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Supplemental Material for “Contribution of anthropogenic warming to California drought 
during 2012–2014” 
 
Climate data 
 The climate data products used in this study are listed in Table S1. Monthly potential 
evapotranspiration (PET) was calculated using the Penman-Monteith (PM) equation [Penman, 
1948; Monteith, 1965], which is discussed in detail by van der Shrier et al. [2011] and Allen et 
al. [Allen et al. [1998]. The climate variables involved in the PM equation are saturation vapor 
pressure (es), actual vapor pressure (ea), near-surface (2 m) wind speed, and net radiation. 
 

Monthly mean es is assumed to be the average of es calculated for monthly mean 
maxiumum daily temperature (Tmax) and es calculated for minimum daily temperature (Tmin):  
 
es = a0+Ta1 + T2a2 + T3a3 + T4a4 + T5a5 + T6a6                                                            (eqn. S1), 
 
where T is air temperature in degrees Celsius, ea is in units of hectopascals (hPa), a0 =  
6.107799961, a1 = 0.4436518521, a2 = 1.428945805x10-2, a3 = 2.650648471x10-4, a4 = 
3.031240396x10-6, a5 = 2.034080948x10-8, and a6 = 6.136820929x10-11 [Lowe and Ficke, 1974].  
 

For the PRISM dataset, monthly mean ea (also in units of hPa) is calculated by applying 
eqn. S1 to monthly mean dew-point temperature when available. For SHEFF and LDAS, ea was 
calculated as: 

 
ea = P(Mdry/( Mh2o (1/Q-1) + Mdry))                                                                              (eqn. S2), 
 
where Q is specific humidity (kg kg-1), P is surface pressure (hPa), Mh2o is the atomic weight of 
water (18.01534) and Mdry is the atomic weight of dry air (28.9644). 
 
 Grids of monthly precipitation total, Tmax, Tmin, es, ea, wind speed, and insolation were 
bilinearly interpolated to have the geographic resolution of PRISM (~4 km). For each variable, 
datasets were then calibrated to a common set of monthly climate normals during 1961–2010. 
For precipitation, all grids were converted to fractions of the climatological monthly mean, 
interpolated to PRISM resolution, and then multiplied by the climatological monthly mean of the 
target dataset (target datasets provided below). For the other variables, grids were converted to 
monthly z-scores (each month had a mean of zero and standard deviation of one during 1961–
2010), interpolated to PRISM resolution, and multiplied by the climatological monthly means 
and variances of the target dataset. 
 

It was necessary to interpolate all datasets to a common spatial resolution because the 
datasets were combined with one another in all possible combinations for the calculations of PET 
and the self-calibrated Palmer Drought Severity Index (PDSIsc). It was necessary to calibrate the 
means and variances of the downscaled time series to accurately represent the effect of 
topography on precipitation and PET. While the TopoWx, PRISM, and VOSE datasets all have 
very fine native spatial resolutions (~800 m to ~5 km), other datasets such as GPCC or NOAA 
PREC/L have low native spatial resolutions of 0.5° to 1.0°, leading to vastly different means and 
variances in areas of complex topography. This, if uncorrected, would be problematic in 
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calculations of water balance. For example, a precipitation record representing a 1.0° grid cell in 
a topographically complex area would over-represent mean and variability at low elevations 
within the grid cell, artificially enhancing the probability of soil saturation and runoff in those 
places. The opposite problem would be the case for high elevations within the grid cell. Target 
datasets for calibration were PRISM for precipitation, TopoWx for temperature, PRISM for 
vapor pressure, and LDAS for wind velocity and insolation (LDAS datasets described below). 
TopoWx is used as the target dataset for temperature because this dataset was recently reported 
to make advancements in the accuracy of temperature means, variances, and trends at high 
elevation in the western United States [Oyler et al., 2015]. Monthly grids of PRISM dew point 
are not yet available for the most recent version (LT81m) of the PRISM dataset 
(http://prism.nacse.org) and instead come from an older version (LT71m) that is still updated 
monthly (http://oldprism.nacse.org). The new version of PRISM does provide monthly 
climatological mean fields for dew point from 1981–2010 (version Norm81m), allowing us to 
additively adjust the monthly PRISM dew point grids to match these mean fields during 1981–
2010.  
 
 The most recent GPCC v7 precipitation dataset covers 1901–2013 and is extended 
through 2014 using the GPCC v4 monitoring product. The v7 dataset is available with spatial 
resolutions of 0.5° and 1.0° but the v4 dataset is only available with 1.0° resolution. We 
appended the v4 data for 2014 to the v7 1.0° dataset and downscaled to PRISM resolution. We 
found that this downscaled dataset agreed well with the downscaled 0.5° version during the 
overlapping period of 1901–2013 in terms of statewide mean water-year precipitation totals. We 
extended the downscaled dataset that was based on the 0.5° data by appending the downscaled 
2014 data based on v4. 
 

The LDAS and NCEP data products were compiled from multiple datasets in order to 
extend temporal representation. LDAS comprises data from: 1) version 2 of the National Land 
Data Assimilation (NLDAS-2) for 1979–2014; and 2) version 2 of the Global Land Data 
Assimilation (GLDAS-2) for 1948–1978. For all three LDAS climate variables used (vapor 
pressure, wind speed, and insolation), both NLDAS-2 and GLDAS-2 were first bilinearly 
interpoltated to the geographic resolution of PRISM. GLDAS-2 annual time series for each grid 
cell and month were then calibrated to match the means and variances of NLDAS-2 during the 
common period of 1979–2010. The NCEP dataset was compiled similarly and comprises data 
from: 1) the National Center for Environmental Protection-Department of Energy Reanalysis 2 
(NCEP-DOE2) for 1979–2014; 2) the NCEP/National Center for Atmospheric Research 
(NCEP/NCAR) Reanalysis for 1948–1978; and 3) the National Oceanic and Atmospheric 
Administration (NOAA) 20th Century Reanalysis for 1895–1947. For both NCEP climate 
variables used (wind speed and insolation), NCEP/NCAR were calibrated to NCEP-DOE2 
during their overlap period from 1979–2014, and then the resultant dataset for 1948–2014 was 
used to calibrate the NOAA 20th Century Reanalysis data during the overlap period from 1948–
2012. The final NCEP wind speed and insolation datasets were then calibrated to match the 
means and variances of LDAS during 1961–2010 for each grid cell and month. 
 

As described in the article, the data products considered are in some cases not produced 
independently, particularly for humidity, wind speed, and insolation. For example, the GLDAS2 
data come from the Sheffield et al. [2006] dataset (SHEFF), and the SHEFF dataset is based 
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largely on the NCEP/NCAR dataset during 1948–2012 [Kalnay et al., 1996] before adjustments 
to remove some biases and improve agreement with observations. The NLDAS2 data come from 
the NCEP North American Regional Reanalysis (NARR) [Mesinger et al., 2006], which is a 
modeled product that uses the NCEP-DOE2 Reanalysis for boundary conditions. For the SHEFF 
and NLDAS2 insolation, both datasets are bias corrected to match the monthly climatological 
means of the satellite-based NASA/GEWEX Surface Radiation Budget dataset [Gupta et al., 
2006]. (See the Supplemental section of Sheffield et al. [2012] for a more detailed description of 
the compilation of the SHEFF solar dataset.) Thus, there is circularity among the humidity, wind 
speed, and insolation data products used in this study that limits the degree to which the spread 
among data products actually characterizes ranges of uncertainty. For all humidity, wind speed, 
and insolation datasets, the methods of production varied over time and the reader is referred to 
the documentation referenced in Table S1 for details.  
 

As stated above, monthly net radiation (Rn) is one of the variables used to calculate 
monthly PET. Rn is calculated as net downward shortwave radiation (SWd) minus net upward 
longwave radiation (LWu). SWd is calculated as insolation (from the datasets listed in Table S1) 
multiplied by one minus the surface albedo. We assume that surface albedo follows the mean 
annual cycle established for each grid cell according to the Noah land surface model when forced 
by NLDAS-2 meteorology [Xia et al., 2012]. In reality albedo varies interannually, largely as a 
result of variations in snow cover and vegetation, but estimations of albedo variations prior to 
1979 are likely to be highly uncertain. A sensitivity test nevertheless showed that post-1979 
variations in albedo have a near zero effect on PDSIsc records. 

 
We estimate LWu following Allen et al. [1998]. Briefly, LWu is a function Stefan-

Boltzmann black-body radiation (exponential function of near-surface temperature) multiplied 
by an estimate of atmospheric emissivity. This quantity is estimated as a function of atmospheric 
vapor pressure and cloudiness, where cloudiness is estimated from the fraction of available 
shortwave radiation that makes it to the surface. 
 
 It was important that all calculations of PDSIsc were carried out over the same time 
period (1901–2014) because the PDSIsc value for a given month is affected by past and future 
climate and because PDSIsc was calculated based on the calibration period 1931–1990, which 
extends prior to the beginning of some climate datasets. We therefore artificially extended 
datasets that did not cover the entire 1901–2014 period using alternate datasets. No calibration 
was necessary for this step because all datasets already had matching means and variances during 
1961–2010. PREC/L precipitation and TopoWx temperature were extended with VOSE. SHEFF 
vapor pressure was extended with PRISM. For wind velocity and insolation, SHEFF was 
extended for 2013–2014 with LDAS, and LDAS was extended for 1901–1947 with SHEFF. All 
records of PDSIsc and PET presented in the article exclude values produced with artificially 
extended climate datasets. 
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Table S1: Climate datasets 
 
Variable Abbrev. Full Name Years Reference(s) 
Precipitation     
 VOSE NOAA Vose et al. 1895–2014 Vose et al., 2014 
 PRISM Parameter-elevation Regressions on 

Independent Slopes Model 
1895–2014 Daly et al., 2004 

 GPCC Global Precipitation Climatology 
Centre: version 7 (for 1895–2013), 
version 4 monitoring product for 
2014 

1895–2014 Schneider et al., 
2014 

 PREC/L NOAA’s Precipitation 
Reconstruction over Land 

1948–2014 Chen et al., 2002 

Temperature     
 VOSE NOAA Vose et al. 1895–2014 Vose et al., 2014 
 PRISM Parameter-elevation Regressions on 

Independent Slopes Model 
1895–2014 Daly et al., 2004 

 BEST Berkeley Earth Surface Temperature 1895–2014 Rohde et al., 2013 
 TopoWx Topography Weather 1948–2014 Oyler et al., 2015 
Vapor Pressure     
 PRISM Parameter-elevation Regressions on 

Independent Slopes Model 
1895–2014 Daly et al., 2004 

 SHEFF Princeton Global Meteorological 
Forcing Dataset version 2 

1901–2012 Sheffield et al., 
2006; Sheffield et 
al., 2012 

 LDAS Land Data Assimilation System: 
Combination of  
- 1NLDAS-2 for 1979–2014 
- 2GLDAS-2 for 1948–1978 

1948–2014 1Mitchell et al., 
2004, 2Rodell et 
al., 2004 

Wind velocity 
and Insolation 

    

 LDAS Land Data Assimilation System: 
Combination of: 
- 1NLDAS-2 for 1979–2014 
- 2GLDAS-2 for 1948–1978 

1948–2014 1Mitchell et al., 
2004, 2Rodell et 
al., 2004 

 SHEFF Princeton Global Meteorological 
Forcing Dataset version 2 

1901–2012 Sheffield et al., 
2006; Sheffield et 
al., 2012 

 NCEP Combination of products: 
- 1NCEP-DOE 2 for 1979–2014 
- 2NCEP/NCAR Reanalysis for 
1948–1978 
- 3NOAA 20th Century Reanalysis 
for 1895–1947 

1895–2014 1Kanamitsu et al., 
2002, 2Kalnay et 
al., 1996, 3Compo 
et al., 2011 
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Figure S1. As in Figure 1, but for 3-year running averages. (a) Water year (WY) precipitation. 
(b) WY potential evapotranspiration (PET) totals, calculated using the Penman-Monteith 
equation for all combinations of 4 temperature, 3 humidity, 3 wind velocity, and 3 insolation 
datasets. (c) Temperature contribution to WY PET anomalies. (d–g) Contributions of (d) all non-
temperature variables, (e) humidity, (f) wind velocity, and (g) insolation to WY PET anomalies. 
(h) Summer (June–August) PDSIsc calculated with all combinations of the climate-variable 
datasets. Colors are as in (a). Horizontal black lines: 1931–1990 means. Colors distinguish data 
products. 
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Figure S2. Monthly PDSIsc and precipitation during three-year droughts: (blue) WY 2007–2009 
and (red) WY 2012–2014. Black dotted line and shading: 1931–1990 mean and interquartile 
conditions. Dots indicate June, July, and August, the months used to calculate summer PDSIsc in 
this study. Datasets used: VOSE for precipitation and temperature (to calculate saturation vapor 
pressure), PRISM for vapor pressure, LDAS for wind velocity and insolation. Vertical black 
lines visually divide water years. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	   7	  

 
 
Figure S3. Scatter plots of June–July mean (top panels) PDSIsc and (bottom panels) PDSI for 
California. PET was calculated with either the (y-axis) Thornthwaite or (x-axis) Penman-
Monteith (PM) formulation. PDSIsc and PDSI were calculated at either the (left panels) grid-cell 
level or (right panels) divisional level (from climate data averaged across each climate division). 
Red dots: 2012–2014. Blue dots: 2007–2009. The most negative red dot is always 2014 and the 
most negative blue dot is always 2007. The dashed diagonal line is the 1-to-1 line, and the 
negative offset of the 2014 dot in the vertical direction within all plots indicates that the 2014 
drought is artificially severe when calculated from Thornthwaite PET, especially when climate 
data are averaged across climate divisions prior to calculation of PDSIsc or PDSI. Red and blue 
lines: 3-year averages for 2012–2014 and 2007–2009, respectively. All records were 
standardized to have a mean of zero and a standard deviation of two during 1931–1990. 
Precipitation and temperature data come from the VOSE dataset to be consistent with the NOAA 
calculation. For PM PET, vapor pressure comes from PRISM, and wind speed and insolation 
come from LDAS (or SHEFF for 1901–1947). 
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Figure S4. Same as Figure S3, but for only California Climate Divisions 4–7. Scatter plots of 
June–July mean (top panels) PDSIsc and (bottom panels) PDSI for California. PET was 
calculated with either the (y-axis) Thornthwaite or (x-axis) Penman-Monteith (PM) formulation. 
PDSIsc and PDSI were calculated at either the (left panels) grid-cell level or (right panels) 
divisional level (from climate data averaged across each climate division). Red dots: 2012–2014. 
Blue dots: 2007–2009. The most negative red dot is always 2014 and the most negative blue dot 
is always 2007. The dashed diagonal line is the 1-to-1 line, and the negative offset of the 2014 
dot in the vertical direction within all plots indicates that the 2014 drought is artificially severe 
when calculated from Thornthwaite PET, especially when climate data are averaged across 
climate divisions prior to calculation of PDSIsc or PDSI. Red and blue lines: 3-year averages for 
2012–2014 and 2007–2009, respectively. All records were standardized to have a mean of zero 
and a standard deviation of two during 1931–1990. Precipitation and temperature data come 
from the VOSE dataset to be consistent with the NOAA calculation. For PM PET, vapor 
pressure comes from PRISM, and wind speed and insolation come from LDAS (or SHEFF for 
1901–1947). 
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Figure S5. Comparison of (blue) PDSIsc versus (black) modeled VIC soil and snow moisture in 
the Sierra Nevada Mountains during JJA. The record of VIC soil and snow moisture was 
transformed to have normal distribution with the same variance as PDSIsc during the 1931–1990 
calibration period. The region of focus is identified as the red area on the map inset in (b) and 
was the study region used by Mao et al., [2015]. In this analysis, PDSIsc was calculated using the 
same meteorological forcing data used by Mao et al., [2015]. 
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Figure S6. Monthly climate and hydrology characteristics in the Sierra Nevada Mountains during 
and leading up to the 4 driest years in the VIC soil moisture record. Each colored solid line 
represents one of the four years and the dotted black line indicates the climatological mean 
conditions during 1931–1990. In (f), lines with square markers represent the PDSIsc and lines 
with circular markers represent VIC soil moisture after it has been normalized and calibrated to 
the distribution of the PDSIsc record. Grey areas indicate the June–August period. All climate 
data used for this analysis are from Mao et al. [2015]. 
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Figure S7. (a) Contribution of each of the four anthropogenic warming scenarios to PDSIsc. In 
2014, the anthropogenic effect was approximately -0.3 to -0.7. In (b and c), it is assumed that the 
anthropogenic warming effect in 2014 was the effect illustrated by the 50-year low-pass filter 
when applied to the VOSE temperature data (-0.46). The grey histogram in (b) and grey 
empirical cumulative distribution function in (c) represent the distribution of 1901–2014 PDSIsc 
values when the warming effect is removed. Blue curves are estimates of the distribution 
function from the kernal density function, meant to represent the hypothetical probability 
distribution of PDSIsc values in 2014 in the absence of anthropogenic warming. The orange 
curves are recalculations of this hypothetical PDSIsc distribution shifted uniformly by -0.46, 
mean to represent the true probability distribution of PDSIsc values in 2014 when anthropogenic 
warming is included. 
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