Response of the North Atlantic jet and its variability to increased greenhouse gasses in the CMIP5 models

Elizabeth A. Barnes^{1,3} Lorenzo Polvani² Dennis Hartman³

¹Lamont-Doherty Earth Observatory ²Columbia University ³University of Washington

North Atlantic Oscillation: primary mode of variability

+NAO

http://www.ldeo.columbia.edu/res/pi/NAO/

CMIP5 Results

How will eddy-driven jet variability respond to climate change?

CMIP5 Results

How will eddy-driven jet variability respond to climate change?

How do changes in the jet variability relate to **eddy/wave** activity?

wave breaking

blocking

recent results on wave heights

Francis, & Vavrus (2012); GRL

What did IPCC AR4 say?

- focused on trends
- indicates poleward shift of the mean position

Miller, Schmidt et al. (2006); JGR

What did IPCC AR4 say?

- focused on trends
- indicates poleward shift of the mean position

What do we mean by "variability"?

Wittman, Charlton et al. (2005); JCLI

Barotropic model: dependence of variability on latitude

Variability of jet changes to <u>pulse</u> at high latitudes

Barotropic model: dependence of variability on latitude

MECHANISM: waves cannot propagate and break at high latitudes (beta is small), so no eddy-mean flow feedback to make jet wobble

Variability of jet changes to <u>pulse</u> at high latitudes

zonal wind

CMIP5 data

Preindustrial (25 years)

Historical (1980-2004)

RCP4.5 (2076-2099)

RCP8.5 (2076-2099)

bcc-csm1-1 **BNU-ESM** CanESM2 CNRM-CM5 CSIRO-Mk3-6-0 FGOALS-g2 FGOALS-s2 GFDL-CM3 GFDL-ESM2G GFDL-ESM2M HadCM3 HadGEM2-CC HadGEM2-ES inmcm4 **IPSL-CM5A-LR** IPSL-CM5A-MR IPSL-CM5B-LR MIROC-ESM-CHEM MIROC5 MPI-ESM-LR MPI-ESM-MR

Visualization by William Skamarock, NCAR. http://www2.ucar.edu/sites/default/files/news/2010/pg51globe350.jpg

Jet definitions

- 850-700 hPa winds
- 10-day lowpass filtered
- jet latitude time series

Barnes & Polvani (2012); submitted

Mean jet position

- poleward jet shift

Barnes & Polvani (2012); submitted

Mean jet position (seasonal shifts)

shift depends on season

Daily jet latitude histograms

standard deviation of daily jet latitude decreases

GFDL-ESM2M

Standard deviation of jet latitude

decrease in standard deviation when jet shifts poleward

Barnes & Polvani (2012); submitted

EOF Analysis

calculate EOF I of sector-averaged low-level winds

EOF I pattern

- less wobble, more pulse

IPSL-CM5A-MR

EOF I pattern versus jet latitude

EOF I wobble with climate change

- decrease in jet wobble with climate change predicted by models
- signal is less clear than when plotted against latitude alone (so other important processes are at play here)

Barnes & Polvani (2012); submitted

Eddy activity in the future

Large-scale Rossby wave breaking is linked to jet variability

Previous results suggest that wave breaking will decrease over the Atlantic as the jet shifts poleward...

(Barnes & Hartmann (2010, 2011, 2012))

Does it?

examples of wave breaking

LDEO

Detecting wave breaking at 250 hPa

- I. find breaking contours of vorticity
- 2. group contours in wave breaking events
- 3. look at tilt to determine orientation of breaking

Barnes & Hartmann (2012b); JGR

Detecting wave breaking at 250 hPa

- I. find breaking contours of vorticity
- 2. group contours in wave breaking events
- 3. look at tilt to determine orientation of breaking

Barnes & Hartmann (2012b); JGR

Wave breaking vs. jet latitude

equatorward wave breaking moves with the jet

Barnes & Polvani (2012); submitted

Wave breaking vs. jet latitude

- cyclonic wave breaking decreases on poleward jet flank
- wave breaking appears to have a meridional "ceiling"

Barnes & Polvani (2012); submitted

Wave breaking vs. jet latitude

What does this say about blocking in the future?

Quarterly Journal of the Royal Meteorological Society

Q. J. R. Meteorol. Soc. 138: 1285-1296, July 2012 A

Wave-breaking characteristics of midlatitude blocking

G. Masato, a* B. J. Hoskins and T. J. Woollings Department of Meteorology, University of Reading, UK Grantham Institute, Imperial College, London, UK

"Rossby wave breaking is identified as a key process in blocking occurrence, as it provides the mechanism for the meridional reversal pattern typical of blocking."

CMIP3 Atlantic blocking frequency

blocking frequency <u>decreases</u> with warming in CMIP3

Barnes, Slingo, Woollings (2012); CDYN

CMIP5 blocking frequency from Dunn-Siouin & Son (2012)

b) Historical

e) RCP8.5-Historical

blocking frequency <u>decreases</u> with warming in CMIP5

Dunn-Sigouin & Son (2012); submitted, Fig. I units are days/year gridpoint is "blocked"

What about blocking duration?

- No measurable change in blocking duration in CMIP3 by Barnes, Slingo & Woollings (2012)
- Difficult to determine if any change in blocking duration in CMIP5 by Dunn-Sigouin & Son (2012)

NO CHANGE IN BLOCKING DURATION

suggests that physics of blocking doesn't change, just the number of events

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L06801, doi:10.1029/2012GL051000, 2012

Evidence linking Arctic amplification to extreme weather in mid-latitudes

Jennifer A. Francis¹ and Stephen J. Vavrus²

Polar Amplification leads to:

- weakened zonal winds
- increased wave amplitude

- increased blocking frequency
- increased blocking duration

(from slower wave progression)

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L06801, doi:10.1029/2012GL051000, 2012

Evidence linking Arctic amplification to extreme weather in mid-latitudes

Jennifer A. Francis¹ and Stephen J. Vavrus²

Polar Amplification leads to:

- weakened zonal winds

- increased wave amplitude

- increased blocking frequency
- increased blocking duration (from slower wave progression)

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L06801, doi:10.1029/2012GL051000, 2012

Evidence linking Arctic amplification to extreme weather in mid-latitudes

Jennifer A. Francis¹ and Stephen J. Vavrus²

Polar Amplification leads to:

- weakened zonal winds
- increased wave amplitude

- increased blocking frequency
- increased blocking duration (from slower wave progression)

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L06801, doi:10.1029/2012GL051000, 2012

Evidence linking Arctic amplification to extreme weather in mid-latitudes

Jennifer A. Francis¹ and Stephen J. Vavrus²

Polar Amplification leads to:

- weakened zonal winds
- increased wave amplitude

- increased blocking frequency
- increased blocking duration (from slower wave progression)

RCP8.5-Historical

Conclusions

models still struggle to get correct jet position

with climate warming, CMIP5 models show ...

- a poleward shift of the jet (although seasonally dependent)
- amount of "wobble" of NAO decreases (especially if grouped w.r.t. to jet latitude)
- wave breaking and blocking frequency decreases

Mean jet position (seasonal shifts)

shift is dependent on season

Skewness of jet latitude

LDEO

Barotropic model results

leading EOF describes less of a shift at high and low latitudes

Barnes & Hartmann (2011); JAS

Idealized model results from Garfinkel et al. (2012)

Garfinkel, Waugh & Gerber (2012); submitted

EOF I pattern versus jet latitude

EOF | & 2

Mean jet speed in CMIP5

- no obvious changes in jet speed

Barnes & Polvani (2012); submitted

CMIP3 Atlantic blocking frequency

blocking frequency <u>decreases</u> in the future

Barnes, Slingo, Woollings (2012); CDYN

Seasonality from Dunn-Siouin & Son (2012)

blocking frequency decreases July-Jan.

Dunn-Sigouin & Son (2012); submitted, Fig. 2