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ABSTRACT

The Kalman filter is the optimal linear assimilation scheme only if the first- and second-order statistics of the
observational and system noise are correctly specified. If not, optimality can be reached in principle by using
an adaptive filter that estimates both the state vector and the system error statistics. In this study, the authors
compare the ability of three adaptive assimilation schemes at estimating an unbiased, stationary system noise.
The adaptive algorithms are implemented in a reduced space linear model for the tropical Pacific. Using a twin
experiment approach, the algorithms are compared by assimilating sea level data at fixed locations mimicking
the tropical Pacific tide gauges network. It is shown that the description of the system error covariance matrix
requires too many parameters for the adaptive problem to be well posed. However, the adaptive procedures are
efficient if the number of noise parameters is dramatically reduced and their performance is shown to be closed
to optimal, that is, based on the true system noise covariance. The link between those procedures is elucidated,
and the question of their applicability and respective computational cost is discussed.

1. Introduction

Since oceanic initial conditions are poorly known and
numerical ocean models are imperfect, model predic-
tions need to be corrected by observations. An efficient
approach to assimilate oceanic data is based on the Kal-
man filter (Kalman 1960). When observations become
available, the filter computes a linear combination of
the model forecast and the data, weighted by their ac-
curacy, to give an improved estimate of the ocean state,
which is taken as initial condition for the next forecast.
The Kalman filter (hereafter KF) gives the best linear
unbiased estimate (BLUE) of the ocean state using all
observations available up to the analysis time, provided
the statistics of the model errors and the observational
errors are known; it also calculates the propagation of
the error covariance matrix, so the accuracy of the model
predictions is estimated at each assimilation step. The
optimality of the KF requires that model and data error
statistics be known. In the oceanographic context, the
errors in the observations are relatively well determined
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but not those in the forcing fields, which can be sub-
stantial. As the forcing errors are not differentiated from
the modeling errors in the KF for the ocean model used
here, it is their sum that is referred to here as the system
errors. Since the system errors are poorly known at best,
the KF is suboptimal. The estimation of the state of the
ocean is thus far from optimal, and a bad specification
of the system or observational errors can even lead to
a divergence of the KF, which means that the state and
its estimate diverge, and the residuals grow (Jazwinsky
1969). Nonetheless, the observations can be used to
improve the representation of the system noise, if an
adaptive filter is designed to readjust the noise descrip-
tion based on information obtained as the measurements
become available (Gelb 1974).

Adaptive KF can simultaneously estimate the state
and the system error statistics, but these algorithms re-
quire an even greater amount of computation and storage
than the standard KF, so that their application to me-
teorology and oceanography has been very limited. Dee
et al. (1985) designed an adaptive KF that was tested
in a simplified meteorological context, updating only a
few parameters that were assumed to describe the sys-
tem noise covariance matrix. Instead of improving the
representation of the system noise covariance matrix,
Hoang et al. (1995) estimated deep ocean currents in a
quasigeostrophic model by directly updating the KF
gain, which suffices to make better predictions, but pro-
vides little information on the model shortcomings.
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Because it updates the forecast-error covariance ma-
trix, the KF requires huge computations in oceanograph-
ic applications, due to the very large dimension n of
the state space, n being the number of variables times
the number of grid points [typically n 5 O(105)]. Indeed,
the system error covariance matrix update requires 2n
integrations of the numerical model. To reduce the cost,
many suboptimal schemes have been developed. Parish
and Cohn (1985) calculated the error covariance struc-
ture only for points separated by small distances, while
Dee (1991) used approximate dynamics to propagate
the forecast error covariances, and Fukumori et al.
(1992), following Wiener (1949), used the asymptoti-
cally constant Kalman gain matrix. An alternative is to
reduce the dimensionality of the problem by using a
low-resolution model (Miller and Cane 1989) or by
computing the forecast error covariances with a coarser-
resolution model than the model used to forecast the
state itself (LeMoyne and Alvarez 1991). Fukumori and
Malanotte-Rizzoli (1995) approximated the state fore-
cast covariance matrix by reducing the dimension of the
model (coarse grid) and using the asymptotic steady-
state limit. To avoid the drawbacks of coarse resolution,
Cane et al. (1997) have adopted a different approach:
using a multivariate empirical orthogonal function
(EOF) analysis, they reduced the state space for the
forecast covariance update to a small set of basis func-
tions, which nonetheless represented all of the signifi-
cant structures that were predicted by the model. The
procedure was shown to lead to a substantial saving
without any loss of accuracy compared to a gridpoint
KF.

Since Cane et al. (1997) have successfully imple-
mented the KF in reduced space, it becomes compu-
tationally possible to use an adaptive filter to also es-
timate the system errors, which should enhance the filter
performance. In the present paper, we compare several
adaptive schemes that can be applied to the reduced
space model, using a twin experiment approach in the
tropical Pacific context. A twin experiment is a simu-
lation of data assimilation in fully known conditions
based on synthetic data. A first simulation defines the
‘‘true’’ state of the ocean, which is given by the model
response to observed winds. The ‘‘observations’’ are
constructed by adding a noise with known error co-
variance matrix and zero mean to the true sea level,
using realistic location for the measuring stations. The
system noise is then added, the noise being stationary
and with zero mean (unbiased case), and the observa-
tions assimilated in a second simulation using an ar-
bitrary first guess for the system noise covariance ma-
trix. The ability of the adaptive algorithms to retrieve
the system noise covariance matrix and the true state of
the ocean can then be compared. The maximum like-
lihood estimator of Maybeck (1982), that of Dee (1995),
and the more intuitive approach of Myers and Tapley
(1976) are considered. Their similarities and shortcom-
ings are pointed out, and a new procedure is designed

that satisfactorily estimates the system error covari-
ances, leading to near-optimal performance.

The paper is organized as follows. In the next section,
we present the numerical model and the reduced state
space KF approach of Cane et al. (1997). In section 3, we
review the KF. In section 4, we discuss the adaptive pro-
cedure and present three adaptive algorithms. In section
5, we compare these algorithms using the twin experiment
approach. The performance and limitations of the adaptive
procedures are discussed, and some clues given to improve
them. Conclusions are given in section 6.

2. The tropical ocean model

The numerical model used in our study is a two ver-
tical mode version of the Cane and Patton (1984) al-
gorithm for solving the linear long-wave approximation
of the shallow-water equations on an equatorial beta
plane. The staggered grid is spaced 28 longitude by 0.58
latitude, and the time step of the numerical scheme is
one-quarter of a month. The internal wave speeds for
the two vertical modes, 2.86 and 1.85 m s21, are typical
of the mid-Pacific (Cane 1984; Busalacchi and Cane
1985). The model has no thermodynamics nor salinity
and is forced by surface wind stress. Here the model
will be used in the anomaly mode; that is, it will be
forced by wind stress anomalies. The tropical Pacific is
represented by a basin extending from 28.758S to
28.758N and 1248E to 808W. The coasts of Australia
and Mexico are crudely represented by two rectangles
on the southwest and the northeast corners, respectively
(Fig. 1). The number of grid points is approximately
9000.

To implement the KF for this ocean model, the co-
variance matrix of the system errors, that is, the mod-
eling plus forcing errors (see section 3), needs to be
specified. This means that one should be able to deter-
mine its n(n 1 1)/2 elements, with n (number of grid
points times number of variables) ; O(105). However,
the oceanographic time series are very short and it is
very unlikely that one could determine so many ele-
ments. Thus, Cane et al. (1997) have developed a meth-
od based on multivariate EOF (MEOF) analysis to re-
duce the number of degrees of freedom in the covariance
calculation. The procedure, which also makes the KF
computationally feasible, is the following. The ocean
model was forced by the FSU winds (Goldenberg and
O’Brien 1981). The six model variables (for each ver-
tical mode: Kelvin wave amplitude, and Rossby mode
displacement and zonal velocity) were saved monthly
from January 1967 to September 1991, that is, for 297
months. A first set of EOFs was calculated for each of
the variables. After normalization ensuring that the six
variables had the same relative weight, a second EOF
analysis was performed on the combined sets. For our
study, 102 of these MEOFs ordered in terms of de-
creasing variance were retained, accounting for more
than 99% of the entire variance of the model state. This
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FIG. 1. Standard deviation of the true sea level. Contour interval is 2 cm. The crosses indicate the
location of the observing stations.

gives a very efficient basis for the model states occurring
during the period 1967–91, but the retained MEOFs may
be inadequate to represent all the structures of the true
ocean, either because the model is incapable of occu-
pying all regions of phase space where the true ocean
can be, or because the wind forcing during this period
missed important wind regimes. Means for handling
such deficiencies are discussed in Cane et al. (1997).

Cane et al. (1997) compared the results of Miller et
al. (1995), who implemented a full grid KF for the Cane
and Patton (1984) numerical model with a coarser grid
(58 longitude by 28 latitude), with those of a reduced
KF experiment with the same coarse grid model. The
results were comparable, and the reduced KF performed
even better for most of the stations withheld for veri-
fication. Cane et al. (1997) argued that the ‘‘higher-
resolution’’ gridpoint filter tends to overfit the data lo-
cally, perhaps causing it to underweight more remote
connections.

3. Description of the Kalman filter

The prediction model can be represented by a linear
equation:

wf(k) 5 Lwa(k 2 1) 1 Fu(k 2 1), (1)

where the model prediction wf and the analysis wa (su-
perscript f for forecast, a for analysis) are row vectors
of dimension n, which is normally the number of prog-
nostic variables of the numerical ocean model times its
number of grid points, but here is the number of MEOFs.
The prediction at time step k depends on the model
dynamics L, the analyzed state wa at the preceding time
step, and the forcing term u of dimension r (the wind

stress in the present context) projected onto the model
variables by the matrix F.

The true state of the ocean wt (superscript t for true)
evolves according to

wt(k) 5 Lwt(k 2 1) 1 Fu(k 2 1) 1 bt(k 2 1), (2)

where bt accounts for the system errors. Since the wind
stress is poorly known, particularly in the Tropics, the
system errors take into account both the model errors
and the forcing errors. Here, bt is a random noise vector
that is assumed to be stationary, decorrelated in time
with a Gaussian spatial covariance matrix Q:

tE[b (k)] 5 q(k) (3a)
t t TE{[b (k)][b (l)] } 5 (k)d . (3b)Q kl

The assumption of serial independence is questionable.
Indeed, Dee (1995) showed that the system errors de-
pend on the actual state of the ocean wt in an unknown
manner. However, the assumption of whiteness is made
for simplicity in this first study. Also, model and forcing
are assumed to be unbiased, so q(k) 5 0. However, our
ultimate goal is to design an adaptive filter that can
handle the biased, correlated case. If the system noise
mean q(k) is known and differs from zero, then Eq. (1)
should be replaced by

wf(k) 5 Lwa(k 2 1) 1 Fu(k 2 1) 1 q(k). (1b)

The observations are related to the model variables
by the equation

wo(k) 5 H(k)wt(k) 1 bo(k), (4)

where wo (superscript o for observation) is a row vector
of dimension p, the number of observations, and H(k)
is the observation matrix. This matrix expresses the p
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observations as a linear combination of the n variables;
it can also be used to interpolate the latter to the ob-
serving stations. For a fixed observational network, as
considered in this paper, H does not vary in time. The
observational noise bo is supposed to be Gaussian, sta-
tionary, and white in time, with zero mean and spatial
covariance matrix R:

oE[b (k)] 5 0 (5a)
o o TE{[b (k)][b (l)] 5 R(k)d . (5b)kl

The system and observational errors are assumed to be
uncorrelated:

E[[bo(k)][bt(1)]T] 5 0. (6)

The KF gives an estimate wa(k) of the true state of
the ocean, wt(k), through a linear combination of the
observations wo(k) and the model predictions wf(k):

wa(k) 5 wf(k) 1 K(k)[wo(k) 2 H(k)wf(k)], (7)

where K is a gain matrix, which depends on the relative
accuracy of the predictions and the observations. The
vector

v(k) 5 wo(k) 2 H(k)wf(k) (8)

represents the additional information provided by the
observed data and is called the observational residual
or innovation vector.

The prediction error covariance matrix and the ana-
lyzed errors covariance matrix are defined by

f f t f t TP (k) 5 E{[w (k) 2 w (k)][w (k) 2 w (k)] } (9)
a a t a t TP (k) 5 E{[w (k) 2 w (k)][w (k) 2 w (k)] }. (10)

The Kalman gain K is determined as the matrix that
minimizes the functional J, which represents the mean
quadratic error of the analysis and is given by

a t T a tJ 5 E{[w (k) 2 w (k)] [w (k) 2 w (k)]}
a5 Tr[P (k)], (11)

which yields

f T f T 21K(k) 5 P (k)H(k) [H(k)P (k)H(k) 1 R(k)] , (12)

so that one has

f a TP (k) 5 LP (k 2 1)L 1 Q(k 2 1) (13)
a f fP (k) 5 P (k) 2 K(k)H(k)P (k). (14)

If there is no observation to assimilate at the time
step k, then H(k) is identically zero and so is K(k), by
(12). Note that the matrix [H(k)Pf(k)H(k)T 1 R(k)] can
always be inverted since there are no perfect observa-
tions, so R is not singular. The forecast-error covariance
matrix Pf(k) is predicted by (13). This is the most costly
step of the KF since it requires 2n integrations of the
numerical model to obtain the term LPaLT [each row of
LPa is calculated by using the corresponding row of Pa

as model input and integrating for one time step, then

the operation is repeated for each line of LPa, which
leads to L(LPa)T].

Equation (14) can be rewritten (Gelb 1974) as

Pa(k)21 5 Pf(k)21 1 H(k)TR(k)21H(k), (15)

making it clear that the accuracy of the analysis is the
sum of the accuracy of the forecast, based on the past
observations, and that of the current observations. The
KF minimizes the variance of the analysis error and
therefore the variance of the prediction error not only
at each time step but over the entire assimilation inter-
val. The filter extracts all useful information from the
innovation vector at each time step, by an application
of Bayesian ideas in a dynamical context (Kalman 1960;
Ghil and Malanotte-Rizzoli 1991).

The stability of the KF should be examined since
stability ensures that any error in the calculation of wa

(such as computational errors) is bounded. The condi-
tions that guarantee the stability of the filter and the
uniqueness of the behavior of Pf(k) for large k, inde-
pendently of its initial value P(0), are complete observ-
ability and stochastic uniform complete controllability
(Gelb 1974; Fukumori et al. 1992). Observability is the
ability to determine the complete state from measure-
ments in the absence of noise. Stochastic controllability
is the ability to drive the state from one arbitrary state
to another arbitrary state using the stochastic control
variables bt in Eq. (2). One way of characterizing the
observability and controllability of the system is to ex-
amine the rank of the observability and controllability
matrix. Hautus (1969) provides an alternative method.
The system is observable if and only if there is no
eigenvector of L that is in the null-space of H. The
system is stochastically controllable if and only if there
is no eigenvector of LT that is in the null-space of GT,
where G is the matrix mapping the noise forcing bt onto
the model state.

Following Hautus (1969), we have calculated the
eigenvalues and eigenvectors of L for the reduced space
model. All the eigenvalues of L are less than one, so
there are no unstable or neutral modes. No eigenvector
of L is in the null-space of H (defined in section 5a),
so the system is observable. The condition for sto-
chastic controllability is easily verified since, in our
case, G is the identity matrix. Therefore, we have
proved the existence of a stable asymptotic Kalman
filter for our experimental context. Note that the sto-
chastic controllability of the system is important, since
it implies that the necessarily arbitrary choice of P(0),
the initial value of the forecast covariance matrix, will
not influence the performances of the KF after the first
few time steps.

4. The adaptive filter

The optimality of the KF depends on the assumption
that we know perfectly the statistics of the observational
and system errors, which is not the case in the oceanic
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context. However, the observations can be used to im-
prove the representation of the system noise as well as
the estimation of the ocean state through the adaptive
KF (Gelb 1974). In principle, an adaptive filter can es-
timate both the system and the observational errors.
However, adaptive algorithms that try to update both
the observational noise and the system noise are not
robust, since it is not easy to distinguish between errors
in Q and R (Groutage et al. 1987; Maybeck 1982). More-
over, using a simple scalar model, Daley (1992) showed
that there is no way to distinguish between overspeci-
fication of the model error and underspecification of the
observation error, and vice versa, since the innovation
lag covariances depend only on the ratio of the mis-
specification factors. Since the observational errors are
generally much better known than the system errors, we
will only estimate Q adaptively.

a. The innovation sequence

When the system and observational noise are not se-
rially correlated [(3b) and (3a)], and when the KF is
optimal, the innovation sequence v(k) should be white
with zero mean (e.g., Mehra 1970). This means that, if
wa is an optimal estimate, there is no information left
in v to improve the forecast. The demonstration of this
fact is straightforward. Using (4) and (8), one can write

t o fv(k) 5 Hw (k) 1 b (k) 2 Hw (k) (16)
o5 He(k) 1 b (k) (17)

with
t fe(k) 5 w (k) 2 w (k), (18)

which can be easily related to e(k 2 1) using (1), (2),
(4), and (7):

( ) [ ( ) ] ( )e k 5 L I 2 K k 2 1 H e k 2 1

t o( ) ( ) ( )1 b k 2 1 2 LK k 2 1 b k 2 1 . (19)

Then, using (3a) and (5a), one has

E[e(k)] 5 L[I 2 K(k 2 1)H]E[e(k 2 1)], (20)

so that E[e(k)] eventually depends only on E[e(0)],
which is assumed to be zero. Since, from (5a) and (17),
one has

E[v(k)] 5 HE[e(k)], (21)

the innovation vector has zero mean.
The lag j covariance of the innovation sequence, here-

after denoted by Cj, is equal to
TC 5 E[v(k)v (k 2 j)]j

o o5 E{[He(k) 1 b (k)][He(k 2 j) 1 b (k 2 j)]}. (22)

Since bo(k) is independent of wf(k) and wt(k), using (5b)
and (9), the lag zero covariance is given by

f TC 5 HP H 1 R. (23)0

If j . 0, bo(k) is independent of e(k 2 j) and bo(k 2
j), so one has

o TC 5 E{He(k)[He(k 2 j) 1 b (k 2 j)] }. (24)j

Using (19) recursively, one obtains

k21

e(k) 5 L[I 2 K(i)H] e(k 2 j)P5 6i5k2j

k21 k21

t1 L[I 2 K(m)H] b (i)O P5 6i5k2j m5i11

k21 k21

o2 L[I 2 K(m)H] LK(i)b (i).O P5 6i5k2j m5i11

(25)

So for j . 0, (24) can be written as

k21

C 5 H L[I 2 K(i)H]Pj 5 6i5k2j11

f T3{L[I 2 K(k 2 j)H]P (k 2 j)H 2 LK(k 2 j)R}

k21

5 H L[I2 K(i)H]P5 6i5k2j11

f T f T 213L{P (k 2 j)H [HP (k 2 j)H 1 R] 2 K(k 2 j)}

f T3 [HP (k 2 j)H 1 R].
(26)

If K(k 2 j) is the optimal Kalman gain defined by (12),
it becomes obvious that for j . 0 (and similarly for j
, 0)

Cj 5 0 for j ± 0. (27)

This demonstrates that the innovation sequence is white
when the filter is optimal, that is, when the noise char-
acteristics are perfectly known.

Jazwinsky (1969) pointed out that the only quantities
available for judging filter performance are the mag-
nitude of the residuals (innovation vector) and their ex-
pected statistics (zero mean and whiteness). The statis-
tical consistency of the innovation should thus be tested,
since the assimilation scheme efficiency cannot be de-
ducted from the size of the residuals alone. The lag j
innovation covariance Cj depends on the difference be-
tween the optimal gain {Pf(k 2 j)HT[HPf(k 2 j)HT 1
R]21} and the actual gain K(k 2 j) and provides a mea-
sure of the optimality of the data assimilation procedure
(Daley 1992). If the lagged innovation covariances are
not close to zero when the observational and system
errors are serially uncorrelated, then the observations
are not used efficiently.

The purpose of the adaptive filter is to ‘‘whiten’’ the
innovation sequence. Using tests for whiteness, the
adaptive filter is designed to adjust the system noise
parameters on the basis of the sample covariance func-
tion Cj (Mehra 1970; Gelb 1974). Whitening the in-
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novation sequence will guarantee the optimality of the
filter (Kailath 1968), but will not guarantee that the
updated system noise covariance is the true one. In fact,
when the number of observations is small, p K n, as
in the present study, Q cannot be uniquely determined;
(26) shows that there are only np equations to estimate
n(n 1 1)/2 parameters. One can determine K but not Q.

The techniques of innovation whitening (Mehra
1970) consist in relating system noise parameters to
the sample estimates of the lag-covariance function Ĉj

5 N21 v(i)v(i 2 j)T, using the KF equations (12),j1NSi5j11

(13), and (26), and then solving them to obtain param-
eter estimates. However, these methods are more readi-
ly applicable to time-invariant systems, that is, fixed
observation networks, linear dynamics, and stationary
noises. To be more general, we will concentrate on
adaptive algorithms, which estimate the noise param-
eters only from the lag zero covariance Ĉ0(k) at each
time step k. The lagged innovation covariances will be
used only as a diagnosis for the adaptive schemes per-
formance.

b. Myers and Tapley’s estimator

Myers and Tapley (1976) (MT hereafter) have de-
signed an adaptive filter based on ‘‘empirical estima-
tors’’ that can estimate both the system errors covariance
matrix and the bias of a model. They consider that the
system noise was slowly varying but remained station-
ary over N time steps, but here we make the reasonable
assumption that the system noise is fully stationary so
that Q and q are constant in time.

The true state of the ocean wt is not known, so a first
estimate, qs(i), of the system noise at time step i, bt(i),
can be derived from (2) when replacing wt by wa:

a aq (i) 5 w (i) 2 [Lw (i 2 1) 1 Fu(i 2 1)]s

a f5 w (i) 2 w (i) 1 q̂(i 2 1). (28)

If the qs(i) are assumed to be representative of the bt(i),
they may be considered to be independent and identi-
cally distributed. An unbiased estimator for q at time
step k is the sample mean over the last N steps,

k1
q̂(k) 5 q (i). (29)O sN i5k2N11

An unbiased estimator for Q is obtained by first con-
structing a similar estimator for the covariance. Then,
by removing its expected value, MT find the unbiased
estimate

k1ˆ TQ(k) 5 [q (i) 2 q̂(k)][q (i) 2 q̂(k)]O s s5N21 i5k2N11

N21
a T a2 [LP (i 2 1)L 2 P (i)] .1 2 6N

(30)

At each time step k $ N, the adaptive filter requires
the storage of the last N noise samples, and the esti-
mation of (29) and (30). The state propagation equations
(1) and (13) are replaced by

f aw (k) 5 Lw (k 2 1) 1 Fu(k 2 1) 1 q̂(k 2 1) (31)
ˆf a TP (k) 5 LP (k 2 1)L 1 Q(k 2 1), (32)

which shows that if the system noise increases, as does
the prediction error covariance matrix Pf. As a conse-
quence, the gain K (12) increases and more confidence
is given to the observations. The initial value Q̂(0) must
be specified.

Myers and Tapley pointed out that the estimator (30)
may become negative definite in numerical applications,
in particular when the length of the sample N is small.
To avoid this problem, MT reset all the negative di-
agonal elements to their absolute value, while Groutage
et al. (1987) preferred to keep the last semidefinite pos-
itive estimate of Q. For small N, we found out that
negative values occur too often to use Groutage’s ap-
proach, as it does not allow the estimator to vary freely.
Hence, we use a new approach to guarantee the semi-
definite positiveness of Q̂: we calculate the eigenvalues
of Q at each time step and reset the negative eigenvalues
to zero.

c. Maybeck’s estimator

Another approach to determining the system error
covariance matrix Q was suggested by Maybeck (1982),
who used a maximum-likelihood estimator. As MT,
Maybeck considered that the noise was essentially sta-
tionary over N sample periods, but he considered only
the case of an unbiased system noise (q 5 0). To obtain
an explicit maximum-likelihood estimator and to make
it feasible for on-line computations, Maybeck had to
make several simplifications (see Maybeck 1982 for de-
tails), yielding for known R the expression

k1ˆ T TQ (k) 5 {K( j)v( j)v( j) K( j)OMay N j5k2N11

a T a2 [LP ( j 2 1)L 2 P ( j)]}, (33)

where v is the innovation vector (8). As before, QMay(0)
must be specified.

The empirical estimator (30) of MT has not previ-
ously been compared to Maybeck’s maximum-likeli-
hood estimator (33), but it is easy to show that they are
identical under Maybeck’s assumption that the bias is
known and equal to zero. In this case, the unbiased
estimator (30) of MT becomes

k1ˆ TQ (k) 5 {[q (i)][q (i)]OMT s sN i5k2N11

a T a2 [LP (i 2 1)L 2 P (i)]}. (34)

Now, using (1), (7), and (8) one can write (28) in the
form
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a f o fq (i) 5 w (i) 2 w (i) 5 K(i)[w (i) 2 H(i)w (i)]s

5K(i)v(i). (35)

Replacing qs(i) in (34) recovers Maybeck’s (33).

d. A maximum-likelihood estimator

To reduce the costs of estimating the n(n 1 1)/2 el-
ements of the system noise covariance matrix, Bélanger
(1974) suggested that the latter be parameterized first,
so that only a few parameters are needed. Considering
a stationary case, Bélanger (1974) assumed that both R
and Q were linear functions of prescribed matrices, and
he estimated them simultaneously. The Bélanger’s al-
gorithm was reformulated by Dee et al. (1985), who
made it computationally more efficient by formulating
the noise covariance estimation as a secondary filter.
This algorithm was successfully applied to a simple
shallow-fluid model of a form similar to that used in
operational numerical weather prediction. However, its
convergence was very slow when data were processed
too soon and the assumed initial errors in the parameters
too small.

Dee (1995) presented a simpler adaptive scheme
based on maximum-likelihood estimation. The elements
of the innovation vector v were supposed to be jointly
distributed with

E(v) 5 0 (36)
TE(vv ) 5 C (a), (37)0

where a is the M-dimensional vector of the unknown
parameters describing the covariance matrix, M ,, p
(p being the number of observations). Dee (1995) sug-
gested estimating a on the basis of a single sample of
v by maximizing its conditional probability density
function p(v z a), which was assumed to be Gaussian:

2p/2 21/2p(v z a) 5 (2p) [detC (a)]0

1
T 213 exp 2 (v C (a)v) . (38)0[ ]2

The maximum-likelihood estimate of a is then given by

a 5 argmax p(v z a) 5 argmax f(a) (39)ml
a a

with

f(a) 5 ln[detC0(a)] 1 vT (a)v.21C0 (40)

Here, C0(a) can be related to the system noise covari-
ance matrix, using (23) and (13):

f T TC (k, a) 5 HLP (k)L H 1 R0

a T T T5 HLP (k 2 1)L H 1 HQ(k 2 1, a)H 1 R.
(41)

Since the estimation of a is done on the basis of a single
sample of v, Pa, which depends only on Q(i) with i ,

k, is independent of a, so that only Q(a) is to be de-
termined.

Dee (1995) pointed out that single-sample covariance
estimation is only reasonable if the number of obser-
vations is more than two orders of magnitude larger
than the number of parameters to be estimated. He also
showed that the simultaneous estimation of several pa-
rameters led to a large variance of the single-sample
estimates. Since the number of observations is rather
small in the oceanographic context, it does not seem to
be reasonable to use the algorithm in this form.

Indeed, since the system noise is stationary, we can
modify the algorithm and directly use the entire se-
quence of the innovation, rather than only one sample
at a time. The new estimator is written p(V(kstep) z a),
where V(i) denotes the innovation sequence during the
first i steps, and kstep is the total number of time steps
of the assimilation run. Using repeated applications of
Bayes’s rule, we can write

p[V(kstep) z a]

kstep

5 p[v(i) z V(i 2 1), a] p[v(1) z a]. (42)P5 6i52

Each probability density in the right-hand side of (42)
is given as in (38) by

p[v(i) z V(i 2 1), a]
2p/2 21/25 (2p) [detC (i, a)]0

1
T 213 exp 2 [v(i) C (i, a)v(i)] (43)05 62

so that the new functional to minimize is given by
kstep

T 21f (a) 5 {ln[detC (i, a)] 1 v(i) C (i, a)v(i)}, (44)O 0 0
i51

where C0(i, a) is related to Q(a) by (41), with Q being
time independent. This functional is simply the sum over
all time steps of the functional (40), and a is estimated
from kstep times p observations instead of only p. A
reasonable number of parameters can thus be estimated.

For the single-sample estimator (40), Dee (1995)
showed that the gradient of f can be easily calculated
if the dependence of Q on a is of a simple form. How-
ever, this is not true for the functional (44) since Pa(k)
depends on a in a complicated way through (12), (13),
and (14). To solve the minimization problem, we use a
quasi-Newton method and calculated the Hessian matrix
numerically.

The maximum-likelihood estimator defined by (42)
turns out to be directly related to that of Maybeck (1982,
section 4c), a fact obscured by the simplifications intro-
duced by Maybeck to attain on-line applicability. In the
appendix, we show that the two estimators essentially
differ by the number of time steps that are considered
and by the method for solving the minimization problem.
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5. Testing the adaptive algorithms

a. A twin experiment

The assimilation experiments, including the forecast
calculations (1), are done entirely in the reduced space.
The small dimension of the reduced space (n 5 102)
allows us to run many experiments. To test the various
adaptive algorithms, we use a twin experiment ap-
proach. The true state of the tropical Pacific ocean (Fig.
1) is simulated by the outputs of the model projected
onto the reduced space and forced by the unperturbed
wind stress anomalies over the 216-month period De-
cember 1974 to December 1992,

wt(k) 5 Lwt(k 2 1) 1 uFSU(k 2 1). (45)

The matrix L thus represents the projection of the ocean
model dynamics onto the reduced space. The wind
stresses are derived from the FSU pseudostress analysis
based on ship observations (Goldenberg and O’Brien
1981), smoothed and detrended in the manner described
by Cane et al. (1986). The forcing u in (45) corresponds
to the monthly response of the ocean model to the pre-
scribed wind stress, starting from a model state equal
to zero, and projected onto the reduced space; hence F
in (1) is therefore the identity matrix. The time step of
the dynamical model in the physical space is one-quarter
month, but as observations are assimilated only every
month, it is taken to be one month in the reduced space.

The sea level observations are simulated using the
observational network in Fig. 1, which reproduces 34
tide gauge stations at various Pacific islands (Wyrtki et
al. 1988). They are derived from the true sea level by
adding a zero mean, spatially decorrelated white noise
with diagonal covariance matrix R. Following Miller
and Cane (1989), we consider that the tide gauge data
are accurate within 3 cm, so that R 5 9 cm2 3 I, where
I is the identity matrix of order 34. The observation
matrix H is independent of time and given by the pro-
jection of the observation matrix in the physical space.

The model and forcing errors (i.e., the system errors)
are assumed for simplicity to be dominated by wind
stress errors and simulated by perturbing the FSU wind
stress by a noise u9, following Miller and Cane (1989)
and Cane et al. (1997). Although the FSU wind stress
errors are highly inhomogeneous, because of the dis-
tribution of the ship tracks and the variations of the
wind field, we take them as spatially homogeneous. In
full space, the wind stress errors e(x, y, t) are assumed
to be Gaussian, serially decorrelated, with a spatial
structure given by

E[e(x, y, k)e(x9, y9, l)]

2 2(x 2 x9) (y 2 y9)
5 Wd(k 2 l)exp 2 2 , (46)

2 2[ ]L Lx y

where W 5 (ra/rwCD)2 3 (266 m2 s22)2, Lx 5 108, and
Ly 5 48. The amplitude W was determined as in Miller
and Cane (1989).

The system error covariance matrix in the reduced
space is determined using a ‘‘Monte Carlo run.’’ The
model is forced by a random zonal wind stress generated
from (46) for 2001 months. The model state is reset to
zero at the midpoint of each month, and the model fields
are projected after one month onto the MEOFS. The
model noise bt is obtained as the projection onto the
reduced space of the model response to the monthly
forcing stress. The covariance matrix in the reduced
space is a sample estimate of Q calculated from the 1965
months that remain after the 36 months of spinup are
discarded. In the present paper, this matrix will be re-
ferred to as the true system error covariance matrix Qtrue.
The system noise corresponds to an rms sea level error
of 2.3 cm, a conservative estimate that is reasonable
here, where the fields have been smoothed by the EOFs
truncation. Figure 2 (upper left) shows that the system
errors project most strongly on the first few EOFs and
that there are large error covariances.

An unfiltered run (hereafter UR) obtained by forcing
the reduced model with the perturbed FSU wind stress
defines the ‘‘false’’ state of the tropical Pacific ocean,

wf(k) 5 Lwf(k 2 1) 1 [uFSU(k 2 1) 1 u9(k 2 1)].
(47)

To be consistent with the notations of section 3, we note

u(k) 5 uFSU(k) 1 u9(k), (48)

so that bt(k) 5 2u9(k). The unfiltered run represents the
traditional forecast run when no data are assimilated,
using an imperfect model.

We then define an a priori covariance matrix that is
supposed to reflect our imperfect knowledge of the sys-
tem errors. As commonly done (e.g., Gourdeau et al.
1992), we choose the simplest covariance matrix, noted
Qa priori: the unity matrix scaled by an amplitude factor.
Thus, no account is taken of the particular space we are
working in (the EOFs space). In keeping with most mod-
elers’ optimism, we strongly underestimate the system
errors: the trace of Qa priori amounts to 2‰ of that of the
true one. The KF run with Qa priori (hereafter PKF) is
stable and is a first reference run allowing us to evaluate
the improvement brought by the adaptive procedure.
This filter is suboptimal and the innovation sequence is
red at all the observing stations. Their strong serial cor-
relation is seen in Fig. 3 (dashed line).

To compare the different runs in identical settings,
we have calculated the correlation and the rms differ-
ence between the sea level observations and predictions
at the observations points. We have also calculated the
correlation and the rms differences with the true state
in the EOF space. Each calculation is done over the 216
time steps, for both the forecast and the analyzed state.
The results of UR are given in Table 1 (top line). PKF
with Qa priori does not improve the predictions skill, which
remains close to that of UR (Table 1, second line). In-
deed, the a priori system errors are small so the Kalman
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FIG. 2. Mapping onto the first 31 EOFs of the true system noise covariance matrix (upper left) and of the covariance matrix estimated
using the adaptive procedures of MT (112 parameters, upper right) and Maybeck (112 parameters, lower left) and the ML estimator (16
parameters, lower right). The x and y axes represent, respectively, the line and row numbers of the elements of the covariance matrix, and
the z axis represents their amplitude.

gain is small, and therefore the observations have little
influence on the estimation [Eq. (7)].

A second KF reference run is made with the true sys-
tem error covariance matrix Qtrue (hereafter TKF). This
new run gives, by definition, the optimal results for a KF,
and the innovation sequence is white (Fig. 3, dotted line).
Thus, TKF defines for the forecasts the lower limits of
the rms differences and the upper limits of the correla-
tions (Table 1, bottom line). The efficiency of the adaptive
algorithms will be given by how closely the rms differ-
ences and correlations approach these optimal values.

To test the adaptive algorithms of MT and Maybeck,
two runs will be considered below:

1) an adaptive KF run (hereafter AKF), which starts
with Qa priori as a first guess; an updated matrix is then
calculated at each time step; and

2) a straightforward KF run based on a mean covariance
matrix estimate Qest derived from the AKF run as
described below (hereafter UKF, where U stands for
updated). Since the true model noise is stationary,
this final run should best characterize the perfor-
mance of the adaptive algorithm.

b. Myers and Tapley’s algorithm

1) STABILITY OF THE ALGORITHM

To test the robustness of MT’s algorithm, a first adap-
tive AKF run was performed with sample length N 5
10. At each time step we calculated the Frœbenius norm
and the trace of the estimated Q matrix, and we compared
them with their true values (these two measures discrim-
inate between errors in the diagonal and off-diagonal
terms). The run showed a suspicious increase in these
two quantities, so we made a longer run obtained by
simply repeating the FSU winds sequence five times,
which clearly demonstrated that the adaptive procedure
diverges (Fig. 4, top). The experiment was repeated with
N 5 5 and N 5 20, with similar results (the smaller the
value of N, the faster the divergence). It turns out that
the first five diagonal terms of the matrix are stable, while
the higher diagonal terms diverge. It is thus in directions
of little variability that the algorithm becomes unstable.
This instability arises from the ill-conditioning of the
estimation problem, since the number of parameters to
be estimated in the covariance matrix and the bias is 5355
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FIG. 3. Mean over the 34 observing stations of the lagged autocorrelation of the innovation sequence for
the two reference runs PKF (∗) and TKF (V) for (a) the AKF (3) and UKF (1) runs of the MT algorithm
and (b) the ML estimator (1); lag 1–10. The dotted horizontal lines give the 95% confidence interval for
zero correlation at the 34 stations. The correlations have been calculated using the last 156 time steps when
the filters are in steady state.

TABLE 1. Performance of the adaptive algorithms of MT and of Maybeck when estimating 112 parameters. AKF is the adaptive KF run.
UKF is a KF run with the covariance matrix estimated from AKF. Root-mean-square differences and correlations are given for the observations
at the 34 stations (left) and for the true state of the ocean (right) for both the forecasts and the analysis. For reference, values are also given
for UR, the unfiltered run; PKF, the KF run with Qa priori; and TKF, the KF run with Qtrue.

Observations

Correlation

Forecast Analyses

rms (cm)

Forecast Analysis

True state

Correlation

Forecast Analyses

rms (3 1024)

Forecast Analysis

Unfiltered
PKF

0.68
0.69 0.70

6.21
6.09 6.00

0.66
0.66 0.66

7.48
7.37 7.34

Myers and Tapley AKF
UKF

0.73
0.77

0.87
0.95

5.53
4.95

3.70
2.31

0.68
0.76

0.71
0.80

7.45
5.84

6.92
5.25

Maybeck AKF
UKF

0.75
0.77

0.89
0.95

5.21
4.95

3.38
2.25

0.74
0.76

0.77
0.80

6.25
5.84

5.80
5.25

TKF 0.79 0.94 4.72 2.37 0.81 0.86 5.05 4.05

[(102 3 103/2) 1 102], while there are only 216 3 34
5 7344 observations. The number of parameters must
thus be dramatically reduced.

2) PARAMETERS REDUCTION AND DEFINITION OF

THE ESTIMATED MATRIX

Assuming that the atmospheric flow in the midlatitudes
evolves on two distinct timescales, Dee et al. (1985) par-
ameterized separately the slow and fast parts of the sys-

tem noise, thus reducing the number of parameters. How-
ever, it is better here to take advantage of the particular
nature of the EOF coordinates to identify the crucial terms
that need to be updated since the EOFs are ordered in
terms of decreasing variance. This points to an inherent
advantage of the reduced space KF for adaptive error
estimation. Thus, rather than estimating the entire system
error covariance matrix, we choose to update only its
diagonal terms and the first five covariances, keeping the
other elements to zero. The number of parameters for the
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FIG. 4. Time evolution over 90 years of the Frœbenius norm (con-
tinuous line) and trace (dash–dotted line) of the estimator Q̂ of the
system noise covariance matrix, using the MT adaptive scheme and
estimating all covariances (top) or only the covariances between the
first five EOFs and the diagonal terms (bottom). The horizontal lines
indicate the true values.

covariance matrix drops from 5253 to 112. In fact, the
results turn out to be insensitive to the update of the
covariances, and estimating only the diagonal of the ma-
trix (102 parameters) gives comparable performance.

The simplified covariance matrix is updated with (30).
As seen in Fig. 4 (bottom), the robustness of the pro-
cedure is greatly improved: after a rapid initial increase,
norm and trace fluctuate around their true value. This
variability arises from the limited length N of the sample
used in (29) and (30). Consider, for example, the trace,
which is the sum of squares of Gaussian variables with
zero mean but different variance. Following Stuart and
Ord (1991), one can show that the trace is approximately
distributed as g times a x2 variate with n degrees of
freedom, where g and n are determined by identifying
the moments of order 1 and 2. Based on the trace of
Qtrue, the 95% confidence interval for the trace of the
estimated matrix is found to be in good agreement with
the fluctuations in Fig. 4.

To decrease the sampling variability, we define an es-
timated matrix Qest as the sample mean of Q̂ over the last
50 assimilation steps. Its structure is compared to that of
the true one in Fig. 2, which shows that the variances
are a bit too large. The system error covariances between
the first five EOFs are also slightly overestimated, pre-
sumably because we have neglected all the other covar-
iances. To make the comparison easier between the es-
timated and the true matrices, Fig. 5 shows the root-mean-

square system noise variance projected onto the sea level.
This quantity is actually the square root of the diagonal
term of the matrix HgridQH , where Hgrid is the matrixT

grid

that maps the state vector onto the gridded map of sea
level anomalies. Globally the system errors given by Qest

are overestimated (more than 1 cm) in the extraequatorial
regions (north of 108N and south of 108S), giving too
much weight to the observations (Fig. 6). On the contrary,
between 58S and 58N the errors are underestimated in the
central and eastern part of the basin. This is consistent
with the dynamics of the model that performs best near
the equator, and it reflects equatorial wave propagation.

3) PERFORMANCE OF THE ALGORITHM

The adaptive run (AKF) and the run with Qest (UKF)
are compared in Table 1 and Fig. 7, which shows the
performance in terms of the index

rms(filtered run) 2 rms(UR)
perf 5 , (49)

rms(TKF) 2 rms(UR)

so that 0 corresponds to the unfiltered run and 1 to the
KF run with the true covariance matrix.

First, one should notice that the on-line adaptive pro-
cedure AKF does not clearly improve the predictions
of the model: although the agreement with the obser-
vations is slightly better in AKF, the rms error with the
true state increases. The poor performance of AKF is
linked to its use of a poorly estimated bias [section
5b(5)]. On the other hand, the bias is ignored in UKF,
where the noise is assumed to have zero mean and UKF
performs nearly as well as TKF.

The UKF results are very close to those of TKF in
the observation space, since the observations have been
used to update the covariance matrix Q. In fact, the rms
difference between observations and analysis is even
lower for UKF than for TKF, consistent with the slight
overestimation of Qest, which leads to bigger forecast
errors [Eq. (13)], a bigger Kalman gain [Eq. (12)], hence
an analyzed field that is closer to the observations. In
the model space, the results have been considerably im-
proved by using Qest, but they fall short of optimal.

The geographical distribution of the rms differences
between forecast and true sea level anomalies (Fig. 8)
confirms that the adaptive procedure with the simplified
covariance matrix significantly improves the predictions
of the KF, which has become close to optimal. The
predictions are improved not only at the observing sta-
tions, but over the entire basin through the propagation
of information by the model dynamics.

4) ‘‘WHITENESS’’ OF THE INNOVATION SEQUENCE

Since the innovation sequence is white when the filter
is optimal, a good adaptive algorithm should whiten the
innovation sequence (section 4a). Following Jazwinsky
(1969), who pointed out that looking only at the size
of the residuals is not sufficient to judge the performance
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FIG. 5. Root-mean-square of the system noise projected onto sea level for (a) the true system
noise, (b) the noise estimated by MT, and (c) the noise estimated by ML. Contour interval is 1 cm.

of the adaptive procedure, we have investigated the sta-
tistical characteristics of the innovation sequence of the
AKF and UKF runs and compared them with those of
the PKF and TKF runs. Figure 3a shows that, when the
filter is in a steady state the adaptive procedures are
efficient at ‘‘whitening’’ the innovation sequences,
which are slightly correlated for AKF and nearly un-
correlated for UKF. Pure whiteness is not expected,
since the structure of the simplified covariance matrix
Qest differs from that of Qtrue.

5) DEPENDENCE ON N AND Q̂(0)

The results above correspond to a sample length N 5
5, but we tried several other values. Figure 9 shows that
the performance of the UKF runs improved with de-
creasing N. Indeed, during the adaptive filter initializa-
tion, qs(i) in (28) is a poor indicator of the noise bt(i). If
the initial guess for Q underestimates the noise, then the
gain K will be small, and the analysis wa will remain
close to the forecast wf, so the estimated system noise
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FIG. 6. Differences of the estimated system noise projected onto sea level with its true value for
(a) MT scheme (Fig. 5b minus Fig. 5a), and (b) ML scheme (Fig. 5c minus Fig. 5a). Contour

interval is 1 cm.

FIG. 7. Performance index of the adaptive algorithms of MT
(dashed line) and Maybeck (continuous line) when estimating 112
parameters. Values with the a priori covariance matrix are shown by
the dotted line. Values of the true covariance matrix are equal to one.

qs, which depends on wa 2 wf, will be too small. How-
ever, updating Q with the iterative procedure will improve
qs as the run proceeds. For small N, the estimator Q̂ is
allowed to vary rapidly, getting closer to the true co-
variance matrix and leading to better UKF performance.

On the other hand, the AKF runs improve with in-
creasing N. This occurs because the sample mean q̂ used
in AKF is a poorer estimate of the mean of the true bias
for small N. Indeed, its average over the last 50 steps
has an rms value (difference with the true one) decreas-
ing from 3.08 3 1024 for N 5 2 to 2.28 3 1024 for N
5 5 and 3.57 3 1025 for N 5 20. Since (31) makes
use of the estimator q̂ at each time step, the performance
of the adaptive KF is lower when N decreases, even
though Q̂ is better. This suggests that the UKF run is
best for small N because we have used our knowledge
that the true bias is zero. If the bias was unknown,
different conclusions might been reached, unless the
bias was estimated by some other mean.

To test the robustness of the adaptive procedure, we
made an adaptive run with an overestimated system er-
ror covariance matrix Q̂ as initial guess and N 5 5. The
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FIG. 8. Root-mean-square difference between true and predicted sea level using as system
noise covariance matrix (a) the a priori matrix (b) that estimated by the MT adaptive
procedure (c) that estimated by the ML function, and (d) the true covariance matrix. Contour
interval is 2 cm.
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FIG. 9. Root-mean-square difference between the predictions and the true state of the ocean (left) and
between the predicted sea level at the observing stations and the observations (right) versus sample length.
The results are given for the MT adaptive scheme AKF (∗) and for UKF (1). For reference, corresponding
values are given for UR (dashed line) and TKF (dash–dotted line).

norm and trace of the estimator decreased rapidly and,
after about 60 time steps, fluctuated as before around
their true value (not shown). After about 150 time steps,
the variability of Q̂ was indistinguishable from the case
of an underestimated initial choice. The performance of
the new UKF run was very similar (rms error between
observed and predicted sea level at the observing sta-
tions 4.96 cm, correlation 0.77, rms error between pre-
dicted and true state 5.90 3 1024, and correlation 0.76).
Hence, Qest does not seem to depend on the initial choice
if enough data are available for the estimators to adjust.

c. Maybeck’s algorithm

We first performed an extended adaptive run with the
sample length N 5 10, estimating all the terms of the
covariance matrix as in section 5b(1). Figure 10 (top)
shows that the adaptive algorithm does not diverge but
the estimators are biased and the covariance matrix
clearly overestimated. Maybeck (1982) pointed out that
the maximum-likelihood estimator is biased for small
samples, anticipating this result.

In view of the similarity between MT’s and May-
beck’s estimators, it is remarkable that the MT algorithm
leads to the divergence of the filter while that of May-

beck is stable in the same ill-conditioned setting. The
instability of MT arises from the simultaneous identi-
fication of the mean, in agreement with Godbole (1974),
who showed that the simultaneous estimation of the
mean and the covariance matrix of the system errors
may not be well behaved. For stationary noise, he dem-
onstrated that the noise covariances can be identified
without the knowledge of noise means, but not the con-
trary. Indeed, using the sample mean of the innovation,
an unbiased estimator of the innovation covariance and,
through an adaptive scheme, of the system noise co-
variance can be calculated. On the other hand, esti-
mating the mean q requires computing the gain matrix
K, which depends on Q by (12) and (13), so a good
estimation of Q is necessary.

In this first run with Maybeck’s algorithm, the di-
agonal terms of Qest are only slightly overestimated
(10%), but the covariances are not well estimated, pre-
sumably because of their too large number. As in section
5b(2), a simplified matrix with 112 parameters, gave a
much better behavior, although the trace was still a bit
overestimated, unlike MT (Fig. 10, bottom). Figure 2
(lower left) shows that, although the error variance of
the first EOF is much too big, the global structure of
Qest is preserved.
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FIG. 10. Time evolution over 90 years of the Frœbenius norm
(continuous line) and trace (dash–dotted line) of Q̂, using Maybeck’s
adaptive scheme and estimating all covariances (top) or the covari-
ances between the first five EOFs and the diagonal terms (bottom).
The horizontal lines represent the values of the norm of the true
covariance matrix (continuous) and its trace (dash–dotted).

TABLE 2. Performance of the adpative algorithms of MT, Maybeck, and ML when estimating 16 parameters. As in Table 1.

Observations

Correlation

Forecast Analyses

rms (cm)

Forecast Analysis

True state

Correlation

Forecast Analyses

rms (3 1024)

Forecast Analysis

Unfiltered
PKF

0.68
0.69 0.69

6.21
6.15 6.10

0.66
0.66 0.66

7.48
7.42 7.41

Myers and Tapley AKF
UKF

0.73
0.77

0.86
0.96

5.57
4.97

3.73
2.09

0.71
0.76

0.74
0.80

6.92
5.81

6.36
5.18

Maybeck AKF
UKF

0.75
0.77

0.89
0.96

5.24
4.97

3.32
2.11

0.74
0.77

0.76
0.80

6.21
5.81

5.74
5.18

ML 0.77 0.95 4.96 2.28 0.77 0.80 5.81 5.18
TKF 0.79 0.94 4.72 2.37 0.81 0.86 5.05 4.05

The AKF run is superior to that of the MT algorithm
because the forecast is not perturbed by any bias esti-
mation as in MT. No bias is estimated in either algorithm
in the UKF runs, and they are nearly identical (Table 1
and Fig. 7). The only difference is that the rms differ-
ence between analyzed sea level and observations is
smaller in Maybeck’s algorithm, consistent with the
slight overestimation of Qest.

d. Maximum-likelihood algorithm

The adaptive run based on the maximum-likelihood es-
timator derived from Dee’s algorithm (hereafter ML) is
given by minimizing the functional (44). Since Q(a),

which enters (44) via (41), should be a positive semidef-
inite matrix, we represent it with a Cholesky factorization,
S being the lower triangular Cholesky factor of Q,

TQ(a) 5 S(a)S (a), (50)

with

M

S(a) 5 a S . (51)O i i
i51

To precisely compare the ML algorithm with those
of MT and Maybeck, the elements of the covariance
matrix that need to be estimated are the covariances of
the first five EOFs and the diagonal [see section 3b(2)].
Because of the computational burden, it was difficult to
estimate so many parameters, so the diagonal terms from
the sixth EOF on were assumed to decay exponentially
with an e-folding scale of 0.03, leaving only one ad-
justable amplitude. Hence, the dimension of the un-
known parameter in (51) is 16. The first 15 matrices Si

are zero everywhere except for one element {Si( j, k) 5
1; j # 5, k # j}, while S16 is zero except for the diagonal
elements for j . 5, given by

S16( j, j) 5 e20.015( j26). (52)

The first guess Qa priori was chosen to be diagonal, and
exactly equal to that used in sections 5a and 5b for the
first six elements, with the rest determined by (52). The
variance of the a priori matrix was then 0.7‰ of that
of the true one. Since the system noise is more under-
estimated than in Table 1, the PKF run is slightly worse
than before (Table 2).

Table 2 compares ML with the adaptive procedures
of MT and of Maybeck in similar settings, that is, with
the same parameterization (52) of the last 97 terms of
the diagonal of Q. The ML estimator gives results very
similar to those of the UKF runs of the two other adap-
tive procedures. Figure 3b illustrates that the innovation
lag-correlation closely resembles that of the UKF run
with the algorithm of MT. Except at lag 1, the estimated
correlation falls within the 95% confidence interval.

The structure of the ML system error covariance ma-
trix is somewhat different from that estimated with the
MT and Maybeck algorithms: the first five diagonal
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terms are slightly overestimated and the covariance el-
ements are lower (Fig. 2, lower right), and the system
noise for sea level is slightly overestimated when
mapped in gridpoint space (Fig. 5c). Interestingly, the
differences between the errors estimated with ML and
the true ones have the same spatial structures as those
obtained with MT but with bigger amplitudes, which
emphasizes the contrast between the regions near and
away from the equator (Fig. 6). In both cases, the es-
timated errors are too low along the equator, giving too
much confidence to the model predictions in this region.
Despite the differences between the estimated matrices,
the geographical distribution of the rms differences be-
tween forecast and true sea level anomalies (Fig. 8d)
resembles that given by the MT adaptive procedure.

The fact that the results of the three adaptive pro-
cedures are very close although the estimated matrices
are different confirms that the system error covariance
matrix that whitens the innovation sequence is not de-
termined uniquely when the number of observations p
is much smaller than the dimension of the state vector
n (section 4c).

In summary, as expected from the similarities be-
tween the three estimators, the results of the adaptive
procedure are very much alike. However, the ML pro-
cedure requires much more computation to minimize
the nonlinear functional.

6. Conclusions

The goal of the present work was to develop and test
a reduced space adaptive KF for a linear model of the
tropical Pacific Ocean. Using a twin experiment ap-
proach, we tested three different adaptive algorithms. The
first two, the empirical estimator of MT (1976) and the
maximum-likelihood estimator of Maybeck (1982), were
shown to be equivalent if the system noise has zero mean.
The two algorithms had to be modified in view of the
still large dimension of the state vector; estimating all
the elements of the system error covariance matrix led
to ill conditioning, since the amount of observations was
small. Taking advantage of the EOFs coordinates used
to define the reduced space, we were able to efficiently
reduce the number of matrix parameters and to adaptively
obtain quite realistic values.

Both algorithms show similar performance in fore-
casting the state of the ocean when using an averaged
system noise covariance matrix Qest based on the last
part of the adaptive runs. As MT’s adaptive procedure
is very efficient at whitening the innovation sequence,
the results of the runs with Qest were really close to
optimal, meaning that all information in the observa-
tions had been extracted. However, the forecasts of the
adaptive run itself were far less satisfactory with MT’s
algorithm because it makes use of on-line estimates of
the system noise mean, and the latter cannot be iden-
tified without the knowledge of the noise covariance
matrix (Godbole 1974).

The third algorithm is a maximum-likelihood esti-
mator inspired by Dee (1995), which has been designed
to estimate a few parameters of the system error co-
variance matrix using the entire sequence of the inno-
vation vector. Its performance is comparable even
though the estimated system errors covariance matrix
differs notably from those estimated with the algorithms
of MT and Maybeck, which are alike and more realistic.
The minimization of the nonlinear functional is com-
putationally very costly, however, and the algorithm is
not recommended.

In summary, the adaptive algorithm of MT with a
simplified covariance matrix is efficient (nearly optimal)
in the unbiased case. Moreover, it is easily applicable
to a biased system noise. However, the noise mean
should be estimated by some other procedure since the
simultaneous estimation of the covariance matrix and
the mean is not well behaved. Indeed, this was con-
firmed by the poor performance of the adaptive algo-
rithm (AKF) compared to that of the KF run with the
estimated matrix. In forthcoming papers, the algorithm
will be applied to a real dataset and the problem of a
biased system noise addressed.
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APPENDIX

Comparison of Maybeck’s Estimator
and the ML Estimator

The maximum-likelihood function from which May-
beck’s estimator (33) was derived is given by p[w(k),
W (k) z a], where W (k) denotes the observation historyo o

N N

over the last N steps, and w(i) the state vector. It si-
multaneously gives an estimator of the state vector
wml(k) and the noise parameters aml. Successive appli-
cation of the Bayes’s rule gives

op[w(k), W (k) z a]N

o5 p[w(k) z W (k), a]

k

o op[w (i) z W (i 2 1), a] , (A1)P5 6
i5k2N11

where Wo(i) is the measurement history from step 1 to
step i, with
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op[w(k) z W (k), a]
2n/2 a 21/25 (2p) [detP (k)]

1
a T a a3exp 2 [w(k) 2 w (k)] P (i)[w(k) 2 w (k)]5 62

(A2)

and
o op[w (i) z W (i 2 1), a]

2p/2 21/25 (2p) [detC (i)]0

1
o f T 213exp 2 [w (i) 2 Hw (i)] C (i)05 2

o f3 [w (i) 2 Hw (i)] . (A3)6
Using (8), it is easy to show that (43) and (A3) are
identical. The functional fMay to be minimized can be
defined as

a a T a 21(k)] 1 [w(k) 2 w (k)] P (k)f (w, a) 5 ln[detPMay

a3 [w(k) 2 w (k)]

k

T 211 {ln[det C (i)] 1 v(i) C (i) v(i)}.O 0 0
i5k2N11

(A4)

The maximum-likelihood estimators wml(k) and aml

should satisfy the two equations

]fMay a T a 21(w , a ) 5 [w (k) 2 w (k)] P (k) 5 0 (A5)ml ml ml]w

and

]fMay (w , a )ml ml]aj

a 21 a 21 a5 Tr {P (k) 2 P (k) [w (k) 2 w (k)]7 ml

a]P (k)
a T a 213 [w (k) 2 w (k)] P (k) }ml 8]aj

a T]w (k)
a 21 a2 2 P (k) [w (k) 2 w (k)]ml]aj

k f]w (i)
T 212 2 H(i) C (i)v(i)O 0]ai5k2N11 j

k

21 211 Tr [C (i) 2 C (i)v(i)O 0 05i5k2N11

]C (i)0T 213v(i) C (i)]0 6]aj

5 0. (A6)

The solution of (A5) is given by
aw (k) 5 w (k), (A7)ml

so that the maximum-likelihood estimator of the model
state is given by the KF equations. Equation (A6) can
thus be simplified to

]fMay (w , a )ml ml]aj

a]P (k)
a 215 Tr P (k)[ ]]aj

k f]w (i)
T 212 2 H(i) C (i)v(i)O 0]ai5k2N11 j

k

21 21 T 211 Tr [C (i) 2 C (i)v(i)v(i) C (i)]O 0 0 05i5k2N11

]C (i)03 5 0, (A8)6]aj

and its solution aml minimizes the equivalent functional
af (a) 5 ln[detP (k)]May

k

1 [ln[detC (i)]O 0
i5k2N11

T 211 v(i) C (i) v(i)]. (A9)0

For k and N 5 kstep, the maximum-likelihood functions
(A9) and (44) only differ by the term ln[detPa(k)] in
fMay. In fact, this term was neglected by Maybeck (1982)
to reach the solution (33), so the two functionals are
otherwise equivalent. However, Maybeck’s solution in-
troduces further simplifications and is calculated over
N samples whereas we minimize directly the functional
(44) over the whole time history.
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