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In a nutshell...

 Skillful decadal forecasts, particularly at regional
scales (and over land), still lie in the future.

* A potentially useful alternative: Synthetic data
sequences, conditioned by observations and
Including a regional climate change component.

« Some considerations in simulation design.

« Case Study: Berg River, Western Cape
province, South Africa.



State-of-the-art initialized precipitation forecasts
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Data courtesy Doug Smith (see Smith et al., Science 2007)

Verification: Average of 2-5 yr lead forecasts for annual mean
precipitation, using GPCC.

No improvement over unitialized forecasts in southernmost Africa.



Case study: Berg river watershed, W. Cape Province, S. Africa
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Simulation design issues

* Projection of regional climate change
— Estimation of regional response
— Implicit role for IPCC models

|dentification of systematic signal components
— Here, meaning “significantly different from AR(1)”
— A key decision: How to represent? One option: “WARM”

Stationarity assumptions

— Second moments

— Serial autocorrelation (— AR(1) variability)

— Seasonal cycle, daily statistics

— Local/regional covariation — spatial scale of decadal “footprint”

Description of uncertainty

— Arises at many levels: intermodel, scenario, estimation...

— Not solely a matter of amplitude, but also temporal behavior
Multivariate model

— May be required by downstream modeling framework

— Best if training data conforms...
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Where is redness?
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Simulation overview

* Multivariate setting: pr, Tmax, Tmin

* Obs: 50 yr of daily data (1950-1999) for 171 quinary
catchments in the Berg (mostly) and Breede WMAs.

* Forced trends from IPCC (A1B)
- For Tmax, Tmin, via 20C regression
- For pr, via 21C regression

* No evidence for systematic low-frequency variation:
Incorporate trend + stochastic components only.

* Precipitation essentially white; temperature exhibits
some lag-1 autocorrelation.

« Low-frequency (annual-multidecadal) variability
simulated with VAR(1) model.

« Subannual variations generated by “block
resampling” of observations.



Climate change trends: Which century to trust?

Regional pr response to global
mean temperature change:
Weak in 20c, decidedly
negative in 21c.

Because (a) consensus among
the IPCC models is strong, and
(b) region lies at the poleward
margin of the dry subtropics,
21c sensitivity is utilized.

Consequence: Simulated
precipitation decreases by
about 10% by mid-century
(annual mean).

IPCC, 2007

Western Cape pr vs global T, 1940-2060 (A1B)
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What’ s the frequency, Kenneth?

A regular oscillation with 18-yr
period has been reported for
precipitation in Southern Africa.
Wavelet analysis of the 171-
catchment mean (right) does not
indicate the presence of such a
signal. The catchment mean is

used here as the simulation target.

Simulations will then comprise just
two components: Climate change
trend and stochastic variations.
These elements are treated
independently, then combined.

Period, yr

Wavelet spectrum

Global

Foso

1960

2.4e-07

1970

2.2e-02

1980

1990

[l Il
7.8e-02 1.6e-01
Power, mm?

3.0e-01

107t

4.4e-01



Vector autoregressive (VAR) model in brief

Formally, y, = Ay, , +e,, where
y, Is a three-component vector (pr, Tmax, Tmin) at time t,

A is a (3 x 3) matrix of coefficients,
Y., IS the same vector one time step (year) previous,

e, is a white-noise process with covariance matrix .,
which may have nonzero off-diagonal elements.

 Historically, VAR models have been associated more
with econometrics than climate, where “linear inverse
models” (LIMs) have seen considerable deployment.
Structurally, VAR(1) and LIM appear to be identical.

* For our purposes, two data characteristics are of
primary concern: Intervariable correlation, and
serial autocorrelation in the individual variables.



VAR and simulation statistics

Intervariable correlation
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Propagation of simulations to the local level

Station correlations with regional signal

so——PT 55 TMax 25 Tmin
* |ndividual station_records are 35| |
\‘/‘vell-_correnlat_ed with the 50| {2 120}
regional” signal: Catchment ! |l I
behaves coherently (top). 20!
* Downscaled to station level via 15 1 1%
linear regression. 10} 14l | 4
« Subannual variations taken from I
randOmly resampled Sequence 0-04 06 08 007 0.8 09 0-0.6 0.7 0.8 0.9

of years in the observations,
providing spatial coherence.

« Simulation can be propagated to
a single station (bottom), a
subset or the entire catchment,
In the latter case producing a

Station-level simulation; T trends are local

pr

mm per day
ORRNWAEULO

I e e e o
1960 1980 2000 2020 2040 2060
Tmax

distributed streamflow scenario. o 135}

- Large ensemble of simulations §i§§ N WA W ARV
permits precise specification of 1251565 To80 3000 2020 2040 2060
desired characteristics, useful s o —_— o T —Y
for well-defined follow-on model s
experiments. © oo A A —

>3 19160 19180 20100 20|20 20140 20160



Some concluding thoughts...

 Method can be thought of as a “decadal weather generator”
incorporating a climate change component.

» For the random component a VAR(1) model is utilized; Given the
potential variety of regional behaviors and available data other
models may also prove relevant.

« Changepoints, “abrupt” behavior not evident in the observational
record; no provision made for these in simulations.

» Uncertainty owing to differences in model formulation not treated.
« Relevant paleodata can augment the instrumental record.

* Simulations are presently being run in the first
“downstream” (hydrology) model: Agricultural Catchments
Research Unit (ACRU), University of Natal. Stay tuned!
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