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Abstract Global warming is expected to increase the frequency and intensity of
droughts in the 21st century, but the relative contributions from changes in mois-
ture supply (precipitation) versus evaporative demand (potential evapotranspira-
tion; PET) have not been comprehensively assessed. Using output from a suite of
general circulation model (GCM) simulations from version 5 of the state-of-the-art
Coupled Model Intercomparison Project (CMIP5), projected 21st-century drought
trends are investigated using an offline calculated index of soil moisture balance
(the Penman-Montieth based Palmer Drought Severity Index; PDSI). The PDSI
calculations are used to quantify the respective contributions of precipitation and
PET to projected drought trends. PDSI projections incorporating both precipita-
tion and PET changes from the GCMs vary regionally, with robust cross-model
drying in western North America, Central America, the Mediterranean, southern
Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere
high latitudes and east Africa. These regional changes largely reflect the spatially
heterogeneous response of precipitation in the models, although drying in the
PDSI fields extends beyond the regions of reduced precipitation. This expansion
of drought areas is attributed to globally widespread increases in PET, caused by
increases in surface net radiation and the vapor pressure deficit. Increased PET
not only intensifies drying in areas where precipitation is already reduced, it also
drives areas into drought that would otherwise experience little drying or even
wetting from precipitation trends alone. This PET amplification effect is largest
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in the Northern Hemisphere mid-latitudes, and is especially pronounced in west-
ern North America, Europe, and southeast China. Compared to PDSI projections
accounting for changes in precipitation only, the additional effect of increased PET
expands the percentage of global land area projected to experience significant dry-
ing (PDSI≤ −1) by the end of the 21st-century from 23% to 43%. This integrated
accounting of both the supply and demand sides of the surface moisture balance
is therefore critical for characterizing the full range of projected drought risks tied
to increasing greenhouse gases and associated warming of the climate system.

1 Introduction

Extreme climate and weather events have caused significant disruptions to modern
and past societies (Coumou and Rahmstorf, 2012; Ross and Lott, 2003; Lubchenco
and Karl, 2012), and there is concern that anthropogenic climate change will in-
crease the occurrence, magnitude, or impact of these events in the future (e.g.,
Meehl et al, 2000; Rahmstorf and Coumou, 2011). Drought is one such extreme
phenomenon, and is of particular interest because of it’s often long-term impacts
on critical water resources, agricultural production, and economic activity (e.g.,
Li et al, 2011; Ding et al, 2011; Ross and Lott, 2003). Focus on drought vul-
nerabilities has been intensified due to a series of recent and severe droughts in
regions as diverse as the United States (Hoerling et al, 2012a, 2013; Karl et al,
2012), east Africa (Lyon and DeWitt, 2012), Australia (McGrath et al, 2012), and
the Sahel (Giannini et al, 2003). Recent work further suggests that global arid-
ity has increased in step with observed warming trends, and that this drying will
worsen for many regions as global temperatures continue to rise with increasing
anthropogenic greenhouse gas emissions (Burke et al, 2006; Dai, 2013; Sheffield
and Wood, 2008).

There are significant uncertainties, however, in recent and projected future
drought trends, especially regarding the extent to which these trends will be forced
by changes in precipitation versus evaporative demand (also known as potential
evapotranspiration; PET) (Hoerling et al, 2012b; Sheffield et al, 2012). Drought is
generally defined as a deficit in soil moisture (agricultural) or streamflow (hydro-
logic); as such, it can be caused by declines in precipitation, increases in evapo-
transpiration, or a combination of the two. In the global mean, both precipitation
and evapotranspiration are expected to increase with warming, a consequence of
an intensified hydrologic cycle in a warmer world (Allen and Ingram, 2002; Hunt-
ington, 2006). The characteristics of changes in precipitation and PET trends at
the regional level, and the dynamics that drive such changes, are nevertheless more
uncertain, despite the fact that these changes are perhaps of greatest relevance to
on-the-ground stakeholders.

Precipitation projections in general circulation models (GCMs) have large un-
certainties compared to other model variables, such as temperature (e.g., Knutti
and Sedlacek, 2013). The most confident estimates indicate that precipitation will
increase in mesic areas (e.g., the wet tropics, the mid- to high latitudes of the
Northern Hemisphere, etc) and decrease in semi-arid regions (e.g., the subtrop-
ics). This is generally referred to as the ‘rich-get-richer/poor-get-poorer’ mech-
anism, and is caused by both thermodynamic (warming and moistening of the
atmosphere) and dynamic (circulation) processes (Chou et al, 2007, 2013; Held
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and Soden, 2006; Neelin et al, 2003; Seager et al, 2010).
Evapotranspiration includes both the physical (evaporation) and biological

(transpiration) fluxes of moisture from the surface to the atmosphere. Evapotran-
spiration is expected to increase in the future due to increased evaporative demand
by the atmosphere, driven by increases in energy availability at the surface (sur-
face net radiation) and vapor pressure deficits (the difference between saturation
and actual vapor pressure; VPD). Increased radiative forcing from anthropogenic
greenhouse gases (GHG) is expected to increase surface net radiation in most areas
by inhibiting longwave cooling, while GHG-induced warming of the atmosphere
is expected to increase the VPD. Importantly, VPD increases with warming, even
at constant relative humidity (e.g., Anderson, 1936). Given the fact that the well-
mixed nature of GHGs will drive widespread patterns of global warming, shifts in
evaporative demand are likely to be more spatially homogenous and widespread
than precipitation changes.

The idea that increased evaporative demand in a warmer world will enhance
drought is not new (e.g., Dai, 2011), but it is important to understand where pre-
cipitation or evaporation changes will be dominant individual drivers of drought
and where they will work in concert to intensify drought. To date, however, lit-
tle has been done to quantify and explicitly separate the relative contribution
of changes in precipitation versus evaporative demand to the magnitude and ex-
tent of global warming-induced drought. To address this question, we use output
from a suite of 20th and 21st-century GCM simulations, available through the
Coupled Model Intercomparison Project version 5 (CMIP5, Taylor et al, 2012) to
calculate an offline index of soil moisture balance (the Penman-Monteith based
Palmer Drought Severity Index). This index provides an ideal and flexible esti-
mation of surface moisture conditions, allowing us to vary inputs such as model
precipitation, temperature, and surface energy availability, which in turn allows
us to separate and quantify the influence of specific variables on future drought
projections. Our analysis thus addresses three questions: 1) What are the relative
contributions of changes in precipitation and evaporative demand to global and
regional drying patterns?, 2) Where do the combined effects of changes in precip-
itation and evaporative demand enhance drying?, 3) In which regions, if any, are
increases in evaporative demand sufficient to shift the climate towards drought
when precipitation changes would otherwise force wetter conditions?

2 Data and Methods

2.1 CMIP5 Model Output

We use GCM output available from the CMIP5 archive, the suite of model ex-
periments organized and contributed from various modeling centers in support
of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Cli-
mate Change (IPCC). Output from the historical and RCP8.5 model scenarios is
used. The historical experiments are run for the years 1850–2005 and are forced
with observations of transient climate forcings over the last 150 years (e.g., so-
lar variability, land use change, GHG concentrations, etc). These experiments are
initialized in 1850 using output from long, unforced control runs with fixed pre-
industrial climate forcings. The RCP8.5 scenario (2006–2099) is one of a suite of
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future GHG forcing scenarios; RCP8.5 is designed so that the top of the atmo-
sphere radiative imbalance will equal approximately +8.5 W m-2 by the end of
the 21st-century, relative to pre-industrial conditions. The RCP8.5 scenario runs
are initialized using the end of the historical runs. Our analysis is restricted to
those models (Table 1) with continuous ensemble members spanning the historical
through RCP8.5 time periods.

2.2 Penman-Monteith Palmer Drought Severity Index

Simulated soil moisture within the GCMs is not easily separated into contributions
from precipitation or PET, making it difficult to identify the extent to which soil
moisture trends in the models are driven by changes in supply and/or demand.
Moreover, each GCM employs soil models that vary widely in their sophistication
(e.g., soil depth, number of layers, etc), tunings, and parameterizations (e.g., soil
texture, rooting depths, vegetation types, etc), complicating the meaningful com-
parison of soil moisture and drought responses across GCMs. To circumvent these
issues, we use diagnostics from the GCMs to force an offline index of soil moisture
balance, the Palmer Drought Severity Index (PDSI, Palmer, 1965). This flexible
framework allows GCM output used in the PDSI calculation to be modified (e.g.,
detrended) as a means of isolating drought contributions from specific changes,
such as trends in precipitation or net radiation. A common offline metric, such as
PDSI, also provides a standard comparison of soil moisture balance, thus control-
ling for differences in soil models across the ensemble of CMIP5 GCMs.

The PDSI itself is a normalized index of drought using a simplified soil mois-
ture balance model calculated from inputs via precipitation and losses due to
evapotranspiration. PDSI is locally normalized, with negative values indicating
drier than normal conditions (droughts) and positive values indicating wetter than
normal conditions (pluvials), relative to a baseline calibration period for a given
location. PDSI has persistence on the order of 12–18 months (Guttman, 1998;
Vicente-Serrano et al, 2010), integrating moisture gains and losses throughout the
calendar year, and providing a useful metric to describe longer term trends and
variability in hydroclimate.

PDSI has been widely used as a metric to quantify drought in climate model
simulations (e.g., Burke and Brown, 2008; Coats et al, 2013; Cook et al, 2010,
2013; Dai, 2011, 2013; Rosenzweig and Hillel, 1993; Seager et al, 2008; Taylor
et al, 2013). Recent studies have highlighted some deficiencies, however, regarding
the temperature-based Thornthwaite (Thornthwaite, 1948) method for estimating
PET in the PDSI calculation (Dai, 2011; Hoerling et al, 2012b; Sheffield et al,
2012). The Thornthwaite method of estimating PET has the advantage of only
requiring temperature data, and so has been widely used for PDSI calculations,
especially over the historical period. Because Thornthwaite is largely just a linear
rescaling of temperature to PET, it nevertheless significantly overestimates PET
and drying in the PDSI when temperatures increase significantly beyond the mean
of the baseline calibration period. This has led to several studies (e.g., Hoerling
et al, 2012b; Sheffield et al, 2012) concluding that Thornthwaite based PDSI is
inappropriate for use in global warming projections of drought.

Recently, there has been support for (Dai, 2013; Hoerling et al, 2012b; van der
Schrier et al, 2013; Sheffield et al, 2012) the use of an alternative method for cal-
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culating PET in the PDSI framework, specifically the Penman-Monteith method
(Penman, 1948; Xu and Singh, 2002). Penman-Monteith is based on surface mois-
ture and energy balance considerations (Xu and Singh, 2002), and a commonly
used version is the formulation provided by the Food and Agricultural Organiza-
tion (FAO) of the United Nations (Allen et al, 1998):

PET =
0.408∆(Rn −G) + γ 900

Ta+273u2(es − ea)

∆+ γ(1 + 0.34u2)
(1)

where PET is potential evapotranspiration (mm day-1), ∆ is the slope of the vapor
pressure curve (kPa oC-1), Rn is surface net radiation (MJ m-2 day-1), G is the soil
heat flux density (MJ m-2 day-1), γ is the psychometric constant (kPa oC-1), Ta is
the air temperature at 2-meters (oC), u2 is the wind speed at 2-meters (m s-1), es
is the saturation vapor pressure (kPa), and ea is the actual vapor pressure (kPa).
The VPD is defined as es− ea. Penman-Monteith based PDSI has been used, with
good success, to track both observational changes in drought and changes in future
drought (Dai, 2013; van der Schrier et al, 2013), and is not subject to unrealis-
tic temperature scaling outside of the normalization interval as demonstrated for
the Thornthwaite-based PDSI (Hoerling et al, 2012b; Sheffield et al, 2012). We
therefore use Penman-Monteith based PDSI to quantify changes in hydroclimate
for two principal reasons. First, our motivation is to analyze 21st-century projec-
tions of drought relative to a 20th-century baseline, the former of which involves
temperature increases well outside the climatology of the latter. Second, the more
detailed and realistic formulation of PET in the Penman-Monteith formalism al-
lows us to separate specific variable influences on PET and therefore characterize
PET-influenced droughts in terms of the net radiation and VPD changes that
cause them.

2.3 Analyses

In the PDSI soil moisture calculation, we set the soil moisture capacities for the
top and bottom layers to the standard values of 25.4 mm (1 in.) and 127 mm
(5 in.). We use the 1931–1990 period from the historical runs as our baseline
calibration period for the normalization. This is the same time interval used by
the National Oceanographic and Atmospheric Administration for normalization of
their PDSI calculations. PDSI is calculated separately for each individual ensemble
member at the native resolution of the model. Diagnostics used from each GCM
are monthly values of precipitation, 2-meter air temperature, surface pressure and
2-meter surface specific humidity (used to calculate vapor pressure), and surface
net radiation. Ground heat flux and surface wind speed diagnostics were more
difficult to obtain from these models. Relative to changes in energy availability
and the VPD, Penman-Monteith PET is relatively insensitive to wind speed; we
therefore set u2 = 1. Additionally, ground heat fluxes (G) are usually only a small
fraction of the total surface energy budget, about 10–15% (Betts et al, 1996; Sell-
ers et al, 1997). Tests in which we alternately set G to 0 or 15% of Rn indicated
that the PDSI calculation is largely insensitive to this parameter. For the analyses
presented herein, we therefore set G = 0.

For each continuous historical+RCP8.5 ensemble member, we calculate three
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different versions of PDSI (Table 2) from 1900–2099 that serve as the basis for
the majority of our analyses. PDSI-ALL references the complete PDSI calcula-
tion, incorporating changes in both precipitation and PET by using the original
values of all the model variables including their trends from 1900 to 2099. In PDSI-
PRE, we isolate the impact of precipitation on the PDSI calculation by detrending
the temperature, vapor pressure, and net radiation variables from 2000–2099, and
setting the 21st-century mean to be equal to the mean of the last two decades
of the 20th century (thus retaining the variability but removing any trend from
2000–2099). In PDSI-ET, we isolate the impact of changes in evaporative demand
by detrending the precipitation using an identical procedure, and retaining the
transient changes in temperature, surface net radiation, and vapor pressure. We
also conduct additional PDSI calculations to examine specific impacts of changes
in VPD only (by detrending Rn and precipitation) and net radiation only (by
detrending T , vapor pressure, and precipitation). For cross-model comparisons of
PDSI and model diagnostics, all models are spatially interpolated to a common
2ox2o spatial grid. For models with multiple ensemble members, the intra-model
ensemble average is calculated before the multi-model ensemble average to main-
tain equal weighting across the 15 models. Changes in model climate variables are
calculated as 2080–2099 minus 1931–1990, the same modern baseline period for
the PDSI normalization.

To demonstrate the ability of PDSI to reflect changes in surface moisture bal-
ance, we calculated Pearson correlations between annual average PDSI and annual
average standardized soil moisture anomalies for each grid cell for two of the mod-
els: CanESM2 and CCSM4 (Figure 1) (level by level soil moisture fields are not
available from all models or ensemble members in the employed suite of CMIP5
models). Soil moisture anomalies are based on the approximate top 30 centime-
ters of the soil column. The correlation maps show strongly positive correlations
between soil moisture and PDSI, with some isolated areas of weaker correlation.
Differences between the soil moisture and PDSI fields could arise through some of
the aforementioned structural differences between the GCM land surface models
and the PDSI soil moisture balance model. The strong and highly positive corre-
lations between the two estimates of moisture balance nevertheless indicate that
PDSI represents well the variability in modeled surface moisture balance. This
demonstration, combined with information from previous studies indicating the
utility of PDSI in model applications (e.g., Burke et al, 2006; Burke and Brown,
2008; Hoerling et al, 2012b; Dai, 2011, 2013; Taylor et al, 2013), supports the use
of the Penman-Monteith based PDSI for this study.

3 Results

3.1 Model Climate Response

The forced response in surface climate from our chosen subset of CMIP5 models
(Figure 2) is consistent with previous analyses of the CMIP5 climate projections
(e.g., Knutti and Sedlacek, 2013). Cross-hatching in the Figure 2 panels indicates
areas where at least 12 of the 15 models (80%) agree with the sign of the change
in the multi-model mean. Surface net radiation increases primarily through the
inhibition of longwave cooling by increased anthropogenic GHG concentrations
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(Figure 2a). Land surface temperatures increase everywhere (Figure 2b), with
amplified warming in the Northern Hemisphere high latitudes. Precipitation re-
sponses (Figure 2c) are spatially heterogenous, with some regions showing drying
(e.g., southwest North America, the Mediterranean, southern Africa) and others
wetting (e.g., the high latitudes in the Northern Hemisphere), as per the rich-get-
richer/poor-get-poorer mechanism discussed previously. Consistent with expec-
tations, precipitation changes show much less consistency across models than the
changes in surface net radiation or surface temperature. The VPD increases across
all land areas (Figure 2d), primarily as a consequence of the globally widespread
warming, with the largest increases occurring in regions that are projected to warm
and dry (e.g., South America, southern Africa).

The models also show regional changes in summer season (JJA in the North-
ern Hemisphere; DJF in the Southern Hemisphere) evaporation (latent heat fluxes;
Figure 2e) and in the partitioning of latent versus sensible heating (evaporative
fraction or EF, Figure 2f). Evaporation (Figure 2e) increases in much of the wet
tropics and the Northern Hemisphere high latitudes, where evaporative demand
is enhanced (via increased VPD and surface net radiation) and precipitation gen-
erally increases. These are areas where evaporation is primarily energy (rather
than moisture) limited and where evaporation continues to be energy limited in
the future. In the sub-tropics, where evaporation is primarily controlled by surface
moisture availability, evaporation decreases as surface moisture is unable to satisfy
the increased atmospheric demand.

Changes in EF(Figure 2f), the ratio of latent heating to the sum of sensible
plus latent heating, provide a diagnostic for changing moisture versus energy lim-
itations to evaporation in the future. Areas with declining EF are regions where
evaporation is increasingly moisture limited. This includes much of the sub-tropics,
where evaporation is declining, but also areas of the mid-latitudes where evapo-
ration in the future is projected to increase (e.g., central plains of North America
and Europe). The fact that EF decreases in areas of both increased and decreased
evaporation is suggestive of an overall decline in surface and soil moisture avail-
ability in these regions. Increases in EF are confined primarily to areas where
precipitation is increasing and evaporation is limited by energy demand, such as
the high northern latitudes.

3.2 Model PDSI Response

The efficacy of using PDSI-PRE and PDSI-ET to separate the influences of chang-
ing precipitation and evaporative demand on future drought depends on these
quantities being approximately independent in their contribution to the full hy-
droclimate response (PDSI-ALL). While they are not likely to be completely in-
dependent, since changes in precipitation will, for many regions, affect surface ra-
diation, temperature, and other variables, we require that to first order they sum
linearly for our interpretations of precipitation and evaporative demand contribu-
tions to drought. In Figure 3, we compare PDSI-ALL to the sum of PDSI-PRE
and PDSI-ET (PDSI-SUM) for each grid cell, averaged over 2080–2099. The 1:1
line, indicating a perfect match between PDSI-ALL and PDSI-SUM, is plotted as
the dashed black line. PDSI-SUM and PDSI-ALL values for each model track each
other closely and scatter evenly around the 1:1 line. This close match indicates
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that our interpretations of PDSI-PRE and PDSI-ET as separate and additive con-
stituents of regional drought trends are appropriate for the models and range of
climate changes considered herein.

Annual average PDSI for each model and for all calculations (PDSI-ALL,
PDSI-PRE, PDSI-ET) at the end of the 21st century (2080–2099) is shown in
Figures 4–6. Multi-model means for these same quantities are in Figure 7; cross
hatching indicates areas where the multi-model mean PDSI anomalies exceed −1
or +1 and where at least 12 of the 15 models also exceed these thresholds. The
PDSI-ALL projection (Figure 7a) indicates substantial and robust drying over
much of North America, the Amazon Basin, southern Africa, the Mediterranean,
Europe, southeast China, and parts of Australia. Robust wetting occurs primarily
at high latitudes in the Northern Hemisphere and east Africa. Areas of drying in
PDSI-ALL generally overlap declines in EF (Figure 1f), further supporting the
use of PDSI as a measure of surface moisture availability. When precipitation ef-
fects are isolated (PDSI-PRE, Figure 7b), the resulting pattern closely mirrors the
changes in precipitation (Figure 1c), with substantially reduced drying in many
regions relative to PDSI-ALL, especially in the mid-latitudes. These results clearly
indicate that, while the global pattern of hydroclimatic change is organized around
the centers of suppressed and enhanced precipitation, precipitation changes alone
cannot explain the full magnitude or spatial extent of drying documented by the
complete PDSI accounting. Maps of PDSI-ET (Figure 7c) demonstrate that this
additional drying is the result of increased PET. Changes in PDSI-ET show nearly
uniform drying of all land areas, an expected consequence of the more widespread
and uniform nature of changes in surface net radiation (Figure 1a) and VPD (Fig-
ure 1d) compared to precipitation (Figure 1c). When surface net radiation and
vapor deficit contributions to the drying are individually separated (Figure 8), it
is clear that the relative impact of increases in the VPD is substantially larger
than the effect of surface net radiation, especially in the Northern Hemisphere.

The relative impact of precipitation versus PET is further highlighted by com-
paring the fraction of land area (excluding Antarctica) with PDSI anomalies ex-
ceeding different drought thresholds for each of the PDSI calculations (Figure 9).
For PDSI≤ −1, for example, precipitation changes alone (PDSI-PRE) cause drying
on only about 23% of the global land area in the multi-model mean. Considering
only increases in PET (PDSI-ET), however, leads to an equivalent magnitude
of drying on nearly 70% of the global land area. For the fully simulated hydro-
climate response (PDSI-ALL), the percent of land area in drought is between
these two estimates, at about 43%. This reflects the fact that, depending on the
region, combined PET and precipitation effects will either act to reinforce the dry-
ing (+PET ,−precipitation) or act in opposition to each other, resulting in either
wetting (+precipitation >> +PET ), drying (+PET >> +precipitation), or little
change (+PET ≈ +precipitation).

Amplification of the drying by increases in PET is demonstrated in the zonal
average PDSI from the multi-model mean (Figure 10). In PDSI-PRE (green line),
nearly the entire Northern Hemisphere in the zonal mean gets wetter, with the
greatest increase occurring in the high latitudes where precipitation increases are
largest. PDSI-PRE changes in the mid-latitudes (30oN–50oN) are near neutral or
slightly wetter; in these latitude bands, precipitation increases in some regions
are largely counteracted by declines in other areas along this zonal band (Figure
1c). Increases in PET, reflected in PDSI-ET (red line), result in drying across all
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latitudes. When both PET and precipitation are considered (PDSI-ALL, brown
line), the net result is such that PET increases counter a substantial fraction of
the precipitation-driven wetting in the high northern latitudes and actually push
the mid-latitudes (30oN–50oN) into a drier mean state (PDSI< 0).

Four regions where the PET effects are especially pronounced are the cen-
tral plains of North America (105oW–90oW, 32oN–50oN; Figure 11a), southeast
China (102oE–123oE, 22oN–30oN; Figure 11b), the European-Mediterranean re-
gion (20oW–50oE, 28oN–60oN; Figure 11c), and the Amazon (70oW–45oW, 20oS–
5oN Figure 11d). China and the North American central plains are especially no-
table because, without the effect of increased PET, these regions would be expected
to stay near neutral (China, multi-model mean PDSI-PRE= +0.11), or even get
wetter (North American central plains, multi-model mean PDSI-PRE= +0.63).
Instead, both regions dry substantially in PDSI-ALL, shifting to a mean value
of −1.85 over the North American central plains and −1.51 over China. In other
regions, PET changes act to not only expand the spatial footprint of the regional
drying, but also to amplify the changes that do occur because of reduced precipi-
tation. In the European-Mediterranean region, PET effects intensify and expand
the drying northward from the Mediterranean, shifting the regional average PDSI
from −0.50 (PDSI-PRE) to −2.53 (PDSI-ALL). Similar intensification also hap-
pens in the Amazon, where precipitation effects result in a regional average PDSI
of −1.40 (PDSI-PRE), with the added effect of increased PET causing further
drying in the region (PDSI-ALL=−3.25).

4 Discussion and Conclusions

Developing and refining projections of hydroclimate, drought, and water resources
for the 21st century is an active area of research (e.g., Barnett and Pierce, 2009;
Dai, 2013; Seager et al, 2013). To this end, significant advances have already been
made in key areas, especially in our understanding of regional and seasonal pre-
cipitation responses to warming (Chou et al, 2007, 2013; Held and Soden, 2006;
Neelin et al, 2003; Seager et al, 2010). Precipitation, however, does not repre-
sent the only control on ecologically and socially relevant water resources, such
as streamflow, reservoir storage, and soil moisture. Evaporative demand from the
atmosphere, driven by air temperature, humidity, and energy availability, can also
play a critical role. It is generally accepted that a warmer world will increase evap-
orative demand and drying independent of precipitation changes (Dai, 2011). To
date, however, few efforts have been made to explicitly separate the relative con-
tributions to future drought trends from changes in supply (precipitation) versus
demand (PET).

Using the latest suite of state-of-the-art climate model projections, we find that
robust regional changes in hydroclimate are, to first order, organized around re-
gional changes in precipitation. Increases in precipitation cause wetting in the high
northern latitudes and east Africa, and precipitation declines lead to drying in the
sub-tropics and Amazon. In areas where declines in precipitation already push the
climate towards drought (e.g., Central America, the Amazon, southern Africa, the
Mediterranean, etc), increased PET amplifies the precipitation induced drying.
Critically, PET also plays a major role in enhancing drying in the midlatitudes
and along the margins of the sub-tropics, where precipitation changes are small
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or even positive. Globally, increased PET nearly doubles the fractional land area
that will experience significant drying (PDSI≤ −1) at the end of the 21st century,
from 23% (precipitation effects only, PDSI-PRE) to 43% (precipitation+PET ef-
fects, PDSI-ALL). And in certain regions (e.g., western North America, Europe,
and southeast China), PET is the sole or primary driver shifting these areas into
drought. Areas dominated by the Asian monsoon (India, Indochina, etc) are some
of the few places where there is little change in mean hydroclimate. In these re-
gions, gains in moisture from increased annual and monsoon precipitation (Lee
and Wang, 2012; Seo et al, 2013) are large enough to compensate for any increases
in PET.

This analysis provides a comprehensive accounting of how PET and precipi-
tation changes will each affect global hydroclimate at the end of the 21st century.
For many regions, focusing on the precipitation response alone will be insufficient
to fully capture changes in regional water resources such as soil moisture, runoff,
or reservoir storage. Instead, increased evaporative demand will play a critical role
in spreading drought beyond the sub-tropics and into the Northern Hemisphere
mid-latitudes, regions of globally important agricultural production. China, for
example, is the world’s largest rice producer, a crop that serves as the primary
nutrition source for more than 65% of the Chinese population (Peng et al, 2009).
North America and much of central Asia are major centers of maize and wheat
production; unlike China, they are also important exporters of these crops to the
global marketplace (Headey, 2011). Increased temperatures, and the associated
heat stresses, are already expected to negatively impact crop yields in these re-
gions (Battisti and Naylor, 2009; Teixeira et al, 2013), and our analysis suggests
that increases in PET due to warming and energy balance changes will have ad-
ditional impacts through regional drying. Yield losses can be at least partially
mitigated through management practices, such as modification of planting and
harvest dates (Deryng et al, 2011). However, recent research suggests that climate
change over the last 20 years is already having a deleterious impact on agricultural
production (Lobell et al, 2011), and the ability of existing water resources to keep
pace with future climate impacts is in question (Wada et al, 2013; Zhang et al,
2013). Even with pro-active management, our results suggest increased drought,
driven primarily by increases in PET, will likely have significant ramifications for
globally important regions of agricultural production in the Northern Hemisphere
mid-latitudes.
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Table 1 Continuous model ensembles from the CMIP5 experiments (historical+RCP8.5) used
in this analysis, including the modeling center or group that supplied the output, the number of
ensemble members that met our criteria for inclusion, and the approximate spatial resolution.

Model Modeling Center (or Group) # Runs Lat/Lon Resolution
CanESM2 CCCMAa 5 2.8ox2.8o

CCSM4 NCARb 6 0.94ox1.25o

CNRM-CM5 CNRM-CERFACSc 4 1.4ox1.4o

CSIRO-MK3.6.0 CSIRO-QCCCEd 5 1.87ox1.87o

GFDL-CM3 NOAA GFDLe 1 2.0ox2.5o

GFDL-ESM2G NOAA GFDLe 1 2.0ox2.5o

GFDL-ESM2M NOAA GFDLe 1 2.0ox2.5o

GISS-E2-R NASA GISSf 1 2.0ox2.5o

INMCM4.0 INMg 1 1.5ox2.0o

IPSL-CM5A-LR IPSLh 4 1.9ox3.75o

MIROC5 MIROCi 1 1.4ox1.4o

MIROC-ESM MIROCj 1 2.8ox2.8o

MIROC-ESM-CHEM MIROCj 1 2.8ox2.8o

MRI-CGCM3 MRIk 1 1.1ox1.1o

NorESM1-M NCCl 1 1.9ox2.5o
aCanadian Centre for Climate Modelling and Analysis

bNational Center for Atmospheric Research
cCentre National de Recherches Météorologiques / Centre Européen de Recherche et

Formation Avancée en Calcul Scientifique
dCommonwealth Scientific and Industrial Research Organization in collaboration with

Queensland Climate Change Centre of Excellence
eNOAA Geophysical Fluid Dynamics Laboratory

fNASA Goddard Institute for Space Studies
gInstitute for Numerical Mathematics

hInstitut Pierre-Simon Laplace
iAtmosphere and Ocean Research Institute (The University of Tokyo), National Institute for

Environmental Studies, and Japan Agency for Marine-Earth Science and Technology
jJapan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research

Institute (The University of Tokyo), and National Institute for Environmental Studies
kMeteorological Research Institute

lNorwegian Climate Centre

Table 2 Description of different versions of the PDSI calculations, and the model diagnostics
used in their calculation. Variables are: tsurf (2-meter surface air temperature), prec (precip-
itation), q (specific humidity), and rnet (surface net radiation). Detrended variables have the
trend from 2000–2099 removed and replaced with mean conditions for 1980–1999.

PDSI Transient Variables Detrended Variables
PDSI-ALL tsurf, prec, q, rnet none
PDSI-PRE prec tsurf, q, rnet
PDSI-ET tsurf, q, rnet prec
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Fig. 1 Pearson’s correlation coefficients calculated between PDSI and annual average model
soil moisture from the approximate top 30 centimeters of the soil column: CanESM2 (a) and
CCSM4 (b). Maps represent average correlations across a five member ensemble for each model;
the comparison interval is 1901-2099.
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Fig. 2 Multi-model mean changes (2080–2099 minus 1931–1990) in a) surface net radiation
(W m-2), b) 2-meter air temperature (K), c) precipitation (mm day-1), d) vapor pressure
deficit (kPa), e) latent heat fluxes (W m-2), and f) evaporative fraction (fraction). Panels a)–
d) are annual averages. In e)–f), averages north of the equator (the dashed line) are for boreal
summer (June–July–August) and south of the equator are for austral summer (December–
January–February). Cross hatching indicates areas where the sign of change in at least 12 of
the 15 models agrees with the sign of the multi-model mean.
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Fig. 3 Grid cell comparisons between ensemble averaged annual PDSI (PDSI-ALL) and PDSI-
SUM (PDSI-PRE + PDSI-ET) from 2080-2099 for each model in the ensemble. The dashed
line indicates the 1:1 line. For those models with multiple ensemble members, the comparison
is based on the ensemble average. PDSI-SUM scales linearly with PDSI-ALL, close to the 1:1
line, with some minor amplification of extreme wet or dry values in PDSI-SUM. This suggests
that PDSI-ALL is well approximated as a linear sum of the pseudo-independent effects of
precipitation and evapotranspiration.
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Fig. 4 Annual averaged PDSI-ALL from 2080–2099 for each model simulation under the
RCP8.5 scenario. The number of ensemble members is listed in each panel title; for models
with multiple ensemble members, the maps represent the ensemble average.
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Fig. 5 Annual averaged PDSI-PRE (precipitation effects only) for each model simulation
under the RCP8.5 scenario. The number of ensemble members is listed in each panel title; for
models with multiple ensemble members, the maps represent the ensemble average.
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Fig. 6 Annual averaged PDSI-ET (precipitation effects only) for each model simulation under
the RCP8.5 scenario. The number of ensemble members is listed in each panel title; for models
with multiple ensemble members, the maps represent the ensemble average.
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Fig. 7 Multi-model mean PDSI for 2080-2099, for each PDSI calculation: a) PDSI-ALL, b)
PDSI-PRE, and c) PDSI-ET. Cross hatching indicates cells where, for multi-model mean PDSI
anomalies exceeding -1 or +1, at least 12 of the 15 models (80%) also exceed these thresholds.
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Fig. 8 Multi-model mean PDSI projections for 2080-2090, incorporating only trends in a)
surface net radiation and b) vapor pressure deficit. Note the range of values on the colorbar is
half (−3 to +3) that compared to other PDSI maps, in order to better illustrate the changes.



24 Benjamin I Cook et al.

Fig. 9 Percent land area (excluding Antarctica) with mean PDSI values (2080-2099) less than
or equal to -1, -3, and -5. Bars represent the multi-model mean, and the error bars are the +/-1
standard deviation calculated across models. For models with multiple ensemble members, the
ensemble average is calculated first and then used for the multi-model statistics.

Fig. 10 Zonally averaged multi-model mean PDSI from 2080-2099.
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Fig. 11 Regionally averaged PDSI for each model, over a) the central plains of North America
(105oW-90oW, 32oN-50oN), b) southeast China (102oE-123oE, 22oN-30oN), c) the European-
Mediterranean region (20oW-50oE, 28oN-60oN), and d) the Amazon (70oW-45oW, 20oS-5oN).


