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ABSTRACT 40 

 41 

The net surface water budget, precipitation minus evaporation (P-E), shows a clear 42 

seasonal cycle in the American Southwest with net gain of surface water (positive P-E) in 43 

the cold half of the year (October to March) and net loss of water (negative P-E) in the 44 

warm half (April – September), with June and July being the driest months of the year.  45 

There is a significant shift of the summer drying toward earlier in the year under a CO2 46 

warming scenario, resulting in substantial spring drying (MAM) of the American 47 

Southwest, from the near-term future to the end of the current Century with gradually 48 

increasing magnitude.  While the spring drying has been identified in previous studies, its 49 

mechanism has not been fully addressed.  Using moisture budget analysis, we found that 50 

the drying is mainly due to decreased mean moisture convergence, partially compensated 51 

by the increase in transient eddy moisture flux convergence.  The decreased mean moisture 52 

convergence is further separated into components due to changes in circulation (dynamic 53 

changes) and changes in atmospheric moisture content (thermodynamic changes).  The 54 

drying is found to be dominated by the thermodynamic driven changes in column averaged 55 

moisture convergence, due mainly to increased dry zonal advection caused by the 56 

climatological land-ocean thermal contrast, rather than by the well-known “dry get drier” 57 

mechanism. Furthermore, the enhanced dry advection in the warming climate is dominated 58 

by the robust zonal mean atmospheric warming, leading to equally robust spring drying in 59 

Southwest US.  60 
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1. Introduction 61 

There is some agreement in previous studies that the Southwest United States 62 

(SWUS), a region stretching from the Southern Plains to the Pacific coast between 25 and 63 

45N latitudes, will likely become drier in the greenhouse warming future (e.g., Seager et 64 

al., 2007, 2013; Seager and Vecchi, 2010; Scheff and Frierson, 2012). While these model-65 

based projections echo the recent severe droughts in the Southwest, there is uncertainty as 66 

to the relative roles of radiative forcing and natural variability in driving recent 67 

precipitation history, although the latter appears dominant (e.g., Seager et al. 2015, 68 

Delworth et al. 2015, Prein et al., 2016).  By comparison, there is widespread confidence 69 

that warming of the southwest, which creates a tendency to reduce soil moisture and 70 

streamflow, is ongoing and driven by climate change (e.g. Williams et al. 2015; Cook et 71 

al., 2014; 2015; Diffenbaugh et al., 2015).  Given the growing demands for water in the 72 

region due to increasing population and economic growth, water resource management is 73 

expected to become increasingly challenging if recent trends continue and/or model 74 

projections are correct.  75 

The future change in surface water availability is season dependent, as most of these 76 

areas have a net gain of surface water (precipitation minus evaporation, P - E) in the cold 77 

half of the year (October to March), and a net loss of water in the warm half (April – 78 

September) (Seager et al., 2014).  Any seasonal shift of this pattern will add to the 79 

complexity of the water resource challenges.  In addition, increasing surface temperature 80 

due to greenhouse warming will likely reduce snow pack and cause early melting, thus 81 

reducing the natural storage of surface water for summer usage (e.g., Mote, 2006; Pierce 82 

et al., 2008; Luce et al., 2014 ).  83 
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Seager et al. (2014) provided a detailed account of present day and near-term future 84 

changes in the hydrological cycle over North America using the moisture budget approach 85 

by separating into the warm and cold seasons using the European Centre for Medium 86 

Range Weather Forecasts ERA-Interim Reanalysis (ERA-I, Dee et al., 2011) and CMIP5 87 

models’ historical and future scenario (Representative Path Way 8.5, RCP85) simulations 88 

(Taylor et al., 2012).  They found that during the winter half year, the models project drying 89 

of the Southwest due mainly to the reduction in mean moisture convergence.  However, 90 

the exact mechanisms and the full seasonal cycle of the Southwest drying trend as projected 91 

in the model were not examined, nor whether this trend amplifies over time.  Using a finer 92 

resolution regional climate model, Gao et al. (2014) examined seasonal changes of P – E 93 

for the end of the 21st Century as compared to the present climate and found a robust spring 94 

drying in the southwestern U.S..  However, the physical mechanisms for this pronounced 95 

spring drying were also not clearly identified.  96 

Unlike over the oceans, where changes in P – E are dominated by the so-called wet-97 

get-wetter and dry-get-drier mechanism (e.g. Held and Soden, 2006) as a consequence of 98 

increasing atmospheric water vapor content in a warming climate, the continental 99 

hydroclimate change is more complex.  For example, Boos (2012) and Byrne & O'Gorman 100 

(2015) found that changes in zonal temperature gradient, thus the associated atmospheric 101 

water vapor gradient, can be an important factor in P - E changes in the last glacial 102 

maximum and future warming climate, respectively.  These studies, however, do not 103 

address specifically the SWUS region, or factors influencing the seasonal cycle of the P – 104 

E changes.  105 
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These previous studies led us to examine the multimodel CMIP5 future projections 106 

of the surface water balance and their seasonal change over the southwest in this study, 107 

focusing on the mechanisms of the changes and the development over time from the near 108 

future (2021-2040) to the end of the 21st Century. The rest of the paper is organized as 109 

follows.  Section 2 presents the data and methods used in this study, followed by a 110 

discussion of the mechanisms for the climatological seasonal cycle of moisture budget in 111 

the Southwest U.S. in section 3.  Section 4 provides the detailed mechanisms of the change 112 

in seasonal moisture budget and the spring drying, followed by a summary in section 5. 113 

 114 

2. Data and Methods 115 

We used the same 22 CMIP5 models (table 1) as in Seager et al. (2014) that have 116 

the available 6-hourly data for calculating transient eddy moisture fluxes necessary for the 117 

moisture budget analysis.  These 22 models provide historical simulations with both 118 

anthropogenic and natural radiative forcings for the historical period and future projections 119 

with RCP8.5. In this study, we focus on the period 1979-2005 as the present-day base 120 

period, and the future changes (from 2021 to 2100) in hydroclimate and moisture budget 121 

are with respect to that reference period.  In order to validate the present day CMIP5 122 

simulations, we used the ERA-I Reanalysis (Dee et al, 2011) for the same period, 1979 – 123 

2005, for direct comparisons. 124 

Moisture budget analyses were performed for both the ERA-I and CMIP5 present 125 

and future simulations as in Seager and Henderson (2013).  Briefly, the column-integrated 126 

moisture budget for a steady state atmosphere can be expressed in pressure coordinates as 127 

follows: 128 
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𝑃 − 𝐸 = −
1

𝑔𝜌𝑤
∇ ∙ ∫ �⃑� 

𝑝𝑠

0
𝑞dp    (1) 129 

where P represents precipitation, E evaporation/evapotranspiration, g is the gravitational 130 

constant, w is water density, p is pressure and ps its surface value, q is specific humidity 131 

and �⃑�  the horizontal wind vector. When averaging over a month, the column-integrated 132 

total moisture convergence (right side of Eq. 1) can be expressed as the sum of the monthly 133 

mean moisture convergence plus the sub-monthly transient eddy moisture convergence, as 134 

follows: 135 

 �̅� − �̅� = −
1

𝑔𝜌𝑤
∇ ∙ ∫ �⃑� ̅

𝑝𝑠

0
�̅�𝑑𝑝 −

1

𝑔𝜌𝑤
∇ ∙ ∫ �⃑� ′𝑞′̅̅ ̅̅ ̅𝑝𝑠

0
𝑑𝑝   (2) 136 

where bar represents monthly mean and prime daily deviation from the monthly mean.  The 137 

first term on the right-hand side of Eq. (2) can be further separated into three terms, relating 138 

to mean moisture advection and mass divergence as well as a boundary term as follows: 139 

 ∇ ∙ ∫ �⃑� ̅
𝑝𝑠

0
�̅�𝑑𝑝 = ∫ �⃑� ̅ ∙ ∇

𝑝𝑠

0
�̅�𝑑𝑝 + ∫ �̅�

𝑝𝑠

0
∇ ∙ �⃑� ̅𝑑𝑝 + 𝑞�̅��⃑� 𝑠̅̅ ̅ ∙ ∇𝑝𝑠  (3) 140 

where 𝑞�̅� and 𝑢𝑠⃑⃑⃑⃑ ̅̅ ̅ represent the surface specific humidity and vector horizontal wind, 141 

respectively. The boundary term arises from the surface pressure gradient and can be large 142 

around mountains and represents in some sense moisture convergence and divergence at 143 

the surface due to the topography. 144 

 When the changes of the moisture budget are needed for two selected periods, we 145 

use to represent that change and Eq. (2) can be rewritten as follows:  146 

 𝛿(�̅� − �̅�̅̅ ̅̅ ̅̅ ̅̅ ) = 𝛿 (−
1

𝑔𝜌𝑤
∇ ∙ ∫ �⃑� ̅

𝑝𝑠

0
�̅�𝑑𝑝

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) + 𝛿 (−

1

𝑔𝜌𝑤
∇ ∙ ∫ �⃑� ′𝑞′̅̅ ̅̅ ̅𝑝𝑠

0
𝑑𝑝

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) (4) 147 

where  represents the difference between the two periods, and the long bar represents the 148 

period average. The first term on the right side of Eq. (4) can be further separated into terms 149 

representing changes in mean moisture convergence due to only changes in horizontal wind 150 
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(dynamic, DYN) and that due to only changes in specific humidity (thermodynamic, TH) 151 

as follows: 152 

 𝛿 (−
1

𝑔𝜌𝑤
∇ ∙ ∫ �⃑� ̅

𝑝𝑠

0
�̅�𝑑𝑝

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) ≅

1

𝑔𝜌𝑤
∇ ∙ ∫ 𝛿�⃑� ̅

𝑝𝑠

0
𝑞𝑝̅̅ ̅𝑑𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +

1

𝑔𝜌𝑤
∇ ∙ ∫ (�⃑� 𝑝⃑⃑ ⃑⃑ ̅̅ ̅

)
𝑝𝑠

0
𝛿�̅�𝑑𝑝

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 153 

       = 𝛿𝐷𝑌𝑁̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ + 𝛿𝑇𝐻̅̅ ̅̅̅̅ ̅̅      (5) 154 

where 𝛿�⃑� ̅=𝑢𝑓⃑⃑⃑⃑ ̅̅ ̅ − 𝑢𝑝⃑⃑ ⃑⃑ ̅̅ ̅ and 𝛿�̅� = 𝑞𝑓̅̅ ̅ − 𝑞𝑝̅̅ ̅, and subscript p represents past (1979-2005) 155 

monthly mean value and subscript f represent future monthly mean value.  Note that the 156 

higher order nonlinear term involving the change in circulation and change in humidity is 157 

found to be negligible and not included in Eq. 5.  These various decompositions will be 158 

used in the following to disentangle the role of the various physical processes in 159 

contributing to changes in future hydroclimate. 160 

 161 

3. Climatological Seasonal Cycle of Moisture Budget in 162 

Southwest United States  163 

While Seager et al. (2014) investigated many aspects of the North American 164 

moisture budget and their future changes in the winter and summer half years, they did not 165 

address the detailed seasonal cycle of the moisture budget and its change, particularly with 166 

respect to the semi-arid Southwest US (SWUS) region.  Changes in seasonal cycle have 167 

important implications as water managers need to adjust to the changes when planning for 168 

water allocations throughout the year.  Figure 1 shows the three-month mean seasonal 169 

(DJF, MAM, JJA, and SON) net surface water balance (P-E) using the ERA-I Reanalysis 170 

and CMIP5 multimodel mean (MMM).  For the SWUS (depicted by the box), during winter 171 

(DJF) there is net gain of surface water over most of the domain except the southernmost 172 
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region. For both spring (MAM) and summer (JJA), the SWUS is dominated by net loss of 173 

surface water, with stronger drying in the summer.  The exception is the North American 174 

Monsoon region of surface water gain in summer in the southwest of the domain.  By the 175 

fall, the drying of the SWUS lessens and turns into net surface wetting in the northern 176 

portion.  This seasonal cycle is well reproduced by the CMIP5 MMM, except that the 177 

climatological spring drying is limited to the southern half of the domain, thus indicating a 178 

delay in the seasonal cycle of warm season drying. There is also a net gain of water in the 179 

fall season in models across the region, indicating a bias toward generally wetter conditions 180 

in the model climatology throughout the year. 181 

To better illustrate how P-E changes throughout the season and to understand the 182 

mechanisms of the spring and summer drying, Fig. 2 shows the SWUS area average (box 183 

shown in Fig. 1) P-E along with the mean and transient moisture flux convergences (top 184 

three rows) and the mean moisture advection (fourth row) and mass divergence (fifth row) 185 

contributions to the total mean moisture convergence terms, along with the boundary term 186 

(sixth row), for both ERA-I Reanalysis and CMIP5 MMM, as a function of month.  In the 187 

ERA-I Reanalysis, there is a net gain of surface water in the winter half year, from October 188 

to March, and net loss of water in the summer half year, from April to September.  The 189 

peak drying time is in June and peak wet months are in December and January. The positive 190 

P-E during the winter half year is mainly due to synoptic storms converging moisture into 191 

the region, as indicated by the transient moisture convergence term (third row).  The 192 

transient moisture flux convergence is offset by the mean moisture divergence out of the 193 

region (second row) which is negative throughout the year except in July and August when 194 
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it is weakly positive. The climatological drying in the warmer half year is caused by mean 195 

moisture divergence in spring and transient moisture divergence in summer. 196 

Furthermore, the mean moisture divergence is due to both mean mass divergence 197 

and moisture advection with the latter dominant.  The mean moisture advection term is 198 

drying for the majority of the annual cycle and peaks in the late spring/early summer 199 

months. In this region of complex topography, the boundary term (sixth row) can be a large 200 

wetting factor peaking in summer that offsets the advective drying.   201 

The CMIP5 MMM well represents the moisture budget terms and their seasonal 202 

cycle in the SWUS region.  As shown in Fig. 1, the net surface water budget tends to have 203 

a wet bias in the region, causing a wetter winter and slightly less dry summer compared to 204 

ERA-I.  The wet bias is mainly due to the transient eddy moisture flux convergence being 205 

too large (compare Fig. 2f to Fig. 2e).  Other than these small discrepancies, the CMIP5 206 

MMM reproduces well the main features of the moisture budget seasonal cycle and thus 207 

can be used for understanding the future changes in SWUS hydroclimate. 208 

The dominant climatological drying contribution from the mean moisture advection 209 

(Figs. 2g, h) during the spring and summer is somewhat counterintuitive as one would 210 

expect prevailing westerlies in the region to bring moisture from the Pacific Ocean into the 211 

SWUS region to its east.  Since the mean moisture advection turns out to be the dominant 212 

mechanism for the future spring drying as well, it is worthwhile to first explore the physical 213 

causes of its climatology. After examination, it turns out that the drying is due mainly to 214 

the zonal advection term (the meridional advection is secondary and of opposite sign).  215 

Thus, we focus below on the zonal moisture advection term. 216 
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Figure 3 shows the pressure-longitude vertical cross sections of specific humidity, 217 

air temperature, and zonal wind vectors averaged over the latitude span of 32-45N for the 218 

four seasons using ERA-I (left) and CMIP5 MMM (right).  Since the zonal mean 219 

components of q and T do not contribute to the zonal advection, we only show their zonally 220 

asymmetric parts in Fig. 3. The specific humidity shows a relatively small east-west 221 

gradient during winter but a very strong zonal dipole structure in the summer with smaller 222 

q over the coastal region and larger q on top of the mountains and east of the Rockies.  Both 223 

spring and autumn seasons show similar specific humidity structure as the summer but with 224 

smaller peaks over the highlands.  The air temperature is influenced by the local topography 225 

and land sea contrasts with cooler temperature over the oceans and warmer temperature 226 

over land, particularly above the mountains in the summer.  Part of the specific humidity 227 

zonal dipole can be explained by the zonally asymmetric temperature structure according 228 

to the Clausius-Clapeyron equation with uniform relative humidity at each level (not 229 

shown), and is thus driven by land-sea thermal contrasts and local topography. However, 230 

the zonally asymmetric q and T do not coincide with each other completely, suggesting 231 

that there are dynamical processes involved in shaping the q structure. 232 

To further understand the climatological zonally asymmetric q structure in the 233 

region, we show in Fig. 4 the vertically integrated mean moisture transport for all four 234 

seasons based on both ERA-I and CMIP5 MMM, along with the 850 hPa specific humidity. 235 

In the winter, the moisture transport along the west coast is dominated by westerlies 236 

bringing relatively warm and humid air to the region in both reanalysis and CMIP5 MMM 237 

(top row). But from spring to fall, the mean moisture transport is dominated by the along-238 

coast cool and dry advection from the north associated with the Pacific subtropical 239 
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anticyclone while, further inland, it is dominated by the warm moist air from the Gulf of 240 

Mexico associated with the Great Plains Low Level Jet (LLJ, Ting and Wang, 2004, Jiang 241 

et al. 2007, Parish and Oolman 2010).  These processes create a moisture gradient in the 242 

region that is dry over the coastal regions and moist further inland.  Any zonal advection 243 

of moisture in the region would lead to advective drying from March to October (Figs. 2g, 244 

h).  245 

The CMIP5 MMM shows very similar features of the zonally asymmetric q and T 246 

(right panels of Fig. 3), as well as the moisture transports (right panels of Fig. 4).  with the 247 

strongest drying due to mean moisture advection occurring in June (Fig. 2h), slightly 248 

shifted compared to reanalysis observations. The results here suggest that the mean flow 249 

moisture divergence in the SWUS, which dominates the climatological warm season 250 

drying in the region, is mainly driven by the zonally asymmetric specific humidity 251 

gradients.  The specific humidity gradients are a result of land-ocean thermal contrasts, 252 

local topography, as well as moisture transport associated with the Pacific subtropical 253 

anticyclone and the Great Plains low level jet. The next section examines how the zonal 254 

specific humidity gradient and the SWUS drying evolve in the future. 255 

 256 

4. Changes in Seasonal Cycle of Moisture Budget and the 257 

Mechanisms of Spring Drying 258 

The future changes in SWUS hydroclimate are explored by examining the four 20-259 

year future periods, starting from 2021-2040 to 2081 -2100. Figure 5a illustrates changes 260 

in net surface water balance, P – E, from each of the 20-year periods with respect to the 261 

recent period, 1979 – 2005.  These maps show the general drying trend in the SWUS region 262 



 12 

throughout the seasonal cycle except January and February when the changes are slightly 263 

positive for all future periods. More notable is that the spring season, MAM, consistently 264 

shows the strongest drying signal, effectively shifting forward the peak drying season of 265 

negative P-E from mid-summer (top row in Fig. 2) towards late spring/early summer (see 266 

Fig. 10).  The amplitude of the drying also increases steadily from the near-term future to 267 

the end of the 21st Century.  When separating the future drying into the mean and transient 268 

contributions in Fig. 5, it is clear that spring drying is predominantly caused by the mean 269 

moisture divergence (Fig. 5b), whereas in the summer, drying by transient eddy moisture 270 

divergence (Fig. 5c) is largely cancelled by mean flow wetting leading to little change in 271 

P-E.  Given the large amplitude of the spring drying, we focus the rest of the paper on the 272 

mechanisms responsible. 273 

Figure 6 shows the spatial patterns of the spring drying for the four periods in terms 274 

of P-E.  The spatial pattern of the drying is robustly similar across the four periods with 275 

increasing amplitude toward the future and it is particularly strong in the northern part of 276 

the domain, from the California coast to Colorado.  In the southern tip of the domain, there 277 

is actually a slight wetting trend.  To gain further insights into the spring drying 278 

mechanisms, we show in Fig. 7 the area-averaged moisture budget changes for the four 279 

future periods with respect to the recent period, for P-E, total mean moisture convergence 280 

and transient moisture flux convergence (Fig. 7a-c).  Consistent with Figs. 5 and 6, there 281 

is a dominant spring drying in terms of P-E, and this drying is entirely due to the mean 282 

moisture divergence, offset somewhat by the transient eddy moisture convergence and 283 

wetting.  The changes in mean and transient moisture convergence amplify the 284 

corresponding climatological processes as shown in Fig. 2.   The mean moisture 285 
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convergence change is further divided into that due to circulation change (dynamic, DYN) 286 

and that due to specific humidity change (thermodynamic, TH) as shown in Eq. 5 (Fig. 287 

7d,e).  The dynamic term contributes negligibly to spring drying (Fig. 7d) and it is instead 288 

almost entirely caused by the thermodynamic contribution due to increases in specific 289 

humidity (Fig. 7e). The dominance of the thermodynamic term here may not be surprising.  290 

It might be thought that since this is a region of mean mass divergence, a warming-driven 291 

increase of moisture in the atmosphere would lead to more moisture divergence and hence 292 

drying.  However, Figs. 7f and g illustrate that the thermodynamic change is almost entirely 293 

due to the climatological wind advecting the anomalous specific humidity gradient, while 294 

the climatological mean mass divergence of anomalous moisture is negligible.  The 295 

dominance of the advection term seems to be consistent with the climatological moisture 296 

budget shown in Fig. 2. We next examine further how the moisture gradient changes in the 297 

future as the climate warms. 298 

Figure 8a shows the vertical cross section of the spring zonally asymmetric specific 299 

humidity change between the end of the 21st Century and the current climate from CMIP5 300 

MMM.  There is an enhanced specific humidity gradient with reduced specific humidity to 301 

the west and enhanced humidity to the east of the domain.  This causes anomalous dry 302 

advection by the climatological westerlies (Figs. 3c and 7f). To understand the causes of 303 

the change in specific humidity gradient we separate the humidity change using the 304 

Clausius-Clapeyron equation. 305 

The specific humidity can be written approximately as: 𝑞 = 𝑟𝑞𝑠, where r is relative 306 

humidity (defined as the ratio of actual vapor pressure e and saturation vapor pressure es, r 307 
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= e/es) and 𝑞𝑠 is the saturation specific humidity, which is only a function of temperature 308 

according to the Clausius-Clapeyron equation: 309 

𝑒𝑠 = 𝑒0𝑒𝑥𝑝 [
𝐿

𝑅𝑣
(

1

𝑇0
−

1

𝑇
)], 𝑞𝑠 ≈

𝑅𝑑

𝑅𝑣
(

𝑒𝑠

𝑝−𝑒𝑠
)   (6) 310 

where e0 represents the es value when T is equal to a reference temperature T0, L is the 311 

latent heat of vaporization and Rd and Rv are the gas constants for dry air and water vapor, 312 

respectively, and p is the air pressure.  Define the specific humidity change as 313 

∆𝑞 = 𝑞𝑓 − 𝑞𝑝 = 𝑟𝑓𝑞𝑠(𝑇𝑓) − 𝑟𝑝𝑞𝑠(𝑇𝑝)=∆𝑟𝑞𝑠(𝑇𝑝) + 𝑟𝑝∆𝑞𝑠 + ∆𝑟∆𝑞𝑠  314 

  (7) 315 

where subscripts f and p represents future and past values and ∆= ( )𝑓 − ( )𝑝. If we 316 

ignore the nonlinear term in (7), then 317 

 ∆𝑞 ≈ ∆𝑟𝑞𝑠(𝑇𝑝) + 𝑟𝑝∆𝑞𝑠      (8) 318 

where qs can be written as: 319 

 ∆𝑞𝑠 = 𝑞𝑠(𝑇𝑝 + ∆𝑇) − 𝑞𝑠(𝑇𝑝) 320 

Figure 8b shows the calculated ∆q according to Eq. (8) with the zonal mean part removed 321 

(q*), which agrees well with the ∆q∗ based on model outputs in Fig. 8a.  If we assume 322 

relative humidity does not change in the future, an assumption, which has been shown to 323 

be a good approximation in both observations (Gaffen and Ross, 1999) and theoretically 324 

(Pierrehumbert et al., 2007), then equation 8 can be approximated by 325 

 ∆𝑞 ≈ 𝑟𝑝∆𝑞𝑠 =  𝑟𝑝[𝑞𝑠(𝑇𝑝 + ∆𝑇) − 𝑞𝑠(𝑇𝑝)]    (9) 326 

The resulting change in the zonally asymmetric specific humidity is shown in Fig. 8c, 327 

which reproduces well the actual model change but with somewhat larger amplitude.  Thus, 328 

the change in air temperature (∆𝑇) with fixed relative humidity dominates the change in q.  329 
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The air temperature change in Eq. (9) can be further divided into zonal mean change and 330 

zonally asymmetric change in air temperature as follows: 331 

   ∆𝑞 ≈ 𝑟𝑝[𝑞𝑠(𝑇𝑝 + 〈∆𝑇〉 + ∆𝑇∗) − 𝑞𝑠(𝑇𝑝)]    (10) 332 

where angle bracket represents the zonal mean value, and asterisk the zonally asymmetric 333 

component.  It is clear from Fig. 8d that the zonally asymmetric q change above 700 hPa 334 

is largely explained by the zonal mean temperature change (〈∆𝑇〉). Figures 8e and f show 335 

the changes in zonally asymmetric q due to T* only (by setting <T> to zero in Eq. 10) 336 

and relative humidity only (setting qs to zero in Eq. 8), respectively.  The contribution to 337 

the zonally asymmetric q change is relatively minor in both cases compared to that due to 338 

the zonal mean temperature change (Fig. 8c).  Zonally uniform temperature change (<T>) 339 

leads to zonally asymmetric specific humidity change (q*) because land is warmer than 340 

ocean in the spring and, hence, when adding a uniform temperature increase to both land 341 

and ocean, specific humidity increases more over land than ocean due to the nonlinear 342 

Clausius-Clapeyron relation (Eq. 6). It is, however, very interesting that the specific 343 

humidity change is dominated by the zonal mean temperature change, rather than the 344 

asymmetric warming of the land and ocean in the future, or changes in relative humidity 345 

(Byrne and O’Gorman, 2015). 346 

To confirm the change in zonal mean temperature, which led to the enhanced q 347 

gradient, is indeed the dominant cause of the spring drying, we computed the corresponding 348 

change in vertically integrated mean moisture convergence (𝛿 (−
1

𝑔𝜌𝑤
∇ ∙ ∫ �⃑� ̅

𝑝𝑠

0
�̅�𝑑𝑝

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)), due 349 

to each q change as shown in Fig. 8.  The results are shown in Fig. 9 for the spring season. 350 

Consistent with Fig. 8, Figs. 9a and b are almost identical, indicating that the calculated 351 

specific humidity using the Clausius-Clapeyron equation reproduces well the CMIP5 352 
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MMM q.  Both Figs. 9 a and b show drying in the SWUS and wetting in the east half of 353 

the country, and bear some similarities to the MMM P – E pattern in Fig. 5d. This pattern 354 

is largely reproduced when assuming constant relative humidity (c) and when only 355 

allowing the zonally symmetric temperature to change (d).  In contrast, the contributions 356 

to this pattern due to change in the zonally asymmetric temperature (e) and only allowing 357 

relative humidity to change (f) are relatively small. 358 

The enhanced q gradient is also seen in summer and fall (not shown).  However, 359 

the climatological wind speed is weaker in those seasons than in spring and the enhanced 360 

dry zonal advection is also less explaining the maximum drying of the region in spring. 361 

Zonal mean temperature changes under greenhouse warming is a relatively robust 362 

feature of the CMIP5 models, thus spring drying in SWUS is also very robust, as can be 363 

seen in Figs. 6 and 7.  We find it interesting that the robust spring drying under global 364 

warming can be explained largely by thermodynamic processes through the zonal mean 365 

temperature changes, meaning that the change in atmospheric circulation plays little role 366 

in causing the drying.  The dominance of thermodynamic processes may not be surprising 367 

but this advective mechanism is distinct from the well-known “dry get drier” mechanism.  368 

The “dry get drier” mechanism best applies over the oceans to regions of climatological 369 

mass and moisture divergence and negative P-E and largely explains the large scale drying 370 

over subtropical oceans (Held and Soden, 2006).   Over land, there is mean moisture 371 

convergence, P-E is positive and a simple application of Held and Soden arguments implies 372 

wetting.   However, drying over land can still occur due to thermodynamic processes and, 373 

in the case of the SWUS, it is enhanced advective drying that is the prime mechanism.   374 

 375 
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5. Summary 376 

 We explored the detailed mechanisms that caused the robust spring drying over 377 

SWUS under greenhouse warming as projected by the CMIP5 multimodel mean.  While 378 

the conventional wisdom may be that the SWUS is located in a region of mean mass 379 

divergence, thus the increase of moisture in the atmosphere as a result of warming would 380 

lead to more moisture divergence, an application over land of the so-called “dry get drier” 381 

mechanism (Held and Soden, 2006), we find that is not the dominant mechanism in this 382 

case. In fact, even in the climatological sense, the mean mass divergence is not the 383 

dominant mechanism for the region being semi-arid in the first place.  The spring and 384 

summer SWUS drying, on the other hand, is dominated by the zonal mean advection of 385 

drier air into the region due to the strong east-west humidity gradient. Intuitively, one 386 

would expect the westerlies to advect moist ocean air into the drier land region, thus 387 

causing wetting of the region.  However, due to the land-ocean thermal contrasts and the 388 

topography of the region, land is warmer than ocean during the spring, summer and fall 389 

seasons allowing a maximum in specific humidity in the highland surface region and a 390 

specific humidity gradient with increasing moisture inland.  In the greenhouse future, when 391 

a zonally uniform warming is added to the existing land-ocean thermal contrasts, the 392 

anomalous specific humidity gradient intensifies due to the nonlinearity of the Clausius-393 

Clapeyron relationship.  With the stronger climatological westerlies in the spring compared 394 

to summer and fall, the anomalous mean moisture advection due to the climatological flow 395 

advecting the anomalous specific humidity gradient reaches a maximum in the spring, 396 

causing robust spring drying in SWUS.  The effect increases linearly from the near future 397 
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(2021-2040) to the end of the 21st Century, and shows extreme robustness across the 398 

CMIP5 models. 399 

 The mechanism here seems to be consistent with Byrne and O’Gorman (2015) in 400 

that the horizontal gradients of changes in temperature and relative humidity need to be 401 

taken into account to explain the P-E response to warming over land.  However, we found 402 

that it is not the changes in temperature gradient, but rather the nonlinear response of the 403 

specific humidity gradient to the zonal mean warming superimposed on the zonally 404 

asymmetric land-ocean thermal contrasts, that dominates the spring drying in the 405 

Southwest United States.  The contributions from both the change in zonally asymmetric 406 

temperature and change in relative humidity are relatively small. 407 

 There are important implications of the spring drying in the SWUS.  Currently the 408 

peak drying season is in the summer months, while winter and early spring provide much 409 

needed supply of water and water storage to the region.  Since CMIP5 tends to have a wet 410 

bias in P-E (Fig. 2), we can crudely correct for this by subtracting from the model future 411 

P-E for each month the constant annual mean bias value of 0.54 mm/day.  The resulting 412 

seasonal cycle of P – E for each of the future period is shown in Fig. 10. When the seasonal 413 

cycle shifts toward a drier spring, there is much reduced positive P-E in March and 414 

substantially increased negative P-E in April, May and June (Fig. 10).  The total reduction 415 

of surface water of the entire season from March to June will prolong and intensify the dry 416 

season. This will adversely impact the spring growing season, potentially increase fire risk, 417 

degrade pasturelands, rangelands, and crops and lower spring and summer streamflow. 418 

Although spring drying is dominant and has been the focus here, there is also substantial 419 

drying in the fall season, as can be seen in Figs. 6 and 10.  Coupled with early melt of snow 420 
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cover due to warming, a shortened winter wet season could substantially reduce the SWUS 421 

water supply and storage in the future. 422 
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List of Figures 498 

FIG. 1.  Precipitation minus evaporation (P – E) from ERA-Interim Reanalysis (left) and 499 

CMIP5 MMM (right) averaged for the period 1979-2005 for DJF (a, b), MAM (c, d), JJA 500 

(e, f), and SON (g, h).  Units are in mm/day and contour interval is 1 mm/day. 501 

FIG. 2. The climatological mean (1979-2005) seasonal cycle of the moisture budget terms 502 

averaged over the Southwest United States (the outlined region in Fig. 1) for ERA-Interim 503 

Reanalysis (left) and CMIP5 MMM (right).  (a) and (b): precipitation minus evaporation, 504 

(c) and (d): column averaged mean flow moisture convergence (MC), (e) and (f): column 505 

averaged sub-monthly transient eddy MC, (g) and (h): column averaged MC due to mean 506 

moisture advection, (i) and (j): column averaged MC due to mean flow mass divergence, 507 

and (k) and (l): the surface boundary term due to surface pressure gradient. 508 

FIG. 3. Longitude-pressure cross sections of the climatological mean (1979 – 2005) zonally 509 

asymmetric temperature (black contours), zonally asymmetric specific humidity (green 510 

contours) and total zonal wind vectors averaged from 32N - 45N using ERA-Interim 511 

Reanalysis (left) and CMIP5 MMM (right) for DJF (a, b), MAM (c, d), JJA (e, f), and SON 512 

(g, h).  Contour intervals are 0.5oC for temperature and 0.25 g/kg for specific humidity and 513 

negative values are dashed. 514 

FIG. 4. Vertically integrated mean moisture transport (arrows) and 850 hPa specific 515 

humidity (shading) for ERA Interim (left) and CMIP5 MMM (right) for the four seasons 516 

averaged for the period 1979-2005. The unit is g/kg for specific humidity and kg/m2 m/s 517 

for moisture fluxes. Vector scale is shown at the lower left. 518 

FIG. 5. The changes in P – E (a), mean moisture convergence (b), and transient moisture 519 

convergence (c) based on CMIP5 MMM’s RCP8.5 future scenario simulations for the 520 
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period 2021-2040, 2041-2060, 2061-2080, and 2081-2099 with respect to the historical 521 

simulation averaged from 1979-2005, averaged over the Southwest United States land 522 

region from 125W-103W and 25N to 45N. 523 

FIG. 6. Changes in P – E for March, April and May seasonal average based on CMIP5 524 

MMM RCP8.5 scenario simulations for 2021-2040 (a), 2041-2060 (b), 2061-2080 (c), and 525 

2081-2099 (d), with respect to the 1979-2005 historical simulation.  526 

FIG. 7. Changes in the various moisture budget terms for March, April and May seasonal 527 

average based on CMIP5 MMM RCP8.5 scenario simulations for the four future periods 528 

with respect to the 1979-2005 historical simulation for (a) P – E, (b) Mean moisture 529 

convergence (MC), (c) transient MC, (d) mean MC due to changes in atmospheric 530 

circulation only (DYN), (e) mean MC due to changes in specific humidity only (TH), (f) 531 

the part in (e) due to climatological mean flow advecting anomalous specific humidity 532 

gradient, and (g) the part in (e) due to climatological mass divergence of the anomalous 533 

specific humidity.  534 

FIG. 8. Longitude-vertical cross sections of the zonally asymmetric specific humidity 535 

change (2075-2099 minus 1979-2005) for (a): CMIP5 MMM, (b): calculated based on 536 

Clausius-Clapeyron equation and given the relative humidity and temperature changes, (c): 537 

same as (b), but with fixed relative humidity and only allow the temperature to change, (d): 538 

same as in (c) but only allow the zonal mean temperature to change, (e): same as in (c) but 539 

only allow the zonally asymmetric temperature to change, and (f): same as in (b) but only 540 

allow the relative humidity to change. Contour interval is 0.05 g/kg and negative contours 541 

are dashed.  542 
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Figure 9. Changes in vertically integrated mean moisture convergence between averages 543 

for the period (2075 - 2099) and (1979 - 2005) calculated using (a): CMIP5 MMM wind, 544 

specific humidity and surface pressure, (b) same as (a) except using the specific humidity 545 

calculated from Clausius-Clapeyron equation given MMM relative humidity and 546 

temperature changes, (c): same as (b), but with fixed relative humidity and only allow the 547 

temperature to change, (d): same as in (c) but only allow the zonal mean temperature to 548 

change, (e): same as in (c) but only allow the zonally asymmetric temperature to change, 549 

and (f): same as in (b) but only allow the relative humidity to change. Contour interval is 550 

0.4 mm/day and negative contours are dashed. 551 

FIG. 10. Bias-corrected (subtracting a 0.54 mm/day wet bias from each month to correct 552 

the annual mean P-E difference between models and ERA-I Reanalysis) seasonal cycle of 553 

P – E for five different periods as simulated by the CMIP5 MMM for the US Southwest 554 

domain (box shown in Fig. 5). Future simulations are the RCP8.5 scenario, and past 555 

simulations use CMIP5 historical forcing. 556 

  557 
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TABLE 1. CMIP5 models used in this study, including their originating institutions, 558 

horizontal and vertical resolutions, and ensemble sizes. 559 

 560 

 561 

Inst itute Model Resolut ion (lon x lat ), level
Ensemble size

20thC rcp85

Beij ing Climate Center 1. bcc-csm1-1 T42, L26 1 1

(BCC) 2. bcc-csm1-1-m T106, L26 1 1

College of Global Change and

Earth System Science, Beij ing

Normal University (BNU)

3. BNU-ESM T42, L26 1 1

Canadian Cent re for Climate

Modeling and Analysis (CC-

Cma)

4. CanESM2 T63 (1.875◦ x1.875◦ ), L35 1 1

Nat ional Center for Atmospheric

Research (NCAR)
5. CCSM4 288x200 (1.25◦ x0.9◦ ), L26 1 1

Cent ro Euro-Mediterraneo per I

Cambiament i Climat ici (CMCC)
6. CMCC-CM T159, L31 1 1

Cent re Nat ional de Recherches

Meteorologiques / Centre Eu-

ropeen de Recherche et Forma-

t ion Avancees en Calcul Scien-

t ifique (CNRM-CERFACS)

7. CNRM-CM5 T127(1.4◦ x1.4◦ ), L31 1 1

Commonwealth Scient ific and

Indust rial Research Organisa-

t ion in collaborat ion with the

Queensland Climate Change

Cent re of Excellence (CSIRO-

QCCCE)

8. CSIRO-Mk3-6-0 T63(1.875◦ x1.875◦ ), L18 1 1

Inst itute of Atmospheric

Physics, Chinese Academy

of Sciences and Tsinghua

University (LASG-CESS)

9. FGOALS-g2 128x60, L26 2 1

Geophysical Fluid 10. GFDL-CM3 C48 (2.5◦ x2.0◦ ), L48 5 1

Dynamics Laboratory 11. GFDL-ESM2G 144x90 (2.5◦ x2.0◦ ), L24 1 1

(NOAA GFDL) 12. GFDL-ESM2M 144x90 (2.5◦ x2.0◦ ), L24 1 1

NASA Goddard Inst itute for 13. GISS-E2-H 2.5◦ x2◦ , L40 1 1

Space Studies (NASA GISS) 14. GISS-E2-R 2.5◦ x2◦ , L40 1 1

Inst itut Pierre-Simon Laplace 15. IPSL-CM5A-LR 3.75◦ x1.875◦ , L39 6 3

16. IPSL-CM5A-MR 2.5◦ x1.25◦ , L39 2 1

(IPSL) 17. IPSL-CM5B-LR 96x96 (3.75◦ x1.875◦ ) , L39 1 1

Atmosphere and Ocean Research

Inst itute (The University of
18. MIROC5 T85, L40 5 1

Tokyo), Nat ional Inst itute for

Environmental Studies, and

Japan Agency for Marine-Earth

19. MIROC-ESM T42, L80 3 1

Science and Technology

(AORI/ NIES/ JAMSTEC)
20. MIROC-ESM-CHEM T42, L80 1 1

Meteorological Research Inst i-

tute (MRI)
21. MRI-CGCM3 TL159 (1.125◦ x1.125◦ ), L48 1 1

Norwegian Climate Centre

(NCC)
22. NorESM1-M 144x96 (2.5◦ x1.875◦ ), L26 3 1

Table 1: CMIP5 models used in this study with informat ion on host inst itute, resolut ions (L refers to number

of vert ical levels, T to t riangular t runcat ion and C to cubed sphere) and ensemble size.

1
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FIG. 1. Precipitation minus evaporation (P – E) from ERA-Interim Reanalysis (left) and CMIP5 
MMM (right) averaged for the period 1979-2005 for DJF (a, b), MAM (c, d), JJA (e, f), and 
SON (g, h).  Units are in mm/day and contour interval is 1 mm/day. 
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FIG. 2. The climatological mean (1979-2005) seasonal cycle of the moisture budget terms 
averaged over the Southwest United States (the outlined region in Fig. 1) for ERA-Interim 
Reanalysis (left) and CMIP5 MMM (right).  (a) and (b): precipitation minus evaporation, (c) and 
(d): column averaged mean flow moisture convergence (MC), (e) and (f): column averaged sub-
monthly transient eddy MC, (g) and (h): column averaged MC due to mean moisture advection, 
(i) and (j): column averaged MC due to mean flow mass divergence, and (k) and (l): the surface 
boundary term due to surface pressure gradient. 
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FIG. 3. Longitude-pressure cross sections of the climatological mean (1979 – 2005) zonally 
asymmetric temperature (black contours), zonally asymmetric specific humidity (green contours) 
and total zonal wind vectors averaged from 32N - 45N using ERA-Interim Reanalysis (left) and 
CMIP5 MMM (right) for DJF (a, b), MAM (c, d), JJA (e, f), and SON (g, h).  Contour intervals 
are 0.5oC for temperature and 0.25 g/kg for specific humidity and negative values are dashed. 
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Fig. 4.  Vertically integrated mean moisture transport (arrows) and 850 hPa specific humidity 
(shading) for ERA Interim (left) and CMIP5 MMM (right) for the four seasons averaged for the 
period 1979-2005. The unit is g/kg for specific humidity and kg/m2 m/s for moisture fluxes. 
Vector scale is shown at the lower left. 
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FIG. 5. The changes in P – E (a), mean moisture convergence (b), and transient moisture 
convergence (c) based on CMIP5 MMM’s RCP8.5 future scenario simulations for the period 
2021-2040, 2041-2060, 2061-2080, and 2081-2099 with respect to the historical simulation 
averaged from 1979-2005, averaged over the Southwest United States land region from 125W-
103W and 25N to 45N.  
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FIG. 6. Changes in P – E for March, April and May seasonal average based on CMIP5 MMM 
RCP8.5 scenario simulations for 2021-2040 (a), 2041-2060 (b), 2061-2080 (c), and 2081-2099 
(d), with respect to the 1979-2005 historical simulation.  
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FIG. 7. Changes in the various moisture budget terms for March, April and May seasonal average 
based on CMIP5 MMM RCP8.5 scenario simulations for the four future periods with respect to 
the 1979-2005 historical simulation for (a) P – E, (b) Mean moisture convergence (MC), (c) 
transient MC, (d) mean MC due to changes in atmospheric circulation only (DYN), (e) mean MC 
due to changes in specific humidity only (TH), (f) the part in (e) due to climatological mean flow 
advecting anomalous specific humidity gradient, and (g) the part in (e) due to climatological 
mass divergence of the anomalous specific humidity.  
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FIG. 8. Longitude-vertical cross sections of the zonally asymmetric specific humidity change 
(2075-2099 minus 1979-2005) for (a): CMIP5 MMM, (b): calculated based on Clausius-
Clapeyron equation and given the relative humidity and temperature changes, (c): same as (b), 
but with fixed relative humidity and only allow the temperature to change, (d): same as in (c) but 
only allow the zonal mean temperature to change, (e): same as in (c) but only allow the zonally 
asymmetric temperature to change, and (f): same as in (b) but only allow the relative humidity to 
change. Contour interval is 0.05 g/kg and negative contours are dashed.  
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Figure 9. Changes in vertically integrated mean moisture convergence between averages for the 
period (2075 - 2099) and (1979 - 2005) calculated using (a): CMIP5 MMM wind, specific 
humidity and surface pressure, (b) same as (a) except using the specific humidity calculated from 
Clausius-Clapeyron equation given MMM relative humidity and temperature changes, (c): same 
as (b), but with fixed relative humidity and only allow the temperature to change, (d): same as in 
(c) but only allow the zonal mean temperature to change, (e): same as in (c) but only allow the 
zonally asymmetric temperature to change, and (f): same as in (b) but only allow the relative 
humidity to change. Contour interval is 0.4 mm/day and negative contours are dashed.  
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FIG. 10. Bias-corrected (subtracting a 0.54 mm/day wet bias from each month to correct the 
annual mean P-E difference between models and ERA-I Reanalysis) seasonal cycle of P – E for 
five different periods as simulated by the CMIP5 MMM for the US Southwest domain (box 
shown in Fig. 5). Future simulations are the RCP8.5 scenario, and past simulations use CMIP5 
historical forcing. 
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