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Abstract

The National Weather Service intends to begin routinely issuing
long-lead forecasts of 3-month mean U. S. temperature and precipi-
tation by the beginning of 1995. The ability to produce useful
forecasts for certain seasons and regions at projection times of up to
1 yr is attributed to advances in data observing and processing,
computer capability, and physical understanding—particularly, for
tropical ocean—atmosphere phenomena. Because much of the skill
of the forecasts comes from anomalies of tropical SST related to
ENSO, we highlight here long-lead forecasts of the tropical Pacific
SST itself, which have higher skill than the U.S forecasts that are
made largely on their basis.

The performance of five ENSO prediction systems is examined:
Two are dynamical [the Cane—Zebiak simple coupled model of
Lamont-Doherty Earth Observatory and the nonsimple coupled
model of the National Centersfor Environmental Prediction (NCEP)];
one is a hybrid coupled model (the Scripps Institution for Oceanogra-
phy—Max Planck Institute for Meteorology system with a full ocean
general circulation model and a statistical atmosphere); and two are
statistical (canonical correlation analysis and constructed analogs,
used at the Climate Prediction Center of NCEP). With increasing
physical understanding, dynamically based forecasts have the
potential to become more skillful than purely statistical ones. Cur-
rently, however, the two approaches deliver roughly equally skillful
forecasts, and the simplest model performs about as well as the
more comprehensive models. At a lead time of 6 months (defined
here as the time between the end of the latest observed period and
the beginning of the predictand period), the SST forecasts have an
overall correlation skill in the 0.60s for 1982-93, which easily
outperforms persistence and is regarded as useful. Skill for extra-
tropical surface climate is this high only in limited regions for certain
seasons. Both types of forecasts are not much better than local
higher-order autoregressive controls. However, continual progress
is being made in understanding relations among global oceanic and
atmospheric climate-scale anomaly fields.

It is important that more real-time forecasts be made before we
rush to judgement. Performance in the real-time setting is the
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ultimate test of the utility of a long-lead forecast. The National
Weather Service's plan to implement new operational long-lead
seasonal forecast products demonstrates its effectiveness in iden-
tifying and transferring “cutting edge” technologies from theory to
applications. This could not have been accomplished without close
ties with, and the active cooperation of, the academic and research
communities.

1. Introduction

The Climate Prediction Center (CPC) [formerly the
Climate Analysis Center (CAC)] of the National Cen-
ters for Environmental Prediction (NCEP) of the Na-
tional Weather Service is preparing to issue operation-
ally long-lead forecasts of 3-month mean temperature
and precipitation for the United States. Experimental
forecasts of this nature have been produced and
issued since late 1992. The forecasts will be made for
periods beginning a half month after the forecast time,
progressing by monthly increments to one year into
the future. This ambitious plan follows years of fore-
casting seasonal anomalies with zero lead, in which
the period being forecast began at the time of the
forecast. (A zero-lead forecast for a 3-month period
has often been called a one-season lead forecast, in
contrast to the stricter definition used here.) In the last
half decade, however, advancement along several
scientific fronts has opened doors to more sophisti-
cated forecast possibilities.

Zero-lead forecasts for monthly or seasonal means
of U.S. surface climate have been made routinely by
several groups for more than a decade. Examples are
those issued by the CPC or its predecessor (Namias
1964; Gilman 1985; Wagner 1989), Scripps Institution
of Oceanography, and others. The CPC forecasts
have been based in part on specific empirical tools
such as the North Pacific SST effects described by
Davis (1978), the climate state vector analog system
(Barnettand Preisendorfer 1978; Livezey and Barnston
1988), and the effects of the El Nifio/Southern Oscil-
lation (ENSO) (Ropelewski and Halpert 1986).
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Beginning in the 1980s, a few attempts to make
forecasts with greater-than-zero lead time for extrat-
ropical surface climate have been made. All have
been experimental and usually partly subjective, such
as the U.S. temperature and precipitation forecasts of
A. Douglas (see Preisendorfer and Mobley 1984) and
U.S. temperature forecasts of Wagner (Wagner and
Livezey 1984). An objective experimental long-lead
forecast system using canonical correlation analysis
(CCA), based on the work of Barnett and Preisendorfer
(1987), was further developed and impiemented in
1991 (Barnston 1994). Forecasts of U.S. surface
temperature using CCA have been used as one of
several inputs for CPC’s zero-lead operational sea-
sonal forecasts and have appeared in the CPC’s

The recent ability to produce forecasts useful at projection times
longer than previously thought possible is attributed to rapid
advancement in data observing and assimilation systems, computer
ity, and understanding of the importance of tropical boundary
jons for the evolution of the ENSO phenomenon.

Experimental Long-Lead Forecast Bulletin since fall
1992. Dynamically based forecast models have also
been developed and are currently being used for long-
lead extratropical prediction as the second of a two-
stage process, the first being the prediction of tropical
sea surface temperature (SST) anomalies. Examples
are the hybrid and two-tiered coupled model projects,
joint efforts of the Scripps Institution of Oceanography
andthe Max Planck Institute for Meteorology (Graham
and Barnett 1994; Barnett et al. 1994; Bengtsson et al.
1993), and the full coupled model at the NCEP (for-
merly the National Meteorological Center) (Ji et al.
1994a,b).

The recent ability to produce forecasts useful at
projection times longer than previously thought pos-
sible is attributed to rapid advancement in data ob-
serving and assimilation systems, computer capabil-
ity, and understanding of the importance of tropical
boundary conditions for the evolution of the ENSO
phenomenon. This last achievement has been asso-
ciated with new insight into tropical ocean-atmo-
sphere interactions and their representationin coupled
models. While some extratropical processes probably
develop independently of the Tropics (e.g., blockingin
northern ocean basins), much of the skill of the
forecasts for the extratropics comes from anomalies
of ENSO-related tropical SST (e.g., Barnett et al.
1994; Graham and Barnett 1994; Barnston 1994). The
tropical Pacific SST anomalies themselves have been
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targets of empirical as well as dynamical forecast
systems. Success in ENSO forecasting is essential to
extratropical forecasting in the Pacific—-North Ameri-
can region, because the tropical SST anomalies are
an important cause of midlatitude upper atmospheric
and associated surface climate anomaly patterns
(Horel and Wallace 1981; Barnett 1981; Ropelewski
and Halpert 1986).

A dependence of extratropical climate on tropical
phenomena is also found for Atlantic tropical storm
activity (Shapiro 1982; Gray et al. 1993; Elsner and
Schmertmann 1993). Tropical SST strongly affects
tropical continental climate, such as seasonal rainfall
in northeastern Brazil (Ward and Folland 1991; Hasten-
rath and Greischar 1993; Graham 1994). In view of the
above, we highlight in this
paper forecasts of the
ENSO-relatedtropical Pa-
cific SST as the primary
example of long-lead fore-
casting, with secondary
emphasis on the emerg-
ing technology for extra-
tropical prediction.

In its own right, the
ENSO phenomenon has
become the focal point of many worldwide concerns,
because of its large effects on the climate and the
economy in various regions of the world (Ropelewski
and Halpert 1986, 1987). Diagnosis and prediction of
ENSO are thus of considerable interest to the general
population. From the second half of the 1980s (Barnett
et al. 1988) through the present, progress in under-
standing and simulating the physics and dynamics of
ENSO has accelerated. Dynamical approaches have
included 1) simple ocean models coupled with statis-
tical atmospheres (Inoue and O’Brien 1984; Graham
et al. 1992), 2) ocean general circulation models
(GCMs) coupled with statistical atmospheres (Neelin
1990; Latif and Flugel 1991; Barnett et ai. 1993), 3) a
simple coupled model for both ocean and atmosphere
(Cane et al. 1986), 4) an ocean GCM coupled to a
simple atmospheric model (Latif etal. 1993a,b), and 5)
the most complex case of an ocean GCM coupled with
an atmospheric GCM (e.g., Ji et al. 1994b).

Physical ocean models coupled with statistical
atmospheric models (e.g., the hybrid coupled model
for the Tropics discussed in Barnett et al. 1993) are
reasonably effective because the atmospheric re-
sponse to the tropical oceanic boundary conditions
can be derived from historical data with moderate
success. Simple coupled ocean—atmosphere models
apply the laws of physics in both media, using carefully
chosen, abbreviated versions of the full equations of
atmospheric and oceanic motion andinteraction. While

Vol. 75, No. 11, November 1994



their simplicity may cause them to neglect factors
critical to their forecasts, it also eliminates problems
related to erroneously simulated details that occur in
full GCMs.

Purely statistical ENSO prediction models have
also been developed. These include CCA (Graham et
al. 1987a,b; Barnston and Ropelewski 1992), principal
oscillation patterns (POPs) (Xu and von Storch 1990)
orthe relatedinverse modeling (Penland and Magorian
1993), the singular spectrum analysis—~maximum en-
tropy method (Keppenne and Ghil 1992), and others.
Statistical models, which are usually much less costly
to run than dynamical models, serve the purpose of
setting a baseline skill level to which the skills of
dynamical models can be compared. The skill of the
dynamical models must exceed this baseline in order
to justify their additional effort and cost.

Physical models vary considerably not only in their
basic assumptions and equations but also in their
physical domain. The Lamont simple coupled model
(Zebiak and Cane 1987) uses a tropical Pacific do-
main, which precludes tropical-extratropical inter-
actions in the simulations. The Scripps Institution for
Oceanography (hereafter Scripps)—Max Planck Insti-
tute for Meteorology (MPI) hybrid coupled model
(Barnett et al. 1993), using a complex ocean model
and a statistical atmospheric model, also covers the
Pacific from 30°N to 30°S. The NCEP coupled model
uses full GCMs in both ocean and atmosphere and
covers the midlatitudes as well as the Tropics. In the
cases of all three models the equatorial SST anomaly
in the central and eastern Pacific is based on several
factors, a common one of which is the amount of heat
stored in the top 100—-200 m of ocean in the western
and central tropical Pacific.

While the estimate of predictive skill produced from
most of the models in the above-described categories
are roughly comparable, specific differences can be
found. Such differences may occur in the skill’s sea-
sonality and geographical distribution as well as its
decay with forecast lead time. It should also be noted
that overall skill score similarity does not imply fore-
cast similarity.

Several models have been subjected to the chal-
lenge of producing a succession of real-time fore-
casts. In this paper we examine the forecast skills of
five currently or potentially operationat ENSO fore-
casting systems: 1) the Lamont-Doherty Earth Obser-
vatory (hereafter Lamont) simpie coupled model
(Zebiak and Cane 1987), 2) the Scripps—MPI hybrid
coupled model (Barnett et al. 1993), 3) NCEP’s com-
prehensive coupled model (Ji et al. 1994a,b), 4) the
CPC’s statistical CCA model (Barnston and Ropelewski
1992), and 5) the CPC’s empirically constructed ana-
log model (Van den Dool 1994). The purpose of this
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presentation is to assess the effectiveness of current
routine ENSO forecasting and to lay out prospects for
future achievement not only for ENSO forecasts but
fortheir ultimate application: forecasts of extratropical
climate and of tropical climate in regions distant from
the ENSO action areas.

In section 2 the five forecast models are briefly
described. Section 3 examines the performance of the
models, and section 4 announces consequent deci-
sions of the National Weather Service regarding op-
erational issuance of long-lead forecasts. A summa-
rizing discussion and concluding remarks are given in
section 5.

2. Major characteristics of five ENSO
forecast models

inthis section we briefly highlight the features of the
two dynamical forecast models (Lamont and NCEP
coupled models), the hybrid coupled model of Scripps—
MPI, and two empirical forecast models of NCEP
(CCA and constructed analog). We also note here that
the SST data used for all the models discussed here,
as well as for forecast verification, come from combi-
nations of COADS (Coupled Ocean—Atmospheric Data
Set) (Slutz et al. 1985) and NCEP (Reynolds 1980),
the latter being used by all models for 1980 and later.
Forecasts were made and verified for area average
SST over discrete regions specified below. Observed
area average SST may differ slightly for the same time
and region from one model to another, because the
periods over which climatological means are based
are not identical.

a. The Lamont model

The simple coupled dynamical model developed at
Lamont-Doherty Earth Observatory (Cane et al. 1986;
Cane and Zebiak 1987; Zebiak and Cane 1987) is well
known as the first physical model dedicated to routine
diagnosis and prediction of ENSO fluctuations for the
benefit of the scientific community and other users. It
covers the tropical Pacific region only and predicts
specified monthly departures from climatology (i.€., it
is an anomaly model). It uses linear shallow water
dynamics for both the ocean and atmosphere, but
includes more complicated nonlinear forms for atmo-
spheric heating and ocean mixed layer thermodynam-
ics. The model is not initialized with analyzed SST
data; only wind stress anomalies (derived from The
Florida State University analyses) enter into the initial-
ization. The model was constructed to simulate ENSO
over a 12-month period (Zebiak 1984; Cane et al.
1986). In hindcast (i.e., retrospective forecast) mode,
the model has simulated the variability in the tropical
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Pacific SST startingin the early 1970s. Since fall 1985,
the model has remained unchanged and has continu-
ously produced forecasts in a completely independent
setting. Much of its success is due to favorable
reproduction of the heat storage mechanism in the
subsurface western and central equatorial Pacific
Ocean (Wyrtki 1985), attributable to ocean wave
dynamics. Forthe period from 1970to the early 1990s,
statistically significant predictive skill is found up to
12—16 months lead (Cane 1992). Real-time forecasts
forNifio 3 (bounded by 5°N-5°S, 90°—150°W) using the
Lamont model have been issued in the CPC’s opera-
tional Climate Diagnostics Bulletinsince summer 1989,
and for the entire tropical Pacific Basin in CPC’s
semioperational Experimental Long-lead Forecast
Bulletin and the Climate Diagnostics Bulletin since fall
1993. Prior to these times, the Lamont model fore-
casts were distributed to interested worldwide users
and were posted on the ENSO.INFO electronic bulle-
tin board file on the Internet.

b. The Scripps—MPI hybrid coupled model

A hybrid coupled model of the tropical ocean—
atmosphere system has been developed jointly at
Scripps Institution of Oceanography and the Max
Pianck Institute for Meteorology (Barnett et al. 1993).
The ocean model, created at MPI for the tropical strip
(Latif 1987), is a fully nonlinear GCM bounded by 30°N
and 30°S latitude and by Asia and South America. It
has 13 vertical levels, 10 of which are within the top
300 m. The seasonal cycle is governed by a Newtonian
heat flux and observed wind stress (Goldenberg and
O’Brien 1981). The vertical mixing scheme is depen-
dent upon the Richardson number (Pacanowski and
Philander 1981). The atmospheric model is statistical,
deriving the wind stress forcing for the ocean GCM
using the GCM’s SST. This is done with a CCA-like
regression model, using historical observed data fields
of anomalous SST and the corresponding wind stress.
The ocean GCM provides the SST anomaly to the
atmospheric model that, in turn, produces the wind
stress anomaly that subsequently forces the ocean,
producing an updated SST field. The coupling process
includes a Model Output Statistics (MOS)-like statisti-
cal correction of the SST fields produced by the ocean
GCM. The hybrid coupled model is initialized with wind
stress fields derived from observed SST data; thus, it
is indirectly “spun up” with SST information. Consider-
ing the entire 1965-93 period, the model has demon-
strated statistically significant predictive skill for up to
12—-18 months, with best performance for the central
equatorial Pacific and for winter forecasts. The model
was constructed using data from the 1965-85 petriod,
leaving 1986-93 for independent forecast testing.
Real-time forecasts by the Scripps—MPI model for one
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or more portions of the equatorial Pacific have ap-
peared in the Experimental Long-Lead Forecast Bul-
letin since spring 1994. Since 1991 such forecasts
have occasionally beenissued onthe ENSO.INFO file
on the Internet.

¢. The NCEP coupled model

Acomprehensive coupled ocean—atmosphere GCM
has been developed at the NCEP (formerly the Na-
tional Meteorological Center) over the last several
years (Ji et al. 1994a,b). The Pacific basin ocean
model was created originally at the Geophysical Fluid
Dynamics Laboratory (GFDL) by Bryan (1969) and
Cox (1984) and subsequently improved by Philander
(1987). It covers a domain of 45°S-55°N, 120°E~
70°W. Its zonal resolution is 1.5°, and its meridional
resolution is 0.33° within 10° of the equator. Between
10° and 20° away from the equator the meridional
resolution decreases gradually to 1°. There are 28
vertical levels, most of which are concentrated in the
upper ocean. The atmospheric model is a T40 version
of the NCEP Medium Range Forecast (MRF) model
with 18 vertical levels. The convective parameter-
izations of the MRF have been tuned for more realistic
tropical air—sea interactions and convection. Exchange
of surface momentum and heat fluxes and SST at the
air—sea interface occur at 5-model day intervals, rep-
resenting the timescale of ocean response to surface
wind stress. The ocean thermal field, including SST
and subsurface temperature, is initialized using an
ocean data assimilation system (Ji et al. 1994c). The
model was developed and tuned for 6-month lead
forecasts using data from the cold and warm ENSO
episodes of 1988/89 and 1991/92, respectively. Rou-
tine real-time forecasts of SST anomalies in the
tropical Pacific basin began during 1993; these have
appeared in the Climate Diagnostics Bulletin and the
Experimental Long-Lead Forecast Bulletin.

d. The NCEP CCA model

CCA is a statistical technique that models linear
relationships between fields of the predictors and the
SST predictands, using a specific variation of EOF
analysis (Barnett and Preisendorfer 1987; Barnston
and Ropelewski 1992). In the version used at the CPC
that was developed with some initial guidance from
Scripps Institution of Oceanography, the predictor
fields consist of global sea level pressure and the
tropical Pacific SST itself for several periods prior to
the target time; the target time SST is the predictand.
Specifically, four consecutive 3-month predictor peri-
ods are followed by a lead time (a data “skip”) and then
a single 3-month predicted period. CCA essentially
performs a multivariate linear regression, in which
patterns in the predictand are related to preceding
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patterns in the four time-staggered predictor fields.
Systematic evolution of the predictor fields over time
relating to a data-defined predictand pattern is thus
identified. The relationships governing the optimal
prediction are defined over the period of record and
then applied to the future year being forecast. The
CCA model predicts a set of regions spanning across
the tropical Pacific and Indian Oceans. Real-time CCA
forecasts for the SST in a particular Pacific region
centered approximately 40% of the distance between
Nifio 3 and Nifio 4 (i.e., 120°-170°W, to be called Nifio
3.4) have appeared in the Climate Diagnostics Bulletin
since early 1990 and in the Experimental Long-Lead
Forecast Bulletin since its inception in fall 1992. In the
late 1980s a few forecasts using an earlier version of
CCA were posted by Scripps Institution of Oceanog-
raphy in the file ENSO.INFO on the Internet.

e. The NCEP constructed analog model

Recently, Vanden Dool (1994) developed amethod
of constructing a better analog than any that occurs
naturally, using an optimal linear combination of the
SSTinallavailable years to model the base state to be
matched more precisely. The predictor field (through
which analog matches are sought) consists of near-
global SST over four consecutive 3-month predictor
periods, followed by a lead time (a “skipped” period),
and then a single 3-month predicted period. Skill
experiments have demonstrated that a single con-
structed analog leads to higher skill than classical
composites of natural analogs/antianalogs (as used in
Livezey and Barnston 1988; Barnston and Livezey
1989). Thus, the production of a better analog match
appears to outweigh the loss of the nonlinearity that
would be preserved in the climatic scenarios defined
by natural analogs. Real-time forecasts for the SST in
120°-170°W (Nifio 3.4) using constructed analogs
have appeared in the Experimental Long-Lead Fore-
cast Bulletin beginning in summer 1994,

3. The SST forecast skills

This section is not intended to compare the SST
forecast skills among the five models but to answerthe
guestion, Where do we stand? in a collective sense. In
doing this, skill will sometimes be examined on an
individual model basis.

a. The absolute need for real-time forecasts

A purely objective, bias-free method of estimating
the forecast skill of anygiven methodin a trulyindepen-
dent (future) forecast setting does not exist. There
simply is no substitute for real-time forecasting. For
each of the five methods, we currently have only a
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small sample of years of unadulterated real-time
forecasts. In view of the low-frequency nature of
ENSO, we need at least 10 years before judgement
can be passed on to forecasting ability. However, we
cannot wait that long. Consequently, carefully derived
estimates of skill based on hindcasts (in which the
model “knows” data that occurred later than the time
being forecast) oi retroactive real-time forecasts (in
which no data occurring later than the forecast time
are made available tothe model) are needed. We have
assembled a dataset of the latter type for the 1982-93
period for the empirical CCA and constructed analog
forecasts.

There are techniques that attempt to simulate
independent forecasts for statistical forecast methods
such as linear regression or CCA. For such methods,
cross validation (Michaelsen 1987) is thought to give
approximately representative results as it withholds
each year in turn from the model's developmental
sample and makes a forecast for it. However, skill
inflation can stili occur when there are interannual
autocorrelations in the data history, as in an ENSO-
related SST or sea level pressure time series. This
problem can be largely overcome by withholding groups
of consecutive years for each set of forecast trials.
Skill deflation can also occur when true skill is low, due
to a degeneracy inherentin cross validation (Barnston
and Van den Dool 1993). The success of the model
building exercise is also jeopardized in nonstationary
regimes in which predictive rules identified over a
relatively long period begin failing after a later point in
time. Cross validation is applicabie to analog meth-
ods, because the year for which analogs are soughtis
excluded as an analog candidate and the climatology
in terms of which all years’ data are expressed can be
recomputed with that year withheld (Van den Dool
1987). Cross validation as described here is impracti-
cal in assessing independent period forecast skill for
dynamical models, because iterative retuning with
each year held out would be far too cumbersome a
task. The usual practice is to develop the model using
data for part of the available period and to test inde-
pendent forecast skill on the remaining part.

b. Postprocessing of model output and independent

nature of recent forecasts

The current version of Lamont model forecasts is
based on the model development period of 1970-85
for postprocessing purposes—that is, for determina-
tion of systematic biases. Model biases have been
removed for all forecasts, separately by forecast
target season and lead time as determined from the
development period. Forecasts have also been ad-
justed for differences in variance with respect to the
observations in the same manner. Because forecasts
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TasLE 1. Five ENSO forecast model characteristics and skill.

Authors Zebiak and Cane (1987) Barnett et al. (1993) Jietal. (1994b)
Model Physical: Hybrid: couplednonsimple Physical: coupled
simplecoupled ocean GCM, statistical nonsimple GCMs
atmosphere

Details of model

Six-memberensemble

Noensembles Four-memberensemble

6 months

Leadtime 6.5months 6 months

Time from forecast start

to center of predicted period 8 months 7.5 months 7.5 months

Predicted SST region Nifio 3 Nifio 3.4

(Al BoN-5°8) 90°-150°W 140°-180°W 120°%=170°W |
(eastern Pacific) {central Pacific) {east-central Pacific)

Period of record 1970-93 1966-93 1984-93

Proportion of evaluation period

containing independentforecasts 8/12=067 8/12=0.67 6/10=0.60 (

Skilt Corr  rmse  Design® Corr rmse  Design Corr rmse  Design

(1982-93) 0.62 0.95 mixed 0.652 0.97 mixed 0.69° 0.83° mixed
stddev=1.08 stddev=1.10 stddev=1.00

2Standard correlation for Scripps—MPI model is 0.69 (see appendix).
oSkill for 1984-93.
°See footnote c in continuation of Table 1 on next page.

have been made using the same original version of the
model since late 1985, the 1986—93 period can be
regarded as fully independent and as real time.

The development period for the Scripps—MPI hy-
brid coupled model is 1965—85. Although there was no
need for bias correction (in part because a MOS
correction scheme was applied during coupling), a
temporal phase postprocessor was applied to the
forecasts as a function of their lead time. Forecasts
for the 1986-93 period can be considered indepen-
dent.

Skills for the NCEP model are based on the rela-
tively short data record of mid-1982 to 1993, and the
even shortertarget period record of 1984—1993. Model
biases are subtracted from the forecasts specific to
the model starting month, based on hindcasts overthe
data record. Model development was carried out for
the 1988-89 and 1991-92 periods, leaving 198487,
1990, and 1993 for independent forecasting. Thus,
within the 1984—93 evaluation period the proportion of
years available for independent forecasts is slightly
lower than that for the Lamont and Scripps—MPI
models during 1982—93.

For the statistical CCA model each year is withheld
in turn and the model developed over the 1956-93
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period but without any explicit influence from the
withheld year that is the forecast target. Forecast
anomalies, damped toward climatology to minimize
mean squared error, are reinflated such that their
variance equals that of the observations. For a sec-
ond, perhaps more realistic, skill estimate of CCA,
truly real-time forecasts are simulated by omitting all
data occurring after the time of the forecast. Referred
to as retroactive real-time forecasting, this is carried
out for the 1982—93 period. It is about as close as one
can come to a real test (as for the Lamont and Scripps—
MPI models for 1986—93 and the NCEP model for its
separated intervals of independent years), one differ-
ence being that in “real” real time there are hard to
avoid problems such as unavailable or erroneous
predictor data.

The constructed analog forecasts were producedin
a cross-validation design in similar fashion to the CCA
forecasts. The scheme holds outthe yearbeing forecast
in the sense that it cannot be used to construct the
analog. Additionally, the climatology, in terms of which
all years’ data are expressed, is repeatedly recalcu-
lated excluding the base year. Because the variance
of the forecasts is realistic, inflation of forecast anoma-
liesis not necessary. Forecasts were made both using
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TasLE 1 (continued).

Authors Barnston and Ropelewski (1992) Van den Dool (1994)
Model Statistical: CCA Empirical: constructed analog
Details of model Four consecutive Four consecutive

3-month predictor periods

3-month predictor periods

6 months

, Leadtime 6 months
Time from forecast start
to center of predicted period 7.5months 7.5 months

‘ Predicted SST region Nifio 3.4 Nifio 3.4

" (All 5°N--5°8) 120°-170°W 1200-170°W

' (east-central Pacific) (east-central Pacific)
Period of record 1956-93 195693

Proportion of evaluation period
containing independentforecasts 12/12 =1.00 12112 =1.00
Skill Corr rmse Design® Corr rmse Design
(1982-93) 0.66 0.89 “real” 0.65 0.89 “real”

stddevis 1.11

stddevis 1.11

“Design variations: “real” is retroactive real time, and mixed is mixture of hindcasts and independent forecasts (IF); proportion of IF years to

total years available in 1982-93 is shown in row above.

the entire 1956-93 period (the cross-validation ver-
sion) and in retroactive real-time mode, as was done
for the CCA forecasts.

¢. Overall skill

Table 1 provides basic information about the five
forecast models, followed by skill scores for the 12-
year period of 1982-93. A few explanatory notes
aboutthe scores are inorder: The scores are based on
forecasts for all times of the year—that is, 12 running
3-month target periods per year. Note that the lead
times and the forecast regions are similar but not
identical among the models. Both correlation skill and
root-mean-square error (rmse) skill are presented.
The forecasts and observations have been standard-
ized over the period of record on which the forecast
model is based (shown in Table 1). The rmse scores
are computed with respect to these standardized
values and thus have no physical units. Because SST
variability during the 1982-93 period has been greater
than that during the models’ longer term base periods,
the rmse scores are higher than would be expected if
standardization had been done with respect to the
1982-93 period. The standard deviation of the ob-
served SST that is already standardized over the
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longer term is shown in Table 1 underneath the rmse
score; these exceed unity except for the NCEP coupled
model that has no longer term.

To more effectively describe the skill of forecasts
over shorter periods than the basic one (e.g., begin-
ning after 1970 for the Lamont coupled model), the
subperiod means are not removed in the computation
of the correlation skill. More detail and the rationale of
this version of the correlation are provided in the brief
appendix.

The verification scores at the bottom of Table 1
indicate correlations in the 0.60s and rmse’s in the
0.80s to 0.90s. These scores succinctly express the
current state of the art in ENSO prediction: moderate
forecasting ability at the two-season-lead time, with
skills considered useful by most standards. This level
of skill is comparable to forecasts of extratropical 500-
mb height based on numerical weather prediction at
5-6 days’ lead.

The scores also show similar overall forecast skill
among the five dissimilar methods, indicating that
none of them is decisively better or poorer than the
others. In fact, if 19 independent realizations of fore-
cast skill are assumed over the 12-year period, the
95% confidence interval of the true correlation skill
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TasLe 2. Persistence skill for two SST target regions (1970-93). The mean SST for
the 3-month period to be persisted (prior to = 0) is used as the forecast for future
periods whose center ranges from 0to 12 months later than the center of the persisted

casts for two of the predictand regions
overthe 1970-93 period. ltis clearthatall
methods outperform persistence fore-
casts, whose skill is in the low 0.20s at 6

period. months’ lead and reaches zero at 9

months’ lead (a 1-year temporal offset).
Time between Nifio 3 Nifio 3.4 The skills obtained from the model fore-
centers of 3-month Lead time (5°N-5°S, (5°N-5°8, casts (>0.60) are roughly equal to persis-
periods (months) (months) 120°-150°W) 120°—170°W)

about a sample estimate of 0.65 is 0.28 to 0.85-an
enormous range. With a longer period of record, as
exists for some of the models, this range would narrow
considerably. An assumption of 19 independent
samples in the 1982-93 period is roughly approxi-
mated by the decorrelation (autocorrelation e-folding)
time of observed SST of 7.5 months, but this may be
too liberal in view of weaker autocorrelations (nega-
tive, then positive) at lags of over 1 year or may be too
strict in view of the superposed higher-frequency
variations. In any event, skill differences of, say, 0.58
versus 0.71 do not approach being statistically signifi-
cantly different from one another.

Table 2 shows the mean skill of persistence fore-
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tence skills at 1-2 months lead.

In the next three subsections, specific
aspects of the behavior of the five mod-
els are examined in some detail. Read-
ers whose interests are more general
may wish to skip to section 4.

d. Temporal variation of skill

Table 3 shows skills for each of the
five methods, as in the bottom row of
Table 1, for several periods ending in December 1993.
CCA and constructed analog skills using cross valida-
tion and using retroactive real-time forecasts are
presented. It is evident that the skill of each method
has noticeable period-dependent fluctuations and that
scores have averaged higher in the more recent
periods. The early 1990s, roughly the period of pub-
lished real-time forecasts, have been an exception
(Fig. 1). Figure 1 provides a closer look at the correla-
tion (panel a) and rmse (panel b) skill fluctuationsinthe
form of a 24-month moving average of skill for each
model over the 1982-93 period. Note that the rmse is
affected in part by the variance of the observed SST
(already standardized, but only over the model’s longer

b Skill {(RMSE) for Running 2-Yr Window
1'8 T T T T T T T T T T T T T

14
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Fia. 1. Two-year moving average of skill of five forecast models for July 1981-December 1993, with skill measured using (a) correlation

and (b) rmse. The thicker solid curve shows skill for NCEP coupled model forecasts, the thinner solid curve for the Scripps—MP1 hybrid coupled
model, the thicker dashed curve forthe Lamont coupled model, the thinner dashed curve for the constructed analog model and the dotted curve
for the CCA model. On the abscissa, which indicates the center of the 2-year period, tick marks indicate January. For the two-season lead
time shown, NCEP coupled model forecasts are available from October 1984 (with moving average thus starting October 1985), retroactive
real-time-constructed analog and CCA moving average starting January 1983, and the two other dynamical models starting earlier than July
1981.
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Fic. 2. Plots of forecasts (dashed line) and observations of SST
overthe mostrecentapproximate decade for regions definedin Table
1, depicting the state of ENSO. (a) Lamont simple coupled model; (b)
Scripps—MPI hybrid coupled model; (c¢) NCEP coupled model; (d)
NCEP empirical CCA model using retroactive real-time design; and
(e) NCEP empirical constructed analog model using retroactive real-
time design. The standardized anomalies represented on the ordinate
are based on the model’s full period of record, which exceeds that
shown in the plot [except for (c)], and computed individually for each
of the 12 overlapping 3-month seasons.

base period) for the period and target area in question,
shown below each rmse value. The 2-year window is
chosen as a timescale characteristic of an ENSO
episode. The skill variations are clearly large, ranging
from the Lamont model’s highly skillful forecasts of the
warm ENSO event in winter 1986/87 to other periods
of poor skill on the parts of several of the models.
The two measures of skill shown in Fig. 1 allow for
further characterization of the error. For example,
during 1984 the Scripps—MPI model has a relatively
poor (high) rmse skill (Fig. 1b), but its correlation skill
is not below average. This can occur during periods
when forecasts and observations have high amplitude
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with sizable differences between them (for a high
rmse) despite being on the same side of the overall
mean (for a moderately high correlation).

Figure 2 contains forecast versus observation plots
for the 1982-93 period (except 1984—-93 for the NCEP
coupled model) for the five forecast models. Only the
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