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ABSTRACT

Systematic relationships between aspects of intraseasonal variability (ISV) and mean state bias are shown

in a number of atmospheric general circulation model (AGCM) simulations. When AGCMs are categorized

as either strong ISV or weak ISV models, it is shown that seasonal mean precipitation patterns are similar

among models in the same group but are significantly different from those of the other group. Strong ISV

models simulate excessive rainfall over the South Asian summer monsoon and the northwestern Pacific

monsoon regions during boreal summer. Larger ISV amplitude also corresponds closely to a larger ratio of

eastward-to-westward-propagating variance, but no model matches the observations in both quantities

simultaneously; a realistic eastward-to-westward ratio is simulated only when variance exceeds that observed.

Three sets of paired simulations, in which only one parameter in the convection scheme is changed to enhance

the moisture sensitivity of convection, are used to explore the common differences between the two groups in

greater detail. In strong ISV models, the mean and the standard deviation of surface latent heat flux is greater,

convective rain fraction is smaller, and tropical tropospheric temperatures are lower compared to weak ISV

models. The instantaneous joint relationships between daily gridpoint relative humidity and precipitation

differ in some respects when strong and weak ISV models are compared, but these differences are not sys-

tematic enough to explain the differences in ISV amplitude. Conversely, there are systematic differences in

the frequency with which specific values of humidity and precipitation occur. In strong ISV models, columns

with a higher saturation fraction and rain rate occur more frequently and make a greater contribution to total

precipitation.

1. Introduction

It is well known that over the tropics, there is signifi-

cant variability of rainfall fluctuating with time scales

shorter than a season, known as intraseasonal variability
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(ISV). The dominant mode of tropical ISV is the Madden–

Julian oscillation (MJO; Madden and Julian 1971, 1972),

characterized by its planetary spatial scale of wave-

numbers 1–3, low-frequency period of 30–60 days, and its

prominent eastward propagation over the entire globe.

As it modulates deep convection over the tropics, the

MJO has large impacts on a wide variety of climate phe-

nomena across different spatial and temporal scales.

Some examples include the onsets and breaks of the

Indian and Australian summer monsoons (e.g., Yasunari

1979; Wheeler and McBride 2005), the formation of

tropical cyclones (e.g., Liebmann et al. 1994; Maloney

and Hartmann 2000b,a; Bessafi and Wheeler 2006), and

the onset of some El Niño events (e.g., Takayabu et al.

1999; Bergman et al. 2001; Kessler 2001).

Simulation of the MJO, however, has been a difficult

test for most climate models, from the Atmospheric

Model Intercomparison Project (AMIP; Slingo et al.

1996) to the recent Coupled Model Intercomparison

Project phase 3 (CMIP3; Lin et al. 2006). Lin et al. (2006)

showed that only two models in CMIP3 had MJO vari-

ance comparable to observations, with even those lacking

realism in many other MJO features.

At the same time, many previous studies have

shown that simulation of the MJO can be improved by

changing aspects of the cumulus parameterization of

the GCM. The changes that have been made to this

end differ in detail but have in common inhibited

cumulus convection (Tokioka et al. 1988; Wang and

Schlesinger 1999; Maloney and Hartmann 2001; Lee

et al. 2003; Zhang and Mu 2005 (ZM05); Lin et al.

2008), an improved representation of downdrafts and

rain reevaporation (Maloney and Hartmann 2001), and

modified convective closures (Zhang and Mu 2005).

When we change a given model to improve one aspect

of the climate simulation, it usually produces changes in

other aspects also because of complex interactions among

model components. Wang and Schlesinger (1999) and

Slingo et al. (1996) documented the relationships between

the strength of ISV and the mean state in uncoupled at-

mospheric general circulation models (AGCMs). Slingo

et al. (1996) showed that mean precipitation tends to be

more confined to high sea surface temperature (SST) re-

gions in models that simulate stronger ISV. Similarly,

Wang and Schlesinger (1999) suggested, using various

versions of one AGCM, that a strong relationship be-

tween precipitation and SST is necessary to properly

simulate ISV. Because the above studies focused on the

boreal winter season, they found that mean precipitation

is more confined to the South Pacific convergence zone

(SPCZ) region when a model simulates strong ISV.

In general, climate models are developed for the pri-

mary purpose of simulating climate variability and change

on time scales from interannual to decadal and longer,

including projections of long-term change due to green-

house gas forcing. Accordingly, features of the climate

that are manifest in long-term averages are often per-

ceived as more important than intraseasonal variability.

We document here something that we suspect is known

to many modeling groups and that may be the reason for

poor MJO simulation in many models: it is difficult to

improve a model’s MJO simulation without degrading its

mean state simulation, because of a systematic relation-

ship between them.

In this study, we show that there is a systematic re-

lationship between the strength of boreal winter ISV

and both boreal summer and winter mean state biases in

10 AGCM simulations. Our focus is on boreal winter

ISV—dominated by the MJO—rather than on boreal

summer ISV. Nonetheless, our analysis of mean state

biases focuses on boreal summer as well as winter. Models

with strong boreal winter ISV have mean biases that are

even larger during boreal summer than during winter.

We view these as interesting, not because there is any

direct relationship between the boreal summer mean state

and boreal winter ISV, but simply because we are in-

terested in the broader question of how changes in dif-

ferent aspects of climate simulations covary with changes

in model physics.

Section 2 describes the participating models and the data

used for validation. The relationship between simulations

of the ISV and the mean state from 10 different AGCM

simulations is shown in section 3. A diagnostic analysis is

used to find common differences between strong ISV and

weak ISV models in the latter part of section 3. A sum-

mary and conclusions are given in section 4.

2. Participating models and data

a. Participating models

Ten different climate simulations from five different

AGCMs are used in this study. Table 1 summarizes the

model configurations and simulation details, including

the convection scheme used in each model, the horizontal

and vertical resolutions, and the simulation period. All

simulations are integrated for at least 10 yr. All 10

simulations are used in the first part of the next section,

to show the general relationship between ISV and the

mean state. Then we concentrate on three pairs of sim-

ulations with Atmospheric Model, version 2 (AM2;

Geophysical Fluid Dynamics Laboratory), SNU (Seoul

National University GCM; Seoul National University),

and CAM3.1R [Community Atmosphere Model, ver-

sion 3.1R; National Center for Atmospheric Research

(NCAR)], in which the same configurations are used
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except for one parameter in the cumulus parameterization.

The Tokioka modification (Tokioka et al. 1988), which

suppresses convective plumes with entrainment rates

less than a threshold that varies inversely with planetary

boundary layer (PBL) depth, is implemented in AM2

and SNU with different threshold values. In that modi-

fication, the threshold value is defined as mmin 5 a/D,

where D is the depth of the PBL and alpha (tok in Table

1 and figures) is a nonnegative constant. The constant

alpha, which determines the strength of triggering, is set

to 0.025 and 0.1 in two different versions of AM2, while

0 and 0.1 are used in the SNU models. Rain reevapo-

ration efficiency (evap) is modified in CAM3.1R from

0.05 to 0.6 in a model that also has a Tokioka-like min-

imum entrainment threshold of 0.0001 m21 (which would

correspond to alpha 5 0.1 for a PBL depth of 1 km)

employed. Hannah and Maloney (2011) demonstrated

the sensitivity of ISV in this model to the minimum en-

trainment threshold. The modifications have been shown

to improve the ISV simulation in each model (Lin et al.

2008; Sobel et al. 2010). Considerable analysis of the

simulated MJO dynamics has been performed for each

of these three models, including sensitivity to the con-

vective parameters described above (e.g., Maloney and

Sobel 2004, Maloney et al. 2010 for CAM3.1R; Sobel

et al. 2010 for AM2; Lee et al. 2003, Lin et al. 2008 for

SNU).

b. Observational data

We validate the simulations of rainfall against the Global

Precipitation Climatology Project (GPCP; Huffman et al.

2001) product version 1.1. The tropospheric zonal winds

and temperature are from the National Centers for

Environmental Prediction (NCEP)–NCAR reanalysis data

(Kalnay et al. 1996) and the reanalysis from the European

Centre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis-Interim (ERA-Interim) (Simmons et al.

2007). The Special Sensor Microwave Imager (SSM/I)–

Tropical Rainfall Measuring Mission (TRMM) Micro-

wave Imager (TMI) combined precipitable water data

are also used.

3. Results

a. Results from 10 simulations with six models

Figure 1 shows the November–April standard de-

viation of 20–100-day bandpass-filtered precipitation. It

is clear from this figure that stronger ISV of precipitation

is observed in simulations in the right column than those

in the left column. Based on Fig. 1, we cluster the simu-

lations into two groups: strong ISV (right column) and

weak ISV (left column) models (the separation is clear in

terms of area-averaged standard deviation over the

tropics in Fig. 3). The increased variance does not nec-

essarily translate into more realism, however. All simu-

lations in the right column overestimate the amplitude of

ISV, as measured by the variance, to varying extents (we

can make the same separation based on boreal summer

data; the resulting pattern is not shown, but area-averaged

values are shown in Fig. 6a).

A significant difference between the two groups

is also found in the propagation direction of ISV.

Figure 2 shows the lag correlation of 108S–108N-averaged

20–100-day bandpass-filtered 850-hPa zonal wind against

a reference point in the equatorial Indian Ocean (IO;

58S–58N, 758–908E). The intraseasonal anomalies of

TABLE 1. Description of participating models. Model expansions and parent organizations are supplied in the text.

Model Convection scheme Version Resolution Period

AM2 RASa tok 5 0.025 or 0.1 2.08 lat 3 2.08 lon/L24 10 yr, with

climatological SST

SNU sRASb tok 5 0.0 or 0.1 T42/L20 20 yr, 1 Jan 1986–

31 Dec 2005

CAM3.1R RASa evap 5 0.05 or 0.6 T42/L26 10 yr, with climatological

SST

CAM3 (NCAR) ZMc Neale et al. (2008;

NRJ08)

1.98 lat 3 2.58 lon/L26 20 yr, 1 Jan 1986–

31 Dec 2005

ZM05, as this was

abbreviated above.

T42/L26 15 yr, 29 Jan 1980–

23 Jul 1995

SPd Khairoutdinov

et al. (2005)

T42/L26 19 yr, 1 Oct 1985–

25 Dec 2005

GEOS5 RASa Rienecker et al.

(2008)

18 lat 3 1.258 lon/L72 12 yr, 1 Dec 1993–

30 Nov 2005

tok 5 0.05

a RAS: Relaxed Arakawa–Schubert (Moorthi and Suarez 1992).
b sRAS: Simplified RAS (Numaguti et al. 1995).
c ZM: Zhang and McFarlane (1995).
d SP: Superparameterization (Khairoutdinov and Randall 2001).
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zonal wind propagate from west to east through the In-

dian Ocean in the two different reanalysis products

(Figs. 2a and 2g). The eastward-propagating feature is

well known as one of the basic characteristics of the

MJO. The weak ISV models exhibit near-standing or

westward propagation—opposite to what is observed.

The strong ISV models simulate eastward propagation

better than the weak ISV models. In AM2, SNU, and

CAM3.1R, modifications to the convection scheme to

enhance the moisture sensitivity of convection result in

an improvement of the eastward propagation, as reported

in previous studies (Tokioka et al. 1988; Wang and

Schlesinger 1999; Lin et al. 2008; Sobel et al. 2010).

In Fig. 3, the relationship between the strength of

ISV and the dominant propagation direction of ISV is

summarized in a scatter diagram. The strength metric

FIG. 1. November–April standard deviation of 20–100-day bandpass-filtered precipitation (mm day21) for (a) GPCP,

(b) AM2 (tok 5 0.025), (c) SNU (tok 5 0.0), (d) CAM3.1R (evap 5 0.05), (e) CAM3 1 NRJ08, (f) GEOS5, (g) AM2

(tok 5 0.1), (h) SNU (tok 5 0.1), (i) CAM3.1R (evap 5 0.6), (j) CAM3.0 1 ZM05, and (k) CAM3 1 SP.
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is obtained by averaging the standard deviation of 20–

100-day filtered precipitation over the tropics (308S–

308N, 08–3608E). For the propagation direction metric, the

eastward-to-westward ratio of ISV is calculated from

space–time power spectra, by dividing the sum of the

spectral power over eastward-propagating zonal wave-

numbers 1–3 and a frequency range of 30–70 days by its

westward-propagating counterpart. Figure 3 shows that

there is an approximate linear relationship between the

two metrics. Overall, weak ISV models (open circles) un-

derestimate the eastward-to-westward ratio metric com-

pared to observations, although they reasonably simulate

the magnitude of ISV. Note that all weak ISV models have

smaller ISV magnitude than strong ISV models. Strong

ISV models generally show eastward-to-westward ratios

comparable to that of observations and larger than those

FIG. 2. November–April lag–longitude diagram of 108N–108S-averaged intraseasonal 850-hPa zonal wind anom-

alies correlated against intraseasonal zonal wind anomalies at the IO (58S–58N, 708–958E averaged) reference point.

(a) NCEP–NCAR, (b) AM2 (tok 5 0.025), (c) SNU (tok 5 0.0), (d) CAM3.1R (evap 5 0.05), (e) CAM3 1 NRJ08,

(f) GEOS5, (g) ERA-Interim, (h) AM2 (tok 5 0.1), (i) SNU (tok 5 0.1), (j) CAM3.1R (evap 5 0.6), (k) CAM3 1

ZM05, and (l) CAM3 1 SP.
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of the weak ISV models. We find striking the extent to

which the relationship plotted for the models is

compact and linear although simultaneously the ob-

servations deviate from it. When we construct a linear

regression equation using model data (y 5 2.0023x 2

2.8559, where x is the tropics-averaged standard de-

viation and y is the eastward-to-westward ratio), the

error of the regression equation to predict the observed

eastward-to-westward ratio (;1.5) is about twice that of

the averaged error against model data (;0.8), indicating

that the observation point can be regarded as an outlier.

Only one model [the superparameterized Community

Atmosphere Model (SPCAM)] has a larger error

(;1.7) than the observations. There is no model that

simultaneously simulates the observed variance and

eastward-to-westward ratio. Models with an eastward-

to-westward ratio comparable to that observed tend to

overestimate the variance. It seems that even if we are

willing to accept significant degradation in the simulation

of the mean state (as is shown below to occur in the strong

ISV model), we are not yet able to produce a fully

realistic MJO simulation.

To investigate the relationship between ISV charac-

teristics and the mean state, May–October-averaged

precipitation is shown in Fig. 4. As discussed in the in-

troduction, we present mean state fields for this season—

despite our focus on boreal winter ISV—because the bo-

real summer mean state biases are related to simulated

boreal winter ISV amplitude across our multimodel en-

semble in a particularly systematic way. In the Western

Hemisphere, observed boreal summer mean precipita-

tion is characterized by maxima in several locations, in-

cluding the equatorial Indian Ocean, the northwestern

Pacific, west of the India and Indochina Peninsulas, west

of the Philippines, and east of Papua New Guinea (Fig. 4).

While most of these observed maxima are captured in

most simulations—with different fidelities—there are

similarities in the precipitation patterns within the strong

and weak ISV model groups. For example, in weak ISV

models, precipitation maxima over the central Pacific are

prominent with a compensating dry bias over the western

Pacific (WP). In 4 out of 5 strong ISV models, a zonally

elongated precipitation pattern is simulated from 608 to

1608E and from 108 to 208N (except AM2). This is clearly

distinguishable from the intertropical convergence zone

(ITCZ), which extends from 1608E to the western bound-

ary of the American continent at about 58N.

When we focus on the WP (58S–158N, 1208–1608E)

and equatorial IO (158S–58N, 608–958E) regions, we find

a clear difference between the strong and weak ISV

groups. Weak ISV models simulate stronger (weaker)

precipitation in the IO (WP) than the strong ISV models

in the right column (Fig. 4). Compared to observations,

the weak ISV models generally have a wet (dry) bias

over the IO (WP) region, while the signs of the biases

are reversed in the right column. Although mean pre-

cipitation is generally higher over the IO region for the

weak ISV models, the subseasonal variability of pre-

cipitation is stronger there in the strong ISV models. This

implies that the increase of subseasonal variability is not

a result of higher mean rainfall in this region. A system-

atic difference between strong and weak ISV models

groups is also observed during boreal winter. There is

a tendency in strong ISV models for precipitation in the

SPCZ to be stronger, while rainfall in the eastern Pacific

(EP) ITCZ is weaker than in weak ISV models (Fig. 5).

Figure 6 summarizes the relationship between ISV

and mean state simulation in a scatter diagram, with

boreal summer on the left and boreal winter on the

right. The transverse axes in Fig. 6 show the seasonally

stratified ISV strength metric, while the ordinate axes

show a May–October (Fig. 6a) and November–April

(Fig. 6b) mean precipitation index, defined as the mean

precipitation difference between two selected regions

(see caption). It is shown in Fig. 6 that a model with

stronger ISV tends to simulate a larger difference of

mean precipitation between the selected regions in

both seasons, with even more precipitation occurring

over the wetter WP warm pool. A linear relationship

between ISV strength and mean precipitation index

in Fig. 6 demonstrates that there is a systematic re-

lationship between ISV characteristics and mean state

bias simulated in 10 different AGCM simulations.

Strengthening the magnitude of ISV and improving the

propagation direction of ISV results in a degradation

of the mean state at least by this metric (an increase of

FIG. 3. Scatterplot of November–April standard deviation 20–

100-day bandpass-filtered precipitation averaged over 308S–308N,

08–3608E and the eastward-to-westward ratio, defined as the ratio

of eastward-propagating spectral power (summation over wave-

numbers 1–3, period 30–70 days) to that of its westward-propagating

counterpart. Open (closed) circle represents the weak (strong) ISV

model.
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the difference of the mean precipitation index from its

observed value).

b. Detailed analysis of three model pairs

Next, we conduct a more detailed search for common

features that distinguish strong ISV models from weak

ISV models using three sets of paired simulations with

AM2, SNU, and CAM3.1R.

Luo and Stephens (2006) examined the excessive

boreal summer mean precipitation over the western

Pacific in SPCAM. They suggested an anomalously

strong convection–wind–evaporation feedback, partly

caused by the two-dimensional geometry of the cloud-

resolving model implemented in SPCAM, was the cause

of the precipitation bias. We also find that evaporation is

larger in the strong ISV models than in the weak ISV

models. Figure 7 shows a difference map (strong ISV

version minus weak ISV version) of May–October pre-

cipitation and evaporation in each pair of simulations.

There is an enhancement of surface latent heat flux in

FIG. 4. As in Fig. 1, but for May–October mean precipitation (mm day21).
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the regions where precipitation is increased (Fig. 7).

Furthermore, the increase of mean latent heat flux is

accompanied by an increase in variance at subseasonal

time scales (Fig. 8). The argument about a too-strong

convection–wind–evaporation feedback by Luo and

Stephens (2006) is consistent with our results. However,

the additional reasoning that the cloud-resolving model

geometry causes the excessive feedback is not supported

by the results here, because a similar bias appears in

models with conventional parameterizations. Our

results demonstrate that the problem is not a specific one

for models with cloud-resolving models embedded in

each large-scale grid box, but rather is a common

symptom of models that overestimate the strength of

ISV. Some of the excessive strength of this feedback is

likely due to the fixed SST lower boundary. We expect

this feedback to be weaker in models run over a dynamic

ocean or a slab ocean, since in such models the increased

latent heat flux would result in a cooling of the ocean

surface and consequent suppression of convection.

FIG. 5. As in Fig. 4, but for November–April mean precipitation (mm day21).
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The fraction of rainfall produced by the convection

scheme (as opposed to grid-scale saturation) is expected

to be smaller in a strong ISV model compared to a weak

ISV one if the minimum entrainment rate threshold or

the rain reevaporation efficiency has been increased in

the former relative to the latter. This expectation is borne

out by Fig. 9, which shows difference maps (strong ISV

minus weak ISV) of the annual mean convective rain

fraction for the three model pairs. In Fig. 9, AM2 shows

the convective rain fraction reduced by more than 50%

FIG. 6. Scatterplots of (a) May–October standard deviation of 20–100-day filtered pre-

cipitation averaged over 308S–308N, 08–3608E and the May–October mean precipitation index,

which is defined as averaged precipitation over WP1 (58S–208N, 1208–1608E) minus IO (158S–

58N, 608–958E), and (b) November–April standard deviation of 20–100-day filtered pre-

cipitation averaged over 308S–308N, 08–3608E and November–April mean precipitation index

defined as averaged precipitation over WP2 (208S–08, 1408E–1808) minus EP (08–108N, 208–

808W). Open (closed) circle represents weak (strong) ISV model.

FIG. 7. (a)–(c) Difference map of May–October precipitation (mm day21) for (a) AM2, (b) SNU, and (c) CAM3.1R. (d)–(f) Difference

map of May–October evaporation (W m22) for (e) AM2, (f) SNU, and (g) CAM3.1R.
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over the western Pacific region, where mean precipitation

increases significantly. SNU and CAM3.1R also show an

overall reduction of convective rainfall fraction over the

tropics.

Figure 10 shows a scatterplot of the standard deviation

of intraseasonal precipitation anomalies versus tropical

mean tropospheric temperature, defined as the average

in pressure coordinates from the surface to 100 hPa.

Since all models are run over nearly identical fixed SSTs,

the differences in the tropospheric temperatures in this

figure come primarily from the upper troposphere.

Figure 10 shows that the strength of ISV is linearly re-

lated to the tropical mean tropospheric temperature with

a negative slope. Observations lie in the middle of the

spread of the simulations. The CAM3.1R models have

similar tropospheric temperature, as well as similar

strength of ISV to each other. With a smaller convective

rainfall fraction, we may expect that the convective heating

in the upper troposphere will be reduced, as greater en-

trainment forces convection to be shallower. Reduced

diabatic heating by convection results in a reduced tem-

perature of the upper troposphere. This destabilizes the

atmospheric column, but this is counteracted by the in-

creased inhibitive effect of subsaturation in the free tro-

posphere. Reduced cloud height with reduced fraction of

convective rainfall also enhances radiative cooling by

decreasing the greenhouse effect of high clouds. A full

analysis of the tropical static stability in the strong ISV

and weak ISV versions of the SNU model and its effect

on the speed of convectively coupled Kelvin waves was

performed in Frierson et al. (2010).

Using a reduced-complexity model of the tropical

atmosphere, Raymond (2001) suggested that the local

relationship between moisture and precipitation is cru-

cial for the MJO to be sustained. In his model, which

simulates the MJO, precipitation is inversely proportional

to saturation deficit, the difference between column

moisture and its saturated value (the latter minus the

former). The relationship between column moisture and

precipitation in satellite observations was investigated

by Bretherton et al. (2004), who showed that, on monthly

and daily time scales, the mean value of precipitation

FIG. 8. Difference map of May–October standard deviation of

20–100-day filtered evaporation for (a) AM2, (b) SNU, and (c)

CAM3.1R.

FIG. 9. Difference map of annual mean convective rain fraction for

(a) AM2, (b) SNU, and (c) CAM3.1R.

FIG. 10. Scatterplots of all-season standard deviation averaged

over 308S–308N, 08–3608E and all-season mean tropospheric tem-

perature averaged over 308S–308N, 08–3608E. Open (closed) circle

represents the weak (strong) ISV model.
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occurring at a given column relative humidity (the ratio

of column moisture to its saturated value) increases

exponentially when the latter is larger than some critical

value. Peters and Neelin (2006) and Neelin et al. (2009)

examined the relationship more thoroughly. They found

that the relationship between precipitable water and

precipitation could be generalized when precipitable

water was rescaled by critical precipitable water, which

was a function of tropospheric temperature (though one

not, as one might have expected, identical to the satu-

ration column water vapor). Based on the above mod-

eling and observation studies, it is reasonable to think

that the observed moisture–precipitation relationship is

one of the characteristic features that should be simu-

lated correctly to replicate the MJO accurately, though

a comprehensive theory for such a linkage does not yet

exist.

In recent studies, the local moisture–precipitation

relationship has been suggested as a diagnostic tool to

distinguish strong MJO models from weak MJO models.

Precipitation composites based on saturation fraction

from daily gridpoint data, used in Zhu et al. (2009), and

composites of vertically resolved relative humidity against

precipitation, used in Thayer-Calder and Randall (2009),

were shown in those studies to be useful for this purpose.

Comparing CAM3 and SPCAM, Zhu et al. (2009) and

Thayer-Calder and Randall (2009) showed that more re-

alistic local relationships between column moisture and

precipitation are found in SPCAM, which also has a better

simulation of the MJO than CAM3.

Figure 11 shows the observed and simulated daily

gridpoint relative humidity composite based on pre-

cipitation for strong and weak ISV models. The x axis of

the plot is log10 of precipitation (mm day21). Thayer-

Calder and Randall (2009) showed that in observations

and in a model that simulates the MJO well (SPCAM),

there is a gradual moistening of the troposphere ac-

companied by a deepening of the area of high relative

humidity. In Fig. 11, SNU and CAM3.1R show an in-

crease of relative humidity in the mid- and lower tropo-

sphere at high rain rates in the strong ISV version (Figs.

11g and 11j), consistent with the results of Thayer-Calder

and Randall (2009). The increase of relative humidity in

the strong ISV version is not clear in AM2 (Fig. 11d).

Contours (dashed lines) of 75% are drawn to highlight

the gradual deepening of the area of high relative hu-

midity. Overall, the contours have slopes more similar to

that observed in the strong ISV models than in the weak

ISV models. However, this diagnostic does not explain all

the differences because, for example, the SNU model

with a minimum entrainment rate threshold of 0.1 has

stronger ISV and a higher eastward-to-westward ratio

than the AM2 model with a threshold of 0.025, although

the slope of the 75% contour seems to be more similar to

that observed in the AM2 model.

Similar to Zhu et al. (2009), precipitation is compos-

ited based on the saturation fraction over the warm pool

region in Fig. 12 (top panels). In this diagram, we used

the ERA-Interim data for temperature and the SSM/I–

TMI combined data for precipitable water to calculate

the saturation fraction. For precipitation, the GPCP

product version 1.1 is used. In general, composited pre-

cipitation is near zero until the saturation fraction reaches

some critical value, after which precipitation increases

rapidly. When we compare weak ISV models (dashed

line) to strong ISV models (solid line), however, the three

sets of models show three distinct types of behavior in

terms of the critical value and the slope of the curve for

a saturation fraction larger than that value. Here, the

critical value is loosely defined as the point after which

the slope of the curve increases significantly. In AM2, the

slope from the strong ISV version is steeper than that of

the weak ISV version, while both show similar critical

values. The two versions of the SNU model have similar

slopes and critical values. The critical value is significantly

increased in CAM3.1R with larger convective rain reevap-

oration efficiency. The different behavior of the relation-

ships between moisture and precipitation are interesting

because the convection schemes used in these three models

are similar (Table 1).

The probability density function (PDF) of the satu-

ration fraction is also shown in Fig. 12 (middle panel). In

observations (black line), the peak of the PDF is near

0.8, after which the PDF drops quickly. The peaks of the

PDF in the AM2 models are similar to the observed

value, while the SNU models have peaks near 0.6. The

two different versions of CAM3.1R show quite different

shapes of the PDF. The most frequent value of the sat-

uration fraction moves from near 0.7 in the weak ISV

version to about 0.9 in the strong ISV version. In all

three models, the occurrence of high saturation fractions

(right tail of the curve) increases in the strong ISV ver-

sion compared to the weak ISV version. When the

composited precipitation is weighted by the PDF of the

saturation fraction (Fig. 8, bottom panel), the difference

between the strong and weak ISV models becomes more

similar among the three models. The PDF-weighted com-

posited precipitation can be regarded as the total amount

of precipitation from columns with a given saturation

fraction value divided by the total number of samples

used in the PDF calculation, the sum of which is the time-

and domain-mean precipitation. It is clear in Fig. 12 that

the amount of precipitation that occurs at high saturation

fraction increases with stronger ISV in all three models,

indicating a larger contribution from columns with high

saturation fraction to the total amount of precipitation.
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FIG. 11. Composite vertical profile of relative humidity based on precipitation rate for (a) GPCP/ERA-Interim, (b) AM2 (tok 5 0.025),

(c) AM2 (tok 5 0.1), (e) SNU (tok 5 0.0), (f) SNU (tok 5 0.1), (h) CAM3.1R (evap 5 0.05), and (i) CAM3.1R (evap 5 0.6). Difference

between strong and weak ISV models is shown in (d) AM2, (g) SNU, and (j) CAM3.1R. Precipitation rate is plotted on a log scale, with the

relative humidity averaged for each bin shown on the x axis. All-season data are analyzed over 208S–208N, 408E–1808.
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Considered together, the plots shown in Figs. 11 and

12 suggest that the joint relationship between humidity

and precipitation need not differ in a systematic way

between strong and weak ISV models. This is somewhat

contrary to expectations based on, for example, previous

studies that have demonstrated some correspondence be-

tween the shape of the precipitation–saturation fraction

curve and the simulation of ISV (e.g., Zhu et al. 2009).

4. Summary and conclusions

We used 10 different AGCM simulations to investigate

the systematic relationships between ISV simulations and

mean state bias. The 10 models are clustered into two

groups in terms of the strength of their ISV, which is

defined as the area-averaged standard deviation of ISV

over the tropics.

The strong ISV models have magnitudes of ISV

stronger than those of the weak ISV models and of ob-

servations (Fig. 3). The observed value is in between the

two model groups. The eastward-to-westward ratio and

variance of ISV are closely related in these models; the

eastward-to-westward ratios of the strong ISV models

are larger than those of the weak ISV models and closer

to the observed value. However, observations deviate

from the simulated relationship between these two ISV

properties, having larger eastward-to-westward ratio for

the same variance as in the simulations.

It is shown that the pattern of boreal summer/winter

mean precipitation is closely related to the strength of

ISV (Fig. 6). The strong ISV models show a wet (dry)

bias over the western Pacific (equatorial Indian Ocean)

during boreal summer, while the signs of the biases are

reversed in the weak ISV models. Similarly, during bo-

real winter, the amount of simulated precipitation in the

SPCZ (ITCZ) region is larger (smaller) in the strong

ISV models than in weak ISV models. Therefore, in

strong ISV models, the strong precipitation is concen-

trated in the warmest ocean region (the western Pacific

during boreal summer and the SPCZ region during

FIG. 12. (top) Precipitation composite based on saturation fraction. (middle) PDF of saturation fraction, (bottom) PDF-weighted

precipitation. Points over the WP (08–208N, 1308E–1808) are used in calculations. All-season data are used.
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boreal winter), with compensating regions of decreasing

precipitation (equatorial Indian Ocean during boreal

summer and the ITCZ region during boreal winter). It is

speculated here that the concentration of rainfall in the

warmest ocean region is a consequence of enhancing the

moisture–convection relationship (e.g., Figure 11). How

the compensating region is determined, however, is not

clear at this stage and needs further investigation.

Three sets of paired simulations (AM2, SNU, CAM3.1R),

in which only one parameter in the convection scheme

is changed to enhance the moisture sensitivity of convec-

tion, are used to find the common differences between

the two groups. The mean and variance of the surface

latent heat flux is increased in the strong ISV versions,

consistent with the hypothesis that the wind–evaporation

feedback is too strong in these models. The annual mean

convective rain fraction is reduced in the strong ISV

versions in all models, presumably as a direct result of the

modifications implemented in the convective schemes to

increase their sensitivity to environmental moisture. Rela-

tive humidity composites based on precipitation are also

examined. Although strong ISV versions tend to represent

the gradual deepening of the high relative humidity layer

as a function of precipitation better compared to weak ISV

versions, it is hard to explain the intermodel differences

using this diagnostic. Differences between weak and strong

ISV versions in the composited relationship between pre-

cipitation and the saturation fraction are not consistent

across the three model pairs. Conversely, there is a consis-

tent difference in the frequency distributions of the satu-

ration fraction and precipitation. In strong ISV models,

high values of saturation fraction and precipitation occur

more frequently and make a greater contribution to the

total precipitation.

Previous studies have shown that the strength of ISV

simulated by GCMs can be controlled through modifi-

cations to the convection scheme. When convection is

made more sensitive to environmental moisture, ISV

becomes stronger. This method is often used to improve

a model’s ability to represent the MJO, the dominant mode

of ISV in the tropics. Recent intercomparison studies,

however, have demonstrated that most GCMs involved

in the Fourth Assessment Report (AR4) of the Inter-

governmental Panel on Climate Change (IPCC) have

poor MJOs (Lin et al. 2006). The systematic relation-

ships shown here between ISV characteristics and mean

state bias may partly explain the current situation in

which poor ISV models are used operationally, even

though modelers know how to improve ISV. Presumably,

the most important purpose of most operational climate

models is long-term climate projection, for which a re-

alistic mean climate is a higher priority than intraseasonal

variability.

The models used in this study are atmosphere-only

models, in which sea surface temperature is prescribed as

a boundary condition. When sea surface temperature is

prescribed, positive moisture–convection feedbacks over

the warm pool produce excessive rainfall there. This is in

part because of the lack of negative feedback mechanisms

(e.g., reduced shortwave radiation and enhanced latent

heat flux leading to reduced surface temperature) in the

AGCMs. Stan et al. (2010) showed that excessive mean

precipitation over the western Pacific during boreal

summer disappears when the SPCAM is coupled to an

ocean model. Sperber and Annamalai (2008) showed in

a set of coupled GCMs that there was not a systematic

relationship between the amplitude of boreal summer

ISV and mean state biases. These results as well as ours

suggest that air–sea coupling may change the relation-

ship between ISV strength and mean state bias.
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