calibration-interval selections and the nesting procedure

for the reconstruction method detailed in section 2c.

The NADA version 2a is also used for comparison to

the new regional reconstructions. Version 2a of the

NADA is a gridded reconstruction on a 0.58 3 0.58
latitude–longitude grid of JJA average PDSI_TH values

over much of North America. The grid has been re-

constructed using a point-by-point regression scheme

that employs a principal component ordinary least

squares regression method, although multiple steps of

predictor processing and ensemble estimation have

been included [see Cook et al. (2007) and references

therein for further details].

c. Reconstruction method

The new regional reconstructions are derived using a

nested ‘‘composite plus scale’’ (CPS) method (e.g., Jones

et al. 2009) with an ensemble correlation-weighting

scheme (PAGES 2k Consortium 2013); 50-yr nests were

used in each regional reconstruction that employed all

chronologies available back to the beginning of each nest

period.ACPS reconstruction was computed for each nest

by standardizing (normalizing and centering) the avail-

able tree-ring chronologies over the calibration interval

and subsequently calculating a weighted composite in

which the relative weight of each chronology was de-

termined by the strength of the correlation with the target

index. Each composite was finally centered and scaled to

have the same mean and variance as the target index

during the calibration interval.

The CPS methodology was implemented using

a resampling scheme for validation and calibration that

uses 50- and 29-yr blocks for calibration and validation,

respectively (the last year of uniformly available pre-

dictor series is 1979, providing 79 yr of overlap with the

target indices that all start in 1901). The initial calibra-

tion period extends from 1901 to 1950 and was in-

cremented by 1 yr until reaching the final period of

1930–79, yielding a total of 29 reconstructions for each

nest. Within each calibration step, the 29 years excluded

from calibration were used for cross validation. For each

nest, the final CPS reconstruction was taken as the me-

dian reconstructed value in each year within the 29-

member reconstruction ensemble. Uncertainties were

estimated from themean variance of the residuals across

all of the validation intervals; 1.96 times the square root

of the estimatedmean variance was added to themedian

ensemble values in each year to derive the 95% confi-

dence intervals. The final nested reconstruction was
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combined by splicing the median reconstruction and

estimated uncertainties of each nest such that every re-

constructed year was derived from the nest with the

maximum number of chronologies.

d. Model data

We use publicly available GCM output from the

CMIP5 archive, the suite of model experiments orga-

nized and contributed in support of the Fifth Assess-

ment Report (AR5) of the Intergovernmental Panel

on Climate Change (IPCC). Output from the histo-

rical and RCP8.5 twenty-first-century projection

experiments is used, the latter of which is the high-

emission, business-as-usual scenario that has been

justified in many studies by the current lack of in-

ternational action to limit greenhouse gas emissions.

Our analyses are nevertheless not dependent on the

employed emissions scenario beyond the fact that the

RCP8.5 simulations represent the most extreme

warming scenario and therefore embody the maxi-

mum impact of temperature changes on PDSI com-

parisons. Historical CMIP5 experiments are run for

the years 1850–2005 and are forced with observations

of transient climate forcings [e.g., solar variability,

land-use change, and greenhouse gas (GHG) con-

centrations]. These experiments are initialized in 1850

using output from long, unforced control runs with

fixed preindustrial boundary conditions. The RCP8.5

projection scenario is one of a suite of future GHG

forcing scenarios spanning the 2006–99 period;

RCP8.5 is designed so that the top of the atmosphere

radiative imbalance will equal approximately

18.5Wm22 by the end of the twenty-first century,

relative to preindustrial conditions. The RCP8.5 pro-

jections are initialized using the end of the historical

runs. Our analysis is restricted to two models (Can-

ESM2 and CCSM4) that have available five continu-

ous ensemble members spanning the historical

through projection time intervals. These models and

associated ensemble members also have been selected

based on the availability of their layered soil-moisture

output, which extends to ;4 and ;43m over 3 and 15

layers in the CanESM2 and CCSM4 models, re-

spectively. For both models, we employ a near-surface

JJA soil-moisture estimate that is taken from ap-

proximately the first 30 cm in each model and full-

column soil moisture taken over the total depth of

each modeled soil column. For comparison to PDSI,

both soil-moisture variables spanning the historical to

projection interval are centered and scaled to match

the corresponding PDSI_PM variance from 1901 to

2005, the same normalization window used to calcu-

late the PDSI variables.

3. Analyses of target series and reconstructions

a. Observational estimates of PDSI

The area-weighted regional time series for the three

observational PDSI estimates are shown for the 4C, NP,

and SE regions in Fig. 1; all time series are centered to

have a mean of zero over the reconstruction calibration/

validation window (1901–79). The square of Pearson’s

correlation coefficient calculated between the series

in each region is 0.83 or higher. The largest shared var-

iances (r2) occur over the SE region (0.96, 0.86, and

0.90), whereas the NP (0.88, 0.85, and 0.90) and 4C (0.85,

0.83, and 0.92) regions rank in descending order for

parings of PDSI_TH versus PDSI_PM, PDSI_TH versus

PDSI_SC, and PDSI_PM versus PDSI_SC, respectively.

These relative comparisons are qualitatively consistent

with the correlations between the Thornthwaite and

Penman–Monteith versions of PDSI_SC reported by

van der Schrier et al. (2011) for similar regions in North

America.

The standard deviations of the observational PDSI

series indicate regionally dependent differences in the

variability of the PDSI estimates in the 4C (TH: 1.65;

PM: 1.13; SC: 1.07), NP (TH: 1.84; PM: 1.73; SC: 1.27),

and SE (TH: 1.38; PM: 1.50; SC: 1.27) regions. These

estimates are consistent with previously reported com-

parisons between Thornthwaite- and Penman–Monteith-

derived PDSI estimates (e.g., Sheffield et al. 2012, van

der Schrier et al. 2011) in which PDSI_TH displays

larger variance relative to the PDSI_PM formulation

because of its greater sensitivity to temperature varia-

tions. Nevertheless, the results also indicate that in

some regions, such as the SE, PDSI_PM has a larger

variance than PDSI_TH; therefore, not all areas follow

the generally described behavior.

b. Reconstructed estimates of PDSI

The median PDSI reconstructions and associated

uncertainties for each region are compared to the cor-

responding observational target series in Fig. 2. Each

reconstruction compares well with the targets, although

there are some differences among the collection of val-

idation statistics. The PDSI_TH reconstructions are

generally the most skillful across all regions and nests

(Fig. 3), while the PDSI_SC reconstruction is the second

most skillful in the 4C region and the PDSI_PM re-

construction is second or first most skillful in the NP and

SE regions. In all cases, the reconstructions yield

validation-interval coefficients of determination over all

nests that are skillful above the 99% (p , 0.01) signifi-

cance level. Assuming the traditional threshold of zero

for the reduction of error (RE) coefficient, all regional

reconstructions are skillful across all nests, except for the
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NP reconstructions, for which the PDSI_TH, PDSI_PM,

and PDSI_SC reconstructions are only skillful back to

1500, 1500, and 1600, respectively. By the more stringent

coefficient of efficiency (CE) statistic, which also uses

a skill threshold of zero, the 4C and SE reconstructions

are skillful across all nests, except the PDSI_SC re-

construction in the SE region during several nests in the

early part of the millennium (Fig. 3). In the NP, all of the

reconstructions yield negative CE values prior to 1600

and the PDSI_SC yields an additional negative nest from

1650 to 1700. Although not all nests in the NP region are

skillful back to 1500 across all of the validation metrics,

the reconstructed time series are truncated at that year to

reflect the bulk validation performance described above.

Regional comparisons between each of the three dif-

ferent PDSI reconstructions yield consistent and very

similar results, despite the small differences in the vali-

dation statistics discussed above. All regional pairings of

reconstructions indicate shared variances of 0.99 or

higher during the reconstruction intervals (1000–1900

for the 4C and SE regions and 1500–1900 for the NP).

The only notable, though modest, differences between

the reconstructions are the standard deviations for 4C

(TH: 1.45; PM: 1.05; SC: 1.07), NP (TH: 1.64; PM: 1.39;

SC: 1.10), and SE (TH: 1.26; PM: 1.39; SC: 1.32). With

the exception of the SE, a region in which the three re-

constructions are virtually identical, the PDSI_TH re-

constructions exceed the standard deviations of the

other two reconstructions by 20%–50%. These variance

differences are further reflected in the right-hand panels

of Fig. 3, in which the linear relationship between each

combination of the reconstructions deviate from the

one-to-one line by varying amounts in each region.

Given the stated differences between the variances of

the target indices, these differences in the standard de-

viations are expected based on the CPS methodology

that matches variances between the composite re-

construction and target indices during the calibration

interval. In other words, the standard deviations of each

reconstruction reflect the relative differences between

the variance of the target time series (although not

perfectly so). Importantly, these differences in variance

are merely a scaling of the overall reconstructions and

do not reveal temporal variance dependencies that

would bias interpretations of hydroclimate variability

during the twentieth century relative to the past.

c. Comparisons between NADA and the CPS
reconstructions

It is worth investigating whether the presented CPS

reconstructions are representative of the NADA prod-

uct, thus making our findings more applicable to in-

terpretations of the latter. In Fig. 4 we compare the

derived CPS PDSI_TH reconstructions to area-

weighted regional averages from the NADA that have

been sampled from gridded regions approximating the

CPS reconstruction areas shown in Fig. 1 (see Figs. 11

and 12 for the specific sample regions extracted from the

NADA grid). We limit the comparisons in Fig. 4 to

PDSI_TH, given that the NADA also has targeted

PDSI_TH. The shared variances between the NADA

time series and the CPS reconstructions of PDSI_PM

(4C: 0.94; NP: 0.65; SE: 0.68) and PDSI_SC (4C: 0.94;

NP: 0.65; SE: 0.68) are nevertheless virtually identical to

the shared variances reported for PDSI_TH in Fig. 4.

Comparisons between theNADAregional averages and

the CPS PDSI_TH reconstructions are consistent, despite

the different methods by which the reconstructions were

derived. The CPS reconstructions target a single regional

average and use a sliding calibration–validation scheme to

weight chronologies based on correlation. The NADA

index is the regional average of a gridded product that uses

FIG. 2. (left to right) Targeted regional PDSI time series calculated from observational data for the PDSI_TH, PDSI_PM, and PDSI_SC

formulations and the associated CPS reconstructions and 95% confidence intervals. Reconstructions (black line with associated gray

shading) and observationally based estimates (red line) are shown during their common period of overlap from 1901 to 1979, which also

comprises the calibration/validation interval for the reconstructions.
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FIG. 3. (a),(c),(e) PDSI reconstructions for the three regions using the CPS method and three regional PDSI target series using the

PDSI_TH, PDSI_PM, and PDSI_SC formulations. The 10-yr low-pass time series for each PDSI reconstruction (filtered using a 10-point

Butterworth filter) are also shown; each panel also plots the annual PDSI_TH and associated 95% confidence intervals for reference.

(b),(d),(f) Resolved variance, RE, and CE cross-validation statistics for each of the regional PDSI reconstructions as a function of each

50-yr nest. Figure legends for all panels are given in (c) and (d). (g)–(i) Comparisons between the annually reconstructed PDSI values are

shown in scatterplots, in which each value of reconstructed PDSI is plotted against the other. Scatterplots do not include the calibration–

validation interval from 1901 to 1979 and a dashed 1:1 line is plotted for reference.
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principal component regression to target PDSI values at

each grid point on a 0.58 3 0.58 spatial grid, uses a static

calibration–validation interval, and involves various pre-

dictor processing steps not included in the CPS method-

ology used herein. The reconstructions therefore have

targeted different characteristics of the instrumental PDSI

fields andused contrastingmethods to derive the respective

reconstructions. Despite these dissimilarities, the CPS

PDSI_TH andNADA reconstructions compare extremely

well (Fig. 4); the reported shared variances for PDSI_PM

and PDSI_SC similarly support a strong agreement be-

tween theNADAand the two additional sets of regional

reconstructions. These results not only support the idea

that analyses of the new CPS reconstructions are rele-

vant to interpretations of the NADA, but they more

generally support the robustness and consistency of the

employed methods and derived reconstructions.

4. Bridging paleoclimatic, observational, and
model data

We now turn specifically to the challenge of bridging

PDSI reconstructions with historical model simulations

and future projections. We do not take up the related

and important endeavor of comparing last-millennium

PDSI reconstructions with forced-transient model

simulations targeting the same interval. Such compari-

sons involve additional considerations regarding the

interpretation of internal and forced variability and the

realism with which the reconstructed exogenous forc-

ings are estimated and employed in the last-millennium

simulations. Detailed examples of such work can be

found in Coats et al. (2013b, 2015a,b), who specifically

perform paleoclimate data–model comparisons focused

on hydroclimate in North America. Alternative to these

specific comparisons of data and models over the last

millennium, we endeavor to address how to bridge PDSI

reconstructions with historical and future climate pro-

jections in the context of the noted differences between

multiple PDSI formulations. We analyze four estimates

of modeled soil-moisture balance: PDSI_TH, PDSI_PM,

soil moisture in approximately the first 30 cm of the soil

column (30cmSM), and full-column soil moisture

(FCSM), the latter two of which are centered and scaled

to match the PDSI_PM variance during the 1901–2012

interval for comparison.

FIG. 4. (top to bottom) For each region, comparisons of reconstructed PDSI_TH from this study using CPS and the regional averages of

the gridded NADA product (black lines) over the targeted CPS (red lines) reconstruction domains. Time series plot both annual values

(thin lines) and the 10-yr low-pass-filtered time series using a 10-point Butterworth filter (thicker lines). (left) The shared variance (r2)

between the annual (filtered) CPS andNADA time series over their periods of overlap are shown within each plot. (right) Scatterplots for

the annual CPS and NADA values are shown with 1:1 dashed lines for reference.
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a. Historical interval

The four characterizations of modeled soil-moisture

balance in each region over the historical interval

(1901–2005) are shown in Fig. 5 for the CanESM2 and

CCSM4 models. Consistent with the observation-based

estimates, these four measures of soil-moisture balance

yield internally consistent results over the twentieth cen-

tury, and both formulations of PDSI reproduce modeled

soil moisture with high fidelity. Agreement between the

two PDSI calculations is expected given that they are both

calibrated over the 1901–2012 period and therefore any

unrealistic temperature-driven differences in the PDSI_TH

calculation areminimized. PDSI_THandPDSI_PM in fact

reveal a large amount of shared variance over the his-

torical interval, matching or exceeding r2 values of 0.9 in

all regions over all ensemble members in both models

(Figs. 6 and 7).

Comparisons between the two PDSI estimates and

modeled soil moisture during the historical interval in-

dicate weaker but still high levels of shared variance

(Figs. 6 and 7). In most cases, PDSI_TH and PDSI_PM

compare best with 30cmSM. The shared variance is

strongest in CCSM4 for the 4C and SE regions, where r2

values exceed 0.7 for comparisons between the two

PDSI variables and 30cmSM. These numbers reduce

slightly for the NP where some ensemble members yield

values between 0.5 and 0.6. Comparisons weaken in

CanESM2, in which values of shared variance between

the two PDSI variables and 30cmSM range between

about 0.5 and 0.75 across all regions. Comparisons be-

tween the two PDSI variables and FCSM generally in-

dicate less shared variance than with 30cmSM because

FCSM incorporates longer-scale variations and time

lags that exceed the time scales that PDSI and near-

surface soil moisture more strongly sample. The depth

of sampling is not, however, the only factor, as indicated

by the fact that shared variances between PDSI esti-

mates and FCSM are larger than for 30cmSM in the SE

region in the CanESM2 model and for some variable

pairings and ensemble members in both models in the

NP. Moreover, FCSM spans a much greater depth in the

CCSM4 model than in CanESM2, but the r2 values be-

tween the PDSI variables and FCSM are comparable

or larger in CCSM4 than in CanESM2. Depth effects

are therefore not the only determining factor in the

comparison.

Comparisons between the two direct soil-moisture

estimates (30cmSM and FCSM) are similar or worse

within each model than the comparisons between the

two PDSI estimates and either of the soil-moisture vari-

ables, with the one exception being in the CanESM2

model in the SE. This highlights the fact that it is not

straightforward to determine which metric is most ap-

propriate as a measure of modeled soil-moisture vari-

ability or even which soil-moisture target is the

most appropriate analog to compare against PDSI.

Even within models, the agreement between direct

FIG. 5. (left to right) Regional model estimates of PDSI_TH, PDSI_PM, normalized 30cmSM, and normalized FCSM during the

historical interval (1901–2005) in (top) the CanESM2 and (bottom) CCSM4 models. The first ensemble member of each model is plotted

(interannual r2 estimates across all five ensemble members are shown in Figs. 6 and 7). In all cases, PDSI or soil-moisture normalizations

used the 1901–2005 intervals as a baseline, but time series are recentered from 1901 to 1979 to match the calibration/validation interval of

the PDSI reconstructions.
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soil-moisture metrics is variable and depends strongly

on the selected regions. The differences among these

variables are likely associated with the specific tunings,

parameterizations, and other modeling choices in the

land surface components of the GCMs and further

highlights the challenges of even direct comparisons

between soil-moisture variables in the current genera-

tion of coupled GCMs.

We finally note that we avoid direct comparisons be-

tween the regional PDSI_TH reconstructions and the

associated model variables beyond the collective plot-

ting of these variables in Figs. 8–10.We have normalized

and centered all of the moisture-balance variables over

the common reference interval from 1901 to 2005,

leaving any consistencies in means and variances of the

reconstructed and modeled variables over the reference

interval a product of construction. Furthermore, shared

variance between the reconstructed and modeled

moisture-balance metrics should not be expected for the

CMIP5 historical model runs, in which the simulations

are initialized from preindustrial control runs. These

initializations do not constrain modes of internal vari-

ability that impact hydroclimate over North America,

such as the El Niño–Southern Oscillation or the Pacific

decadal oscillation, to be in phase with those that have

dictated the actual climate states represented in the re-

constructions. Unless all of the hydroclimate variability

in the analyzed regions was forced over the twentieth

century, which is certainly not the case, the interannual

to decadal variance in the reconstructions and the

FIG. 6. (left to right) Regional shared variances (r2) among the collection of soil-moisture metrics in the CanESM2 model simulations

(x axis) during the historical (1901–2005) and projection (2006–99) intervals. Vertical diamond triplets correspond to the maximum,

minimum, andmedian shared variance across the fivemembers of the ensemble.Detrended results have been computed for the projection

interval after removing a linear trend over the same period.

FIG. 7. As in Fig. 6, but for the CCSM4 model simulations. Maximum, minimum, and median results were similarly computed from an

ensemble of five simulations.
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models will not share consistently common features.

These considerations therefore must inform attempts to

compare reconstructions and model simulations directly

over the interval of overlap and require more detailed

and specific analyses that are beyond the scope of this

investigation. The bridging approach that we have out-

lined herein nevertheless demonstrates the use of the

twentieth century as a common interval for referencing

reconstruction and model data in order to compare

earlier paleoclimatic intervals and model projections of

the twenty-first century.

b. Projection interval

Shared variance between the four soil-moisture vari-

ables during the projection interval (2005–99) are given

in Figs. 6 and 7, whereas Figs. 8–10 provide comparisons

between the four soil-moisture metrics for the first en-

semble member from both models over the historical

interval through projection intervals. Shared variances

for detrended time series over the projection interval, in

addition to the original time series, are also shown in

Figs. 6 and 7. The shared variances among all of the

detrended soil-moisture metrics in the projection

interval in all regions are generally comparable to

those of the historical interval (with some exceptions,

particularly in the CCSM4 output). Larger differences

are observed between the original time series, in which

differences in twenty-first-century trends reduce the r2

values among the different soil-moisture metrics (in

cases where trends are comparable among variables, the

shared variances in original and detrended time series

are similar). Secular drying in PDSI_TH exceeds that of

all other modeled soil-moisture metrics over the twenty-

first century in all three regions, a clear demonstration of

the tendency for PDSI_TH to overestimate drying

during the projection interval. There are, however, re-

gional differences in the relative comparisons among

variables, as discussed below.

PDSI_TH includes secular trends in the 4C region that

in some cases are larger in magnitude or opposite in sign

relative to the three other metrics in both models (Fig. 8),

despite the fact that some of the other metrics compare

favorably to PSDI_TH over the full century or during

specific intervals of time. PDSI_PMand 30cmSMcompare

well throughout the projection interval in the CCSM4

model, whereas 30cmSM projects enhanced drying, rela-

tive to PDSI_PM, in the CanESM2 model. FCSM again

compares favorably to PDSI_PM and 30cmSM in the

CCSM4 simulation, whereas it suggests a wetting trend in

the CanESM2 simulation that is not reflected in any of the

FIG. 8. A comparison of reconstructed PDSI_TH (black with gray shading) in the 4C region (see Fig. 1) with collocatedmodel estimates

of PDSI_TH (red), PDSI_PM (orange), normalized 30cmSM (black), and normalized FCSM (blue) during the historical and projection

intervals. Results are shown for the first ensemblemember of (top) the CanESM2 and (bottom) CCSM4model simulations to allow direct

visual comparisons between the reconstructed and model variance. All time series have been centered over the 1901–79 interval, the time

period of common overlap. Reconstructions extend prior to 1800, but the 1800–2100 interval is chosen for ease of visual comparison.
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other estimates. This may again be representative of

the deeper-column soil-moisture dynamics in the model

(although no such trend is observed for the CCSM4model

with a much deeper soil column).

In the NP, the behavior of PDSI_TH is again consis-

tent with previously discussed expectations (Fig. 9). The

variable estimates drier twenty-first-century mean con-

ditions than any of the other soil-moisture metrics and

projects secular drying trends in both models that are

either larger or not present in the other variables. Sim-

ilar to the 4C region, PDSI_PM compares favorably to

30cmSM throughout the projection interval in the

CCSM4 model, whereas 30cmSM projects slightly en-

hanced drying, relative to PDSI_PM, in the CanESM2

model. The FCSM estimate in CanESM2 contains

a pronounced wetting trend andmultidecadal variability

in the NP that, in addition to contrasting with PDSI_PM,

is also not present in the 30cmSM output. The FCSM is

similarly wetter in the CCSM4 projection for the NP but

not by nearly as much as the CanESM2 projection. In

the SE, the behavior of PDSI_TH is the same as dis-

cussed for the other two regions in bothmodels (Fig. 10).

Comparisons between 30cmSM and FCSM variables are

more consistent in both models in the SE, which both

project wetter conditions or a wetting trend (CCSM4) in

the SE that is not present in the PDSI_PM estimate.

Given the three regional analyses presented above, it

is evident that all of the soil-moisture metrics compare

well over the twentieth century in both models over all

three regions. Regional differences are evident, however,

in comparisons between the variables over the twenty-

first-century, including some large disparities between

the two modeled soil-moisture metrics themselves. This

is particularly true of the secular trends estimated by the

various metrics. While PDSI_TH projects varying de-

grees of exaggerated drying over all regions and models,

PDSI_PM either matches 30cmSM well, falls between

30cmSM and FCSM, or projects relatively constant

moisture-balance conditions when 30cmSM and FCSM

indicate wetting trends. These regional observations are

given broader context in Figs. 11 and 12, which plot the

projected mean values of PDSI_PM, 30cmSM and

FCSM for the last two decades (2080–99) of the twenty-

first-century using the first ensemble member of the

CanESM2 and CCSM4 simulation; the agreement be-

tween the three variables in the direction of either

wetting or drying is also plotted. Inspections of Figs. 11

and 12 indicate that it is difficult to draw consistent

characterizations of how the variables compare across

models or regions. In the CanESM2 simulation, for in-

stance, PDSI_PM and FCSM project wetting through-

out much of western North America, whereas 30cmSM

projects drying over those regions [note that this wetting

projection is anomalous over the CMIP5 ensemble

(Cook et al. 2014a) but the analyzed models have been

selected based on the availability of their layered

FIG. 9. As in Fig. 8, but for the North Plains region (see Fig. 1).
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soil-moisture output and ensemble members that are con-

tinuous across the historical to projection intervals]. In

contrast to CanESM2, the PDSI_PM projection from

CCSM4 is almost uniformly toward drying, whereas

a heterogeneous pattern of wetting emerges in 30cmSM

and is further enhanced in FCSM. A full diagnosis of the

physical underpinnings of these differences is beyond the

scope of this paper, but we discuss various explanations

for the regional differences in the following section and

suggest that parsing the differences between these soil-

moisture metrics is an important area of further research.

5. Discussion

This study has been motivated by two considerations:

1) the growing interest in performing paleoclimatic

model–data comparisons and 2) the ongoing debate

about how to properly represent hydroclimatic vari-

ability and change from a host of possible soil-moisture

metrics. Our results demonstrate the robustness of PDSI

as a metric of near-surface moisture variability in ob-

servations, reconstructions, and twentieth-century

model simulations. Reconstructions derived for three

diverse regions of the United States compare favorably,

regardless of the reconstruction target (PDSI_TH,

PDSI_PM, or PDSI_SC) or technique (CPS versus the

NADA-based approach). The variances of the derived

reconstructions are the principal, though modest,

differences among them and are consistent with the

expected character of PDSI formulations estimated

from observations over the historical interval. Impor-

tantly, these results indicate that previous concerns

about biases in tree-ring reconstructions due to the use

of PDSI_TH as a calibration target (Sheffield et al. 2012)

are unfounded over North America. Similarly, model

estimates of soil moisture and PDSI are all consistent

during the historical interval: PDSI_TH, PDSI_PM, and

two normalized soil-moisture estimates all compare well

in the CanESM2 and CCSM4 historical model simula-

tions. Together, these results support the continued use

of PDSI as a valuable tool for empirical and model-

based investigations of drought and hydroclimate.

Principal differences emerge only in model-derived

estimates of PDSI and soil moisture during the twenty-

first-century projection interval. Specifically, the secular

behavior of the various metrics diverges in the pro-

jections, whereas the interannual variability remains

relatively consistent across all variables throughout the

twenty-first-century projection interval. In the case of

PDSI_TH, enhanced secular drying is now a well-

understood consequence of unrealistically scaling PET

as a function of temperature when values exceed the

range defined by the normalization interval. It is less

clear, however, how and why modeled near-surface and

full-column soil moisture would compare well with the

more physically based PDSI_PM during the twentieth

FIG. 10. As in Fig. 8, but for the Southeast region (see Fig. 1).
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century and in the twenty-first-century on interannual

time scales, whereas their twenty-first-century secular

trends would diverge.

Several possibilities may explain some of the different

secular behavior in the model-based metrics. The dif-

ferences may arise, in part, from the difficulty in iden-

tifying the most appropriate modeled soil-moisture

variable for comparison with the model-derived PDSI.

We have demonstrated various situations in which PDSI

most closely reflects near-surface soil moisture, others

where PDSI was a better indicator of full-column soil

moisture, or places where PDSI resolved both equally

well. Importantly, we also illustrated ample instances

where even the two soil-moisture metrics diverge,

sometimes to quite extreme effect (e.g., the northern

plains in CanESM2). Additional differences between

PDSI and modeled soil moisture also are likely to arise

through the typically more sophisticated treatment of

processes (e.g., vegetation, soil physics) in the land

surface components of GCMs. These parameterizations

and tunings vary across models, meaning that any con-

cerns in comparing PDSI and soil moisture within

models must also be extended to comparing soil-

moisture trends across models.

One major issue that is often discussed in the context

of future drought projections is the CO2 fertilization

effect. The direct physiological effect of elevated at-

mospheric CO2 concentrations (eCO2) is to reduce

water loss during photosynthesis by lowering stomatal

conductance. This effect is typically incorporated into

the physics of GCM land surface and vegetation models

but not in standard PDSI calculations, including those

employed herein. Two expectations are therefore asso-

ciated with eCO2: 1) drought stress on model vegetation

will be reduced, translating into lower rates of evapo-

transpiration and increases in soil moisture and runoff,

and 2) standard PDSI projections, which do not include

the impact of eCO2, will not reflect any associated

wetting tied to the effect. This may explain areas in the

presented projections where PDSI indicates drying while

model soil moisture indicates wetting or little change.

While the physiological effect of eCO2 is well un-

derstood at the leaf level (Ainsworth and Rogers 2007),

there are large uncertainties associated with the scaling

of this effect on hydrology at larger scales that may lead

to an overestimate of the eCO2 effect in model pro-

jections. For example, many experiments in which plants

are exposed to elevated levels of CO2 show only modest

FIG. 11. (top) (left to right) Mean PDSI_PM, normalized 30cmSM, and normalized FCSM for the last two decades (2080–99) of the

twenty-first-century projection interval (ensemble member 1) from the CanESM2 model. (bottom) Agreement between the sign of the

wetting (blue) or drying (brown) as projected by the three variables in the 2080–99 interval. The total percentage of grid cells that agree on

thewetting or drying trends are provided in the bottom left of the comparisonmaps. The boxes defined by dashed lines indicate the regions

extracted from the 0.58 3 0.58NADA, observation, and model grids as representative of the 4C, NP, and SE regions.
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and often insignificant changes in transpiration and soil

moisture (e.g., Domec et al. 2009; Hussain et al. 2013;

Inauen et al. 2013; Naudts et al. 2013; Stocker et al.

1997). Additionally, few eCO2 studies simultaneously

incorporate ambient warming into their experiments, an

accompanying element of climate change that is ex-

pected to increase ET and potentially counteract any

moisture gains from eCO2. Despite this ambiguity in the

empirical evidence, however, most land surface and

vegetation models, including those models typically in-

corporated into GCMs, substantially reduce transpira-

tion when exposed to eCO2 and, in some cases,

dramatically overestimate the transpiration response

relative to observations (De Kauwe et al. 2013). This

suggests that the modeled response to eCO2 may be

oversimplified and the eCO2 effect on hydrology over-

estimated. In fact, this host of uncertainties in both the

modeled and empirical eCO2 responses led Working

Group II of the IPCC to conclude in AR5 (Gerten et al.

2014) that the net effect of eCO2 on runoff and tran-

spiration is still ‘‘poorly constrained’’ and that ‘‘precip-

itation and temperature effects are likely to remain the

prime influence on global runoff’’ (p. 158). Notably,

eCO2 does not appear to have a strong influence on soil

moisture in other CMIP5 simulations before the rapid

increases in the RCP scenarios, as evidenced by the tight

coupling between PDSI and modeled soil moisture in

the historical simulations presented herein.

Clearly, there remain significant uncertainties in the

interpretation of modeled soil-moisture and PDSI re-

sponses in twenty-first-century GCM projections. Fur-

ther characterizing and resolving the impact of these

modeling choices will be important as a means of

resolving differences between PDSI_PM and the soil-

moisture estimates discussed herein but even more im-

portantly to constrain the range of realistic soil-moisture

conditions into the future. In the context of paleoclimate

data–model comparisons, however, it appears that pro-

jections using PDSI_PM or normalized near-surface soil

moisture are the most appropriate variables for char-

acterizing future projections and for comparing pro-

jections to modern and paleoclimatic observations (e.g.,

Dai 2013; Cook et al. 2014a).

6. Conclusions

Given our principal observations, a framework

emerges for comparisons between PDSI reconstructions

and model simulations. It is first of all evident that tree-

ring-based PDSI reconstructions are robust to the

selection of PDSI target variables and the current gen-

eration of PDSI_TH drought atlases can be confidently

used as estimates of hydroclimatic variability over the

last millennium. With regard to comparing these

drought atlases to last-millennium simulations, our re-

sults suggests that model-derived PDSI or soil moisture

FIG. 12. As in Fig. 11, but for the CCSM4 model.
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should all estimate similar hydroclimate histories given

that modeled temperature variations over the last mil-

lennium are typically within the range of modeled

twentieth-century climate (e.g., Fernández-Donado
et al. 2013; Masson-Delmotte et al. 2014). Indeed, the

similarity between multiple hydroclimate metrics over

the last millennium has been demonstrated specifically

in the U.S. Southwest using multiple simulations in the

context of assessing the occurrence of multidecadal

drought events in the region (Coats et al. 2013b, 2015b).

Similarly, we have shown that comparisons among ob-

servational or modeled soil-moisture metrics during the

twentieth century are largely insensitive to the choice of

metric. While it is most consistent to compare the same

metric across reconstructions, observations, andmodels,

such consistency does not appear essential and is

sometimes not possible over the last millennium and

through the twentieth century. In lieu of homogenized

products, it therefore is suggested that comparisons

simply reference and scale means and variances of all

variables over a common period of overlap.

Overall, the current collection of tools can provide

robust characterizations of hydroclimate variability and

change during the last millennium, which in turn can

be meaningfully compared to observations and model

simulations of twentieth-century hydroclimate andmodel

projections of twenty-first-century change. Within these

comparisons the most important interval of consider-

ation is the twenty-first century, in which model pro-

jections should be characterized using either PDSI_PM

(or similarly a Penman–Monteith version of PDSI_SC

or standardized precipitation–evaporation index) or

a near-surface normalized soil-moisture output. In the

case of the latter, however, these results must be care-

fully interpreted in terms of their applicability across

a collection of model simulations and in terms of the

processes that they include. The impact of CO2 fertil-

ization on twenty-first-century hydroclimate projections

is a particularly important process to evaluate across

models, given the poorly constrained nature of the

process on large-scale vegetation response and because

it appears to have potentially important implications for

projected hydroclimatic trends. Although these details

complicate comparisons and leave open important re-

search questions, future model–data comparisons that

span the last millennium through the twenty-first-

century projection interval will be vital for assessing

and characterizing future risks associated with hydro-

climate variability and change. As we have demon-

strated, these comparisons are possible and appropriate

given the current collection of data and tools, which

should all be used for comparisons within the framework

outlined herein.
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