Pacific Basin ensemble SST field reconstructions from marine paleoproxy data

Michael N. Evans (University of Maryland – College Park) mnevans@geol.umd.edu

Alexey Kaplan (Lamont-Doherty Earth Observatory, Columbia University) alexeyk@ldeo.columbia.edu

Thanks: Richard Seager, Amy Clement, Konrad Hughen, Natalie Goodkin, Henning Kuhnert, Rosanne D'Arrigo, Rob Wilson, Ed Cook, Jason Smerdon, Kim Cobb, Joelle Gergis, Brendan Buckley, Pavla Fenwick, Anthony Fowler

Outline

- Ensemble reduced space optimal interpolation scheme.
- Results:
 - Skill and uncertainty.
 - Comparison: SST and drought reconstructions.

Long-term hydroclimate variations in western North America: Tropical Pacific forcing?

SST reconstructions

Drought reconstructions

Cook et al. 1999, 2004; Stahle et al., 2007; Seager et al 2007, 2008

Methodology

- SVD-based, low-dimensional paleodata calibration
- Ensemble-OI climate field reconstruction
 - fit to error-weighted calibrated proxies and truncated description of modern SST variance
 - Ensemble generated from multivariate random normal error sampling
 - Error variance + signal variance ~ constant over time
- Diagnostics
 - Correlation and error fields
 - NINO34 SST anomaly index
 - Composites from drought and pluvial intervals

Paleo data set: 73 marine proxies

(68 corals*, 5 schlerosponges, ~44 distinct sites)

proxy type	"process model"	<u>number</u>
• δ^{18} O	$f(T, \delta^{18}O_{sw})$	55
• Sr/Ca	f(T, Sr/Ca _{sw})	8
• Mg/Ca	f(T, Mg/Ca _{sw})	1
• Ba/Ca	$f(T, Ba/Ca_{sw}) \sim nutrients/upwelling$	1
 Density 	$f(T, \Phi, nutrients)$	1
 Extension rate 	$f(T, \Phi, nutrients)$	2
 Calcification rate 	ρ*extension rate	1(71)
 Luminescence 	f(S)	4

e.g. Weber and Woodhead, 1972; deVilliers et al. 1994; Barnes and Lough, 1990; Lough and Barnes, 1997; Barnes et al. 2003). Data from: WDC-A for Paleoclimatology (2007-2008), H. Kuhnert, N. Goodkin and K.Hughen, pers. comm. 2007

Proxy data availability: 1500-1950

WDC-A for Paleoclimatology, 2007-2011 and unpublished data contributors

Parameters

- Target climate field: latitude-weighted Pacific Basin SST, April-March averages, all latitudes, 110E-65W
- SST field space reduction: 95% of variance retained in 30 patterns
- Proxy preprocessing: standardization to calibration period mean + variance
- Proxy calibration period: 1923-1990; validation period: 1856-1922
- Number of calibrated patterns: 2
- Ensemble realizations performed: 100
- Reconstruction interval: 1-2000

Kaplan et al. 1997, 1998, 1999; Evans et al. (1998, 2000, 2001, 2002); Evans and Kaplan (2011) in prep

Calibrated patterns

pattern 1: 69% covariance

pattern 1: 14% covariance

Ensemble average skill

calibration period: 1923-1990

validation period: 1856-1922

Ensemble average reconstruction error

RMS SST K98, cal. pd.: 1923-1990

RMS SST rec., val. pd.: 1856-1922

Reconstructed NINO34

Long-term hydroclimate variations in western North America: Tropical Pacific forcing?

Cook et al. 1999, 2004; Stahle et al., 2007; Seager et al 2007, 2008

Beta results via Ingrid

Summary

- The OI-ensemble reconstruction algorithm allows us to create a set of SST forcing fields with uniform total variance, yet also represent the true change in uncertainty as the paleodata become sparser with time.
- Results suggest the 16th century drought in western North America was driven by ENSO cold phase conditions forced AGCM experiments can be used to investigate the mechanisms. Two quasi-independent mechanisms for multiyear subtropical droughts may exist.
- Climate field reconstruction uncertainties are probably a function of at least sampling network, frequency, proxy type, and calibration. Validation of proxies/reconstructions as true representations of climate remains an outstanding challenge.