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Abstract

The National Weather Service intends to begin routinely issuing
long-lead forecasts of 3-month mean U. S. temperature and precipi-
tation by the beginning of 1995. The ability to produce useful
forecasts for certain seasons and regions at projection times of up to
1 yr is attributed to advances in data observing and processing,
computer capability, and physical understanding—particularly, for
tropical ocean—atmosphere phenomena. Because much of the skill
of the forecasts comes from anomalies of tropical SST related to
ENSO, we highlight here long-lead forecasts of the tropical Pacific
SST itself, which have higher skill than the U.S forecasts that are
made largely on their basis.

The performance of five ENSO prediction systems is examined:
Two are dynamical [the Cane—Zebiak simple coupled model of
Lamont-Doherty Earth Observatory and the nonsimple coupled
model of the National Centersfor Environmental Prediction (NCEP)];
one is a hybrid coupled model (the Scripps Institution for Oceanogra-
phy—Max Planck Institute for Meteorology system with a full ocean
general circulation model and a statistical atmosphere); and two are
statistical (canonical correlation analysis and constructed analogs,
used at the Climate Prediction Center of NCEP). With increasing
physical understanding, dynamically based forecasts have the
potential to become more skillful than purely statistical ones. Cur-
rently, however, the two approaches deliver roughly equally skillful
forecasts, and the simplest model performs about as well as the
more comprehensive models. At a lead time of 6 months (defined
here as the time between the end of the latest observed period and
the beginning of the predictand period), the SST forecasts have an
overall correlation skill in the 0.60s for 1982-93, which easily
outperforms persistence and is regarded as useful. Skill for extra-
tropical surface climate is this high only in limited regions for certain
seasons. Both types of forecasts are not much better than local
higher-order autoregressive controls. However, continual progress
is being made in understanding relations among global oceanic and
atmospheric climate-scale anomaly fields.

It is important that more real-time forecasts be made before we
rush to judgement. Performance in the real-time setting is the
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ultimate test of the utility of a long-lead forecast. The National
Weather Service's plan to implement new operational long-lead
seasonal forecast products demonstrates its effectiveness in iden-
tifying and transferring “cutting edge” technologies from theory to
applications. This could not have been accomplished without close
ties with, and the active cooperation of, the academic and research
communities.

1. Introduction

The Climate Prediction Center (CPC) [formerly the
Climate Analysis Center (CAC)] of the National Cen-
ters for Environmental Prediction (NCEP) of the Na-
tional Weather Service is preparing to issue operation-
ally long-lead forecasts of 3-month mean temperature
and precipitation for the United States. Experimental
forecasts of this nature have been produced and
issued since late 1992. The forecasts will be made for
periods beginning a half month after the forecast time,
progressing by monthly increments to one year into
the future. This ambitious plan follows years of fore-
casting seasonal anomalies with zero lead, in which
the period being forecast began at the time of the
forecast. (A zero-lead forecast for a 3-month period
has often been called a one-season lead forecast, in
contrast to the stricter definition used here.) In the last
half decade, however, advancement along several
scientific fronts has opened doors to more sophisti-
cated forecast possibilities.

Zero-lead forecasts for monthly or seasonal means
of U.S. surface climate have been made routinely by
several groups for more than a decade. Examples are
those issued by the CPC or its predecessor (Namias
1964; Gilman 1985; Wagner 1989), Scripps Institution
of Oceanography, and others. The CPC forecasts
have been based in part on specific empirical tools
such as the North Pacific SST effects described by
Davis (1978), the climate state vector analog system
(Barnettand Preisendorfer 1978; Livezey and Barnston
1988), and the effects of the El Nifio/Southern Oscil-
lation (ENSO) (Ropelewski and Halpert 1986).
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Beginning in the 1980s, a few attempts to make
forecasts with greater-than-zero lead time for extrat-
ropical surface climate have been made. All have
been experimental and usually partly subjective, such
as the U.S. temperature and precipitation forecasts of
A. Douglas (see Preisendorfer and Mobley 1984) and
U.S. temperature forecasts of Wagner (Wagner and
Livezey 1984). An objective experimental long-lead
forecast system using canonical correlation analysis
(CCA), based on the work of Barnett and Preisendorfer
(1987), was further developed and impiemented in
1991 (Barnston 1994). Forecasts of U.S. surface
temperature using CCA have been used as one of
several inputs for CPC’s zero-lead operational sea-
sonal forecasts and have appeared in the CPC’s

The recent ability to produce forecasts useful at projection times
longer than previously thought possible is attributed to rapid
advancement in data observing and assimilation systems, computer
ity, and understanding of the importance of tropical boundary
jons for the evolution of the ENSO phenomenon.

Experimental Long-Lead Forecast Bulletin since fall
1992. Dynamically based forecast models have also
been developed and are currently being used for long-
lead extratropical prediction as the second of a two-
stage process, the first being the prediction of tropical
sea surface temperature (SST) anomalies. Examples
are the hybrid and two-tiered coupled model projects,
joint efforts of the Scripps Institution of Oceanography
andthe Max Planck Institute for Meteorology (Graham
and Barnett 1994; Barnett et al. 1994; Bengtsson et al.
1993), and the full coupled model at the NCEP (for-
merly the National Meteorological Center) (Ji et al.
1994a,b).

The recent ability to produce forecasts useful at
projection times longer than previously thought pos-
sible is attributed to rapid advancement in data ob-
serving and assimilation systems, computer capabil-
ity, and understanding of the importance of tropical
boundary conditions for the evolution of the ENSO
phenomenon. This last achievement has been asso-
ciated with new insight into tropical ocean-atmo-
sphere interactions and their representationin coupled
models. While some extratropical processes probably
develop independently of the Tropics (e.g., blockingin
northern ocean basins), much of the skill of the
forecasts for the extratropics comes from anomalies
of ENSO-related tropical SST (e.g., Barnett et al.
1994; Graham and Barnett 1994; Barnston 1994). The
tropical Pacific SST anomalies themselves have been
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targets of empirical as well as dynamical forecast
systems. Success in ENSO forecasting is essential to
extratropical forecasting in the Pacific—-North Ameri-
can region, because the tropical SST anomalies are
an important cause of midlatitude upper atmospheric
and associated surface climate anomaly patterns
(Horel and Wallace 1981; Barnett 1981; Ropelewski
and Halpert 1986).

A dependence of extratropical climate on tropical
phenomena is also found for Atlantic tropical storm
activity (Shapiro 1982; Gray et al. 1993; Elsner and
Schmertmann 1993). Tropical SST strongly affects
tropical continental climate, such as seasonal rainfall
in northeastern Brazil (Ward and Folland 1991; Hasten-
rath and Greischar 1993; Graham 1994). In view of the
above, we highlight in this
paper forecasts of the
ENSO-relatedtropical Pa-
cific SST as the primary
example of long-lead fore-
casting, with secondary
emphasis on the emerg-
ing technology for extra-
tropical prediction.

In its own right, the
ENSO phenomenon has
become the focal point of many worldwide concerns,
because of its large effects on the climate and the
economy in various regions of the world (Ropelewski
and Halpert 1986, 1987). Diagnosis and prediction of
ENSO are thus of considerable interest to the general
population. From the second half of the 1980s (Barnett
et al. 1988) through the present, progress in under-
standing and simulating the physics and dynamics of
ENSO has accelerated. Dynamical approaches have
included 1) simple ocean models coupled with statis-
tical atmospheres (Inoue and O’Brien 1984; Graham
et al. 1992), 2) ocean general circulation models
(GCMs) coupled with statistical atmospheres (Neelin
1990; Latif and Flugel 1991; Barnett et ai. 1993), 3) a
simple coupled model for both ocean and atmosphere
(Cane et al. 1986), 4) an ocean GCM coupled to a
simple atmospheric model (Latif etal. 1993a,b), and 5)
the most complex case of an ocean GCM coupled with
an atmospheric GCM (e.g., Ji et al. 1994b).

Physical ocean models coupled with statistical
atmospheric models (e.g., the hybrid coupled model
for the Tropics discussed in Barnett et al. 1993) are
reasonably effective because the atmospheric re-
sponse to the tropical oceanic boundary conditions
can be derived from historical data with moderate
success. Simple coupled ocean—atmosphere models
apply the laws of physics in both media, using carefully
chosen, abbreviated versions of the full equations of
atmospheric and oceanic motion andinteraction. While
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their simplicity may cause them to neglect factors
critical to their forecasts, it also eliminates problems
related to erroneously simulated details that occur in
full GCMs.

Purely statistical ENSO prediction models have
also been developed. These include CCA (Graham et
al. 1987a,b; Barnston and Ropelewski 1992), principal
oscillation patterns (POPs) (Xu and von Storch 1990)
orthe relatedinverse modeling (Penland and Magorian
1993), the singular spectrum analysis—~maximum en-
tropy method (Keppenne and Ghil 1992), and others.
Statistical models, which are usually much less costly
to run than dynamical models, serve the purpose of
setting a baseline skill level to which the skills of
dynamical models can be compared. The skill of the
dynamical models must exceed this baseline in order
to justify their additional effort and cost.

Physical models vary considerably not only in their
basic assumptions and equations but also in their
physical domain. The Lamont simple coupled model
(Zebiak and Cane 1987) uses a tropical Pacific do-
main, which precludes tropical-extratropical inter-
actions in the simulations. The Scripps Institution for
Oceanography (hereafter Scripps)—Max Planck Insti-
tute for Meteorology (MPI) hybrid coupled model
(Barnett et al. 1993), using a complex ocean model
and a statistical atmospheric model, also covers the
Pacific from 30°N to 30°S. The NCEP coupled model
uses full GCMs in both ocean and atmosphere and
covers the midlatitudes as well as the Tropics. In the
cases of all three models the equatorial SST anomaly
in the central and eastern Pacific is based on several
factors, a common one of which is the amount of heat
stored in the top 100—-200 m of ocean in the western
and central tropical Pacific.

While the estimate of predictive skill produced from
most of the models in the above-described categories
are roughly comparable, specific differences can be
found. Such differences may occur in the skill’s sea-
sonality and geographical distribution as well as its
decay with forecast lead time. It should also be noted
that overall skill score similarity does not imply fore-
cast similarity.

Several models have been subjected to the chal-
lenge of producing a succession of real-time fore-
casts. In this paper we examine the forecast skills of
five currently or potentially operationat ENSO fore-
casting systems: 1) the Lamont-Doherty Earth Obser-
vatory (hereafter Lamont) simpie coupled model
(Zebiak and Cane 1987), 2) the Scripps—MPI hybrid
coupled model (Barnett et al. 1993), 3) NCEP’s com-
prehensive coupled model (Ji et al. 1994a,b), 4) the
CPC’s statistical CCA model (Barnston and Ropelewski
1992), and 5) the CPC’s empirically constructed ana-
log model (Van den Dool 1994). The purpose of this
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presentation is to assess the effectiveness of current
routine ENSO forecasting and to lay out prospects for
future achievement not only for ENSO forecasts but
fortheir ultimate application: forecasts of extratropical
climate and of tropical climate in regions distant from
the ENSO action areas.

In section 2 the five forecast models are briefly
described. Section 3 examines the performance of the
models, and section 4 announces consequent deci-
sions of the National Weather Service regarding op-
erational issuance of long-lead forecasts. A summa-
rizing discussion and concluding remarks are given in
section 5.

2. Major characteristics of five ENSO
forecast models

inthis section we briefly highlight the features of the
two dynamical forecast models (Lamont and NCEP
coupled models), the hybrid coupled model of Scripps—
MPI, and two empirical forecast models of NCEP
(CCA and constructed analog). We also note here that
the SST data used for all the models discussed here,
as well as for forecast verification, come from combi-
nations of COADS (Coupled Ocean—Atmospheric Data
Set) (Slutz et al. 1985) and NCEP (Reynolds 1980),
the latter being used by all models for 1980 and later.
Forecasts were made and verified for area average
SST over discrete regions specified below. Observed
area average SST may differ slightly for the same time
and region from one model to another, because the
periods over which climatological means are based
are not identical.

a. The Lamont model

The simple coupled dynamical model developed at
Lamont-Doherty Earth Observatory (Cane et al. 1986;
Cane and Zebiak 1987; Zebiak and Cane 1987) is well
known as the first physical model dedicated to routine
diagnosis and prediction of ENSO fluctuations for the
benefit of the scientific community and other users. It
covers the tropical Pacific region only and predicts
specified monthly departures from climatology (i.€., it
is an anomaly model). It uses linear shallow water
dynamics for both the ocean and atmosphere, but
includes more complicated nonlinear forms for atmo-
spheric heating and ocean mixed layer thermodynam-
ics. The model is not initialized with analyzed SST
data; only wind stress anomalies (derived from The
Florida State University analyses) enter into the initial-
ization. The model was constructed to simulate ENSO
over a 12-month period (Zebiak 1984; Cane et al.
1986). In hindcast (i.e., retrospective forecast) mode,
the model has simulated the variability in the tropical
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Pacific SST startingin the early 1970s. Since fall 1985,
the model has remained unchanged and has continu-
ously produced forecasts in a completely independent
setting. Much of its success is due to favorable
reproduction of the heat storage mechanism in the
subsurface western and central equatorial Pacific
Ocean (Wyrtki 1985), attributable to ocean wave
dynamics. Forthe period from 1970to the early 1990s,
statistically significant predictive skill is found up to
12—16 months lead (Cane 1992). Real-time forecasts
forNifio 3 (bounded by 5°N-5°S, 90°—150°W) using the
Lamont model have been issued in the CPC’s opera-
tional Climate Diagnostics Bulletinsince summer 1989,
and for the entire tropical Pacific Basin in CPC’s
semioperational Experimental Long-lead Forecast
Bulletin and the Climate Diagnostics Bulletin since fall
1993. Prior to these times, the Lamont model fore-
casts were distributed to interested worldwide users
and were posted on the ENSO.INFO electronic bulle-
tin board file on the Internet.

b. The Scripps—MPI hybrid coupled model

A hybrid coupled model of the tropical ocean—
atmosphere system has been developed jointly at
Scripps Institution of Oceanography and the Max
Pianck Institute for Meteorology (Barnett et al. 1993).
The ocean model, created at MPI for the tropical strip
(Latif 1987), is a fully nonlinear GCM bounded by 30°N
and 30°S latitude and by Asia and South America. It
has 13 vertical levels, 10 of which are within the top
300 m. The seasonal cycle is governed by a Newtonian
heat flux and observed wind stress (Goldenberg and
O’Brien 1981). The vertical mixing scheme is depen-
dent upon the Richardson number (Pacanowski and
Philander 1981). The atmospheric model is statistical,
deriving the wind stress forcing for the ocean GCM
using the GCM’s SST. This is done with a CCA-like
regression model, using historical observed data fields
of anomalous SST and the corresponding wind stress.
The ocean GCM provides the SST anomaly to the
atmospheric model that, in turn, produces the wind
stress anomaly that subsequently forces the ocean,
producing an updated SST field. The coupling process
includes a Model Output Statistics (MOS)-like statisti-
cal correction of the SST fields produced by the ocean
GCM. The hybrid coupled model is initialized with wind
stress fields derived from observed SST data; thus, it
is indirectly “spun up” with SST information. Consider-
ing the entire 1965-93 period, the model has demon-
strated statistically significant predictive skill for up to
12—-18 months, with best performance for the central
equatorial Pacific and for winter forecasts. The model
was constructed using data from the 1965-85 petriod,
leaving 1986-93 for independent forecast testing.
Real-time forecasts by the Scripps—MPI model for one
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or more portions of the equatorial Pacific have ap-
peared in the Experimental Long-Lead Forecast Bul-
letin since spring 1994. Since 1991 such forecasts
have occasionally beenissued onthe ENSO.INFO file
on the Internet.

¢. The NCEP coupled model

Acomprehensive coupled ocean—atmosphere GCM
has been developed at the NCEP (formerly the Na-
tional Meteorological Center) over the last several
years (Ji et al. 1994a,b). The Pacific basin ocean
model was created originally at the Geophysical Fluid
Dynamics Laboratory (GFDL) by Bryan (1969) and
Cox (1984) and subsequently improved by Philander
(1987). It covers a domain of 45°S-55°N, 120°E~
70°W. Its zonal resolution is 1.5°, and its meridional
resolution is 0.33° within 10° of the equator. Between
10° and 20° away from the equator the meridional
resolution decreases gradually to 1°. There are 28
vertical levels, most of which are concentrated in the
upper ocean. The atmospheric model is a T40 version
of the NCEP Medium Range Forecast (MRF) model
with 18 vertical levels. The convective parameter-
izations of the MRF have been tuned for more realistic
tropical air—sea interactions and convection. Exchange
of surface momentum and heat fluxes and SST at the
air—sea interface occur at 5-model day intervals, rep-
resenting the timescale of ocean response to surface
wind stress. The ocean thermal field, including SST
and subsurface temperature, is initialized using an
ocean data assimilation system (Ji et al. 1994c). The
model was developed and tuned for 6-month lead
forecasts using data from the cold and warm ENSO
episodes of 1988/89 and 1991/92, respectively. Rou-
tine real-time forecasts of SST anomalies in the
tropical Pacific basin began during 1993; these have
appeared in the Climate Diagnostics Bulletin and the
Experimental Long-Lead Forecast Bulletin.

d. The NCEP CCA model

CCA is a statistical technique that models linear
relationships between fields of the predictors and the
SST predictands, using a specific variation of EOF
analysis (Barnett and Preisendorfer 1987; Barnston
and Ropelewski 1992). In the version used at the CPC
that was developed with some initial guidance from
Scripps Institution of Oceanography, the predictor
fields consist of global sea level pressure and the
tropical Pacific SST itself for several periods prior to
the target time; the target time SST is the predictand.
Specifically, four consecutive 3-month predictor peri-
ods are followed by a lead time (a data “skip”) and then
a single 3-month predicted period. CCA essentially
performs a multivariate linear regression, in which
patterns in the predictand are related to preceding
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patterns in the four time-staggered predictor fields.
Systematic evolution of the predictor fields over time
relating to a data-defined predictand pattern is thus
identified. The relationships governing the optimal
prediction are defined over the period of record and
then applied to the future year being forecast. The
CCA model predicts a set of regions spanning across
the tropical Pacific and Indian Oceans. Real-time CCA
forecasts for the SST in a particular Pacific region
centered approximately 40% of the distance between
Nifio 3 and Nifio 4 (i.e., 120°-170°W, to be called Nifio
3.4) have appeared in the Climate Diagnostics Bulletin
since early 1990 and in the Experimental Long-Lead
Forecast Bulletin since its inception in fall 1992. In the
late 1980s a few forecasts using an earlier version of
CCA were posted by Scripps Institution of Oceanog-
raphy in the file ENSO.INFO on the Internet.

e. The NCEP constructed analog model

Recently, Vanden Dool (1994) developed amethod
of constructing a better analog than any that occurs
naturally, using an optimal linear combination of the
SSTinallavailable years to model the base state to be
matched more precisely. The predictor field (through
which analog matches are sought) consists of near-
global SST over four consecutive 3-month predictor
periods, followed by a lead time (a “skipped” period),
and then a single 3-month predicted period. Skill
experiments have demonstrated that a single con-
structed analog leads to higher skill than classical
composites of natural analogs/antianalogs (as used in
Livezey and Barnston 1988; Barnston and Livezey
1989). Thus, the production of a better analog match
appears to outweigh the loss of the nonlinearity that
would be preserved in the climatic scenarios defined
by natural analogs. Real-time forecasts for the SST in
120°-170°W (Nifio 3.4) using constructed analogs
have appeared in the Experimental Long-Lead Fore-
cast Bulletin beginning in summer 1994,

3. The SST forecast skills

This section is not intended to compare the SST
forecast skills among the five models but to answerthe
guestion, Where do we stand? in a collective sense. In
doing this, skill will sometimes be examined on an
individual model basis.

a. The absolute need for real-time forecasts

A purely objective, bias-free method of estimating
the forecast skill of anygiven methodin a trulyindepen-
dent (future) forecast setting does not exist. There
simply is no substitute for real-time forecasting. For
each of the five methods, we currently have only a
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small sample of years of unadulterated real-time
forecasts. In view of the low-frequency nature of
ENSO, we need at least 10 years before judgement
can be passed on to forecasting ability. However, we
cannot wait that long. Consequently, carefully derived
estimates of skill based on hindcasts (in which the
model “knows” data that occurred later than the time
being forecast) oi retroactive real-time forecasts (in
which no data occurring later than the forecast time
are made available tothe model) are needed. We have
assembled a dataset of the latter type for the 1982-93
period for the empirical CCA and constructed analog
forecasts.

There are techniques that attempt to simulate
independent forecasts for statistical forecast methods
such as linear regression or CCA. For such methods,
cross validation (Michaelsen 1987) is thought to give
approximately representative results as it withholds
each year in turn from the model's developmental
sample and makes a forecast for it. However, skill
inflation can stili occur when there are interannual
autocorrelations in the data history, as in an ENSO-
related SST or sea level pressure time series. This
problem can be largely overcome by withholding groups
of consecutive years for each set of forecast trials.
Skill deflation can also occur when true skill is low, due
to a degeneracy inherentin cross validation (Barnston
and Van den Dool 1993). The success of the model
building exercise is also jeopardized in nonstationary
regimes in which predictive rules identified over a
relatively long period begin failing after a later point in
time. Cross validation is applicabie to analog meth-
ods, because the year for which analogs are soughtis
excluded as an analog candidate and the climatology
in terms of which all years’ data are expressed can be
recomputed with that year withheld (Van den Dool
1987). Cross validation as described here is impracti-
cal in assessing independent period forecast skill for
dynamical models, because iterative retuning with
each year held out would be far too cumbersome a
task. The usual practice is to develop the model using
data for part of the available period and to test inde-
pendent forecast skill on the remaining part.

b. Postprocessing of model output and independent

nature of recent forecasts

The current version of Lamont model forecasts is
based on the model development period of 1970-85
for postprocessing purposes—that is, for determina-
tion of systematic biases. Model biases have been
removed for all forecasts, separately by forecast
target season and lead time as determined from the
development period. Forecasts have also been ad-
justed for differences in variance with respect to the
observations in the same manner. Because forecasts

2101



TasLE 1. Five ENSO forecast model characteristics and skill.

Authors Zebiak and Cane (1987) Barnett et al. (1993) Jietal. (1994b)
Model Physical: Hybrid: couplednonsimple Physical: coupled
simplecoupled ocean GCM, statistical nonsimple GCMs
atmosphere

Details of model

Six-memberensemble

Noensembles Four-memberensemble

6 months

Leadtime 6.5months 6 months

Time from forecast start

to center of predicted period 8 months 7.5 months 7.5 months

Predicted SST region Nifio 3 Nifio 3.4

(Al BoN-5°8) 90°-150°W 140°-180°W 120°%=170°W |
(eastern Pacific) {central Pacific) {east-central Pacific)

Period of record 1970-93 1966-93 1984-93

Proportion of evaluation period

containing independentforecasts 8/12=067 8/12=0.67 6/10=0.60 (

Skilt Corr  rmse  Design® Corr rmse  Design Corr rmse  Design

(1982-93) 0.62 0.95 mixed 0.652 0.97 mixed 0.69° 0.83° mixed
stddev=1.08 stddev=1.10 stddev=1.00

2Standard correlation for Scripps—MPI model is 0.69 (see appendix).
oSkill for 1984-93.
°See footnote c in continuation of Table 1 on next page.

have been made using the same original version of the
model since late 1985, the 1986—93 period can be
regarded as fully independent and as real time.

The development period for the Scripps—MPI hy-
brid coupled model is 1965—85. Although there was no
need for bias correction (in part because a MOS
correction scheme was applied during coupling), a
temporal phase postprocessor was applied to the
forecasts as a function of their lead time. Forecasts
for the 1986-93 period can be considered indepen-
dent.

Skills for the NCEP model are based on the rela-
tively short data record of mid-1982 to 1993, and the
even shortertarget period record of 1984—1993. Model
biases are subtracted from the forecasts specific to
the model starting month, based on hindcasts overthe
data record. Model development was carried out for
the 1988-89 and 1991-92 periods, leaving 198487,
1990, and 1993 for independent forecasting. Thus,
within the 1984—93 evaluation period the proportion of
years available for independent forecasts is slightly
lower than that for the Lamont and Scripps—MPI
models during 1982—93.

For the statistical CCA model each year is withheld
in turn and the model developed over the 1956-93
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period but without any explicit influence from the
withheld year that is the forecast target. Forecast
anomalies, damped toward climatology to minimize
mean squared error, are reinflated such that their
variance equals that of the observations. For a sec-
ond, perhaps more realistic, skill estimate of CCA,
truly real-time forecasts are simulated by omitting all
data occurring after the time of the forecast. Referred
to as retroactive real-time forecasting, this is carried
out for the 1982—93 period. It is about as close as one
can come to a real test (as for the Lamont and Scripps—
MPI models for 1986—93 and the NCEP model for its
separated intervals of independent years), one differ-
ence being that in “real” real time there are hard to
avoid problems such as unavailable or erroneous
predictor data.

The constructed analog forecasts were producedin
a cross-validation design in similar fashion to the CCA
forecasts. The scheme holds outthe yearbeing forecast
in the sense that it cannot be used to construct the
analog. Additionally, the climatology, in terms of which
all years’ data are expressed, is repeatedly recalcu-
lated excluding the base year. Because the variance
of the forecasts is realistic, inflation of forecast anoma-
liesis not necessary. Forecasts were made both using

Vol. 75, No. 11, November 1994



TasLE 1 (continued).

Authors Barnston and Ropelewski (1992) Van den Dool (1994)
Model Statistical: CCA Empirical: constructed analog
Details of model Four consecutive Four consecutive

3-month predictor periods

3-month predictor periods

6 months

, Leadtime 6 months
Time from forecast start
to center of predicted period 7.5months 7.5 months

‘ Predicted SST region Nifio 3.4 Nifio 3.4

" (All 5°N--5°8) 120°-170°W 1200-170°W

' (east-central Pacific) (east-central Pacific)
Period of record 1956-93 195693

Proportion of evaluation period
containing independentforecasts 12/12 =1.00 12112 =1.00
Skill Corr rmse Design® Corr rmse Design
(1982-93) 0.66 0.89 “real” 0.65 0.89 “real”

stddevis 1.11

stddevis 1.11

“Design variations: “real” is retroactive real time, and mixed is mixture of hindcasts and independent forecasts (IF); proportion of IF years to

total years available in 1982-93 is shown in row above.

the entire 1956-93 period (the cross-validation ver-
sion) and in retroactive real-time mode, as was done
for the CCA forecasts.

¢. Overall skill

Table 1 provides basic information about the five
forecast models, followed by skill scores for the 12-
year period of 1982-93. A few explanatory notes
aboutthe scores are inorder: The scores are based on
forecasts for all times of the year—that is, 12 running
3-month target periods per year. Note that the lead
times and the forecast regions are similar but not
identical among the models. Both correlation skill and
root-mean-square error (rmse) skill are presented.
The forecasts and observations have been standard-
ized over the period of record on which the forecast
model is based (shown in Table 1). The rmse scores
are computed with respect to these standardized
values and thus have no physical units. Because SST
variability during the 1982-93 period has been greater
than that during the models’ longer term base periods,
the rmse scores are higher than would be expected if
standardization had been done with respect to the
1982-93 period. The standard deviation of the ob-
served SST that is already standardized over the
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longer term is shown in Table 1 underneath the rmse
score; these exceed unity except for the NCEP coupled
model that has no longer term.

To more effectively describe the skill of forecasts
over shorter periods than the basic one (e.g., begin-
ning after 1970 for the Lamont coupled model), the
subperiod means are not removed in the computation
of the correlation skill. More detail and the rationale of
this version of the correlation are provided in the brief
appendix.

The verification scores at the bottom of Table 1
indicate correlations in the 0.60s and rmse’s in the
0.80s to 0.90s. These scores succinctly express the
current state of the art in ENSO prediction: moderate
forecasting ability at the two-season-lead time, with
skills considered useful by most standards. This level
of skill is comparable to forecasts of extratropical 500-
mb height based on numerical weather prediction at
5-6 days’ lead.

The scores also show similar overall forecast skill
among the five dissimilar methods, indicating that
none of them is decisively better or poorer than the
others. In fact, if 19 independent realizations of fore-
cast skill are assumed over the 12-year period, the
95% confidence interval of the true correlation skill
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TasLe 2. Persistence skill for two SST target regions (1970-93). The mean SST for
the 3-month period to be persisted (prior to = 0) is used as the forecast for future
periods whose center ranges from 0to 12 months later than the center of the persisted

casts for two of the predictand regions
overthe 1970-93 period. ltis clearthatall
methods outperform persistence fore-
casts, whose skill is in the low 0.20s at 6

period. months’ lead and reaches zero at 9

months’ lead (a 1-year temporal offset).
Time between Nifio 3 Nifio 3.4 The skills obtained from the model fore-
centers of 3-month Lead time (5°N-5°S, (5°N-5°8, casts (>0.60) are roughly equal to persis-
periods (months) (months) 120°-150°W) 120°—170°W)

about a sample estimate of 0.65 is 0.28 to 0.85-an
enormous range. With a longer period of record, as
exists for some of the models, this range would narrow
considerably. An assumption of 19 independent
samples in the 1982-93 period is roughly approxi-
mated by the decorrelation (autocorrelation e-folding)
time of observed SST of 7.5 months, but this may be
too liberal in view of weaker autocorrelations (nega-
tive, then positive) at lags of over 1 year or may be too
strict in view of the superposed higher-frequency
variations. In any event, skill differences of, say, 0.58
versus 0.71 do not approach being statistically signifi-
cantly different from one another.

Table 2 shows the mean skill of persistence fore-
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tence skills at 1-2 months lead.

In the next three subsections, specific
aspects of the behavior of the five mod-
els are examined in some detail. Read-
ers whose interests are more general
may wish to skip to section 4.

d. Temporal variation of skill

Table 3 shows skills for each of the
five methods, as in the bottom row of
Table 1, for several periods ending in December 1993.
CCA and constructed analog skills using cross valida-
tion and using retroactive real-time forecasts are
presented. It is evident that the skill of each method
has noticeable period-dependent fluctuations and that
scores have averaged higher in the more recent
periods. The early 1990s, roughly the period of pub-
lished real-time forecasts, have been an exception
(Fig. 1). Figure 1 provides a closer look at the correla-
tion (panel a) and rmse (panel b) skill fluctuationsinthe
form of a 24-month moving average of skill for each
model over the 1982-93 period. Note that the rmse is
affected in part by the variance of the observed SST
(already standardized, but only over the model’s longer

b Skill {(RMSE) for Running 2-Yr Window
1'8 T T T T T T T T T T T T T

14

1.2

1.0
constr |
I analog

Skill (RMSE)

0.8
0.65

0.4
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2
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Fia. 1. Two-year moving average of skill of five forecast models for July 1981-December 1993, with skill measured using (a) correlation

and (b) rmse. The thicker solid curve shows skill for NCEP coupled model forecasts, the thinner solid curve for the Scripps—MP1 hybrid coupled
model, the thicker dashed curve forthe Lamont coupled model, the thinner dashed curve for the constructed analog model and the dotted curve
for the CCA model. On the abscissa, which indicates the center of the 2-year period, tick marks indicate January. For the two-season lead
time shown, NCEP coupled model forecasts are available from October 1984 (with moving average thus starting October 1985), retroactive
real-time-constructed analog and CCA moving average starting January 1983, and the two other dynamical models starting earlier than July
1981.
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Fic. 2. Plots of forecasts (dashed line) and observations of SST
overthe mostrecentapproximate decade for regions definedin Table
1, depicting the state of ENSO. (a) Lamont simple coupled model; (b)
Scripps—MPI hybrid coupled model; (c¢) NCEP coupled model; (d)
NCEP empirical CCA model using retroactive real-time design; and
(e) NCEP empirical constructed analog model using retroactive real-
time design. The standardized anomalies represented on the ordinate
are based on the model’s full period of record, which exceeds that
shown in the plot [except for (c)], and computed individually for each
of the 12 overlapping 3-month seasons.

base period) for the period and target area in question,
shown below each rmse value. The 2-year window is
chosen as a timescale characteristic of an ENSO
episode. The skill variations are clearly large, ranging
from the Lamont model’s highly skillful forecasts of the
warm ENSO event in winter 1986/87 to other periods
of poor skill on the parts of several of the models.
The two measures of skill shown in Fig. 1 allow for
further characterization of the error. For example,
during 1984 the Scripps—MPI model has a relatively
poor (high) rmse skill (Fig. 1b), but its correlation skill
is not below average. This can occur during periods
when forecasts and observations have high amplitude
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with sizable differences between them (for a high
rmse) despite being on the same side of the overall
mean (for a moderately high correlation).

Figure 2 contains forecast versus observation plots
for the 1982-93 period (except 1984—-93 for the NCEP
coupled model) for the five forecast models. Only the
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TasLe 3. Skill for five ENSO forecast models over several periods. Both the cross-validated and
retroactive real-time versions of CCA and constructed analog are shown. The standard deviations of
the observed SSTs in the target area (which already were standardized with respect to the model’s
longer base period)are shown beneath the rmse scores in parentheses in case normalization is desired.

The rmse scores are in standardized units with respect to the longer base periods.

Scripps=MPI hybrid coupled

Jan 1965

Beginning of period ending Dec 1993.

Jan 1975

Jan 1980

058

0.51°

NCEP statistical CCA,
cross-validated

NCEP empirical, constructed
analog, cross validated

aStandard correlations for Scripps—MPI model for periods beginning in January 1980 and January 1985
are 0.66 and 0.67, respectively (see appendix).
v1966.

Model

Jan 1965

0.54

0.49

Jan 1985

0.61

0.43 0.59 0.68
e - 0.64
0.50 0.64 0.66

- 069

served SST in parentheses)

Beginning of period ending Dec 1993.

Jan 1975

Jan 1980

086

Jan 1985

1.02) (0.96)
Scripps—MPI 1.05 0.93 0.88
hybrid coupled (1.01) (1.03) (1.11)
(.00) =
NCEP statistical CCA, 0.99 1.06 0.94 0.86
cross validated (1.04) (1.03) (1.05) (1.13)
' k - 0.91
{1.13)
NCEP empirical, constructed 0.85 0.92 0.85 0.89
analog, cross validated (1.04) (1.03) (1.05) (1.13)
- 088
(1.13)
©1966.
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retroactive real-time ver-
sions of the CCA and con-
structed analog models are
shown. Skills for these re-
cent years (or for 1985-93;
see Table 3) are higherthan
those that include earlier
years. This may be related
to the generally greater in-
tensity of the recent period
ENSO fluctuations (espe-
cially the warm followed by
coldsequencein 1986—89),
providing a strong low-fre-
quency signal. It may also
reflectimprovementsin the
data quality (includingsome
“cleaning up” done long af-
terinitial real-time forecasts
were made, as reanalysis
is a perpetual process).
Figure 2 shows that all
five models predicted the
strongest ENSO episodes
reasonably well (especially
for 1986/87, and somewhat
for 1982/83 and 1988/89),
and generally performed
less well forthe weakerfluc-
tuations (e.g., 1991/92,
spring 1993) and neutral
periods (e.g., 1983/84 and
1990/91). Each model did
well for some events and
not as well for others, the
most and least successful
sets varying from model to
model. There is a sugges-
tionthatthe dynamical mod-
els have greater variations
in performance than the
empirical models. For ex-
ample, the 1986/87 warm
eventappearstohavebeen
forecastmostaccurately by
the Lamont model, and the
1988/89 event by the
Scripps—MPI model. How-
ever, these same models
made the least accurate
forecasts for the unusual
spring 1993 warm event. It
is more difficult to find
events that were forecast
bést or worst by one of the
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TasLE 4. Intercorrelations among the five models’ SST forecasts.

All seasons

Lamont Scripps-MPI NCEP coupled CCA Constr. Analog
1.00 0.22 0.50 0.18 0.08 - Lamont
0.22 1.00 0.55 0.66 03  Scripps-MPI -
080 055 we o0& 068 NCEP coupied
0.16 0.66 0.64 1.00 070 CCA - o
0.08 0.36 066 0.70_ 1o __ Constructedanalog |
Correlations among observations in the three target regions:
Nifio 3.4 vs. Nifto 3: 0.95; Nifio 3.4 vs. 140°—180°W: 0.94; Nifio 3 vs. 140°—180°W: 0.81.

Northern cold season only (December—March)
Lamont Scripps-MPI NCEP coupled CCA Constr. analog
1.00 0.19 0.56 0.34 0.38 tamont
0.19 1.00 0.50 0.49 0.24 Scripps—-MPI
0.56 0.50 1.00 086 084 NCEPc_)ng!ed
0.34 0.49 0.86 1.00 0.86 CCA
0.38 0.24 084 = 08 100 Constructed analog f

Correlations among observations in the three target regions:

Nifio 3.4 vs. Nifio 3: 0.94; Nifio 3.4 vs. 140°-180°W: 0.95; Nifio 3 vs. 140°-~180°W: 0.84.

empirical models, although brief periods may be de-
tected in Fig. 1.

Figures 1 and 2 demonstrate that while a two-
season-lead forecast skill since the early 1980s is
useful (with overall correlation skill >0.60 and rmse
below 1), there are cases of marginal and occasionally
fully inadequate model performance. Differences in
overall skill among the methods are fairly small. Be-
sides possible differences in forecast ability, these
skill differences may be due to the differing periods
upon which model tuning was based (resulting in
slightly different degrees of independence over the
1982-93 verification period), the slightly different veri-
fication periods (atleast for the NCEP coupled model),
and especially the differing target regions. Regarding
the last item, it is found that the skill of the NCEP
coupled model decreases somewhat when Nifio 3
rather than Nifo 3.4 is used as the target region,
eliminating the small difference between its skill and
that of the Lamont model (Tables 1 and 3) whose
forecasts shown here are for Nifio 3. It is also interest-
ing that retroactive real-time CCA and constructed
analog forecasts do not generally fare more poorly
than their cross-validation counterparts. This may be
peculiar to the specific period studied here, or could be
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a result of a negative bias that can occur in cross
validation when true skills are not high (Barnston and
Van den Dool 1993).

Table 4 shows correlations among the forecasts of
the five models over the 1982-93 period (except
starting in October 1984 for correlations with the
NCEP coupied model) for ail seasons (Table 4a) and
for only the December through March northern winter
period (Table 4b). Generally greater agreement is
found for winter, when the forecast skill is highest.
Because the Scripps—MPI and the Lamont models
forecast regions different from those of the other three
models, the correlations of their forecasts with those
of the other models are naturally expected to be lower.
(Note the correlations among the observations in
Table 4.) The NCEP coupled model’s forecast corre-
lations also may not be fully comparable to the others
due to its different period of record. Aside from these
factors, there are no pairs or groups of models that
yield highly similar forecasts. While some of the corre-
lations are fairly high (e.g., CCA and constructed
analog, which are both linear models that use related
predictor data), the correlations generally reflect the
considerable differencesinthe methods through which
the SST forecasts are derived. The Lamont model
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forecasts correlate least with the others largely be-
cause of its unique prolongation of the 1982/83 El Nifio
into 1984.

The forecast records of the Lamont model extend
back to 1971, those of the Scripps—MPI model to
1966, and those of CCA and constructed analog
(using cross validation only) to 1956. Table 3 shows
that the overali skills of these models were lower than
for the more recent periods. Plots of the forecasts
versus observations for the longer term (as in Fig. 2,
not shown) indicate slightly more frequent, tower-
amplitude ENSO fluctuations in the 1950s and 1960s
than those of the recent 15-20 yr. While some of the
early major fluctuations were forecast correctly by two
or more of the models, there were also cases of poor
skill lasting 1-2 yr for two or more models. Data quality
considerations, as well as the lower signal-to-noise
ratios, may have contributed to the lower early period
skill. This is easy to understand for CCA, in which,
using cross validation, the entire 1956-93 period is
used to develop predictive “rules.”

e. Seasonality of skill

Our skill examination has concentrated on a single
lead time averaged over all times of the year. The
skill’s seasonality and lead-time dependence are also
of interest. While a detailed look at these is not
intended here, we can show some basic findings.
Table 5 shows mean correlation skill for 1982-93
(except 198493 for the NCEP coupled model) for the
five forecast methods for 6-month lead (6.5-month
lead for Lamont model) partitioned by season, where
3-month mean periods centered on December— Feb-
ruary define northern winter, etc. Seasonality in ENSO
forecast skill was first noted by Hasselmann and
Barnett (1981), whose findings were extended and
updated in subsequent studies. To varying degrees,
the skills of all of the methods examined here clearly
show seasonal variation. Forthe NCEP coupled model
and especially for CCA and the constructed analog,
forecasts made in the fali (or winter) for the following
summer (or fall) have lower skill than those made at
other times. This is related to the so-called spring
barrier, which is difficult to traverse in a forecast (Ji et
al. 1994b; Latif et al. 1994). Forecast skills of the
Lamont and Scripps—MPI models appear to have
somewhatless seasonal dependence. Asimilar analy-
sis for the four models capable of forecasting back to
1971 (not shown) produces generally similar seasonal
dependencies, although the Lamont and Scripps—MPI
models show somewhat more variation than in Table
5. The decay of skill as a function of lead is seasonally
dependent for all five models, where the most rapid
decay occurs as spring begins being traversed in the
lead period (see Xue et al. 1994). The decay rates of
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both the Lamont and Scripps—MPI model skill have
smaller seasonal dependencies largely because they
retain more skill through the spring barrier. While the
seasonally averaged rate of skill decay does not vary
substantially among the five models, slightly more skill
appears to be retained from 9-12-month leads for the
dynamical than for the statistical models.

f. Interpretive considerations

In assessing the performance of the five models it
isimportantto account for differences in their forecast-
ing situations. Perhaps more important than the slightly
longer lead time used in the Lamont model is that the
target region used here (Nifio 3) has been found
harder to predict, by most dynamical or empirical
models that predict several regions, than the Nifio 3.4
region, which in turn has been found slightly harder to
predict than areas centered still closer to the dateline.
While the Lamont model forecasts the SST field
throughout the tropical Pacific, forecasts of Nifio 3 are
issued because that region has been thought (cor-
rectly or incorrectly) to best represent ENSO, and
because the Lamont model’s highest forecast skill is
foundin the eastern half of the Pacific ratherthan close
to the dateline (Miller et al. 1993). The Scripps—-MPI
model also forecasts a complete tropical Pacific SST
field, but highlights the region roughly between Nifio 3
and the dateline that it predicts most successfully.

It is noted that only the NCEP coupled model
availed itself of subsurface oceanic predictor data,
and of course, only the three physical models used
subsurface physics in the formation of their forecasts.
The two empirical models did not explicitly use the
subsurface in any way. The skills of any of the five
modeils could likely be increased with the addition of
some of the currently lacking features. For example, in
a recent experiment 20°C isotherm depth data were
added to CCA's set of predictors for the period of June
1982 through 1993, with values for 196182 recon-
structed using analyzed wind stress. Resulting cross-
validation skills were slightly increased, especially at
longer leads for late spring and summer forecasts;
however, CCA’s performance remains at the same
general level as that of the other models. Similarly, the
NCEP coupled model recently underwent a refine-
ment of its flux climatology and the installation of a
MQOS correction for the stress anomalies produced by
the atmospheric model. Skills are improved, particu-
larly inthe eastern portion of the central tropical Pacific
(i.e.,Niho 3). Animproved Scripps—MP! hybrid coupled
model (to be called HCM-2), with higher resolution and
global tropical oceanic coverage, is near completion,
with expectations of higher forecast skill.

Aside from the details of skill seasonality and lead
sensitivity, it appears that in general at this time the
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TasLE 5. Seasonality of skill of five ENSO forecast models, based on 1982-93 (except 1984-93 for NCEP coupled model). The standard
deviation of observed SST that was already standardized with respect to the models’ longer base periodsis indicated. The RMSE scores are

in standardized units with respect to the models’ longer base periods.

Targetseason
Model Spring Summer Fall Winter
| Lamontcoupled CORR 062 0.59 0.60 0.68 |
| Jan 1982-Dec 1993 RMESE 0.99 1.01 094 0.84 |
t Obs std dev 112 1.13 1.02 1.04 J
Scripps—-MPI CORR 0.612 0.612 0.69° 0.722
hybrid coupled RMSE 1.08 1.06 0.87 0.83
Jan 1982-Dec 1993 Obs std dev 1.19 1.10 1.03 1.06
NCEP coupled CORR 0.76 0.65 0.59 0.89
: Oct 1984-Dec 1998 RMSE 0.70 0.81 0.90 0.48
Obs std dev 1 1.00 1.00 1.00 1.00
NCEP statistical CCA, CORR 0.75 0.45 0.64 0.79
retroactive real time RMSE 0.82 1.09 0.86 0.74
Jan 1982—-Dec 1993 Obs std dev 1.16 1.12 1.05 1.06
{NCEP empirical constructed CORR 072 0.44 0.67 0.75
j analog, retroactive real time RMSE 0.89 1.06 0.83 0.75
Obs std dev 1186 112 1.05 1.06

| Jan 1982-Dec1992/93

{

aStandard correlation for the Scripps—MPI model is 0.67, 0.66, 0.73, and 0.74 for spring, summer, fall, and winter, respectively (see the

appendix).

physical models examined here do not yet signifi-
cantly outperform the two empirically based models,
or even a local second-order autoregressive process.
In fact, such an autoregressive model was developed
specifically as a control for the CCA model discussed
here and was found to be a tough competitor in
predictive skill (section 7 of Barnston and Ropelewski
1992). Thus, the empirical and physical models have
captured the essentials of interannual ENSO variabil-
ity but have not yet greatly exceeded autoregressive
results. There is still room for improvement. Whether
a potential for improvement exists depends on the
inherent predictability of the ocean—atmosphere sys-
tem, which we are not able to assess at this point.

4. Practical implications for tropical and
extratropical forecasting

a. Plans for new NWS forecast products

The skills obtained by the five different forecast
models at a two-season lead, while not much better
than those of second-order autoregressive models,
are far superior to those of more commonly used
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controls such as chance or persistence. They also are
high enough to be considered useful (i.e., correlation
is at least 0.5 or 0.6). As a result, the two dynamical,
one hybrid, and two empirical forecasts for tropical
Pacific SST are being issued at lead times of up to 1
year on a quarterly basis in the Experimental Long-
Lead Forecast Bulletin and three of them are being
issued on a monthly basis in the Climate Diagnostics
Bulletin.

Starting in January 1995, forecasts for the state of
the ENSO, as indicated by some of the methods
discussed above, will be issued routinely by the Na-
tional Weather Service’s Climate Prediction Center. In
addition, “consolidated” forecasts for United States
temperature and precipitation will begin being issued.
The long-lead forecasts progressing out to one year
for both ENSO and U. S. surface climate will be issued
monthly as the Climate Outlook. The current Monthly
and Seasonal Weather Outlook, that has contained
zero-lead 30- and 90-day forecasts since the 1970s,
will no longer be issued. The tools contributing to the
final, single U.S. surface climate forecasts will be
CCA, the NCEP coupled model, and the optimal
climate normals approach (Huang et al. 1994). The
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3-MO MEAN CCA

AVG SKILL OVER U.S.

March season at 6 months’ lead—that
is, for forecasts made at the end of the

0.4

0.2

previous June. Portions of the North-
| east have skill comparable to that for
forecasts of the tropical Pacific SST at
the same lead time, with lower but statis-
tically significant skillin other areas. Part
but not all of the skill in winter has its
originin ENSO, as shown by Ropelewski
and Halpert (1986), and also clearly
identified in the CCA-produced diagnos-
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tics (not shown). In fact, the skill is
higher when only warm or cold ENSO
year forecasts are considered. The one-
season-lead skill in winter (not shown)
has by now a classic ENSO spatial
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Fia. 3. The annual cycle of cross-validation correlation skill of CCA forecasts of 3-
month mean temperatures averaged over 59 stations across the continental United
States. Season 1 is the 3-month period ending in mid-January, season is the period
ending at the end of January, etc. Shown are lead times of 1 month (solid curve), 4
months (shortest dashed curve), 7 months (second shortest dashed curve), 10
months, and 13 months (longest dashes). Seasons progress by half-month incre-

ments.

latter is an empirical technique in which the average
condition over the previous k yr for the time of year
being forecast is persisted, where k varies spatially
and seasonally in order to maximize local predictive
skill. The constructed analog method is now in an
experimental stage (Van den Dool 1994) and may
become a contributing tool in the future. Tools from
outside of NCEP (e.g., the Scripps—MPI hybrid coupled
model used with an atmospheric GCM; Barnett 1994)
also may eventuaily be invited to contribute.

b. Extratropical forecasts

Based on experimentation with CCA-based fore-
casts (Barnston 1994), the most skillful predictors for
U.S. surface climate are the fields of global SST and
Northern Hemisphere 700-mb height at several con-
secutive prior 3-month periods. Figure 3 shows the
correlation skill for the 1956—-93 period, averaged over
59 fairly equally distributed U.S. stations, as a function
of season for several lead times (see Fig. 3 caption).
It is noteworthy that there is a modest level of skill at
certain times of the year—late winter and late sum-
mer—that decreases only slowly with increasing lead
time. Other empirical forecast methods have shown
maxima at these times of year as well, such as analog
forecasting (Barnston and Livezey 1989; Livezey 1990)
and persistence (Van den Dool 1983, Van den Dool et
al. 1986). Figure 4 shows the geographical distribution
of 1956-93 CCA skill over the U.S. for the January—
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pattern, peaking along the Gulf of Mexico
and southeastern states, the northern
tier from the Great Lakes to the northern
Rockies, and somewhat along the West
Coast. The 6-month-lead forecast (Fig.
4) shows aless dominant ENSO pattern
because observed predictordata through
the prior June leaves uncertainty re-
garding the ENSO condition to be ex-
pected 7-8 months later. The SST in
other parts of the globe may have a larger share of
influence, possibly on timescales other than that of
ENSO, when the tropical Pacific SST influence is
uncertain.

If the winter tropical Pacific SST itself were moder-
ately well predicted at a two-or-more-season leadtime
using a dynamical ocean model and supplied to a
statistical atmospheric model such as CCA, greater
skill in forecasting seasonal mean U.S. surface cli-
mate than that demonstrated above using CCA alone
might be expected. The potential benefit of a two-

20 22 24

JAN-FEB-MAR CCA SKILL (Temperature)

Fia. 4. Geographical distribution of cross-validated CCA corre-
lation skill across the United States for forecasts of January—March
at6-month lead (i.e., using data through prior June) for 38 yr (1956—
93). Mean skill is 0.32 (Heidke skill 0.18).
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tiered forecast process, proposed by
Bengtsson et al. (1993) and Barnett et
al. (1994), was demonstrated for fore-
casts of extratropical Northern Hemi-
sphere winter 700-mb heightusingthe | Os
Scripps—MP1 hybrid coupied model
with a variant of CCA (Graham and
Barnett 1994). These forecasts are
competitively skillful in certain regions
and/or seasons, especially during
warm and cold ENSO episodes. A
similar, if not higher, level of skill was
also obtained using the dynamically
predicted tropical SST to force a state-
of-the-art atmospheric GCM devel-
oped at MPI (the ECHAM3 model;

correlation skill
........................ 00

Roeckner et al. 1992). Such a dual
dynamical system is the Scripps—MP!I
two-tiered coupled model (Barnett et
al. 1994), one of whose recent suc-
cesses is demonstrated by the geo-
graphical distribution of skill for fore-
casts of January—February precipitation anomalies in
the United States at two and one-third-season lead for
strong ENSO years (Fig. 5). Similar experimentation
has been performed with the NCEP coupled model,
with comparably successful results during strong ENSO
episodes. Consequently, the two-tiered version of the
NCEP coupled model is one of the several tools now
being operationally implemented at NCEP.

c. Utility

The dissemination of measurably skillful forecasts
with much longer lead times by NCEP—-CPC should be
useful to a wide variety of users, particularly for
industrial or commercial applications and government
planning. They will be less well suited for the general
public, partly because they are expected to verify
more successfully over an integrated time period
(e.g., an entire 5-month “winter,” or several consecu-
tive winters) than for shorter embedded periods that
interest private citizens most frequently. However,
these forecasts will be limited in that 1) ENSO fore-
casts for late spring through fall at 6 months’ lead are
relatively unskillful because of the spring barrier men-
tioned above, and 2) occasional skill “droughts” lasting
as long as 1-2 yr may occur despite the moderately
skillful expected average performance. In the fore-
caststobe issued by CPC beginning in mid-December
1994, the expected forecast skill will be expressed
using uncertainty indicators (e.g., probabilities, or the
associated “error bars”) for U.S. surface climate as
wellas ENSO. For U.S. temperature and precipitation,
for example, this will convey a nearly complete lack of
forecast skill in late spring (April-June) and late fall at
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Fic. 5. Geographical distribution of skill of the Scripps—MPI hybrid coupled model
forecasts for January—February total U.S. precipitation at two and one-third season lead
(i.e., using data through prior May) for seven strong ENSO events. Skill is expressed as
a correlation between model forecasts and observations.

many locations. In late winter (January—March), while
temperature forecasts at short to moderate lead times
are relatively skillful in the ENSO-influenced regions
(the Gulf, the Southeast, and the north-central to
northwestern tier), other regions such as the central
Rockies, the Great Basin, and central plains have
negligible expected skill. As implied by potential pre-
dictability studies (Shea and Madden 1990), time-
averaged winter weather as a response to persistent
remote boundary condition anomalies may be lacking
in these regions whose climate is governed more
exclusively by synoptic weather events.

While the United States temperature and precipita-
tion forecasts will, as before, be expressed proba-
bilistically to express uncertainty, a new feature of the
forecast format will be the distinction between regions
having relatively confident forecasts for near-normal
conditions and a complete lack of confidence, result-
ing in climatological probabilities. The former condi-
tion cannot be expressed in the existing CPC forecast
format because the “near-normal” category has been
assumed to lack any predictive skill (Gilman 1985; Van
den Dool and Toth 1991). Using the above-described
set of more advanced empirical and dynamical tools,
we are now occasionally able to forecast near-normal
conditions with measurable confidence.

5. Conclusions and discussion
The five models discussed here are some initial

tools in what we expect will be an increasingly rich
supply of oceanic and atmospheric climate forecast-
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ing instruments. Each was chosen for a reason. The
CCA and constructed analog methods establish a
basis of skill from empirical information; the Lamont
model, whose forecasts have become familiar to the
science community, is thought to contain the essential
physics; the Scripps—MPI hybrid coupled model is a
blend of methods with its sophisticated ocean model
and a “slave” statistical atmosphere; and finally, the
comprehensive NCEP coupled model, with its initial-
ization using a real-time ocean data assimilation sys-
tem, holds great potential. A few other models cur-
rently able to produce real-time forecasts of equatorial
Pacific SST are mentionedin section 1, and still others
are becoming or are already capable of such fore-
casts.

A moderate level of mean skill has
been demonstrated by all the methods
examined here for forecasting tropical
Pacific SST, with correlation skill averag-
ing in the 0.60s at a lead time of two
seasons. (Recall our strict definition of
lead time—the time that is completely
skipped.) Within the range of statistical
uncertainty, the overall skills of all the methods dis-
cussed here are equal. However, the skill of any of the
methods varies over time about its average, resulting
in periods of very high as well as very low skill. With an
expression of uncertainty to accompany the fore-
casts, users will have the best opportunity to under-
stand and benefit from them. This will be especially
valuable (and possibly frustrating) for users, many of
whom strongly prefer a categorical forecast product
despite the inherently probabilistic nature of forecasts
of both ENSO and U.S. surface climate.

In the skill evaluations presented here, we at-
tempted to use simulations of independent forecasts
(cross validation, or retroactive realtime) as equally as
possible for the five models. A statistical model’s
automatic usage of future data to make forecasts for
an intermediate time in a cross-validation setting
cannot be mimicked in a physical model integration.
The closest equivalent for a physical model is to
forecast periods that were not used in any way in the
model construction and tuning process. More than half
of the skill evaluation period used here satisfied that
condition. Another step toward a real-time simulation
is to exclude the dynamical model’s target period from
the computation of the model’s observed climatology
statistics (as if it were a future period).

That skills comparable to those of the dynamical
models described above are currently approximated
with a completely statistical model at 6 months’ lead
suggests that the potential of dynamical models may
not yet be fully realized. If the ocean—atmosphere
system contains sufficient inherent predictability, the
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dynamical models should be able to outperform mod-
els that do not use the equations of physical oceanic
and atmospheric motion or cannot accommodate
nonlinearity.

The importance of quality control of real-time data,
and good maintenance of the overall database, cannot
be overemphasized. It is the skill of true real-time
forecasts that will eventually be evaluated. This skill
can measure up to estimates of independent forecast
skill (e.g., retroactive real-time simulations) only if
observational errors or real-time data assimilation
failures occur very infrequently.

To make an adequate assessment, the skill of a
forecast method should only be studied using a large

Because we cannot wait that long to test a single

method, it is imperative that methods be developed to
g Mmore accurately estimate skill of future operational
1 farecésts using hindcast verification.

set of forecasts made to simulate independent or real-
time conditions. Often, too much is read into the
outcome of a small set of forecasts, or even a single
forecast. By absolute standards, the level of skill of
two-season-lead forecasts is modest, and given the
small number of degrees of freedom for an area the
size of the United States, it should come as no surprise
to obtain some very good as well as very poor fore-
casts. Inlong-range forecasting, it takes over 10 years
to obtain a sample of forecasts sufficient to perform a
meaningful verification study. ENSO episodes in-
crease the time between independent climatic realiza-
tions, which may occur far less than once per season.
Because we cannot wait that long to test a single
method, itis imperative that methods be developed to
more accurately estimate skill of future operational
forecasts using hindcast verification. This issue has
received plenty of attention for statistical methods but
too little for forecasts made by dynamical methods,
particularly whenthese methods are run repeatedly on
the same datasets in slightly different configurations
of the model.

In conclusion, over the last decade our achieve-
ment in forecasting ENSO fluctuations has been quite
substantial, especially in view of how recently we had
virtually nothing. We now have moderate capability at
two-season lead, and more modest but statistically
significant capability at leads of over 1 yr. An analo-
gous evolution of skill in short-range forecasting using
numerical weather prediction occurred in the 1960s
and 1970s. Our ability to forecast extratropical climatic
conditions, however, with the exception of specific
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regions for certain times of the year, is considerably
weaker. We need to continue our efforts in both areas,
concentrating heavily on model design but also on
dataset quality and on verification methods. While
future achievements will probably occur gradually,
there is every reason to expect that our long-term
efforts will result in additional knowledge, and, it is
hoped, higher forecast skill.

Appendix

In computing the correlation skill of forecasts over shorter
periods than the basic one (e.g., beginning after 1966 for the
Scripps—MPI hybrid coupled model), the subperiod means are not
removed and are not used for computing the standard deviation
terms. Rather, the basic period mean (which is zero in the standard-
ized data used in the analyses here) is used. Such a coefficient is
bounded by +/-1 asis the conventional correlation coefficient. This
is done so that, for example, if in the subperiod the forecasts and
observations showed small-amplitude out-of-phase variations but
both were generally on the same side of the longer base period
mean, a positive correlation would result, and we believe justifiably.
The standard correlation coefficient would be negative in this situa-
tion. On the other hand, if there were in-phase variations but the
forecasts and observations were on opposite sides of the mean
(indicating a subperiod forecast bias, which can be viewed as a
general miss), a negative correlation would result. The standard
correlation coefficient would be positive in that case. The two
versions of the correlation are identical when the subperiod and the
basic period are equal, as for the NCEP coupled model.

The correlation scores of three of the other four models are
slightly increased, overall, with use of the modified version, because
their forecasts were successful in terms of the general anomaly sign
overthe 1982-93 period (both forecasts and observations averaged
above the long-term mean), but less successful in the details of
timing and magnitude. A few minor exceptions to this occur in the
period- or season-specific skills (Tables 3 and 5) and are not
indicated. However, a mild cold bias is generally found in the
Scripps—MPI model forecasts (its forecasts for 1982-93 average
slightly below its long-term forecast mean), but its timing of subperiod
fluctuations is successful, causing the conventional correlation to be
slightly higher than the modified version. Because this type of error
is easier to correct than nonsystematic errors, we indicate in
footnotes in the score tables the conventional correlation coefficient
for the Scripps—MPI model when it is higher than the modified
version.
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