2802

MONTHLY WEATHER REVIEW

VoLume 123

Quasi-Fixed Points and Periodic Orbits in the Zebiak—Cane ENSO Model with
Applications in Kalman Filtering. Part I: Monthly Quasi-Fixed Points

GERD BURGER, STEPHEN E. ZEBIAK, AND MARK A. CANE

Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

(Manuscript received 18 August 1994, in final form 21 February 1995)

ABSTRACT

In an effort to apply the interactive Kalman filter to higher-dimensional systems, the concept of a quasi-fixed
point is introduced. This is defined to be a system state where the tendency, in a suitable reduced space, is at a
minimum. It allows one to use conventional search algorithms for the detection of quasi-fixed points. In Part I
quasi-fixed points of the ENSO model of Zebiak and Cane are found when run in a permanent monthly mode,
the reduced space being defined via a multiple EOF projection. The stability characteristics of the quasi-fixed
points are analyzed, and it is shown that they are significantly different from the (in)stabilities of the average
monthly models. With these quasi-fixed points, assimilation experiments are carried out with the interactive
Kalman filter for the Zebiak—Cane model in the reduced space. It is demonstrated that the results are superior
to both a seasonal Kalman filter and the extended Kalman filter.

1. Introduction

In a recent study, Biirger and Cane (1994, henceforth
BC) have shown that the assimilation of data into
highly nonlinear systems via the extended Kalman filter
(EKF) might fail and can successfully be remedied by
what they call the ‘‘interactive Kalman filter’> (IKF).
If the system which is to be assimilated tends to occupy
certain regimes, then, as the paper demonstrates, the
continuous updating of the EKF assimilation error
model can be replaced by a procedure that uses only
the single regime error models. The filter works in such
a way that all regimes participate in each assimilation
step, the conflicting error models being reconciled
through a weighting procedure that reflects the ‘‘close-
ness’’ of the system to the individual regimes at a spec-
ified time.

For an application of the IKF it is therefore crucial
to know in advance which regimes to choose. In higher-
dimensional (nonlinear) systems, it is usually near
fixed points that the local structure of the system is
richest, and the splitting of the full system into a group
of corresponding localizations is very effective. Biirger
and Cane deal with the one-dimensional double-well
system and the three-dimensional Lorenz system.
These systems are mathematically simple enough to
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calculate the various fixed points algebraically, but the
situation quickly changes with increasing number of
dimensions and becomes algebraically intractable for
most models usually encountered in atmosphere—
ocean studies.

The importance of fixed points for the understanding
of atmospheric phenomena such as weather regimes
has been boosted by the work of Charney and DeVore
{1979) on multiple equilibria, that is, fixed points, of
the barotropic potential vorticity equation on the beta
plane. Since then much effort has been put in extending
our knowledge about the spatial and temporal structure
of such equilibria, and search methods for equilibria
have been developed. Legras and Ghil (1985) deter-
mine zonal and blocking states of the atmospheric flow
in two different ways: as stationary solutions of the
barotropic potential vorticity equation on the sphere on
the one hand, and as persistent anomalies of a corre-
sponding model run on the other hand. Another ap-
proach has been undertaken by Branstator and Op-
steegh (1989); they apply a numerical search algorithm
for the minima of the tendency function. As a result,
they find blocking structures very much like the per-
sistent anomalies.

At a first glance, the atmosphere—ocean system of
the tropical Pacific with the El Nifio—Southern Oscil-
lation (ENSQ) phenomenon does not seem to fit into
this picture: there is no evidence of a fixed point in the
dynamics of that process, nor has anybody ever de-
tected with certainty regimes, in the aforementioned
sense, in the ENSO phenomenon. Nevertheless, in our
study we show how one can successfully apply the in-
teractive Kalman filter even to phenomena such as
ENSO. The two facts, 1) that there are no fixed points
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in the system and 2) that it does not exhibit regimelike
behavior, are mainly caused by the external forcing that
is annually cyclic (through the radiation or, for an
anomaly model, the seasonal cycle). We show that it
is possible to reasonably extend the concept of a fixed
point in two different directions that make it applicable
to such systems. As a model of the tropical atmo-
sphere—ocean system of the Pacific, we use the anom-
aly model of Zebiak and Cane (1987, henceforth de-
noted by ZC). The first direction, which will be the
content of Part I, is to break up the nonautonomous
(i.e., time dependent) model ZC into autonomous (i.e.,
time independent) pieces ZC,,, where the background
mean fields that drive ZC are frozen to the conditions
of a particular month m, and to consider fixed points
of each ZC,,. The second approach (Part II, Biirger et
al. 1995) is to consider the Poincare map imposed by
the annual forcing and consider its fixed points. They
form the initial points of periodic orbits of ZC.

For both approaches we need to define a notion that
is slightly weaker than the notion of fixed point. It is
implicitly in the above mentioned and other papers but
has never received enough attention to be given a spe-
cific name, probably because of its proximity to the
notion of fixed point. We decide to do otherwise and
call it a quasi-fixed point (QFP), a name that indicates
it is a straightforward generalization of a fixed point.
At a QFP the absolute value of the tendency function
assumes a local minimum, as opposed to zero for a true
fixed point. Although QFPs always exist (except in
some trivial cases), their detection requires a limited
number of degrees of freedom. We therefore restrict
the defining criterion for QFPs to certain low-dimen-
sional subspaces of the full system space, where the
subspace has to contain the information for all prog-
nostic variables of ZC. This guaranteed, one can for-
mally define a version M of the full system ZC, which
exists in the low-dimensional subspace, and one can
work exclusively with this version. Moreover, M
should converge to ZC in the same way as the total
space is approximated by the subspace. This means that
important dynamical features of ZC, such as fixed
points, limit cycles, bifurcations, and the like, should
be reflected in M and can be detected there.

Although QFPs might be of limited importance in a
theoretical sense, mainly because of the difficulties to
define an appropriate subspace, they are nonetheless
useful for applications of the IKF. With a series of Kal-
man filter studies for ZC (or M, respectively), we will
demonstrate that the QFPs we found can successfully
be used for the IKF. We compare the assimilation re-
sults with two other Kalman filters, a seasonal filter and
the extended Kalman filter, and find that the IKF in all
test cases performs better.

2. The projection

The model ZC couples a Gill-type atmospheric
model with a 1.5-layer oceanic model; it describes and
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predicts anomalies that evolve around some empirically
given climatological cycle. It has been demonstrated
that usefully skillful predictions of ENSO at ope year
lead time are possible with ZC (cf. Cane et al. 1986;
Latif et al. 1994). Model ZC is defined on a grid that
covers the tropical pacific region between about 30°S
and 30°N, and 120°E and 80°W, with a grid size of 2°—
5° in longitude and 0.5°-2° in latitude, depending on
the field variable. The time step of the model is one-
third of a month. Table 1 shows the variables that define
a state of ZC: given a certain time of the year, the
evolution of ZC is uniquely determined by these vari-
ables.

We now define a multiple EOF projection for ZC in
two steps. In the first step we calculate primary EOFs
for each single variable from a 1000-month run of ZC
and keep as many principal components (PCs) as ac-
count for 99% of the field variability (Table 1, right
column). Before we can apply a secondary EOF pro-
jection to these PCs, we have to ensure that they are
weighted according to their number and physical im-
portance. As indicated in Table 1, we have four groups
of variables: 1) the atmospheric part, 2) the atmo-
spheric impact on the ocean, 3) the oceanic part, and
4) the oceanic impact on the atmosphere. We want each
of these groups to be treated equally as a whole. As a
result, the PCs in each group were weighted such that,
first, in each single group all variables account for the
same total variability and, second, all groups have
equal total variability. The resulting 383-dimensional,
mixed PC time series was then subject to another, sec-
ondary, EOF projection. Figure 1 depicts the first 20
eigenvalues of that EOF calculation and the two lead-
ing EOFs in their wind, thermocline (TCL), and SST
fields; they explain about 65% of the full variance. The
remaining EOFs taper off rather quickly to negligible
values. Note that EOFs 1 and 2 do not seem to be in
quadrature, which would have to be the case if the three
fields were the only ones used for the EOF calculation.
This is a hint toward the non-self-adjoint nature
of ZC.

TABLE 1. State variables of ZC.

No. of No. of

Variable Description points PCs
U zonal wind 34 X 30 13
v meridional wind 34 X 30 17
V- (u, v) wind divergence 34 X 30 44
T wind stress 34 X 30 23
Hy Rossby part of thermocline 117 X 85 46
Ug Rossby part U 117 X 85 74
v meridional current 117 X 85 90
Ax Kelvin wave amplitude 85 4
H, TCL at boundary 117 X 4 14
Uy boundary zonal current 117 X 4 15
SST sea surface temperature 34 x 30 29
(4] atmospheric heating 34 X 30 14

Total: 37 996 383
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500 EOF Variances FiG. 1. (a) The first 20 eigenvalues of the multiple EOF
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already explains about half the total variance. (b) The first two

500 EOFs in terms of the wind, TCL, and SST fields. The main

SST variability is concentrated on the Peruvian coast, extend-
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, field there is a pair of strong Rossby waves of opposite sign
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by a similar but slightly westward-shifted pattern in the SST,

200 but a rather different pattern is in the TCL field (Rossby waves
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The question of which of these EOFs are physi-
cally significant is as important since it is always sub-
ject of much speculation [see, e.g., Preisendorfer
(1988), who gives a full palette of selection rules
together with the context where each rule should be
applied]. But here we adopt the viewpoint that there
is just no clear-cut difference between the signal and
the noise of the above process. We decided to keep
90% of the variance, and in the following we might
refer to that portion as the ‘‘signal’’ and to the rest
as the ‘‘noise.”

“130E 140E 150E 160E 170E 180 170W 160W 150W 140W 130W 120W 110W 100W 9OW

Formally, the twofold projection can be described as
follows. We denote the ZC state vector by

z= [u, v, V'(u, U), T, HRa UR9 V, AK’ HO’ UO’ Tv Q]
(1)

and the principal components of the secondary EOF
projection by x. Now we comprise the primary EOFs
to a single 37 996 X 383 matrix E,. Here E, is a di-
agonal matrix, the entries of which are rectangular ma-
trices consisting of the primary EOFs. The nine leading



SEPTEMBER 1995

secondary EOFs explain 90% of the variance of the
secondary PCs; we represent them in a 383 X 9 matrix,
E,. Forming the diagonal (383 X 383) matrix A, which
consists of the different weightings of the primary prin-
cipal components, we can write the projection as

x=ETAETz. (2a)

The orthogonality of the EOFs ensures that the embed-
ding

Z= EIA_lsz (2b)
is inverse to the projection (2a), so that the multiple
EOF reduction works like a simple one.

3. Quasi-fixed points

Equation (2) ensures that it is possible to pull every
map in the full space down to the EOF space. When
we apply this to the map that assigns to each state z.the
state z' that originates from z by advancing ZC,, by one
time step, we armrive at the following diagram.

zC,,
z—7z'
embedding t U projection
x—x'
My,
As the diagram emphasizes, there is a unique model
(function), M,,, that assigns to any x in the EOF space
a new value x’ and that by definition can be considered
as a projected version of ZC,,. With increasing reso-
lution of the EOF subspace, one can expect that M,,,
as far as short time behavior is concerned, converges
to ZC,,, just as the eigenvalues in Fig. 1 converge to
zero. Hence, as soon as the EOF projection extends to
the realm of noise, M,, should faithfully reflect the main
dynamical features of ZC,,, especially fixed points and
their stability structures.
For a fixed-point x of M,, one has M, (x) = x or
M, (x) — x = 0. Therefore, any fixed point is a root of
the nonnegative real-valued function

I(x) = | M,(x) — x|. (3)

We define a QFP of M,, to be a local minimum of
I'. For a QFP x, the smaller I'(x) the closer x is to a
true fixed point (of M,,). Although a QFP depends on
the particular EOF truncation, we sometimes speak of
a QFP of ZC,,, for example, referring to an imaginary
‘‘ideal’’ projection that perfectly filters out the noise of
the system. In this case, the existence of a QFP x with
a negligible value of I has another interesting aspect:
either x is a fixed point of ZC,, or ZC,, maps x directly
toward higher EOFs, which in our case means noise.
In either case x is a pivotal point in the model’s local
error structure, and it can help assimilation error mod-
els to adjust their behavior effectively. Unlike fixed
points, QFP always exist in a nontrivial system. Fur-
thermore, there is a straightforward way to estimate
them, as described next.
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4. Estimation of quasi-fixed points for ZC,,

To estimate the average variability of the model, we
conducted one long run of ZC; (i.e., in the perpetual
July mode) over 3600 model time steps (= 100 years).
Figure 2 depicts the function

I'(z) = |x(t + 1) — x(0)], (4)

where each x(?) is the projection of the current state of
ZC,, . Here I'(¢) is a good approximate of I'[x(¢)], de-
pending on the quality of the EOF projection. Note the
broad range of values that sometimes approach zero
(years 40-50) and sometimes exceed 15 (first 20
years). We see that during the first 30 years the model
behaves very regularly, performing about seven cycles
of period 30/7 ~ 4.3 years. In this period the typical
I'(¢) values are close to 5, but sporadically they can
reach maximum values. The next 10—15 years seem
locked at the state of no anomalies [with zero ['(¢)
values, of course], but then the system slowly begins
to oscillate again, finally assuming a behavior that
looks more chaotic than the beginning, with f‘( t) values
that lie somewhat lower, in the range 1-10. [ Compare
this figure to Fig. 10 of Legras and Ghil (1985), which
shows the corresponding tendency function for their
model.]

Term I'? is a sum of quadratic functions. Local min-
ima of such functions can be estimated with the Mar-
quart—-Levenberg technique (code libraries such as
minpack or IMSL contain appropriate routines). Be-
cause these routines calculate the Jacobian of I', VT,
internally we merely have to provide a subroutine that
calculates T from a given input vector and a starting

‘ NINO3
G Lo N ws o

T

60
YEAR

FiG. 2. A section of the permanent July run ZC;, showing the
NINO3 values in the lower panel and, in the other panel, the function
I'(¢), which measures the absolute tendency (in the EOF phase space)
of the model. The largest values occur when the model exhibits a
regular cycle of about a 4.3-yr period, reaching values of up to 17.
Here the average value of about five is also higher than at the end of
the time series when the oscillation is not so regular; here the average
tendency is no greater than two or three. We can see that the large
spikes are associated with a sharp change in the NINO3 during the
cold phase.
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point. For a fuller description of the procedure compare
Press et al. (1992). We therefore merely have to trans-
late the steps depicted in the diagram (4 ) into program-
ming code. We definitely do not want to describe the
details of this work but we have to remark on this:

because the code needs a lot of cross, back, and forth

references, it is quite difficult to define what can be
called a unique state of the system. This, however, is
necessary for the definition of a function. The need to
work in a reduced space becomes especially clear when
we note that the calculation of VI alone would require
37 996 model steps and the result, which is a 37 996
X 37 996 matrix, that is, 1 Gbyte of numbers, has to
be stored in memory.

As mentioned in the beginning, we wanted to keep
90% of the model variance and therefore retained the
nine leading multiple EOFs. The starting points for the
search algorithm were generated by a random process
with covariance C = C,, which is the covariance of the
nine corresponding PCs. We used 50 different points
for each month. A major problem in the search algo-
rithm arises from the fact that the state of no anomalies
is a fixed point for all months. It turned out that if the
limitation criterion of the search algorithm was chosen
too strict, the algorithm was only attracted by this fixed
point. Therefore, if one wants to gain a thorough pic-
ture of the whole state space and its QFPs, one has to
soften the limitation criterion and use the outcome of
a search procedure as input for a new search, and so
on. This needs a lot of tuning and trying and, especially,
a great number of iterations. Finally, the search itera~
tion converged to five groups of states, where each
group represented the individual shaping for each
month of an otherwise generic pattern. It is justified,
hence, to refer to each single group as one QFP that
undergoes slight modifications through the year. We
denote these QFPs as QFP 1, - - -, QFP 5, ordered by
increasing NINO3 values. QFP 3 is the state of zero
anomalies, a fixed point for each month m.

Figure 3 displays the outcome of the search algo-
rithm. All T values are well below 0.3 (see lower
panel), and especially the negative QFPs (1 and 2) are
practically O for most months. Compared to Fig. 2 one
sees that these numbers are significantly below the av-
erage value of I'. The numbers certainly suffer from
some residual convergence failures of the search al-
gorithm; this is especially clear for the spring and fall
estimates of QFP 1 and QFP 2. The diagram reflects
the fact that the flatness of the function I'(x) is directly
related to the smallness of |OI'/9x| (middle panel)
and, hence, to the difficulty in finding the correct min-
imum. In the upper panel we show the corresponding
NINO3 values for the different months as calculated

from the QFP. Already from the NINO3 values we see-

a symmetric behavior about the origin. This can be ver-
ified by inspecting the various fields corresponding to
the QFPs. We show QFP 1 and QFP 5 of July in Fig.
4 in the fields SST, TCL, and wind (QFP 2 and QFP
4 are very similar to QFP 1 and QFP 5, respectively,
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Quasi-fixed points of ZC model
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Fic. 3. The quasi-fixed points of the models ZC,,m =1, ..., 12.

In the lower panel we see the value of T" for each QFP. With the
exception of QFP 5 (and partly QFP 1), all values are well below
0.1; this is about one-tenth of the usual tendency (I'). Especially in
late summer and fall the values are very small, with minima in Oc-
tober where all QFPs except QFP 5 assume I' values that are at least-
another order of magnitude less than in the other months. The upper
panel shows the corresponding NINO3 values. They are distributed
symmetrically about zero, with QFPs 1 and 2 being negative and
QFPs 4 and 5 being positive.

with smalier amplitude). For QFP 1 (Fig. 4a) we see
a tongue of negative SST anomalies (up to —3.5°)
spreading from the South American coast, accompa-
nied by a strong divergence in the wind field and a
rather weak TCL field. The west Pacific shows a similar
but smaller pattern in the SST and wind field, with re-
versed sign. In QFP 5 we observe the same pattern with
reversed signs but note that the shifted ITCZ forces the
wind field to converge or diverge at about 5°N. Note
the splitting in two cells of the warm anomaly in the
east Pacific. '

To verify our findings we performed test runs of ZC;
in the following way. We chose, for each QFP, 20 ini-
tial states that were random perturbations of that QFP
with covariance 0.01C, and ran the model 500 time
steps, about 14 years. Figure 5 shows the result in the
form of a phase plot between the two dominant PCs.
The linearity of the dynamics can be read directly from
these scatterplots since such a behavior appears as a
circle or arc of the trajectory (when an oscillation is



SEPTEMBER ]995

BURGER ET AL.

2807

QFP5 JULY, WND

NN LA A S

RN 7 oS T e L Y LA s ana S =
LR =2y F 7= S33IIIILIL o= s
3 =3 N PTG ON N N D 2 e
oy "/'/ P TSSO N D Pt AT Y
v o2 o5 bt SIS > U3 TS s
< 27 ~ 5 TS \“**"k/‘f/‘ﬂ
c <377 4 « L2 S RADRT R
P LA O -y F35 7 < L
cL gy rrd - L3323 Pree Y
PR EPIEIEEN == \f;;:::t.
N D \*i,/ '\\'\'\Q X RS oyv Y

M N NI N NS

NN ST IAANARNANN R R R
- > " * v

Py vy NS EEERAAASE LU ST
120W 110w 100W 90W 160E 170E 180 170W 160W 150W 140w 130W 120w 110W 100W 9OW

l

4

TN '

<< =

\ﬁf T j"‘
130E 140E 150E 160E 1

o S . Pyrady
70£ 180 170W 160W 150W 140w 130W 120W 110W 100W 9OW

1306 140E 150E 160E 170E 180 170W 160W 150W 140W 130W 120W 11

FIG. 4. (a) The wind, TCL, and SST fields of QFP 1 for the month of July. We see a cell of colder than normal (~—0.6°) temperatures in
the eastern Pacific, accompanied by an upwelling Kelvin wave in the east and downwelling Rossby waves in the central Pacific. The wind
field shows easterlies (~1 m s) in the central Pacific and stronger westerlies in the west, with a large convergence zone at about 165°E. This
corresponds to a warm pool of surface water at 155°E. (b) Like (a) but for QFP 5. We mainly see a mirrored picture from the former figure,

with opposite signs and enlarged amplitudes.

prevailing ) or as a straight line in case it is a pure damp-
ing or amplification. The outcome for QFP 3 shows the
behavior of a full fixed point. We can see very clearly
an unstable oscillation between PCs 1 and 2. The ro-
tation time is slightly greater than 4 years, which is
about the internal ZC, period that is known from other
studies (see Zebiak and Cane 1987). The amount of
scattering here is a direct measure for the state’s sen-
sitivity to initial conditions or its internal error growth.
Compared to, say, QFP 2 we observe a much larger
scattering for QFP 3. For QFP 2 we can distinguish
three bandlike structures. Each band represents a trace
of the cloud of initial conditions, and the cloud is still
glued together even after three rotations have been per-
formed. This points to an enhanced predictability of the
model when initialized from QFP 2. The behavior is
quite similar for QFP 5, again with three bands clearly
visible. The occurrence of three cycles in 14 years
again establishes a periodicity of 14/3 ~ 4.3 years. For
QFP 1 we again have the enhanced scatter of the evo-
lution like for QFP 3, as well as the quasi-linear evo-
lution (circles) observed there.

Another striking feature can be observed in the QFP 1
scatterplot: some trajectories circle back into the origin,
indicating the existence of a stable manifold that comes
from a fixed point of ZC; near QFP 1. In fact, if we let
the model run further, it settles into an equilibrium that
we show in Fig. 6. The equilibrium is characterized by
cold anomalies in the entire Eastern Pacific and a warm
spot on the equator at 170°W. This is accompanied by a
deepened thermocline in the west, off the equator, and
easterly winds east of it. We also see strong winds in the
northeastern (northeasterlies) and southeastern corner
(westerlies) of the basin. The fact that this equilibrium is
not detected by our routine indicates that basic elements
of its structure lie outside the nine-EOF space. The be-
havior of QFP 4 is quite similar to that of QFP 3, so that
one might argue that QFP 4 is essentially QFP 3, with
minor modifications induced by an incomplete estima-
tion. On the other hand, the estimation procedure that
often enough slipped into the track of QFP 3 in some
cases detected QFP 4.

The existence and structure of the so found QFPs
certainly depends on the number of retained EOFs. It
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FIG. 5. Scatterplots of 20 ZC; runs started near each QFP, as re-
flected by the PC1 and PC2 components. The cloudiness of the evo-
lution indicates strong error growth due to larger Lyapunov expo-
nents. For QFP 1 (upper-left panel) one trajectory circles back into
the origin, indicating a real fixed point near QFP 1 (see text). For
QFP 2 (upper-right panel) the scatter is much less now, indicating
enhanced stability. Note the great regularity for QFP 3 (middle
panel). The circles indicate a prevailing unstable oscillation about
QFP 3 (about 4 years per cycle). The QFP 4 behavior (lower-left
panel) looks very similar to that of QFP 3. The QFP 5 scatter (lower-
right panel) exhibits a quite stable rotation band, again with period
of about 4 years. The scatter is very low, indicating strong stability.

appeared, however, that parallel experiments with 7, 8,
10, and 11 EOFs did not change the picture signifi-
cantly. We also undertook similar experiments with 40
EOFs, which explain 99% of the variance. The results
we gained so far indicate that the same structure of
QFPs—the zero state and two pairs of patterns sym-
metrically about it—is still prevailing in this case.
Moreover, the I" values of many QFPs actually ap-
proach zero, so that one can deal with real fixed points.
However, the computational resources needed for the
detection and, especially, for the Kalman filter appli-
cation are immense. Although the results look quite
promising in some cases, we decided to stick to the
lower-dimensional case, mainly because we prefered a
broad overview over many parameter situations, which
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is possible for nine EOFs, to a sketch of one or two
examples.

5. The local structure around the QFPs

The evolution of the error model in Kalman filtering
is governed by the local linear structure of the model
M,,. For the interactive Kalman filter we only need to
know the localizations, that is, the Jacobian, at the sin-
gle QFPs. A standard way to calculate the Jacobian at
a state x is to advance the model M,, from, in our case,
a set of nine perturbations of x, each of which points
toward another unit vector. The solution matrix L, can
then be read from the so advanced unit-perturbations.
We illustrate this by the following diagram:

M,
x + el—eL,.

&)

The size of the perturbation e was taken to be the 1%
of the average variability as determined by Cy. As a
comparison we estimated an average linearization L,
for each single month. We did this by advancing the
model under fixed conditions for that month from a
random set of initial conditions, with the covariance
being Cy. The estimations were done by standard least
squares techniques (see von Storch et al. 1988). As has
been pointed out in BC for the evolution of any error
model, the most stable and unstable modes of L, or L,,
are of central importance. We show these values in
monthly diagrams in Fig. 7. The scale of the eigenval-
ues is given in e-folding times in months, where a neg-
ative time points to a stable and a positive time to an
unstable eigenvalue. It is apparent that a major part of
the variation is due to seasonality. For instance, the
greatest instability is reached in the spring months
where all eigenvalues cluster about 3—5-month e-fold-
ing time, whereas in late fall all instability seems to be
gone (smallest e-folding time beyond 20 months). On
the other hand there is also a widening of the spectrum
of eigenvalues due to the internal dynamics, that is,
coming from different QFPs. There are, for instance,
significant differences in the behavior of some QFPs
and the average model L, in each single month. For
example, in January QFP 1’s most unstable mode e-
folds in about 7 months, and QFP 5 in 17 months,
whereas the strongest instability of L,, e-folds in 13
months. Furthermore, in November the only significant
instability (8 months) comes from QFP 1. As for the
most stable modes, differences also appear during cer-
tain months. In March one observes the most stable
mode (from QFP 4) to be about 6.5 months, while the
average model is not that stable (9 months); in June
QFP 1 has a much more stable mode than the average
model (5.5 months compared to 9 months). It is inter-
esting that in all cases the average model shows the
same stability properties as QFP 3, the state of no
anomalies. All values for the average model are in good
agreement with the findings of Xue et al. (1994). Some
inconsistencies in the QFP values, such as the sudden
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FIiG. 6. The stability structure of the QFPs and the average linear
model through the year. Values are e-folding times, negative values
correspond to stable and positive to unstable modes. Here x axis is
the most stable mode; y axis is the most unstable mode. We see a
clear seasonal cycle, the instabilities being strongest in spring. The
average model has only indifferent modes (eigenvalues approxi-
mately 1) in late fall, whereas QFP 1, for example, remains strongly
stable in November. In the spring months the QFPs maintain a spec-
trum of different stability characteristics, such as QFP 4 in March,
with a decay rate of 6.5 months and QFP 2 with 9 months (like the
average model). The most unstable modes in springtime are similar
between the average model and the QFPs (3 months in spring and
over 20 months in late fall), but there are differences in the other
parts of the year, like in January when QFP 1’s most unstable mode
e-folds in 7 months compared to 13 months for the average model.
Note that the average linear model behaves quite like QFP 3, the
linearization about the origin.

appearance of QFP 1 in November, are probably
caused by errors in the QFP estimation. The general
picture, however, seems sensible. It is hard to decide
which kind of stability variation has a greater impact
on a possible error model: the external seasonality or
the internal dynamics coming from the different QFPs.
This will have to be decided by running concrete as-
similations.

Our stability analysis revealed one other thing that
is interesting in its own right: for all months the second
or third most unstable mode of QFP 3 (the zero state)

BURGER ET AL.

2809

was a complex mode with an e-folding time varying
about 30 months and a period of almost exactly 2 years.
Although we have dealt with the monthly models ZC,,,
it is possible that this biennial mode is in essence the
one that has been found in a number of observational
studies, for example, Rasmusson et al. (1990), Barnett
(1991), and Kepenne and Ghil (1992).

6. Seasonal, interactive, and extended Kalman
filtering for ZC

In our final experiment we performed assimilations
with three sorts of Kalman filters, where each filter used
a specific method for the error model update. The as-
similations were done in the following way. All pro-
cesses under consideration are defined in the EOF re-
duced phase space. The true process was created by
running the model ZC over a period of 100 years and
projecting the result into the EOF space. The observed
process was created by superimposing white noise on
the true process that had the same spatial covariance as
the true process times, some scaling factor ¢, which
varied between 0 and 1; observations were made avail-
able once a month, that is, each third time step. We
therefore have an exact knowledge of the observational
error covariance. Our model of the true process is given
by the model functions M,, for each month m. The Kal-
man filter is now well defined once we give it as input
the observational error covariance R, and the system
error covariance Q, (see the appendix ). Both are taken
to be constant. The former is determined by the white
noise process, and the latter is estimated from another
test run of 100 years. We calculated the actual errors
between the next projected and the M,, forecast values
of that run (these are different because of the EOF fil-
tering). The three error models were 1) a seasonal
model that used the monthly linearizations L,,, 2) the
interactive filter model, and 3) the full extended filter
model. For the latter, we estimated the local Jacobian
at each assimilation step by the same procedure as de-
scribed in the former section.

From BC we adopt the notion of regime and regime
weight. Given a (nonlinear) system s and a number N
of states of s together with Jacobians, (w;, L;, i =< N),
they assign to each state of sN numbers (8;, i < N)
with the following properties:

e 0=sf =1,
° 3 ﬁ,’ = 1,
® w;, L, good approximation for s = 3; — 1.

For details refer to the appendix. The name regime
is inspired from situations when one of the g; has very
large values over a longer time span; it means that the
system is nearly locked to the local linear system of the
corresponding state.

A typical section of the IKF-assimilated ZC run, as
seen by the regime weights, is depicted in Fig. 8; here
we used an observational error scale of ¢ = 0.6. We
see the five weights (on top of each other) evolving
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FiG. 7. A model run of ZC together with the QFP weights as used for the interactive Kalman filter (see text). The
weights are depicted cumulatively, from bottom (8,) to top (8s), with increasing gray shades. We see the irregular
periodicity in the weights (upper panel) that correspond to the behavior of NINO3 (lower panel). Note the strong El
Nifio events that are reflected in Gs; it seems that they are accompanied by two peaks in 85 marking the onset and
breakdown of an event. For La Nifia events we see a large §s weight. The asymmetry between cold and warm phases
usually encountered in ZC appears reduced in the regime weights.

synchronously with the current state of the system as
measured by the NINO3 index. The largest weights are
those of the extreme states, that is, QFP 1 and QFP 5.
Most of the time the other QFPs show a rather parallel
behavior with small weights, and one cannot distin-
guish (at least not from NINO3 alone) a specific situ-
ation that is linked to exactly one of them and that
would justify the name, say, QFP 2 regime. This is
different for QFP 1 and QFP 5: for QFP 5, we see that
its weight is strongest, sometimes with 85 = 0.5, during
model El Niiio events (like those of years 3, 10, and
13). Note that each warm event has two maxima at the
beginning and the end. This could mean that for the
creation and ending of an event, the stabilities and in-
stabilities of QFP 5 are of great importance. For QFP
1, which reflects La Niiia events, we note that while in
NINO3 an event does not appear to be very pro-
nounced, this is different for 3,. We see strong weights
of QFP 1 of about 0.4 in years 14, 18, and 21. Gener-
ally, the well-known asymmetry in ZC between cold
and warm phases does not show in the weights.

In Figure 8 we depict the outcome of the three as-
similations: the assimilation error, the sensitivity (see
the appendix), and the (true) NINO3. The most prom-

inent signal we observe is the seasonal cycle in the
sensitivity function. This is caused by the increased in-
stability of the linear error models in springtime (cf.
Fig. 6). The EKF sensitivity naturally shows a wider
range of behavior, especially when a warm. event
breaks down and turns into a cold phase. Here the EKF
sensitivity is consistently reduced, which means that
during those times the filter tends to ignore observa-
tional input. Seemingly this is needed, however, since
the assimilation error grows drastically during such
breakdowns; a fact that is most likely due to the fast,
switchlike changes of the system state at those times.
This phenomenon is very similar to the one we ob-
served in BC with the Lorenz system. Here the EKF
was, under certain circumstances, unable to trace the
switches that pushed the system from one quasilinear
regime to the other.

This is different for both the seasonal filter and the
IKF. Here we see a sensitivity that is practically inde-
pendent of the ENSO cycle. To understand why the
IKF performs better than the other filters we have to
look at the average sensitivity. It is much higher for the
IKF, a fact that is very likely caused by the enhanced
instabilities in the QFP regimes (see Fig. 6 for com-
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parison). It is still surprising, though, how little impact
the current system state has on the IKF sensitivity
(apart from the seasonal cycle). The larger influence
of the observational input is crucial for the seasonal
filter’s and the IKF’s capability to trace the breakdowns
of an El Niflo. But at least for the IKF this also applies
to the general situation of a fast system change. In sum-
mer/fall of the years 12, 15, 22, for example, we ob-
serve smaller IKF assimilation errors when a warming
happens rather rapidly. Likewise, the double event of
year 16 is traced better by the IKF. The overall perfor-
mance of the assimilation can be measured by the index
A defined in the appendix; A is a measure of how much
the observational error is reduced by the assimilation.
Table 2 shows the outcome of each filter with five dif-
ferent levels ¢ of observational noise.

The table shows that for smaller observational error
noise (¢ = 0.2-0.6) the IKF performs best. The fact
that all filters work suboptimal (with A > 100%) in
some cases is caused by the unavailability of observa-
tions during two-thirds of the time. This could probably
be remedied by increasing the system error, as has been

— SEAS
-——- IKF Y

ET AL. 2811

TaBLE 2. Kalman filter performance (assimilation error).

A (%) Seasonal IKF EKF
0.2 1704 143.0 171.1
04 107.5 944 109.3
0.6 76.0 70.7 78.6
0.8 58.1 58.0 61.5
1.0 46.9 50.4 50.3

shown by Miller and Ghil (1994) or also BC; but this
goes beyond the topic of our study. The seasonal filter
has the best performance for ¢y = 1.0, but this error
level might already lie in the realm where the perfor-
mance just depends on the relative sizes of the vari-
ances of the true, the observed, and the model process.

7. Conclusions

The study just presented is the second step of three
that tries to define and utilize, for the general context
of data assimilation, the tendency of nonlinear systems
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FiG. 8. The performance of the three assimilations using the seasonal (dashed lines), interactive (solid
lines), and extended Kalman filter (dotted lines). During large El Nifio events (lower panel), the assimilation
error (upper panel) is markedly increased for the EKF. This is accompanied by a reduced sensitivity toward
observations (middle panel). The sole variability in the seasonal model comes through the annual cycle, with
larger sensitivity in spring and smaller in fall. The otherwise constant behavior ensures that the errors in
tracking an EJ Niiio breakdown are significantly reduced. The IKF sensitivity is significantly larger than that
of the other two filters. This enables the IKF to trace all fast system changes better, not only the breakdowns
but also the strong feedback mechanisms that lead to the onset of El Nifio (like in summer/fall of years 12,
13, and 22). Moreover, the double event in year 16 is traced much closer.
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to form regimes. Here we use the phrase ‘‘regime’” in
a slightly broader sense than usual, including regime-
like behavior of the localizations of the respective mod-
els. The first step was the introduction and testing of
the interactive Kalman filter. Crucial to the method is
an a priori knowledge of the regimes that, for autono-
mous systems, can be identified with the fixed points
and corresponding Jacobians of the system. For the
testing we had used low-dimensional, highly nonlinear
dynamical systems that could be treated purely alge-
braically as far as fixed points and Jacobians were con-
cerned. Because the situation changes quickly as the
dimension of the problem increases, we had to find
other ways to detect fixed points and alternatives for
the notion of fixed point itself. In this study we pre-
sented one natural generalization of that notion, the
quasi-fixed point. By working in a reduced space one
is able to define QFPs for a system as large as the Ze-
biak—Cane model ZC. A major theoretical difficulty is
the question of how to reconcile the autonomous con-
cept of QFP with the nonautonomous character of ZC.
We attempted to achieve this by cutting ZC into auton-
omous monthly pieces ZC,, and find monthly QFPs for
them. Although QFPs might, from a theoretical stand-
point, suffer from deficiencies such as lack of unique-
ness (their exact shape depends on the actual reduc-
tion), they still promise to be a valuable tool for data
assimilation with the interactive Kalman filter.

The definition of a QFP is very simple: while the
tendency of a system is zero for a fixed point, it is at a
local minimum for a quasi-fixed point. Characteristic
for fixed points and, depending on the value of the min-
imum, for QFPs is that the local structure about such a
state is richest and therefore shows the largest variety
of different stability-instability structures. A QFP can
be determined by applying simple search routines that
minimize a multidimensional real positive function, but
not without some previous reduction of the system
space in order to make it feasible. Since the reduced
space had to contain all crucial initialization variables
for ZC, we were led to apply a multiple-EOF reduction.

We kept nine multiple EOFs that explain about 90%
of the full variance. By using a number of random states
as first guesses for each month we found, after a cas-
cade of further filtering and cleaning, five QFPs, QFPs,
1-5, that existed throughout the year, with slight vari-
ations in each month. The picture of the five QFPs
looks rather symmetric. There are two cold states
(QFPs 1 and 2) with an associated NINO3 value of
about —0.4 and —0.1, and two warm states (QFPs 4
and 5) with NINO3 values of about 0.1 and 1.5, all of
which have a similar pattern. The other QFP, QFP 3,
is the state of no anomalies and it is a fixed point in the
full model. The system’s tendency at the QFPs is at
least one to two orders of magnitude less than the av-
erage tendency. Similar EOF reductions, like when we
retained 7, 8, 10, or 11 instead of nine EOFs, led to
QFPs that resembled QFPs 1-5 very much. First ex-
periments with 40 instead of nine EOFs indicate that
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the basic structure of the QFPs—two pairs of patterns
symmetrically about the zero state—is inherited, and
the ‘‘quality’’ of the QFPs is even improved as the
states appear much closer to real fixed points. However,
for a comprehensive overview one needs considerable
amount of computing power, especially for the IKF ap-
plications.

As mentioned, the most important feature of the
QFPs of the various ZC,, is their stability—instability
structure, which is crucial for the Kalman filtering. We
found that among the QFPs there is a broad spectrum
of eigenvalues of the corresponding Jacobians, but the
change of the season also affects the eigenvalue struc-
ture considerably. To demonstrate the usefulness of the
QFPs, we performed a number of Kalman filtering ex-
periments with the model ZC. Although this was done
in a drastically reduced space, the general features are
not unlike those encountered in a realistic setting where
one assimilates real observational data into ZC. The
results showed that the interactive filter performed bet-
ter than both the seasonal as well as the extended Kal-
man filter. Although the major fiexibility of all three
filters is caused by the instabilities that vary through
the seasonal cycle, the overall sensitivity is enlarged
for the interactive filter. This result parallels the find-
ings in our former experiments with low-dimensional
highly nonlinear systems: that fast, switchlike changes
of the system state can only be traced by an assimilation
if the sensitivity toward observations is sufficiently
high (but, of course, not too high). On the other hand,
the results indicate that the fast changes in the ZC state
and the corresponding error growth are in fact caused
by strong nonlinearities, as opposed to, for instance,
large singular vectors.

Practical as it might be, the use of stationary regimes
like in the current study appears unappropriate for a
model like ZC. Other models such as weather models
of the extratropics with their typical regimelike behav-
ior seem more promising. But here the problem of sys-
tem reduction is cumbersome and computationally very
expensive.

In Part IT of our study we will assume a viewpoint
that seems more appropriate for ZC. The nonauton-
omous nature of ZC will be accounted for by reinter-
preting what we understood as a regime (in the broader
sense). Instead of understanding it as one of a few char-
acteristic monthly local behaviors, we come to view it
as a locking of the full system evolution into one of a
few possible orbits. This means we consider QFPs of
an appropriate version of the Poincare map of ZC,
which are nothing else than periodic orbits of ZC.

APPENDIX
The Interactive Kalman Filter

The basic equations for the interactive Kalman filter
are as follows. We assume that the system, which is
given by some model function f, approximately decom-
poses into N regimes (w;, L;), i =< N. Here a regime
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(w, L) is given by some state w of the system together
with its Jacobian L at that state. By decomposition we
mean that if we write the state vector at time  — | as

x(t—=1)=wp+ &2 — 1), (A1)
the forecast error of the regimes

6i(0) = If(w) + L&~ 1) — flx(r — DI (A2)

should be comparatively small for at least one regime
(here **| |’ denotes the Euclidean norm in the phase
space). This is reflected by the weighting of the re-
gimes that assigns, at each time ¢ of the process, to each
regime (w;, L;), a number 5;(¢),

1/62 (1)
3 1/6%(1)

j<N

Bi(t) = (A3)

which is approaches 1 the better (w;, L, ) approximates
f. The assimilation step for the interactive Kalman filter
goes as follows: Suppose we already assimilated data
up to the time ¢t — 1. We therefore have calculated an
assimilation value X(f — 1) and the error covariance
P,_,, and from this we calculate the forecast value £(z)
= f[£(¢t — 1)]. The independent observation gives us
a value £(¢). Now we calculate N (temporary) guesses
of the forecast error covariance P, by using the respec-
tive regime models L; and the system error covariance
Q,, via

PO =LP_LT+Q,. (A4)

Now we can define the forecast assimilation error co-
variance P, by

pr = Z ﬂi(t)p(i),

isN

(ASa)

and, for the case that observations are available at time
t, let

P.=(1-K)P(1-K) +KRK', (A5b)

with K, denoting the Kalman gain matrix and R, the
observational noise covariance. Finally, the assimilated
value is calculated by composing observational and
model information, £(#) and £(¢), by using the standard
Kalman weighting

() = - K)i(t) + K, x(¢). (A6)
Two quantities are of importance: the assimilation error

e(t) = [X(1) — x(1)| (AT)
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and the sensitivity of the assimilation toward observa-
tions

s(h) =2 [Z (K:)?,] . (A8)

i=N Lj=n

A good performance index for the assimilation is the
actual assimilation error covariance P relative to the
observational noise, given by R:

_Tr(P)
" Tr(R)

(A9)
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