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ABSTRACT

We analyze the linearized version of an analytical model, which combines linear ocean dynamics with a
simple version of the Bjerknes hypothesis for El Nifio. The ocean is represented by linear shallow water equations
on an equatorial beta-plane. It is driven by zonal wind stress,which is assumed to have a fixed spatial form.
Stress amplitude is set to be proportional to the thermocline displacement at the eastern boundary.

It is shown that, for physically plausible parameter values, the model system can sustain growing oscillations.
Both growth rate and period scale directly with the time that an oceanic Kelvin wave needs to cross the basin.
They are quite sensitive to the coupling parameter between thermocline displacement and wind stress, and the
zonal location and meridional width of the wind.

The most important parameter determining this behavior of the system is the coupling constant. For strong
coupling the system exhibits exponential growth without oscillation. As the coupling is decreased the growth
rate decreases until a transition value is reached. For smaller values of the coupling the growing modes of the
system oscillate, with a period which is infinite at the transition value and decreases for decreasing coupling.
The inviscid system has growing modes for any positive feedback, no mater how weak, though the growth rate
rapidly becomes very small. For very weak coupling the period approaches the first resonance period of the free
ocean. The model can also be expressed as a nondifferential delay equation. The components of this equation
are easy to interpret physically and ailow some insights into the nature of the oscillations. The relation of our
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results to other recent work and its implications for E} Niiio and the Southern Oscillation are discussed.

1. Introduction

Consider a rectangular tank containing a shallow
layer of fluid. Fluid motions are driven by a stress par-
allel to one axis of the tank applied along a line parallel
to the other axis. A float gauge at the tank wall toward
which the stress is pointing is connected to the paddie
wheel device supplying the stress, so that its amplitude
and direction 4 depends on h,, the fluid level there.
What will be the nature of the resulting motions? In
particular, will they be oscillatory?

The present paper addresses this question in the cir-
cumstance where the tank is in fact a basin situated on
an equatorial beta plane with the zonally oriented walls
infinitely far from the equator. ( The nonrotating case
is touched on briefly in section 4.) It is entirely con-
cerned with the special case where the relation between
the stress and the deviation of the fluid level from its
mean height is linear; the richer behavior of the non-
linear case will be taken up in a sequel (Miinnich et
al. 1990). In the linear case the interesting question is
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the identity of growing modes, if any, with particular
attention to whether or not they oscillate.

Arguably, the equatorial beta plane case is relevant
to the El Nifio-Southern Oscillation (ENSO) phe-
nomenon, in accord with the view which regards ENSO
as an oscillation of the coupled ocean-atmosphere sys-
tem in the tropical Pacific (e.g., Bjerknes 1969; Cane
and Zebiak 1985, 1987; Zebiak and Cane 1987; Schopf
and Suarez 1988; Hirst 1988; Battisti 1988; Graham
and White 1988). While one may question whether
the problem examined here is an adequate paradigm
for the ENSO cycle (and we will do so in the conclu-
sion), there is considerable agreement that a model
problem of this sort captures the essence of the nu-
merical models recently put forward as models of
ENSO.

We have in mind the numerical models of Zebiak
and Cane (1987), Battisti ( 1988; this model is a close
but not exact copy of that of Zebiak and Cane), and
Schopf and Suarez (1988). The present paper adds to
a second layer of work in which each numerical mo-
deler tries to capture what he sees as the essential be-
havior of his rather complex grid point model of the
ocean-atmosphere system in a model simple enough
to be represented as a single equation in a single de-
pendent variable with time as the only independent
variable (cf. Battisti and Hirst 1988; Suarez and Schopf
1988; Schopf and Suarez 1989).
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Not surprisingly, the complex model cannot be re-
duced to the simple one by a procedure which is entirely
rigorous. As demonstrated in the papers of Schopf and
Suarez (1989) and Battisti and Hirst (1989), however,
a substantial part of the reduction can be accomplished
before rigor must be abandoned in favor of heuristics.
Rather than reprise the derivations in the works cited
above, here we adopt a heuristic approach from the
outset. The wellspring of all these models is the Bjerknes
hypothesis (1966, 1972, and especially 1969; Cane
1986 is a recent summary ). Briefly, if the eastern equa-
torial sea surface temperature (SST) warms, the ther-
mal contrast between this region and the western Pacific
will be reduced, thereby reducing the strength of the
trades along the equator. The changes in ocean dy-
namics induced by the reduction in wind stress en-

hances the original warming: a positive feedback, re- -

sulting in the large anomaly often referred to as an El
Nifio or ENSO event. Bjerknes also pointed out that
the normal phase, with a colder SST in the eastern
Pacific and strong trades, is maintained by the same
feedback loop operating in the opposite sense. The
question Bjerknes left to us was what causes the tran-
sition from one state to the other. Thus we begin our
analysis with a good idea of the source of instability
but little idea of why it oscillates. While differing in
detail, the works cited above all agree that adding the
special properties of linear equatorial ocean dynamics
to Bjerknes’s scenario provide the answer.

The equation for temperature T in a well-mixed sur-
face layer of depth A, may be written (Zebiak and Cane
1987):
aT

E+12-VT+ u-v(T+T)

+h3[T— T, + T — T,(h)] +hﬂ[:r— T.(1)]

= QSfC= —a,T, (1)

oTr

o +I1+N0++1IV=—aT
where overbars denote mean quantities and 7, is an
entrainment temperature, here taken to depend only
on the thermocline depth /. Equivalently, we are as-
suming that the vertical motion of all isotherms just
beneath the mixed layer is entirely coherent with the
thermocline motion. Four dynamical processes which
can produce an SST warming may be enumerated:
horizontal advection, either I, of warmer waters by
mean surface currents, or II by anomalous currents;
I1I, reduction of upwelling strength; and 1V, a deep-
ening of subsurface isotherms. Even with vertical ve-
locities unchanged, the last mechanism warms SST be-
cause when the isotherms deepen the water entrained
into the surface layer from below is warmer, than be-
fore. Bjerknes was unable to decide among the four.
Detailed studies show that in the numerical models at
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least, while all are significant at some time or place
during the ENSO cycle, it is the IV which is responsible
for initiating the warming (Zebiak 1984; Battisti 1988).
This lowering of the isotherms (equivalently, the low-
ering of the thermocline) is not a response to local
wind changes: it is remotely forced. In view of the ge-
ometry of equatorial dynamics, packets of equatorial
Kelvin waves, propagating eastward along the equator,
must be the agent of change.

A body of work appears to contradict this result.
Harrison and Schopf (1983) and Latif et al. (1988)
have studied the warming due to a Kelvin wave initi-
ated by a wind burst in the western Pacific and have
all concluded that the heat flux associated with tem-
perature advection by enhanced zonal currents will
dominate over the upwelling effects. Given reasonable
estimates for eastern Pacific horizontal and vertical
temperature gradients, upwelling rates, and surface
layer depths, the same conclusion follows inexorably
from linear theory, which fixes the relative sizes of zonal
velocity and isotherm displacement in a Kelvin wave.

The conclusion does not depend on the Kelvin waves
being forced by a wind burst, but it does require that
they be regarded as the outcome of some initial value
(viz. Gill 1983 ) problem. If the Kelvin waves are a part
of a low frequency periodic or quasi-periodic process
then the result can be different. At low frequencies the
resultant circulation is near equilibrium. In the eastern
Pacific it consists of Kelvin waves plus the Rossby
waves they generate when reflected at the eastern
boundary (e.g., Cane and Sarachik 1981; henceforth
CS). The zonal velocity signal, which must go to zero
at the eastern wall, is near zero over a substantial zonal
distance (how substantial is a function of frequency,
cf. CS). By contrast, the isotherm displacements are
enhanced over what they would be with Kelvin waves
alone. Hence in the low frequency case, which involves
eastern boundary reflections, the isotherm displace-
ments are the dominant cause of temperature change—
the result found in the analysis of the numerical model
behavior. Even when the cycle is aperiodic, as in Zebiak
and Cane (1987) and Schopf and Suarez (1988) each
model event is an extreme phase of a cycle, connected
to the last event and to the next event.

Diabatic heating is important in the surface thermal
balance of the ocean. As first shown by Bjerknes
(1969), however, it acts to damp the thermal anomalies
created by ocean dynamics (also see Cane 1986). It is
so effective at this that SST anomalies are in quasi-
equilibrium in the eastern Pacific, determined by the
balance between upwelling heat flux and heat exchange
with the atmosphere, Q;. Approximating Q, as a linear
damping of the temperature anomaly 7 this leaves

w
= —T,. 1’
heog + W ()

This balance is referred to as Model I by Hirst (1987,
1988; also see Battisti and Hirst 1989). The conse-
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quence of interest here is that the SST variations on
the equator are a function of isotherm displacement,
with negligible time lags.

Drawing on results of Battisti’s (1988) numerical
model averaged over an eastern Pacific box (180°W
to the South American coast, 2°N to 2°S); Battisti and
Hirst (1989) attempt to account for all the terms in
(1). They reduce (1) to the form

(l§+QT=vn‘ (1)

o ot

The consequences of the differences between (1)
and (1") are considered in Appendix B (together with
some other variations in model formulation ). For now,
we note that the difference between (1’) and (1”) does
not lead to qualitative differences in overall model be-
havior. It does make notable quantitative differences,
but, as will shortly appear, the same may be said of a
number of model parameter variations.

The preceding discussion provides the basis for sim-
plifying the ocean component of our model. The at-
mosphere responds to SST in the eastern equatorial
Pacific. Although the effective SST patch extends off
the equator, say from 10°S to 10°N, the source of the
anomaly is water upwelled at the equator, which then
spreads poleward by mean meridional advection and
eddy diffusion. Ignoring the small time delay needed
to accomplish this, the total SST anomaly is well rep-
resented by the SST at the equator. The discussion
above motivates ignoring the influences of zonal ad-
vection and change of upwelling velocity, leaving
equatorial SST as a function of isotherm displacements
alone. (An alternative argument is that these displace-
ments are an acceptable proxy for the other effects).
The upper ocean movements have strong vertical co-
herence, so these displacements are related to anomalies
in the thermocline depth, 4. Hence T, = T.(h). For
the low frequency motions of interest to us thermocline
depth anomalies are nearly constant within a few
thousand kilometers of the eastern boundary (cf. CS).
Hence they are all well approximated by 4., the depth
of the thermocline at the intersection of the eastern
boundary and the equator. The SST anomaly (equiv-
alently, all of the relevant ocean thermodynamics) is
reduced to a function of the single ocean variable #,.
Linear shallow water dynamics will be used to deter-
mine /. in response to the wind stress anomalies.

The wind stress anomaly is determined by the at-
mosphere model’s response to the SST anomaly. In
the models of Zebiak and Cane (1987) and Battisti
(1988) the atmosphere is steady state, so the wind is
in phase with the SST. For the more complex model
of Schopf and Suarez, and the still more complex mul-
tilevel GCMs, the atmosphere is time dependent, but
in fact the near equatorial winds respond very rapidly
to tropical SST anomalies. Specifically, the response
time is very short compared to the 2.3 months it takes
an oceanic Kelvin wave to cross the Pacific. Here we
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take the wind stress anomaly to be simultaneous with
the SST anomaly. We also take its spatial pattern 7(x,
¥) to be fixed in time. (The formalism we will use can
easily accommodate a zonally propagating wind pat-
tern, but beyond that it must be revised.) Though
questionable as a representation of reality this is a de-
cent approximation to the numerical model results and
is additionally supported by the stability analysis of
Hirst (1987). The particular pattern used here, how-
ever, is simpler than what the numerical models pro-
duce.

We now summarize the model discussion. The at-
mosphere model has been reduced to providing a re-
lationship of the wind stress anomaly amplitude A4 to
the SST anomaly. The SST anomaly depends only on
the thermocline height at the eastern end of the equator.
Hence all of the atmospheric dynamics and thermo-
dynamics, and all of the ocean thermodynamics col-
lectively boil down to a relation of the form A(#4,).
The ocean dynamics which relate 4, to the wind stress
A(t)7(x, y) are the linear shallow equations on an
equatorial beta plane, simplified only by the standard
low frequency approximation (cf. CS).

2. The model equations

Following the discussion in the Introduction, we ar-
rive at a relation between wind stress 4 and eastern
boundary thermocline displacement:

A= A(h,) (2)

where the function A incorporates diabatic heating,
meridional advection, upwelling velocities, the mean
subsurface temperature structure 7°(z), atmospheric
heating, and tropical atmospheric dynamics. In the
linear case to be studied here

A = «kh, (3)

with x a phenomenological coupling constant sum-
marizing all processes by which the ocean affects the
wind stress. It is the ratio of the change induced in the
wind stress strength to the displacement of the ther-
mocline in the eastern equatorial Pacific. Consistent
with the Bjerknes scenario, the assumption is that wind
changes A are ultimately related to dynamical ocean
variations which can be “measured” by the thermocline
displacement #,.

The thermocline displacement is related to the wind
through linear equatorial ocean dynamics. We take the
ocean to be meridionally infinite, bounded by merid-
ional walls at 0 and L,. First we introduce nondimen-
sional equivalents for the zonal and meridional dis-
tances x, and y, and time #;:

Xg o _Ya. ,_ _l

x=— ; 1= .
L, L, Ly/c

Here L., is the usual equatorial radius of deformation,
L., = (¢/B)"?, where § has its usual meaning as the
variation of the Coriolis parameter, and c is the wave

(4)
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speed in this equivalent—one layer ocean. Note that
the timescale is the time it takes for an equatorial Kel-
vin wave to cross the ocean, about 2.3 months for Pa-
cific parameters (e.g., Cane and Moore 1981). Zonal
distance is such that 0 < x < 1. The wind stress is taken
to be purely zonal with the form

Af(x)e ™ e, (5)

We resolve the ambiquity in the definiton of 4 by re-
quiring

! 1
fo S(x)dx = o (6)
where
L,
XE = L_eq . (7)

Thus, A4 is a measure of the wind strength which in-
cludes fetch effects (e.g., for wind stress patches with
the same shape 4 is proportional to the patch width).
The development given below could be extended to
include propagating wind forms by taking f( x) to be
complex; the only modification required would be to
the convention (6). If x = 0.1 then for Pacific param-
eters the meridional scale of the wind is about 15° of
latitude, roughly the atmospheric radius of deformation
(cf. Zebiak 1986). We will focus attention on u = 0.2
oru=0.1—10° or 15°. CS were able to obtain a closed
form solution for the response of an equatorial ocean
to a wind stress of the form (5) in the case where f( x)
is constant; i.e., for all x

1
=—, 8
o= (8)
Their solution requires that the long wave, low fre-
quency approximation holds, which is met here. Equa-
tion (26) of CS (p. 662) gives the following expression
for the Fourier transform of 4,:

A(M3/2 — pug(p, w) + iJ; q(u, w’)dw’)

he = (1 — p2)w(i sin(2w)) /2 ©)

where
qg(p, w) = (p cos2w + i sin2w)'/?. (10)
Now u3/2 = ug(u, 0) so the first two terms in (9) can
be rewritten as
“ aq U !
—u | W )
0 Ow

J“” u? sin(2w’) — ip cos(2a) , ,
- dw.
0

q(p, ')
Using this and (10), (9) becomes

P =ﬁ( i )”""f‘”sin(Zw’)d ,
¢ w \sin(2w) 0o q(u, o) @

(11)
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Now suppose the wind stress is again uniform but
of limited fetch; i.e.,

1
X2 — X1

if X <x<x,
f(x)= (12)

0 otherwise.

The response may be found without further calcu-
lation by formally retracing the steps in the deviation
of CS. The result analogous to (11) is

(i [5G 4,
h _ Xjw q(f""w) (13)
¢ w(sinQw) 2 (x — x1)

By letting x,, x, approach a common value x, we
obtain the response to a delta function forcing at xo,
i.e., the Green function:

b = i 172 sin (2wxo)
¢ “\sin(2w) q(p, wxo)

= AG(XO; M, w)'

(14)

Then for a general forcing f( x)

1
h = 4 fo J) G py @)X’

; 1/2 1 N of '
_ A( . [ ) f f(x") sin(2x'w) dx'
sin(2w) 0 q(u, wx")

If we now insert the relation (2) (i.e, 4 = «h,) be-
tween the wind stress amplitude and the thermocline
displacement into (15) we obtain a characteristic re-
lation for the model, relating the period and growth

rate given by the complex number w to the coupling
strength « and the wind shape parameters:

(15)

1
1= KJ(; G(x'; u, w)f(X)dx'. (16)

3. Analysis of the characteristic relation

We are interested in the dependence on coupling
strength and wind shape characteristics of the growth
rate and period of the normal modes (—w; and 27/ w,,
respectively, with w = w, + iw;). Figure 1 plots (w,, w;)
as a function of « for a uniform wind patch covering
the center half of the basin [i.e., Eq. (12) with x; = 0.25,
x5 =0.75). For all x > 0 there is a positive growth rate,
although for « < 1 it is very small. As x approaches
zero, the frequency approaches 7 /2, so the period be-
comes four times the Kelvin wave crossing time, which
is just first resonance period for free waves (Cane and
Moore 1981). As « increases, the period increases, be-
coming infinite at k = «,,, ~ 1.5. For « = «,,, the mode
no longer oscillates and the growth rate increases rap-
idly with increasing x. Not unexpectedly, period and
growth rate are sensitive to the strength of the coupling
between atmosphere and ocean.
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F1G. 1. Dependence of growth rate — w; and frequency w, on the
coupling constant . Forcing parameters: ¢ = 0.1, x;, = 0.25, x;
=0.75.

Figure 2 is similar to Fig. 1, but shows a set of curves
where the fetch x, — X, is varied. The clear impression
is that w is not very sensitive to fetch, as long as the
zonal integral of the wind stress is unchanged [ viz. (5)].
In Fig. 3, the meridional width is varied. The curves
are qualitatively similar even as the scale varies from
very narrow (u = 0.99, L, =~ 3°) to very broad (¢ = 0,
L, = o0). The most striking feature is the decrease in
kn (the transition value from oscillatory to pure
growth).

We now proceed to analyze these paremeter depen- .

dencies more systematically. The observation that the
response is almost independent of fetch is valuable be-
cause it allows us to concentrate on a particular ex-
ample of f( x) with some confidence that our conclu-
sions will apply more generally. A Green function is
always useful because it allows a general solution like
(15) to be written down. Depending on the problem,
however, it may or may not represent the response to
more realistic forms of f( x). Figure 2 suggests that in
our case it is, especially as we are most interested in
relatively simple forms for the longitudinal dependence
of the wind patch; e.g., a maximum amplitude at some
central longitude, tapering off well before the bound-
aries. Relying on the mean value theorem, define x,
from the relation

1
G(x; py w) =xef0 G(x; p, w)f(x)dx.

This is not terribly interesting if x, varies consider-
ably with w, but if  is small or the region where f is
large is narrow then X, will be nearly independent of
w and the response to 8(x — x,) will closely approximate
that to f(x). Figure 2 illustrates how good our ap-
proximation can be; one would expect it to be even
better for a more peaked form of f( x). Henceforth we
will restrict our analysis to the case f( x) = §(x — x,.),
in which case the relation (16) is

17)

= kG (xc; b, @)
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or .
G2 = sinh(20)(x cosh(2ax.) + sinh(20x,))
sinh?( ox.)

2=

K

(18)

where ¢ = iw. In the special case where the wind is at
X, = 1/2, the center of the basin, 20x, = ¢ and (18)
simplifies to

, _ 2 sinho cosho(u cosha + sinho)

K

sinh?¢
or
2 2
K u cosh?o
— = cosho + —
2 sinhe
= cosho + u sinhs + —L . (19)
sinho

Let «,, be the minimum value of « for real ¢ (i.e., for
pure growth ) and o, be the corresponding growth rate.
Hence

_9(«%)
do

We claim that for « > «,, the system shows only pure

growth. Let ¢ = p + iw with w < w/2. The imaginary

part of x2/2 has to vanish. Calculating it from (19)
gives

u cosho,,

0 (o) = sinho,, + u coshe,, —

sinh?g,,

h
Im(KZ/z) = sin w(sinhp + I COShp _ _ws_p_) .

|sinhe |2

For p > Re(g,,) = 0, we get by using (19) and (20)
the following inequality

Im(x?%/2 ) cosh .
——(.Lz = sinhp + u coshp — LL—,——% > sinhp
sinw | sinhe |
u coshp .
+ p coshp — ———— > sinho
K P sinh2p "
cosheo
+ u cosho,, — E_z_ﬂ =
] sin“o,

[stpuouws]
awn Juipjoj-o

TES OIS € T

1

{seaf]

pourad

1.0 1.5 20
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F1G. 2. Same as Fig. 1 but varying the longitudinal width Ax = x;
— x; of the forcing, which is again centered in the middle of the basin.
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orIm(x2/2)> 0, if w # 0. So ¢ has to be real for Re(s)
> g,,. We want to find estimates for «,, and o, for p
small. Rewrite (20) as
_ sinh3¢

cosha(1 — sinh?g)

I

Since u < 1, we anticipate ¢,, < | and expand in power
series:

0’3+%0'5+"'

B= |
(1+502+ -°°)(1—02+---)

=3+ ¢’ + O(s").

We invert to obtain the value ¢,, at the transition:

om e w' =2+ OP). (20)

And expanding (19) using (20) we find
K2 =2+ 3u?? + O(u*?) (21)
Km == (2 + 3u2/3)1/2 (22)

which shows the weak dependence of «,, on p evident
in Fig. 3: the narrower the scale (1 ~'/?) the stronger
the coupling must be to achieve pure growth. The
growth rate varies like u!/3: as the scale increases the
growth rate approaches zero. The more equatorially
confined the forcing the faster the growth in the oscil-
latory regime. For infinite scale the oscillations are
neutral rather than growing.

We can see from Figs. 1-3 that the solutions of
greatest interest—those which oscillate with long pe-
riods and relatively rapid growth rates—obtain for «
close to «,,. We may analyze the behavior in the neigh-
borhood of «,, by approximating (19) for u € 1. In
view of (20) ¢ will be small as well and so

1, 1 1
kP~ 1+’ +=.
2" 27 7,

(23)

(4
[sqyuour]
awn Suipjoy-a

0rs ¢

[ %Y

[s1ea/)
pouad

1

20 25
coupling constant K

FIG. 3. Same as Fig. 1 but varying the meridional
width parameter, u.
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FiG. 4. Comparison of the exact function w(«) [Eq. (19)]
with its approximation [Eq. (24)].

Expanding in a Taylor series about (o, &) yields

-1/3

K= Km+“3_(AO')2—M
2Km Km

(Ac)? + O((Ac)?)
(24)

where Ao = ¢ — 0,y.
The cubic (24) may be solved for ¢ exactly, or ap-
proximately by writing Ac as a power series in
K — k)%

2
0 =~ “1/3[1 - 6# 2/3Km(K - Km):l

, 172
+ (5 Km(Kk — K,,,)) . (25)

For « < «,, the frequency goes to zero like the square
root of k — «,, and the growth rate is linear in . For a
small range of x the period varies over a very wide
range. Figure 4 compares the approximation (24 ) with
the exact Eq. (19): the fit is good in the vicinity of «,,,,
and maintains good qualitative agreement until « de-
creases to point where the approximations cross over
and give decay instead of growth.

We complete the discussion of the centered case (X,
= (.5) with an analysis of behavior for large and small
k. The former is straightforward: for k > 1, ¢ > 1 so
sinho ~ coshe ~ e°. Therefore (19) reduces to

k2~ 2(1 + p)e’ (26)

showing that the growth rate increases logarithmically
with the coupling strength x. To begin the analysis for
k < 1 again use ¢ = iw and rewrite (19) as

k?  cos’w

2 sinw

[tan(w) — iu]. (27)

One may conclude immediately that for u # 0 and
« real there is no solution with w real-—no purely os-
cillating, neutral solution. If 4 = 0 then (26) reduces
to cosw = k2/2: pure growth for k > «,, = (2)'"/? and
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neutral oscillation for all k < (2)!/2. Hence for this
case of infinite meridional scale there is no growing,
oscillating mode.

In the more realistic case of finite meridional scale,
u 7 0, we have seen that for « near «,, there is a growing
oscillating mode. By continuity, the growth rate must
remain positive as x ~ 0. Since it is small, write w = w,
— fe, with w,, e real and € < 1. Now expand sinw = sinw,
— ie cosw, + O(€?), etc. After some algebra, equating
the real and imaginary parts of (27) yields the two
equations

2 .
cosw,(1 — 2ue + €2) = % + O(?) + O(ue?) (28a)

[l — cos’w,} = pu cos’w, + O(ue?) + O(e?). (28b)

Since u, ¢ < 1, (28a) yields cosw, = k2/2. For «?
<1

K2

> (29a)

w
w, ~ 3
and

€ = EK“. (29b)

Thus as « = 0 the period approaches 4 rapidly—
like k2-—and the growth rate is very small. With some
friction, i.e., Rayleigh friction of (small) magnitude r,
there will be a neutral solution—an oscillation with
constant amplitude—at ¢ = r. From (28) the corre-
sponding values of w, and « are given by

(30)

2 r
cos’w, re ——
r+u

4r)”“
L)

(31)

e=n=(

In the frictional case with weak friction there are
three regions: '

1) 0 <« < «,: oscillation and decay.
2) Kk, < k < Kkm: Oscillation and growth.
3) xm < k: growth without oscillation,

If the friction is strong enough (or the scale broad
enough) so that r > p'/3 then the oscillating modes (&
< k) always decay. If ,, < k < k, then the modes
simply decay and « = «, allows a neutral stationary
solution.

We have not yet considered the effect of moving the
longitude of the wind patch from the center of the basin.
Figure 5 demonstrates that this effect can be important,
exerting a stronger influence than variations in zonal
or meridional fetch. An analysis of the dispersion re-
lation will augment the information in the figure. We
return to the relation (18) and, anticipating that o will
be small, expand in powers of ¢:
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As before,the value ¢ = o, at the transition from
pure growth to oscillation is at x = «,,, the minimum
value of « for ¢ real:

2 2
= Jo (xcx*)

b+ 0(p) +0O(s%)

2 X, 0

— v 3\ 1/3
om(X) =~ 2(# (i_g-_xc_))

1 3 1 —x2\'/3
"mz(xc)“’;c:[l +§ﬂ2/3(.3_)_cc_2‘_) ] (34)

This dependence on x, is illustrated in Fig. 6. For x,
= 1 the previous results for the centered case (21),
(22) are recovered. The values of ¢,, and «,, do not
change markedly from the centered results until the
boundaries are closely approached. At both boundaries
the growth rate becomes infinite, but at the western
boundary (x. = 0) the transition coupling strength «,,
also becomes infinite so pure growth is never attained.
In contrast, at the eastern boundary (x, = 1) x,, = 1
for all g, so the pure growth regime begins at a relatively

4
= Oyt 1__ 02 —
o 3( X°)

(33)
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low coupling strength. While the transitional coupling
strength decreases monotonically from west to east
across the basin, the transitional growth rate is a min-
imum just east of the central longitude at x,
~ Vg/ 3.

The behavior in the vicinity of «,, may be found as
for the centered case [(24)ff]. With Ac = o,, using
(33), (34) we obtain

1 —x?
26km(K = Kpm) = 2 —x—x (Ac)?

(4

ﬂ—l/3

2x2

3 4/3
(8x = xz)) (Ac):.  (35)

As long as x, is not close to the boundaries the qual-
itative behavior is similar to the centered case [e.g.,
(25)]: as k = «,, from below the frequency approaches
zero like (x,, — x)'/? and the growth rate increases lin-
early with «. Again, the period ranges over a wide range
for small variations in coupling strength.

For small « the off-center forcing allows for some
different behavior than the centered case. For example,
it becomes possible to have neutral, oscillating solutions
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even in the absence of friction. To see this write (18)
in a form similar to (27):

sin(2w)

2 — . .
= [—ip cos(2 + sin(2x, :
K [—iu (2x.w) (2x.w)] s1n2xcw

(36)

For a neutral solution w is pure real. If « is also real
and nonzero, then cos2x.w = 0. The longest period
neutral solution is

™

= . 37
@ 4x, (37)
It occurs at « = «,; from (36),
K,,ZEZSil‘l( T ) (38)
2x,

We require k2 > 0, which is possible only if x, > V2—
if the forcing is in the eastern half of the basin. For x,
< Y the oscillating solutions are all growing. A more
general result for k < 1 can be obtained by letting w
=7/2 — o with o' <€ 1 in (36):

2

K-,
5 sin?(mwx,)

= [iu cos(wx,) + sin(7x.)]o + O(w'?). (39)

The results comparable to the centered case [ cf. (28)]
arc
_K_Z_ sin’xx,
2 \u?+ (1 — p?)sin’rx,
so the resonant frequency, /2, is approached ever

more rapidly as the forcing is moved further off center;
and

Re(w) =§— ) (40)

sin?(wx,) cos(mx,)
p?+ (1 — p?)sin?(7x.)

implies decay for x, > Y. At x, = %2Im(w) vanishes
according to (41); to recover (28b) one must go to the
next order in «'. Note that it also vanishes at the end
points x, = 0 and x, = 1 [although not rapidly since
the denominator becomes O(x2)]. In general, the x,
= 0 and x, = 1 cases exhibit a number of idiosyncratic
behaviors which require special analysis. Since this sit-
uation with the delta function forcing precisely on the
boundary is so strange and not of interest to us we shall
not pursue it.

At x. = V4, the neutral mode period occurs in the
limit ¥ = 0; it is just the period of the free resonant
mode (cf. Cane and Moore 1981). As the forcing is
moved east the neutral mode period grows longer, be-
coming twice as long for x, = 1 (the eastern boundary).
For x. > -, the neutral mode occurs at a positive cou-
pling strength «,. For x < «, the modes are oscillating
and decaying. As x. = 1, x, approaches 1 from below
while according to (32) «,, approaches 1 from above.
Hence as the forcing is moved farther to the east, the

2
—Im(w) = Ll (

5 ) (41)
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range of coupling strengths that allow both oscillation
and growth narrows: the likely possibilities become os-
cillation and decay (« < x,) or pure growth (x > «,,,);
viz., Fig. § for x, = 0.9.

4. Relation to delay equations

Recently, Battisti and Hirst (1988), Suarez and
Schopf (1988), and Schopf and Suarez (1989) have
developed “analogue” models of more complete ENSO
models. The implication in these papers is that a de-
layed response is the essence of the oscillation. The
mechanism is roughly as follows. An eastward wind
patch forces a downwelling Kelvin wave which prop-
agates east, lowers the thermocline, raises SST, thus
enhancing the eastward wind. This direct link is very
much the Bjerknes (1969) mechanism as filled out by
Wyrtki (1975). It alone seems to imply nonoscillating
growth, but the same wind excites Rossby waves which
raise the thermocline [ cf. Battisti (1988) or Schopfand
Suarez (1989) or Cane and Zebiak (1987)]. Since mass
is conserved, some such “cold” signal inevitably ac-
companies the warm Kelvin wave. Since they are
Rossby waves, they travel westward to the boundary,
and then are reflected as a Kelvin wave. When this
arrives at the east, it “shuts down” the positive feedback
of the direct link, resulting in an oscillation. We wish
to explore the role of delays, but first we show that our
model involves the same direct and delayed responses.

On one level this is obvious, since the heart of all
these models is the same linear shallow water equatorial
beta plane dynamics. To see how it is embodied in our
equations, return to (14) rewritten in terms of

z=e™% (42)
as
h _ 2—2%_‘»_22):c y
CA{GETE =2+ p)z7e = (1= p)2?%] 32
(43)
Define
l—pu
v = T . (44)

multiply through by z[z™2 — z2]"/2 = [1 — z*]'/%2 and
rearrange to obtain
e=[1—-(1— 24)”2]ke
Zl—xc(l - Z4x‘)
A. (4
[T+ a1 — szt (4
Expanding this in power series gives

oo
he= 2 a, z"h,

n=1

[ee]
z!7% 4 7 Zl zGn=Dxe(g =yt — q,_v™)
+ = A
(1+p)'?

(46)

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 47, No. 13

where a,* are the absolute values of the coefficients of
x" in the expansions of (1 — x)*!/2,

Now we interpret w as the Fourier transform variable
resulting from a transform in time. Then in (45) A,
and A are to be interpreted as variables in the frequency
domain. Obtaining an equation in the time domain
from (45) requires inverting only operators of the form
z%, Since z% (w) transforms to (¢ — a) it is easy to see
that the result is

he(t) = Al — (1 — x.)]

(14 p)'7?

ool
2 [av"— anv"']
n=1

(1+p)'?

At —(4n— D)x. — 1]

+ > a, h(t — 4n).

n=1

The first term is the Kelvin wave forced at x = x,
which travels directly to the eastern boundary at x = 1.
The second is the sum of the odd Rossby waves; wave
2n — 1 takes a time [2(2n — 1) + 1]x, to travel from
the forcing longitude X, to the western boundary at x
= . There it is reflected eastward as a Kelvin wave,
which takes an additional 1 time unit to cross to the
east. The last term on the righthand side of (46) adds
the effect of all the Rossby waves previously generated
at the eastern boundary as the reflection of incident
Kelvin waves. We note that the development of (46)
from (14) is a reversal of the procedure in CS: here we
have recovered the infinite series arising naturally in
the forced problem from the closed form Green func-
tion (also, cf. Schopf and Suarez 1989).

We are tempted to think of the oscillation as a con-
sequence of the delays in (46), but further investigation
indicates that the matter is not straightforward. In fact
there are related systems with delays which do not allow
oscillating, growing modes. Consider a nonrotating
system setup as in the previous case; i.e., driven by a
stress of the form «A(2)8(x — x.), where A is the height
at the east (right) end of the basin x = 1. Assume a
uniform mean eastward current Uand let « = (1 + U)/
(1 — U). Then « is the ratio of the speed of the eastward
traveling wave, here called a K-wave, to the speed of
the speed of the westward traveling R-wave. Also we
will allow for imperfect relations at the boundaries:
The reflection coefficients r,, at the west and r, at the
east may be less than 1. As shown in appendix A:

h(t) = xh[t — (1 — x.)] — roxh[t — (1 + ax.)]
+ rerwhft — (1 + a)]. (47)

The terms on the right-hand side are easily inter-
preted: The first one is the contribution of the forced
K-wave at x, that hits the boundary after a time of 1
- x.. The next term represents the forced R-wave that
needs the time ax, to reach the western boundary where
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it gets converted to a K-wave and gets to the east after
1 additional time unit. It has the opposite sign and acts
as a restoring force. The last term comes from the wave
that got reflected at the east and crossed the basin back
and forth as an R-wave and then a K-wave. Judicious
choices for «, r,, and r, will make (47) equivalent to
the equatorial beta plane Eq. (46) with just a single (#
= 1) Rossby wave [also see appendix B].

Most studies of the nonrotating system take r, = r,,
= 1 and U = 0 so a = 1. In the case it can be shown
(appendix A) that the delay equation (47) has no os-
cillating, growing solutions. As on the beta-plane with
infinite width forcing (u = 0) solutions are either neu-
tral and oscillating or pure growth.

The implication is that something more particular
to the beta plane system (47) than the delays per se
must be important for the oscillation. Cane and Zebiak
(1987) argued that the asymmetry of the reflection
process at the east and west was critical. At the west,
Rossby waves at all latitudes reflect as an equatorially
confined Kelvin wave, so the negative Rossby wave
signal is efficiently guided to the eastern side. At the
east, the Kelvin wave signal does not accumulate at
the critical area near the equator; instead, the reflection
process spreads it to high latitudes. In fact, the reflection
process is so effective at removing mass that Schopf
and Suarez (1988) and Battisti and Hirst (1989) ignore
it without much ado, treating the boundary as if the
Kelvin wave just went through it; i.e., as if r, = 0.

If we model this asymmetry by setting 7, = 0, while
keeping the wave speeds the same (a = 1) growing
oscillating solutions to (47) are possible (see appendix
A). This would seem to support the idea presented
above, which might be phrased as saying that the east-
ern boundary reflection is important for what it does
not do. (cf. Cane and Zebiak 1987).

We have not yet, however, isolated the other special
feature of the equatorial wave system, the difference
in speed between eastward and westward propagating
waves. We restore the perfect reflections to (47), r,
=r, = 1, and now take a = 3, the ratio of the speed
of a Kelvin wave to an n = |1 Rossby wave. Again, the
resulting system contains oscillating, growing modes.

We want to give a heuristic explanation for the oc-
currence of growing oscillations. Rescale time by 1
— X,, the time a K-wave needs to reach the eastern
boundary, and define 7 = (1 + «)/(1 — x.) which is
the free period in the new units. Then (47) becomes

h(t) =«h(t— 1) —xr.h[t — (T — a)]

+ ryreh(t— T). (48)

We restrict ourself to integer o’s and analyze (48)
term by term. Consider first the case of r,, = 0. Then
only the first term remains and (48) reduces to a single
feedback equation 4(t) = xh(t — 1). This equation
allows only pure growth (decay) for k > 1(<1). Next
we take r, = 0, or that the last term of (48) vanishes:
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h(t) = kh(t — 1) = kr h(t — 1) (49)

with 7 = T — «a. For an initial disturbance (4(z) = 0
for t < 0; h(0) = 1) we get the following time sequence
for h (assuming that = is an integer N).

N- N+l 2 N+2
Lk, k2, . kM kN — 1ok, & — 2ryk®, K
— 3r,k3, kN3 — 4r ikt L k2NN = 2Nrk, k2N
—(2N+ Druc+ 1.2, .... (50)

Note how the restoring effect of the forced R-wave
accumulates: At ¢ = N the R-wave from ¢ = 0 dimin-
ishes the exponential growth of # by r,. At the next
time step this reduction gets amplified to «r, and adds
up with reduction of the same amount by the R-wave
excited at ¢ = 1. The reductions accumulate so they
can make the sequence decreasing. As long as r,, is not
too small and « not too large this accumulating reduc-
tion can lead to an oscillation despite the fact that each
individual R-wave component is smaller than the K-
wave component forced at the same time. As an ex-
amplewesetr, = 1;k=1,a=3(sothat T =6, N
= 5). The resulting time sequence is

1’ 15 1’ 1, 15 09 _la _23 _33 ’-4’
-5,-5,—-4,-2,1,.... (51)

Now we consider the case of r, > 0 and for simplicity
set r, = 1. In appendix A we show growing oscillations
if either r, < 1 or @ > 1. In the beginning the sequence
(49) remains the same (with r,, = 1):

2 Nt kM —2r,k% (52)

seses K
At ¢t = T the waves that were reflected from the eastern
boundary alter the series:

MT)=kT—(T—-N+ 1" +r,
T+ 1)
= kT — (T = N + 2)kT-¥2,T-M2 4 9,
T+ 2)
= kT2 — (T — N+ 3)x V3TN 4 3¢r,. (53)

1,k « &N — ryx,

As we see the effect of the reflected wave accumulate
in the same fashion as the forced R-wave, reducing the
restoring effect of the R-wave. If the speeds for R- and
K-wave are the same we have o« = 1, T — N = 1, so
that this happens right away. There is no time for the
R-wave to accumulate without reduction by the eastern
boundary reflections and for perfect reflection the ac-
cumulation of the forced R-wave is cancelled com-
pletely—no growing oscillation can occur. So we ob-
tain, for example, forr,= l,a=1,x,. =% (N=5,T
= 6), the time sequence

1,1,1,1,1,0,0,0,0,0,1,1,1,1, 1,0, ...

which shows no growing oscillation. If 7, < 1 the can-
cellation is only partial. The restoring effect of the R-
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wave is weakened, but growing oscillations are still
possible. For r, = Y2 and other parameters as in the
previous example, we get

,1,1,1,1,0,-.5, -1, —1.5, =2, —L.5,
-1, —0.25, —0.75,2,2.5, .. ..

Another way to get a growing oscillation is if the R-
wave is slower than the K-wave (o« > 1). Then the
reduction by the eastern reflection is delayed, giving
the R-waves some time to accumulate. For o = 3, r,
= 1 we obtain the sequence (x,. = 3)

L,L1,1,1,1,0,-1, =2, =2,
-2,-1,-1,4,6,7,6,....

5. Summary and discussion

In this paper we have investigated the behavior of a
simple coupled tropical ocean—-atmosphere model. The
ocean component is described by the inviscid shallow
water equations on a meridionally infinite equatorial
beta plane. It is driven by a wind stress of the form
A(2)f(x) exp(—uy?), with the amplitude 4 linearly
related to the equatorial height anomaly at the eastern
end of the basin: A(¢) =«kh(x=1,y=0,1).

The governing equations are solved analytically and
the influence of various parameters is examined. We
are particularly interested in the circumstances which
allow the existence of unstable, oscillating modes of
this self-excited system. If the coupling between the
ocean and atmosphere is very strong then the most
unstable modes do not oscillate. In most cases, once
the coupling « falls below a threshold value «,,,, which
depends on other parameters, then there are growing
modes which oscillate at low frequency (Fig. 1). The
period is infinite at x = k,,, decreasing as « decreases.
In some cases the unstable modes exist for all x > 0,
with the period approaching that for the resonant mode
of the shallow water ocean (four times the time for an
equatorial Kelvin wave to cross the ocean basin) as
x —> 0. Hence the period ranges between 4 (about 9
months for Pacific parameters) and infinity. There is
no low frequency cutoff: in the absence of friction there
is some growth even for vanishingly weak coupling,
though it does become small as « departs from the
transition value «,,. For « near «,,, the period of the
growing oscillations is very sensitive to the value of the
coupling strength.

Behavior is somewhat dependent on the mean lon-
gitude x, of the wind stress, but is otherwise nearly
independent of its zonal variations; the wind fetch, for
example (Fig. 2). This result occurs because the time
it takes for a Kelvin wave to cross the wind patch is
short compared with the period and e-folding time of
the unstable modes of interest. It allows us to simplify
the analysis by considering only the form f(x) = §(x
— X.); 1.e., the forcing is concentrated at the mean lon-
gitude.
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If the wind is centered in the western half of the
basin then the situation is as described in the previous
paragraph: growth is possible for all « > 0. If the wind
is centered in the eastern half of the ocean then growing
oscillating modes no longer exist at small ; even in
the absence of friction there can be a neutral mode.
The further east the forcing is centered, the narrower
the range of « that admits growing oscillating solutions.
In the extreme case where it is concentrated on the
eastern boundary the only oscillating modes are neu-
tral. The value of «,, increases as the central longitude
X.is moved westward, permitting oscillating modes for
a broader range of coupling strengths. In the limit where
the forcing is on the western boundary unstable oscil-
lating modes exist for all x (Fig. 6b). All other things,
such as the coupling strength, being equal, the growth
rate and period increase as the wind center moves east
(Fig. 5).

Behavior also changes with the meridional scale of
the forcing (Fig. 3): for fixed « as the meridional scale
increases the period of the oscillating modes increases
while their growth rate is almost unchanged. Also, as
the scale increases «,,, the maximum coupling value
allowing oscillation, becomes smaller. At the extreme
where the forcing is independent of latitude the oscil-
lating modes are no longer unstable.

Our model joins those of Battisti and Hirst (1989)
and Suarez and Schopf (1988) in a class of one-equa-
tion models offered as a paradigm for ENSO. All are
based on experience with numerical models which were
able to simulate aspects of the ENSO cycle, though
none of the reduced models can be said to be rigorously
derived from their more elaborate predecessors. As
noted in the Introduction, all combine linear equatorial
shallow water ocean dynamics with a stripped down
version of Bjerknes’ ideas on the two-way coupling of
the ocean and atmosphere in the equatorial Pacific.
Bjerknes’ original scenario for the genesis of ENSO
events was confined to an equatorial x-z plane; adding
equatorial ocean dynamics makes a crucial connection
to higher tropical latitudes.

All of the models exhibit unstable oscillations at the
several year periods characteristic of the observed
ENSO cycle. The collective behavior of these somewhat
different models adds weight to the thesis that the
Bjerknes feedback plus lincar equatorial ocean dy-
namics captures the essence of the ENSO cycle. At
present, there is no equally complete or convincing
paradigm for other suggestions as to the nature of
ENSO (e.g., random events, in some accounts triggered
by westerly bursts; the oscillation is created by the sea-
sonal cycle; extratropical origins.)

The models differ in detail and their authors occa-
sionally differ in interpretation of the results. For ex-
ample, Schopf and Suarez (1988) argue that there
should be a high frequency cutoff for the unstable
modes at a period which is twice the resonance period
(i.e., eight times the Kelvin crossing time ). Our results
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show no such cutoff, though some cases exhibit a rapid
dimunition of growth rate at about this period. Our
results suggest to us that such a cutoff is not implicit
in the fundamental ENSO mechanism. Battisti and
Hirst (1989) argue that ENSO is essentially a linear
oscillation on the grounds that their best estimate of
reduced model parameters yields the period of about
4 years characteristic of their version of the Zebiak and
Cane (1987) model. We have found that the period of
the unstable modes found here is highly sensitive to a
number of model parameters, including the strength
of the coupling from ocean to atmosphere, the longi-
tudinal position of the wind, and its meridional scale.
Such results are quite similar to those in BH, which
also indicate that the period is very sensitive to param-
eter variations. This sensitivity is especially marked in
the neighborhood of the 4 year period (e.g., Fig. 1).
Additionally, our best estimate of parameters in the
Zebiak and Cane model [k ~ 2; u ~ 0.2] puts our
reduced model in the regime of pure growth. Since
none of the parameters can be precisely determined
from the numerical models—none are truly constant
within the model—we do not agree that the linear par-
adigm is sufficient to determine the period. Results to
be reported in Miinnich et al. (1990) indicate that
plausible nonlinear relations between height and wind
stress tend to narrow the range of periods which occur.

The reduced models of Battisti and Hirst (1989) and
Suarez and Schopf (1988) are both differential delay
equations. Ours may be cast in this form as well, though
in the case most studied here where the wind has a
vanishingly narrow zonal scale, a pure delay equation
results. This is the response to a delta function forcing,
a Green’s function. The response to a finite width forc-
ing f(x) would bring in integrals, and differentiating
the result would produce a differential delay equation.
(The absence of differential terms in our model is a
consequence of the neglect of the travel time across
the forcing region.)

The concept of delays is helpful in understanding
the oscillations, but there are subtleties. The obvious
nonrotating version of our model, whose mathematical
form is also a delay equation, does not have unstable
oscillating modes. (It resembles the equatorial case
where the wind is independent of y.) Such modes exist,
however, if the reflection coefficient at the east is made
less than 1 or if westward propagating waves are slower
than eastward ones. For the nonrotating case the answer
to the question posed in the opening paragraph of this
paper is that in order to have oscillating growing modes
either the eastern end of the tank must be leaky or a
mean eastward current must be flowing through it.

The explanation we can provide for the model be-
havior has similarities with a number of previous ones,
particularly Cane and Zebiak (1985), Battisti and Hirst
(1988), Schopf and Suarez (1988) and Cane and Ze-
biak (1987), most closely resembling the last of these.
We begin at a point where the wind stress perturbation,
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which is related to the ocean height at the eastern end
of the equator, is eastward. The ocean responds with
a height rise to the east of the forcing and a fall to the
west. The pairing of the rise and fall is inescapable, a
consequence of mass conservation. The rise propagates
eastward along the equator in the form of an equatorial
Kelvin wave. The fall moves westward more slowly
and more broadly, as a packet of Rossby waves.

The rapidly moving rise soon comes to the eastern
boundary, enhancing the eastward stress by adding to
the height there. By itself, this positive feedback, which
is at the core of Bjerknes’s scenario, would give only
the pure growth Bjerknes envisioned. There would be
no oscillation, but there is also the signal associated
with the fall. It propagates westward as Rossby waves
until the western boundary is encountered, at which
point it is reflected back along the equator as a Kelvin
wave. When this negative height signal reaches the
eastern end of the ocean it competes with the directly
forced positive Kelvin wave signal. If it wins then the
amplification of the eastward wind stress will be ar-
rested, and the height at the east can diminish further
and eventually become negative; an oscillation is pos-
sible.

When will the indirect, delayed signal win? If the
coupling is too strong then the direct Kelvin signal,
having benefited from the added growth during the
delay period, will be too strong to be headed, and un-
bridled growth ensues. This is just our result for « > .
(Recall that as the forcing moved east, increasing the
delay period, secular growth was achieved at weaker
coupling and unstable oscillations became less likely.
The same result obtained as the meridional scale of
the forcing increased; by enhancing the importance of
higher Rossby waves the mean speed is decreased so
the effective delay is increased.) It is as if only the Kelvin
wave were forced in the first place; the Rossby waves
are able merely to dilute the growth.

An interesting contrast can be imagined by hypoth-
esizing that only Rossby waves are directly forced. Now
the forced signal, comprised of Rossby waves, would
always be opposite in sign to the height at the east
determining the forcing. Growth is possible, but the
out of phase relationship between forcing and ocean
response means it cannot be of one sign. Oscillations
are unavoidable. One might consider the forced Kelvin
wave as an impediment for the oscillations. As its rel-
ative contribution increases, the period increases, lead-
ing finally to pure growth. One might now wonder how
the Rossby waves can succeed. Their combined am-
plitude is never bigger than that of the Kelvin wave
forced at the same instant. Furthermore, the Kelvin
wave they will compete against at the east was forced
later and so will be even stronger due to the positive
feedback. So how can the Rossby signal win?

The answer lies in the incremental way it achieves
this goal. After the onset of an anomaly the Rossby
wave will always tend to diminish the Kelvin wave
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signal. When the Kelvin wave hits the eastern boundary
(and mass is exported poleward), the subsequently
forced Kelvin wave is weaker than expected from the
direct feedback alone. Its effect is diminished further
by the Rossby wave signal which was reflected at the
west and now reaches the forcing region as a negative
Kelvin wave. The restoring effects of the Rossby waves
accumulate. As long as the feedback is not too strong
this can bring the thermocline back to zero and so lead
to an oscillation. “Constant dripping wears away the
stone,” as the saying goes.

We have not yet taken account of the Rossby waves
formed at the eastern boundary out of the Kelvin wave.
We may consider these as acting on the forced Rossby
waves in a way similar to the forced Rossby waves on
the Kelvin signal. If the east coast were a perfect re-
flector and the wave speed were the same, then these
waves would cancel out the restoring effect of the forced
Rossby waves and pure growth could happen. But the
east coast is an inefficient reflector. A lot of energy goes
into higher very slow Rossby modes and is lost for a
long time. The cancellation is only partial and growing
oscillations can occur. In addition, the slower speed of
the Rossby waves compared to the Kelvin wave delays
the signal of the eastern reflection, and so further re-
duces the influence of this boundary. An oscillation
becomes even more likely.

Now consider the decisive role of the Rossby wave
for the onset of the event. Consider the moment when
the forcing amplitude just passes through zero and turns
eastward, generating a positive Kelvin wave. Since the
directly forced Kelvin part cannot turn positive until
after the height at the east does, the turnabout must
be initiated by the indirect Rossby waves; the indirect
component is essential to the initiation of an event.
This positive Rossby signal had to have been generated
at an earlier period when the winds were westward.

It is clear from the above that the Rossby contri-
bution to the height at the east leads the Kelvin con-
tribution. An elementary consideration of the sum of
two waves of the same frequency will convince the
reader that the phase of the total height and hence the
wind is between the two. [A further consequence of
the Rossby component leading the wind is that the
zonal integral of the height along the equator, which
depends heavily on the Rossby contribution, will lead
the wind. This feature was emphasized by Zebiak and
Cane (1987).] The maximum wind (i.e, the peak of
the warm event) comes at the phase of the oscillation
where the two components are maximally reinforcing.
Though the direct Kelvin contribution rises to a peak
thereafter (in the time interval I-x, it takes to cross
from the forcing to the boundary), the decline in the
Rossby component ensures that the wind will continue
to subside. Eventually it again crosses zero and enters
the negative phase of the cycle.

In this account the origins of a warm event may be
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traced back to the largely off-equatorial Rossby wave
positive height anomalies generated during previous
cold episodes. The directly forced Kelvin wave con-
tributes to the strength and duration of the event, but
if it is too dominant (as happens when the coupling is
very strong or X, is too far to the east) then pure growth
replaces the oscillation. We have not emphasized it,
but the Rossby waves generated at the eastern boundary
during the last event can also contribute a positive
height signal to the initiation of the present one. Note
that Battisti and Hirst (1989) and Suarez and Schopf
(1988) leave this effect out altogether; we agree that it
is not essential. [A different view is that of Graham
and White (1988).]

Many of the features of the system we have modeled
are inherent in its geometry. The wind forcing responds
to oceanic variables in a region to the east of it along
the equator. In this setup Kelvin waves are the only
means of carrying any signal east of the forcing to the
sensitive region. Since the only instabilities involving
solely the directly forced Kelvin waves are pure growing
ones, the oscillations rely on the indirect path of Rossby
waves forced in the ocean interior and propagating to
the western boundary where they can be reflected as
Kelvin waves. The same geometry is found in many
other models for ENSO, including all of the numerical
and reduced models listed earlier.

The obvious question is whether this geometry fits
the observed ENSO. The elements we have emphasized
are certainly present: the major wind anomalies are in
the center of the equatorial Pacific and it is generally
accepted that they can be explained as part of the at-
mospheric response to SST anomalies in the eastern
equatorial Pacific. The interaction we have modeled,
which is consistent within the class of models we listed
earlier, is a plausible candidate explanation not incon-
sistent with what is known about ENSO. There are
other features, however, which seem to appear with
each ENSO event and are not part of this scheme. Per-
haps they are inconsequential, but perhaps not. We
would call attention to the warming on the equator in
the vicinity of the date line which seems to be present
at the early stages of ENSO events. The winds asso-
ciated with this are to some extent collocated with it.
With this geometry Rossby waves and Ekman fluxes
can have a direct effect and so different interactions
become possible. To our knowledge, no numerical
models capture this feature and no reduced models
have been used to investigate it (but cf. Hirst 1987,
Model II; Rennick and Haney 1985).

These issues merit attention, but before turning our
attention to them, we will first extend the present re-
duced model to allow a more strenous comparison with
the ZC numerical model. This is done in a companion
paper (Miinnich ét al. 1990), where it is shown that
adding a nonlinear relation between wind stress and
height to the framework set out here recreates much
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of the interesting behavior of the numerical model,
including the tendency to exhibit aperiodic oscillations.
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APPENDIX A
Nonrotating Model

Consider a nonrotating shallow water system
bounded at x = 0 and x = | and forced by a stress of
amplitude A4 at x = x,. Further suppose a uniform basic
state current U. Thus the scaled equation governing
small perturbations:

u, + Uuy + by = A(t)0(x — x.)

hy + Uhy + uy = 0. (A1)

The free solutions are eastward propagating solutions
with u = hand speed 1 + U and westward propagating
wave with ¥ = —h and speed 1 — U. We will refer to
the former as K-waves and the latter as R-waves. Now
rescale time by (1 + U) so 1 time unit is the time it
takes a K-wave to cross the basin. Also, let a = (1
+ U)/(1 — U), the ration of the K-wave to the R-wave
speed. Neglecting boundary conditions for the mo-
ment, the solution to (Al) is

u=h=Alt—(x—x)] x>x,

u=—-h=Alt+ a(lx—x)] x<x. (A2)

In the usual problem the boundary conditions are
u =0 at x = 0, 1. We generalize here by allowing the
boundaries to be imperfect reflectors with reflection
coeflicients r,, at x = 0 and 7. at x = 1; e.g., a K-wave
of amplitude (o) incident on the boundary at x = 1
is reflected as an R-wave of amplitude—r .a,. Denoting
h(x = 1) by h,and using (A2) we obtain

he(t) = Alt — (1 — x)] — rwdlt — (1 + ax.)]
+ rerwh[t — (1 + a)]. (A3)

Substituting 4 = x4 as in the body of the paper and
letting h.(t) = e yields

1 = k{e %) — p emoUtaxd} 4 p p o701 (A4)

As in section 3 we differentiate (A4) with respect to
o and set d«/dg = O to find the minimum « = «,, that
allows pure growth. If this value, ¢ = ¢, is positive,
then there are growing, oscillating modes for k < «,,.
If ,, € 0 then there is a strip around the positive real
axis that contains no solutions of (A4). We conclude
that the low frequency oscillating modes for « < «,, are
neutral or decaying.
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Define
(a—1)
. 2
(1 +a)
b= 5 .
e =r,”1/? (AS5)
and rewrite (A4) as
re 1?2 1 — rr, e i+
=2-= ac e . A6
« 2 ¢ Tsinh(bo + ) (A8)
Setting 9,/ dc = 0 yields the relation
1 — Foly —o(1+a)
tanh(bo + 9,) = 2 1’;; .
1+ rerw[ - l]e""”"‘)
(LHS) (RHS)
(A7)

We are interested in knowing whether there is a
solution to (A7) with ¢ > 0. Note that as ¢ > o0,
LHS = 1 and RHS = b/aandsince x, < 1, b/a < 1.
Hence, as ¢ = oo, LHS > RHS. Since both LHS and
RHS do not decrease with increasing ¢ it follows that
if LHS < RHS at ¢ = 0 there is a ¢ > 0 where LHS
= RHS.

We first consider the case r., < 1. Thenat ¢ = 0

LHS = tanhd,, = —— .
1 +r,
1 =rer,

(RHS) = bm.

Hence there is a growing oscillating mode if

1 —r.r.
a+t(a+1—a)r.r,’

The inequality (A8) holds for all x, # 0 if r,, = 1,
perfect reflection at the west (since we have assumed
r. < 1). Especially if, as in SS and BH, r, = 0, then
the conditions (A8) is met. Also, the larger «, (the
ratio of the K-wave to R-wave speed ) the more readily
(ARB) is satisfied. If the two wave speeds are equal, o
= 1 and (A8) becomes .

(A8)

1—-r, L —rer,

re Cl+rer,’

(A9)

even with weak reflection at the west oscillations are
possible if 7. is small enough and the forcing is far
enough to the east.

If r. = r, = 1 the above analysis breaks down since
LHS = RHS = 0 at ¢ = 0. In this case we expand RHS
and LHS around ¢ = 0.
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Now
LHS = bo + O(o?)
1 _ e—(a+l)a
RHS =6 a+(a+1—a) b

__ b _(a+l)2 )
—a+l[((a+l)a s a)

X[1+(a+1—a)a]+0(d3)],

2
= bo + b(a— 1)(1 — x,) % + O(c?). (A10)

The latter is larger than the former for ¢ sufficiently
small if & > 1. So for slower speed of the R-wave there
are growing oscillations even if r, = r,, = 1.

APPENDIX B

Some Other Formulations of Thermodynamics or
Atmospheric Response

We begin with the difference between the thermo-
dynamics used here [Eq. (1’)] and that used by BH
and SS [Eq. (1”)]. Making the same assumptions as
in the text (most importantly, that T, depends on #,)
allows (1”) to be written in the form

(‘rl 3 + I)A(t) = kh.(1). (B1)
or

Equation (B1) reduces to that used here [Eq. (3)]
if 7, = 0. BH obtained the equivalent of (B1) (together
with estimates for « and 7,) from (1) and the results
of Battisti’s (1988) version of the Zebiak and Cane
(1987) numerical model. Theirs is a more thorough
derivation than ours or that of Schopf and Suarez
(1989). Nonetheless, such a drastic simplification can-
not be expected to reproduce all the nuances of the
more complete model. Furthermore, while it perhaps
can capture the essence of the periodic behavior of
Battisti’s (1988 ) version of the ZC model, such a linear
model obviously cannot exhibit the aperiodicity of the
original ZC model, let alone the richer behavior of the
natural system.

The time derivative in (B1) allows A4 to lag A,.. An
additional delay can be posited on the grounds that
while 4, has an almost immediate effect on the tem-
perature right at the equator, it takes additional time
74 for meridional currents, diffusion, etc. to spread the
temperature change over the area with ultimately af-
fects the atmosphere; then

a
(‘r,&+ I)A(t) = kh.(t — 73). (B2)
This effect is not considered by BH. In addition,
they ignore the time (1 — x,) it takes a Kelvin wave to
propagate from the wind forcing region to the eastern
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boundary. From their Fig. 8, this time is approximately
0.4 in nondimensional units of Kelvin wave crossing
times. (We took x,. = 0.5 as typical of observed ENSO
events; the model wind anomaly peaks too far east.)
Since BH additionally simplify the ocean dynamics by
including only one Rossby wave and ignoring reflec-
tions at the east their dynamics reduce to [their Eq.
2.4)]: '

he(t) = arA(t) — a,A(t — 7). (B3)

Combining this with the thermodynamics (B1)
yields their Eq. (2.9):

oT

ot

Our analogous one Rossby mode model is (47) with
re=0and 7 = 1 + ax,; taking At = 1 — x,and 7
= x.(a — 1) allows it to be written as

=—=bT(t— 1)+ cT. (B4)

h(t + A7) = kh(t) — rokh(t — 7). (B5)
Taking
rwk . K~ 1 _
™~ AT
and
_@ - h(t + At) — k(1) (B6)

ot At

reveals the essential similarity of the two approaches.
Equation (B5) is a good approximation to (B4) for
the cases of greatest interest, which have long periods
and growth rates (long compared with Az; hence | gA¢|
<1).

The conclusion is that the differing thermodynamics
make no important qualitative differences, though,
once again, the periods and growth rates are quanti-
tively sensitive to such differences. If we had replaced
(1’) by the more elaborate thermodynamic/atmo-
spheric response model (B2), then instead of k* = G2

as in (18) we would have had
k2= G Xa)[e (o, + 1)]% (B7)

Finding the minimum « allowing pure growth [cf.
(18)ff] now yields

6G_2 2 -2 2
= =—[e™(ori + ]> + G e (o7 + 1)]
g
2
x[z(n+12)— 2074 } (B8)
1+ o7y

If 67, < 1, then consistent with the discussion of
(B4) and (B5), the time derivative (7,) and the delay
(7,) have the same effect. If 2(r; + ;) < O(u!/?) then
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a straightforward perturbation analysis yields [cf. (21),
(23)1:

2
Om = ul/S - 5(71 + 73)

Km = (24 3p2) 21 + ' (1) + 1)1

With the added delays the transition growth rate is
diminished and the coupling strength increased, but
there are no important qualitative changes. The effect
is similar to that obtained by moving x, westward in
the western half of the basin (cf. Fig. 6), which also
increases the time between the forcing by the wind and
the eastern ocean response.
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