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Mapping tropical Pacific sea level: Data assimilation 
via a reduced state space Kalman filter 
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Eric C. Hackert, 4 and Anthony J. Busalacchi 5 

Abstract. The well-known fact that tropical sea level can be usefully simulated by linear wind 
driven models recommends it as a realistic test problem for data assimilation schemes. Here we 
report on an assimilation of monthly data for the period 1975-1992 from 34 tropical Pacific tide 
gauges into such a model using a Kalman filter. We present an approach to the Kalman filter that 
uses a reduced state space representation for the required error covariance matrices. This reduction 
makes the calculation highly feasible. We argue that a more complete representation will be of no 
value in typical oceanographic practice, that in principle it is unlikely to be helpful, and that it 
may even be harmful if the data coverage is sparse, the usual case in oceanography. This is in 
part a consequence of ignorance of the correct error statistics for the data and model, but only in 
part. The reduced state space is obtained from a truncated set of multivariate empirical orthogonal 
functions (EOFs) derived from a long model run without assimilation. The reduced state space 
filter is compared with a full grid point Kalman filter using the same dynamical model for the 
period 1979-1985, assimilating eight tide gauge stations and using an additional seven for 
verification [Miller et al., 1995]. Results are not inferior to the full grid point filter, even when 
the reduced filter retains only nine EOFs. Five sets of reduced space filter assimilations are run 
with all tide gauge data for the period 1975-1992. In each set a different number of EOFs is 
retained: 5, 9, 17, 32, and 93, accounting for 60, 70, 80, 90, and 99% of the model variance, 
respectively. Each set consists of 34 runs, in each of which one station is withheld for 
verification. Comparing each set to the nonassimilation run, the average rms error at the withheld 
stations decreases by more than 1 cm. The improvement is generally larger for the stations at 
lowest latitudes. Increasing the number of EOFs increases agreement with data at locations where 
data are assimilated; the added structures allow better fits locally. In contrast, results at withheld 
stations are almost insensitive to the number of EOFs retained. We also compare the Kalman 
filter theoretical error estimates with the actual errors of the assimilations. Features agree on 
average, but not in detail, a reminder of the fact that the quality of theoretical estimates is limited 
by the quality of error models they assume. We briefly discuss the implications of our work for 
future studies, including the application of the method to full ocean general circulation models and 
coupled models. 

1. Introduction 

The product of the work reported here is a sequence of maps 
of sea level in the tropical Pacific. The intense interest in 
satellite altimetry is but the most expansive of many 
testimonies to the importance of sea level as a diagnostic of 
the ocean state. Beginning with the seminal studies of 
Wyrtki [1973, 1975], sea level measurements have played a 
crucial role in developing our understanding of the tropical 
Pacific and E1 Nifio. Its importance for E1 Nifio prediction is 
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also well established [e.g., Cane, 1991; Ji and Smith, 1995; 
Rosati et al., 1996]. 

The maps we produce are based on reports from the Pacific 
tide gauge network. A dynamical model driven by observed 
surface wind fields is combined with a data assimilation 

procedure to map this data. The model plus data assimilation 
is nothing more (or less) than an elaborate data interpolation 
scheme, one which imposes some dynamical constraints. 

The general objective in data assimilation is to create the 
best analysis of the system state by combining incomplete 
and inaccurate measurements with output from an imperfect 
model. For a broad set of meanings of "best," if certain 
assumptions about the model and data hold, then it may be 
rigorously demonstrated that the optimal analysis is generated 
by the data assimilation procedure known as the Kalman filter. 
Crucial among these assumptions is the supposition that the 
model and data errors have a certain form and that we have 

perfect knowledge of them. For real problems in 
oceanography or meteorology, we all know this is not true at 
present. Dee [1995] argues cogently that to a significant 
extent, this is not conditional ignorance but is inevitable. 

The usual objection to applying the Kalman filter (KF) to 
problems in meteorology or oceanography is computational 
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expense. The computational burden is indeed formidable: at 
every assimilation time the KF requires the update of the model 
state error covariance matrix, and since even a modest sized 

oceanographic or meteorological model has N = O(105) 
variables, this NxN matrix has O(10 gigawords) or more. 

Limits on available computational power thus compel us to 
abandon the brute force KF which requires updates of the 
complete model state error covariance. For those who find it 
dismaying to give up on the optimal approach for merely 
logistical reasons, below we will add some theoretical reasons 
to seek a different path (also see Dee [1991]). Briefly, we 
argue that our imperfect knowledge of error structures makes 
the full KF superfluous; that the limited sample available to us 
for data assimilation is unlikely to be in detailed agreement 
with the long-term error structure, which means that the full 
KF is not cost effective; and, finally, that the sense in which 
the full KF analysis would be "best" is not what we want after 
all. 

A number of techniques have been used to reduce the 
computational burden of the KF. Some involve clever 
computational procedures for the full KF [cf. Parrish and Cohn, 
1985; Cohn and Parrish, 1991], some involve procedural 
compromises such as dispensing with the update and instead 
using the constant asymptotic gain matrix [e.g., Gourdeau et 
al., 1992; Fukumori et al., 1993; Fu et al., 1993], and others 
reduce the size of the model until the computation is feasible 
[e.g., Miller and Cane, 1989]. 

These approaches do not adequately address the other 
concerns mentioned above. We opt for a procedure that 
reduces the size of the state space for the KF without 
necessarily reducing the size of the model being integrated. 
This is a common strategy for adaptive estimation procedures 
where it is essential to reduce the number of unknowns. Dee et 

al. [1985], for example, parameterize the error covariance in 
terms of a few parameters that, multiply fixed, specified error 
structures. Dee [1991] reduces the state space by a factor of 3 
by assuming a geostrophic relation between velocities and 
pressure. The long wave approximation in the tropical model 
we use [Cane and Patton, 1984] would allow a similar strategy. 
but a more general approach is taken here. Our method 
employs a relatively small set of basis functions assumed able 
to capture the significant structure. In principle, this set is 
arbitrary, but here we use multivariate empirical orthogonal 
functions (EOFs). A similar approach was taken by Hernandez 
and Calderon [1991], who used a severely truncated set of 
spherical harmonics in their application of the KF to an 
atmospheric model. The oceanographic work most similar to 
what is done here is that of Fukumori and Malanotte-Rizzoli 

[1995] (FMR hereafter), who reduced the KF state space by 
using a grid coarser than that of the primary model for the KF. 
They used EOFs to guide the choice of grid but did not use the 
EOFs as a basis for the KF updates as is done here. They also 
differ in using the asymptotic filter, as given by Fukumori et 
al. [1993]. They justify the reduction by computational 
necessity, whereas we believe that the full KF would not be 
worthwhile even if it were affordable. Nonetheless, the 
parallels between their work and ours are strong, and the 
success of the reduced state space approach in two very 
different oceanographic contexts (ours is a linear, large-scale 
tropical assimilation of real tide gauge data; FMR's is a 
nonlinear eddy rich simulation of an idealized midlatitude jet) 
builds confidence in the soundness of the general approach. 
Furthermore, our methods generalize to more complex models, 

including incorporation of diabatic physics in the error 
estimation procedure. 

The plan of the paper is as follows. In the next section we 
quickly review the KF and present our case that the full KF 
would be undesirable even if feasible. Section 3 explains our 
general methods and section 4 their implementation for the 
tropical Pacific sea level problem: our procedures for reducing 
the state space, for performing the covariance updates and 
combining model forecast and data, and for generating an 
estimate of the system noise. Section 5 introduces the data we 
use and compares our approach to a full grid point KF. The 
main body of results is given in section 6. We conclude by 
discussing some of the implications of our work, including 
possible extensions to more complex situations. 

2. A Brief Review of the Kalman Filter 

To establish notation and to attempt to justify our 
approach, it is first necessary to review some aspects of the 
KF. Our thinking on this subject has been strongly 
conditioned by the pioneering work adapting the KF to 
geophysical fluids by M. Ghil and collaborators [e.g., Ghil et 
al., 1981; Ghil, 1989; Dee, 1991; Ghil and Malanotte- 

Rizzoli, 1991; Jiang and Ghil, 1993]. Since our exposition 
follows their approach, especially that of Ghil and Malanotte- 
Rizzoli [ 1991 ], it can be rather abbreviated. The reader in need 
of more detail should consult that reference (or Miller and Cane 
[1989], or Jiang and Ghil, [1993]). 

As noted in the introduction, our object is to obtain the best. 
analysis field w a, i.e. the one closest to the true state W true by 
combining the (forecast) model state vector wfwith the vector 
of observations w ø. We assume that both the model and 

observations are unbiased estimates of the true state, in which 
case any linear estimate combining the two may be written in 
the form 

wa(t) = w•'it) + K [wø(t) - Hw/it)]. (1) 

The matrix H allows for a general linear relation between 
the model state and the observations. The observations need 

not be at the model grid points or even be of the same 
variables as in the model. (In the former case, H would be an 
interpolation formula.) Typically (and especially in 
oceanography), the dimension of w ø is much less than the 
dimension N of w•'} which includes all model variables at all 
grid points. If the observing locations vary with time (e.g., if 
there are data dropouts), then H varies with time. 

The goal is to find the K(t)that minimizes the expected 
error in wa(t); the least squares answer is 

K = Pf H r (H PfH r + R) -1 (2) 

where Pf(t) is the forecast error covariance, R(t)is the 
observational error covariance, and superscript T denotes 
transpose. The essence of the formulas (1) and (2) is to 
weight the model and observed variables inversely as their 
expected errors. 

This K gives the best analysis in the sense of minimizing 

<(W a- wtrue) r (W a- wtrue)>, (3) 

where the brackets denote the expected value of the ensemble. 
Minimizing (3) yields a "best" analysis that may violate 
desirable dynamical or smoothness constraints. If the latter 
are desired, they must be imposed, as is often done in 
variational data assimilations. We return to this point below. 
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Calculating K requires knowledge of the observational error 
covariance R and the forecast error covariance P( The former 

is determined by the characteristics of the instruments in the 
observing array. It is also influenced by sampling 
considerations. For example, in situ instruments typically 
sample only a single point, while the model values are meant 
to be representative of averages over a grid box (104 km 2 in 
our case). It is usually appropriate to take the errors as 
spatially uncorrelated (at least for in situ data). How to find Pf 
is less obvious, and it is the special genius of the KF to use the 
model dynamics to do so. 

Let W be the dynamical model that advances the system 
state from one time to the next, i.e., 

w/'(t+ 1) = W wa(t) + (I) 'r(t). (4) 

We take the dynamics to be linear and include a possible 
external forcing 'r mapped onto the model response by a 
mapping •. We allow the possibility that the dynamics vary 
in time: ß = ß (t). In the application to tropical sea level 
under study here a constant linear model is adequate [e.g., 
Busalacchi and O'Brien, 1981; Cane, 1984; Busalacchi and 

Cane, 1985] and the forcing 'r is the surface wind stress. Given 
(4), it follows that 

Ptit+l ) = W pa(t)W T + Q(t) (5) 

where pa is the analysis error covariance, i.e., 

pa= <(w a - wtrue) (w a - wtrue)T> 

which may be found from the formula 

pa= (I- KH) Pf. 

Q is the single step "system noise" 
recognition that the model is not perfect: 

Q(t) = <q(t) q(t)r> 

(6) 

the covariance, 

(7) 

where q(t) is the error tl/e model makes in the transition from 
time t to time t+l: 

wtrue(t+l) = qswtrue(t) + (I:) q: (t) + q(t). (8) 

Note that q includes the influence of wind errors. 
We further assume that the system noise is uncorrelated in 

time [cf. Dee, 1995;] (FMR, section 3.2): 

<q(t) q(t')r> = 0 if t •: t'. 

It remains to specify the system noise spatial covariance Q. 
The KF might be said to trade the problem of specifying pt', 
which is essentially what is done in optimal interpolation (OI) 
schemes, for that of specifying Q. This trade is quite 
favorable. Pf evolves as the system evolves and changes 
according to the quantity and quality of the observational data 
assimilated as well as the model dynamics (see (5) and (6)). Q 
is a property of the system independent of the data and the 
assimilation process, which makes it easier to determine. The 
method we use below to specify it clearly relies on this 
independence. 

Nonetheless, a detailed specification of Q remains a 
formidable task. In principle, it requires us to specify 
Nx(N+ 1)/2 independent numbers, where N is O(105) or more. 
It is questionable whether we know that many meaningful 
numbers about the ocean, let alone its differences from an 
ocean model. Any meaningful Q we could write down would 
have to be specified by a far smaller number of parameters. 

For the moment, let us suppose that we somehow possess a 
complete and precise Q. We then face the famous problem of 
the KF's insupportable expense: calculating the P from (5) 
and (6) requires several times N 3 multiplications per time step. 
Let us go a step further and assume that the calculation is 
feasible, though expensive. We now argue that carrying out 
the detailed calculation is unlikely to be much help. 

The crux of the argument is the mismatch between the very 
short duration of oceanographic time series and the very slow 
convergence of the covariance matrices with sample size. 
(Note that this is not the issue of the convergence of the KF 
equations (2), (5), and (6), which is fast.) There are very few 
oceanographic time series spanning more than a few decades. 
For the problem addressed in the present study only a handful 
of tropical tide gauge records exists before the 1980s. Since 
only monthly data are meaningful for our purpose of mapping 
the climatically important variations, the sample over which 
we will be assimilating data consists of fewer than 300 time 
points. We plan to work with Q, the expected system noise 
covariance for the ensemble, whereas we would do better to use 

Qs, the expected noise statistics for the sample we are working 
on. (Of course, it would be best to know the precise sequence 
of errors q(t), but then all this machinery would be 
unnecessary.) Since we don't know Qs, we use the best 
estimate we have for it, which is Q. 

Unfortunately, since the convergence of a sample 
covariance to the true ensemble covariance is quite slow, like 
the square root of the sample length, it is unlikely that Q is 
very close to Qs for samples so small compared to N. A nice 
illustration of this point relevant to the tropical sea level 
problem appears in Figure 1 of Miller [1990]. The major 
structures of Q and Qs (e.g., the largest-scale eigenfunctions) 
are likely to be close, but it is statistically unlikely that the 
two will agree in detail. We conclude that the expensive 
calculation required to compute the P in great detail is unlikely 
to pay off in a great improvement in the average analysis over 
the necessarily short duration of oceanographic 
assimilations. 

Thus far we have argued that we can't fill the system noise 
covariance fully with meaningful numbers and that even if we 
could the fine details are statistically unlikely to help over the 
relatively short duration of our assimilations. We are thus 
encouraged to reduce the number of degrees of freedom in the 
covariance calculation to reflect what error information we can 

know and to avoid expending computing resources on details 
unlikely to be useful. 

We further argue that the analysis will actually be better if 
error covariance detail is omitted: because oceanographic data 
are too sparse to support it, the detail creates mischief. The 
sketch in Figure 1 illustrates this. In the usual circumstance 
where the distance between data points is large compared to 
error decorrelation scales, the minimization (3) overfits the 

data locally, resulting in a solution that is not smooth and 
generally not consistent with expected dynamical constraints 
such as geostrophy; the "bump" in Figure 1 is a unphysical 
feature, and most of us would be unhappy with it. A smoother 
analysis would be preferable, even though it would have a 
larger error at the data points, and thus not be "optimal" in the 
usual KF sense of minimizing the least squares error (3). 

This is essentially the issue of regularity discussed by 
Bennett and Budgell [1987]. They showed that difficulties 
arise if Q is insufficiently red. In the common case where the 
model does poorly at small scales, the true system noise Q 
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Figure 1. Sketch illustrating the possibility of data 
assimilation procedures overfitting the data. Heavy line 
depicts the true system state, the light line the forecast state, 
and the dashed line the analysis after data assimilation. The 
dot represents. the observation. 

will have appreciable power at small scales. If this is not 
altered, the analysis puts no credence in the model at small 
scales, so it "draws to the data" as in Figure 1. The remedy is 
to insist that Q be red or to impose a smoothness constraint 
in some other way. Dee [1991] and Jiang and Ghil [1993] 

effecti vely reddened Q by insisting that the system noise 
obey a geostrophic relation between pressure and velocity 
errors. Imposing smoothness constraints is a long-standing 
strategy in variational assimilation procedures [e.g., Sasaki, 
1970]. Provost and Salmon [1986] dealt with the sparsity of 
data by restricting the analysis to a limited set of 
(trigonometric) basis functions. Removing small-scale 
variability from the basis set obviously makes local 
overfitting impossible. With any of these strategies, Q is 
being forced to have fewer significant degrees of freedom than 
its full size would allow. 

The arguments presented above prompt the strategy 
described in the next section. For purposes of specifying Q 
and calculating the P we· reduce the state space to the small 
number of degrees of freedom adequate to carry what little we 
know about the system noise,' while maintaining enough of 
the KF's ability to use the dynamics to propagate error 
information. Inter alia, this reduction ensures a satisfactory 
degree of smoothness. The procedure may also be viewed as a 
parameterization of the large matrices Q and P in terms of a 
relatively small number of parameters. Our version of (5) 
propagates these parameters in time rather than the full model 
error covariance. Full covariance matrices can be reconstituted 
from the parameters. 

3. General Method 

We seek representations of the error covariance matrices 
with fewer degrees of freedom than implied by the dimension 
of the model state space. We begin by finding a reduced 
representation of the model state space and a reduced model to 
accomplish the transitions from one update time to the next. 
Similar developments are given by FMR, Xue et at. [1994], 
and Y. Xue et al. (Predictability of a coupled model of ENSO 

using singular vector analysis. Part I: Optimal growth in 
seasonal background and ENSO cycles, submitted to Monthly 
Weather Review, 1996; hereinafter referred to Xue et aI., 
submitted manuscript, 1996). Let W be the vector of all state 
space variable�._For example, if the model variables are u,v,p 
defined at the set of space points xu,xv'xp, respectively, then 

w(x,t) = (u(xu, t) , v(xv, t), p (Xp, t))T. 

There is no need for the different model variables to be defined 
on the same grid or with the same number of points. Now 
write the state space vector in terms of factors in time and 
space: 

W(X,t) = E(x) u(t). (9) 

The equality in (9) means that the columns of the N x N 
matrix E are a complete set of basis functions for the model' 

state space. The vector u(t) holds the amplitudes at time t of 
these basis functions. There are many possible choices for the 
columns of E, e.g., Fourier components for each model 
variable. The important requirement for us is that the choice is 
efficient in that it lets us truncate the number of columns in E 
(and hence the dimension of u) to M « N without sacrificing 
anything essential. We choose multivariate EOFs (MEOFs) 
for the columns of E, in which case the elements of u are the 
principal components (PCs). It is convenient to take the 
basis set to be orthonormal; E TE = I. Because of the 
truncation it is not also true that EET 

= I. 
Then since 

(10) 

left multiplying the model evolution equation (4) by ET yields 

(II) 

where 

(12) 

and u' accounts for the influence of the discarded modes at 
time t on the retained ones at time t+ I. As in FMR, we assume 
that u' is negligible. For our sea level simulations it is easy 
to make this true by retaining enough MEOFs. As appears 
below, it is more problematic for error propagation. 

There is a straightforward way to calculating the transition 
matrix A (cf. FMR or Xue et al. (submitted manuscript, 1996) 

for details). With A in hand we find the error covariances P in 
the reduced representation from reduced state space versions of 
(5), (6), and (2): 

pI(t+ I) = A paCt) AT + Q(t); 

pa = (I - KH) pI; 

K = pIHT (H pIIiT + Ryl 

(13) 

(14) 

(15) 

While these equations are formally identical to the earlier ones 
(apart from the change from 'I' to A), the meanings of the 
symbols have changed. Here 

(\6) 

and Q is the system noise appropriate to the reduced system. 
There is a relation between the new reduced mapping matrix H 
and the original full state space one Ht 

(17) 

which shows that the observational data are now approximated 



CANE ET AL.' SEA LEVEL VIA A REDUCED STATE SPACE KALMAN FILTER 22,603 

in terms of the M retained structures instead of the original N 
variables. The analogs of (17) for the statistical matrices, 
i.e., 

Q = ErQYE ß P = ErPYE; K = ErK *' (18) 

need not hold if the influence of the discarded modes on the 

retained ones is significant. The full system allows errors in 
modes omitted in the reduced system to propagate "upscale" 
into the retained modes. If this happens, then Q, the effective 
system noise in the reduced space, is not just a truncated 
version of the full Q* but should be modified to account for it. 
The second equality shown in (18) holds only if this 
accounting is precise. We return to this issue below when we 
consider the construction of the system noise covariance. 

Even if the first two equalities in (18) hold, the relation 
between the Kalman gain matrices in (18) need not be true. To 
see this, first write 

P* = EPE r + P'. (19) 

P' contains all the entries in P* related to the truncated modes. 
We will assume that P is correct so that the elements of P' 

representing the covariance of retained modes are all zero. 
Now define 

R'= H*P'H *r, (20) 

which allows us to write 

K* = EPH r(HPHr+ R'+ R) -1 + P'H *r(HPHr+ R'+ R) -1 

= K" + K'. (21) 

The second gain matrix K' does not project onto the retained 
modes at all (EK' = EP' = 0); it is the part of the full gain 
matrix that puts the innovations into the discarded scales. As 
discussed in section 2, we consider it desirable to eliminate it 

to avoid overfitting to the data. 
K" differs from the K defined in (15) by the inclusion of 

the extra noise term R' in the denominator. As derived here, 

this term, which is reckoned at the observation points, arises 
from the model error covariance in discarded modes. It reduces 

the impact K" gives the innovations (the observations) by 
"reminding" the filter that some of the innovation belongs in 
the discarded modes. 

This suggests an alternate interpretation of R' as additional 
sampling error associated with the observations, appropriate 
if we regard the reduced KF procedure as defining the analysis 
at the retained scales only. Regarding R'+R in (21) as total 
observational error R makes K" identical to the K of (15). 
Discarding K' is an immediate consequence of this 
interpretation. Though they phrase it somewhat differently, 
this second interpretation is the one taken by FMR. (See their 
discussion following equations (14) and (17). Since Kalman 
filter theory assumes that H applied to the true state gives the 
true observation, it is clear that their n' is being treated as 
observational noise. Consequently, no term like K' appears 
in their derivation of an approximate filter.) 

4. Implementation for Tropical Pacific Sea Level 

•4.1. Models and Wind Forcing 

• The numerical model used in our sea level calculation is a 

[wo vertical mode version of the Cane and Patton [1984] 
talgorithm for solving the linear long wave approximation to 

the shallow water equations on an equatorial beta plane. The 
implementation is quite close to that given by Cane [1984] 
and Busalacchi and Cane [1985]; additional details are given in 
those references. For present purposes the most serious 
shortcoming is probably the approximation that the 
stratification is horizontally uniform. As given by the cited 
references and Miller and Cane [1989], we use values typical of 
the mid Pacific: wave speeds of 2.86 and 1.85 m s -l and length 
scales of 354 and 285 km for the first and second baroclinic 

modes, respectively. Note that sea level is not a primary 
model variable but is derived as a linear combination of the 

displacements of the two modes [e.g., Cane, 1984]. 
The standard model configuration used here is a domain that 

covers the tropical Pacific from 28.75øS to 28.75øN and 124øE 
to 80øW; the exact model domain is evident in Figure 2. The 
model time step is 0.25 months. Grid spacing is 2 ø in 
longitude and 0.5 ø in latitude, requiring approximately 9000 
grid points in each of the two vertical modes. For the two- 
mode Cane and Patton [ 1984] model, six different variables are 
needed to define a complete state space: for each vertical mode 
(k = 1,2) these are the two-dimensional fields of Rossby mode 
zonal velocity ul•(x,y,t,k) and displacement hl•(x,y,t,k) and 
the zonal array of Kelvin wave amplitudes aK(x,t,k ). (There 
are a few additional numbers related to the peculiar way the 
algorithm handles boundary conditions in a domain that is not 
a simple rectangle [cf. Cane and Patton, 1984].) 

The model has no thermodynamics or salinity; it is forced 
by surface wind stress. The wind anomaly fields we use derive 
from the Florida State University (FSU) pseudostress analysis 
[Goldenberg and O'Brien, 1981 ] smoothed and detrended in the 
manner described by Cane et al. [1986]. 

4.2. Reduced State Space 

Our first task is to choose a suitable reduced basis E. We 

will use multivariate EOFs. First, the standard model is run for 

the period 1964-1991. After a 3 year spin-up period, all model 
variables are saved midmonth from January 1967 to September 
1991, yielding time series of length N t = 297. From these 
time series, MEOFs are calculated by the procedure described 
given by Xue et al. [1994] or Xue et al. (submitted manuscript, 
1996). 

The model state is thus transformed into the form (9) in 
terms of multivariate PCs u(t) and EOFs E(x). This set of 
multivariate EOFs (MEOFs) is the most efficient 
representation of the "total model variance" (with each 
variable weighted the same [cf. Xue et al., 1994]). For our 
purposes, it is the "data compression" efficiency of EOFs that 
recommends this basis set (cf. the discussion given by Lorenz, 
[1956]). The least severe truncation we will use in what 
follows retains 93 MEOFs, which keeps 99% of the variance. 
In section 6 we will explore the consequences of more drastic 
truncations. Figure 2 illustrates how rapidly the series of 
MEOFs converges: it takes very few patterns to reproduce the 
large-scale features of the sea level field, and one might well 
question the realism of the details that emerge as more 
variance is retained. 

While the MEOFs are the most efficient basis for the model 

states occurring in the simulation history, they are to be put to 
a different use, so certain potential problems must be 
considered. It may be that the truncated set is inadequate to 
represent the data (see (17)). Missing some structure in the 
data error is not a problem but a virtue: the data noise will be 
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Figure 3. Locations of the tide gauge stations used in the assimilations and verifications. 

automatically filtered out of the assimilation. The unhappy 
case is when the. MEOFs, which derive from a limited 

simulation with an imperfect model, miss the true signal. 
Fortunately, as will be seen shortly, the truncated MEOF set 
we obtained appears to be adequate for the work reported here. 

4.3. Tide Gauge Data and Error Structure 

The data to be assimilated are the monthly mean sea level at 
the 34 tide gauge stations in the tropical Pacific shown in 
Figure 3. The data are obtained from the Sea Level Data Center 
(SLDC) at the University of Hawaii as monthly means with the 
tides removed. Additional processing was needed to convert to 
monthly anomalies. Following the procedure used by the 
SLDC, we choose the period i975 to 1986 as a basis for 
calculating climatological monthly means. The record for this 
period was too sparse for this purpose at two stations, Baltra 
and Nuku Hiva. At these stations the average annual cycle was 
first calculated for the period 1987-1993. To this we then 
added the difference between the annual cycle frorff 1975 to 
1986 and that from 1987 to 1993 at their nearest neighbors 
(Santa Cruz for Baltra and Penrhyn for Nuku Hiva). We 
excluded eight additional stations within the model domain: 
five (Naha, Chichijima, Midway, Bundaberg, Easter) are too 
close to the model's artificial boundaries; Quepos is too 
contaminated by tectonic movement; and for unknown 
reasons, Rikitea and Suva correlate poorly (< 0.2) with both 
the model run and nearby expendable bathythermographs 
(XBTs). 

The error covariance for the tide gauge data is as discussed 
by Miller and Cane [1989]. Each station is taken to be 
accurate to 3 cm, and the errors at different stations are 
assumed to be uncorrelated: R = (3 cm)2I. 

4.4. Modeling the System Noise 

Our starting point for constructing a model system noise 
covariance matrix is the same as given by Miller and Cane 
[1989] and Miller [1990]. The basic assumptions are (1) the 
dominant source of model error is in the wind stress and (2) the 

wind errors are statistically homogeneous. As discussed in 

those papers, not only is the first assumption quite 
reasonable, but those unhappy with it are free to interpret it 
merely as a device for generating a structure for errors due to 
other sources. The second assumption ignores the 
inhomogeneities in the variability of the wind field and in the 
distribution of ship tracks and so cannot be strictly correct. 
Nonetheless, it is a reasonable starting point, and since an 
important purpose here is to compare with those earlier KF 
studies and with Miller et al. [ 1995], we continue to use it. 

Thus, denoting the wind error at (x,y) for month t by 
e(x,y,t), we assume that 

<e(x,y,t) e(x',y' t')> 

= W •5(t-t') exp[-(x-x')2/Lx 2- (y-y')2/Ly2]. (22) 
Errors are uncorrelated month to month, and the spatial 
covariance is determined by three parameters: an amplitude 
(wind stress squared) and two length scales. Miller et al. 
[1995] and Miller and Cane [1989] discuss this form and the 
parameter values. We will use 

W= (pw/Pa CD)2 (164 m2/s2), L x = 10 ø, Ly= 4 ø (23) 
The values of the length scales are identical to those in Miller 
et al. [1995]. W is obtained by fitting to the differences from 
observations of a model run without assimilation. This value 

is approximately one third of the value of Miller et al. [1995] 
due to procedural differences, the most important of which is 
that they generate new random wind field three times per 
month while we do it once per month. 

We will not reprise the discussion in these earlier papers but 
concentrate on the new issue of determining the system noise 
covariance in the reduced space, taking (22) and (23) as given, 
In doing so we make use of two Monte Carlo runs of the 
numerical model. In the Monte Carlo P run the model is forced 

by a random zonal wind stress generated from a covariance of 
the form (22) for 2001 months. The Monte Carlo Q run differs 
from the P run in one important feature: the model state is 
reset to zero at the midpoint of each month. The matrix of 
covariances among the model state variables for the Q run is a 
sample estimate of Q. The covariance matrix for the P run is a 
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sample estimate of Pffor the case of no data assimilation. The 
time mean is taken in place of the ensemble mean, and 
statistics are calculated from the 1965 months that remain 

after the first 36 months of spin up are discarded. 
We do not calculate the huge covariance matrices for the full 

state space but only for the M (=93) retained MEOFs. At each 
month t the MEOFs are projected onto the full model fields w 
and we save the PC values, p(t) for the P run and q(t) for the Q 
run (as in (10) pot q=Erw). The covariances are then 
calculated from the resulting time series (compare (17)): 

p(i) = <p pT>t; Q(0 = <q qr>r (24) 

We then ask whether p ahd p(i) satisfy reduced space 
equations like (11) and the steady [orm of (13)' 

p(t+l)= A p(t) + q(t)' (25) 

P = A P A r + Q. (26) 

Agreement with (26) was found to be unsatisfactory. We 
checked that the sample used in (25) was long enough not to 
be the problem. Hence we concluded that the difficulty must be 
the influence of the truncated modes on the retained ones, an 

influence which is omitted in (25) and (26). Trouble could be 
anticipated when working with the error scales (24) and only 
O(100) modes. Crudely estimating that these modes divide the 
model domain into 10 x 10 regions gives a resolution of about 
15 ø x 6 ø, leaving too much of the error energy at truncated 
scales. According to the arguments of section 2, the best 
diagnosis of the difficulty is that the full space system noise Q 
following from (23) and (24) is not red enough and should be 
changed. A possible fix is to change from the full Q to the 
truncated Q(i), which is a filtered version of the full space 
noise. However, in order to compare with grid point models 
that used the full space system noise, we pursued other 
modifications. 

The noise model we use is the following. Using the time 
series p(t) we find A', the model that is the best fit to (26) in a 
least squares sense: 

A'= <p(t+l) p(t)r> t <p(t) p(t)r>t -1. (27) 
(This is a standard procedure for constructing a multivariate 
AR(1) model; for a related example see Blumenthal [1991]). 
We then calculate the system noise Q' from the appropriate 
version of (27): 

Q, = p(i)_ A' p(i) A'T. (28) 

We have now effectively parameterized the "sub grid scale" 
(truncated mode) influence in two ways. First, we added A'-A 
to the model in an attempt to capture influences going from a 
retained mode to the set of discarded modes and then back to 

retained modes. Second, the noise covariance Q was changed 
to Q' to try to capture the direct influence of the discarded 
modes. 

To best maintain the form (23) for the system noise in the 
reduced space, we were led to modify the transition model A as 
well as the noise estimates. FMR left A untouched but made ad 

hoc adjustments to the observational (R) and system noise 
(Q) estimates. (We recommend the discussion in their section 
3.2.) As we argued earlier, these errors are poorly known and 
we see no clear reason a priori to prefer one approach to the 
other. 

It remains to estimate R' from (19) and (20): 

R' = HtP'H'*r= H*P*H *r- HPH r. (29) 

The first term on the right is the error covariance matrix Pø = 
<h(t)h(t)r> of the model produced sea level at the observation 
points (the locations of the tide gauges), estimated from the 
Monte Carlo P run. We will further assume that all the 

correlated structure in Pø is captured by the P term; that is, by 
the retained modes. Then R' is diagonal. 

Our estimate of R' is based on the model error without 

assimilation and is likely to be somewhat high. Recall that 
while we use the reduced state space for the error estimation 
component of the KF assimilation procedure, the full model is 
retained for the simulation itself. Thus R' is likely to become 
smaller as the assimilation reduces the error in the retained 

modes, and the model dynamics propagate the improvement 
in this part of the state into the remainder. 

5. Comparison of the Reduced State Space KF 
With a Grid Point KF 

The purpose of this section is to demonstrate that the 
performance of the reduced state space KF is comparable to 
that of a full state space KF, i.e., one which retains the full 
error covariance matrix with a row and column for every 
variable at every model grid point. We compare to the results 
of Miller et al. [1995], who used the same Cane and Patton 
[1984] numerical model employed here with the same 
parameter settings. The principal differences are that Miller et 
al. had to use a coarser grid (2 ø latitude x 5 ø longitude; = 103 
grid points) in order to reduce the state space to a 
computationally feasible size and that they add dissipation in 
order to suppress grid scale noise excited by the assimilation 
process. 

Miller et al. [1995] used a total of 15 tide gauge stations, 
assimilating data from eight of them and withholding the 
other seven for verification. The period of the assimilation is 
the 7 years 1979-1985. We assimilated the same stations for 
the same period; results are presented in Table 1 in terms of 
rms errors. Comparing first the 93 EOF run with the grid point 
filter, we reach the general conclusion that the results are 
comparable. The rms errors rarely differ by even as much as 1 
cm, and at only one point (Kanton) do the correlation 
coefficients (not shown) differ by as much as 0.1. 

The only systematic difference we discern is a tendency for 
the grid point filter to be closer to the data at the assimilated 
stations and farther from it at the withheld stations. It would 

be consistent with the discussion of section 2 to suggest that 
the "higher-resolution" grid point filter tends to overfit the 
data locally, perhaps causing it to underweight more remote 
connections. Figure 4 illustrates results at a point where data 
are assimilated and one where they are withheld. These 
systematic differences are slight. More important, both 
assimilations improve markedly on the unfiltered simulation. 
At the withheld point, Yap, the two filtered runs do tend to be 
closer to each other than either is to the observations. 

However, they are about as far from the unfiltered run as they 
are from the data. The only important difference between the 
two filtered runs is that the reduced space version better 
captures the low at the end of 1982. 

Table 1 also gives results from runs with fewer EOFs 
retained in the KF procedure. The comparisons at the 
assimilation points worsen noticeably as the number of EOFs 
is reduced. This is to be expected since the fewer the spectral 
(EOF) components, the less complete the fit to the data. But 
there is surprisingly little falloff in skill at the withheld 
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Table 1. Rms Differences with Observations of Grid Point and Reduced Kalman Filter (KF) Experiments for the Period 
1979-1985 

No. of Name of Station Location Grid Point Runs 
Station 

Reduced KF Runs for Different Dimensions of a Reduced Space 

Lat Lon Unf Filter Unf 93 EOFS 32 EOFS 17 EOFS 9 EOFS 5 EOFS 

I RABAUL 4S 152E 4.48 0.86 5.49 1.47 1.94 2.43 2.48 3.28 
2 JARVIS 0 160W 4.81 1.65 4.40 2.04 2.23 2.01 2.23 2.82 
3 CHRISTMAS 2N 157W 6.28 2.41 6.07 3.26 3.70 3.83 4.11 4.87 
4 SANTA CRUZ IS 90W 6.41 1.87 6.61 2.13 2.28 2.43 2.57 3.01 
5 CALLAO 12S 80W 6.40 1.42 6.74 2.59 2.90 3.03 3.22 3.37 
6 KWAJALEIN 9N 168E 5.93 1.12 6.64 2.46 3.00 3.58 4.20 4.48 
7 PENRHYN 9S 158W 6.01 1.41 6.65 3.61 4.19 4.29 4.07 4.09 
8 TARAWA IN 173E 5.66 1.66 5.92 2.44 2.78 3.16 4.06 4.59 

9 KAPINGAMAR IN 155E 5.26 3.62 5.71 3.58 3.69 3.74 3.61 3.76 
10 KANTON 3S 172W 5.73 4.04 6.57 3.67 3.69 3.73 4.07 4.54 
11 HONIARA 9S 160E 7.30 6.40 6.93 6.62 6.65 6.86 6.32 6.42 
12 YAP 10N 38E 7.14 6.25 6.66 5.74 6.19 6.03 5.67 6.96 
13 TRUK 7N 152E 6.56 5.41 6.68 5.16 5.42 5.08 4.75 4.69 
14 NAURU 1S 167E 7.70 5.57 7.72 5.28 5.41 5.64 5.76 5.91 
15 FANNING 4N 159W 7.76 5.30 7.96 5.67 5.46 5.86 6.70 7.27 

93 EOFS 32 EOFS 17 EOFS 9 EOFS 5 EOFS 

Better than unf by 1 cm on number of withheld stations 
Worse than unf by 1 cm on number of withheld stations 
Better than grid KF on number of withheld stations 
Worse than grid KF on number of withheld stations 

5 5 5 5 4 

0 0 0 0 0 

5 3 3 4 1 

2 3 4 3 6 

The grid point assimilation uses a coarse grid (5 ø x 2ø), and the reduced KF assimilations use a fine grid (2 ø x 0.5ø). The latter were run 
with 93, 32, 17, 9, and 5 empirical orthogonal functions (EOFs) retained in the representation of the error covariance matrices. "Unf" 
indicates the unfiltered (no data assimilation) results. Data from Stations 9-15 were withheld in all assimilations 
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stations. We will pursue this issue in the next section, where 
more tide gauge stations are used in the assimilation. 

The reduced KF runs use a finer grid for the dynamical model. 
Presumably, this is advantageous (although it is not evident in 
the two no assimilation (Unf) columns of Table 1). We think 
it is a fair advantage, since our underlying philosophy is to 
simplify the filter without sacrificing the complexity of the 
model, which would lose numerical accuracy and perhaps 
physical verisimilitude. Nonetheless, we reran the reduced KF 
experiment with the same coarse grid model used by Miller et 
al. [1995] for the grid point KF. Results were quite similar to 
those for the fine grid. 

6. Principal Results 

6.1. Comparison With Tide Gauge Data 

In this section we report the results of assimilation 
experiments for the period 1975 to 1992 using 34 of the 36 
tide gauge stations shown in Figure 3. Fanning and Jarvis, 
two of the stations used by Miller et al. [1995], are not 

Figure 4. Comparison between results of Kalman filtering 
(KF) in the full grid point (dashed line) and the reduced (solid 
line) spaces. Ninety-three EOFs are retained in the reduced KF. 
Shown are sea level height at (top) Santa Cruz, a station where 
data are assimilated, and (bottom) Yap, a station where the data 
are withheld. Unfiltered model output (dotted line) and 
observations (stars) are also shown. 
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Table 2. Rms Differences with Observations of Reduced State Space KF Experiments for the Period 
1975-1982 

No. of Name of Station Location 
Station 

Results of KF Runs 

(EOFs Retained / Variance Explained) 

Lat Lon Unf 93/99% 32/90% 17/80% 9/70% 5/60% 

I SANTA CRUZ IS 90W 5.74 2.75 2.75 2.94 3.04 3.09 
2 BALTRA 0 90W 5.45 2.41 2.38 2.43 2.62 2.74 
3 NOUMEA 22S 166E 6.63 6.60 6.82 6.35 6.49 6.32 
4 SAIPAN 15N 146E 8.78 6.48 7.19 6.55 6.40 5.80 
5 YAP 10N 38E 6.89 7.83 8.10 7.35 6.61 5.88 
6 MALAKAL 7N 134E 8.02 6.28 6.21 6.22 6.59 6.82 
7 POHNPEI 7N 158E 6.73 3.62 4.15 4.53 4.28 4.70 
8 KAPINGAMAR IN 155E 6.44 3.82 4.08 4.16 4.11 4.13 
9 NAURU IS 167E 7.48 4.89 5.33 5.64 5.81 5.68 

10 TARAWA IN 173E 7.45 4.42 4.56 4.82 5.17 5.39 
11 MAJURO 7N 171E 6.52 5.17 4.97 4.95 5.62 5.81 
12 FRENCH FRI 24N 166W 8.57 8.73 8.51 8.36 8.52 8.61 
13 HONOLULU 21N 158W 5.60 4.78 4.94 4.81 4.80 5.04 
14 RAROTONGA 21S 160W 7.43 8.89 7.80 7.89 7.67 7.76 
15 KANTON 3S 172W 6.93 4.54 4.81 5.10 5.05 5.36 
16 PENRHYN 9S 158W 6.99 5.90 5.65 5.20 5.28 5.42 
17 CHRISTMAS 2N 157W 6.79 5.42 5.84 5.64 5.43 5.87 
18 PAPEETE 18S 150W 5.02 5.01 4.82 4.33 4.48 4.44 
19 FUNAFUTI 9S 179E 6.26 5.34 5.20 5.32 5.88 6.16 
20 HONIARA 9S 160E 7.39 6.06 6.77 6.68 7.27 8.01 
21 RABAUL 4S 152E 7.25 4.95 4.54 4.61 5.04 5.84 
22 NUKU HIVA 9S 140W 6.24 5.15 4.82 4.85 3.71 3.73 
23 LA LIBERTA 2S 81W 7.09 5.34 5.41 5.35 5.52 5.61 
24 CALLAO 12S 80W 6.45 4.36 4.11 4.18 3.92 4.08 
25 DAVAO 7N 126E 6.13 5.16 5.06 4.94 5.06 4.30 
26 ACAPULCO 14N 100W 5.81 6.48 5.90 6.02 5.77 5.85 
27 WAKE 19N 167E 9.43 8.98 8.09 8.03 7.90 8.06 
28 JOHNSTON 17N 170W 7.98 7.69 7.66 7.73 7.99 7.69 
29 ISLA CEDRO 28N 115W 5.72 4.84 4.89 4.96 4.80 4.85 
30 TRUK MOEN 7N 152E 6.60 3.89 4.24 4.28 4.18 4.63 
31 KWAJALEIN 9N 168E 6.09 4.53 4.02 4.38 4.50 4.37 
32 GUAM 13N 145E 7.79 6.49 6.14 6.21 6.18 6.20 
33 PAGO PAGO 14S 171W 6.08 5.48 5.68 5.01 4.98 5.06 
34 HILO 20N 155W 5.89 4.77 5.09 5.15 5.70 5.78 

Results of KF Runs 

(EOFs Retained / Variance Explained) 

Unf 93/99% 32/90% 17/80% 9/70% 5/60% 

RMS deviation, all stations 
No. of stations better than unf by 1.0 cm 
No. of stations worse than unf by 1.0 cm 

6.92 5.78 5.74 5.67 5.73 5.81 
21 21 22 21 21 

I I 0 0 0 

In each case the data compared to were withheld in the assimilation. The reduced KF assimilations were run with 93, 
32, 17, 9, and 5 EOFs retained in the representation of the error covariance matrices. "Unf" indicates the unfiltered (no 
data assimilation) results. 

included in our standard data source, the Integrated Global 
Ocean Services System (IGOSS) Sea Level Program in the 
Pacific, which is maintained at the University of Hawaii 
SLDC. We chose not to use Fanning and Jarvis because the 
available time series were very spotty after 1983 and we were 
not confident of the data quality. Not all of the retained 
stations have continuous records for the entire period. Table 2 
presents comparisons with observations at the 34 tide gauge 
stations in terms of rms differences. Each column for the KF 

assimilations presents the results of 34 separate runs, in each 
of which one station is withheld. All comparisons are against 
withheld data, as is usual in a cross-validation procedure. The 
data assimilation clearly helps: at almost every location the 

rms error is reduced by I cm or more and the correlation is 
improved by 0.1 or more. The filtered results are worse than 
the unfiltered run at only one station, Rarotonga, far from the 
equator in the data sparse South Pacific. 

There is some tendency for errors to be largest at stations 
close to 20øN or 20øS (also see Figure 7). This may be due to 
the phase speed errors of our model at such extra-equatorial 
latitudes [Cane and Patton, 1984], an explanation suggested 
to us by Mitchum [1994]. In a comparison of tide gauges with 
TOPEX data, he deduced a dominance of Rossby wave 
propagation at these latitudes. Consequently, small 
inaccuracies in propagation speeds result in sizable errors in 
sea level. 
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A surprising and disconcerting feature revealed in Table 2 
and mirrored in the correlation statistics is how little 

difference there is when different numbers of EOFs are retained 

in the KF calculations. We postpone most discussion for the 
conclusion section and just point out the most salient features 
here. Though we did no formal test, the typical differences 
among the columns appear to be insignificant, an impression 
reinforced by the way the best scores at each location are 
distributed among the columns. There are only three stations 
(Santa Cruz, Tarawa, Hilo) where the rms error decreases 
monotonically as the number of retained EOFs is increased. 
This could just be a random occurrence. Or, since Baltra and 
Honolulu are quite close to Santa Cruz and Hilo, respectively, 
it is possible that their influence is captured better by the 
greater local structure allowed by increasing the numbers of 
the EOFs. (Though the favor is not reciprocated: results at 
Honolulu and Baltra are not always improved by increasing the 
number of EOFs.) 

By a slight (and surely insignificant) margin the best 
overall performance, measured either by rms difference or 
correlation, was obtained for just 17 EOFs, which account for 
80% of the variance in the original model run. The 17 seem to 
provide enough structure to capture whatever information from 
the 34 tide gauges our KF procedures manage to use 
effectively. Using fewer EOFs makes the analyzed fields 
smoother in space and time; smoothing out noise will raise 
correlations and lower rms errors. Apparently, not enough 
information is added by increasing the number of EOFs to do 
more than merely compensate for this smoothing effect. 
Since it represents local structure more completely, increasing 
the number of EOFs does bring the analysis closer to 
assimilated observations. However, the results of Table 2 

clearly caution that this does not guarantee improvement 
elsewhere. 

6.2. Error Estimates 

Figure 5 illustrates the results at a few selected stations. 
Shown are Nauru, in the equatorial waveguide, where a 
mediocre simulation in the unfiltered run is greatly improved; 
Kwajalein, where the improvement in a somewhat better 
unfiltered result is less substantial; Pago Pago, where the 
assimilation makes only a slight improvement in a mediocre 
unfiltered result; and Yap, where a good unfiltered simulation 
is hardly changed. An examination of these figures and 
similar ones for the remaining 30 gauge sites disclose few 
universal rules. Generally, the results with data withheld 
(solid line) appear to be close to those with all data 
assimilated (dashed line). The model rarely reaches the 
extremes of the observed fluctuations, though Yap is an 
exception. Table 2 shows a tendency for better results at 
stations closer to the equator and for the worst results to be at 
stations poleward of 15 ø. (Isla Cedro, in the coastal extension 
of the waveguide, is a notable exception.) The possible 
reasons are legion. To begin with, the wind-driven simulation 
shows little skill in these higher latitudes. The nature of the 
dynamics means that the correlation scales are shorter in 
higher latitudes, so points there are less influenced by remote 
data than are low-latitude locations. Furthermore, there are 

fewer stations in these higher latitudes, so there are fewer 
neighboring observation points to influence the assimilation. 

A putative virtue of the Kalman filter of which we are 
particularly enamored is its ability to supply error estimates. 
An estimate of the analysis error covariance pa at each time is 
readily obtained in the course of the assimilation (compare 
(6)). However, these estimates are theoretical and are based on 
the assumptions we made in modeling the data error R and 
system noise Q. So before examining the maps of the 
estimated error variance, diag(pa), we first verify these 
estimates against the actual differences obtained at the 
observation points. There are a number of differences one 
might consider: 

1. On the basis of the unfiltered (no assimilation) state u u 
and the observations w ø we may estimate the difference 
covariance 

AU= < (w ø - Hu u) (w ø - Huu)r> t (30a) 

as 

A u = HpuH r + R (30b) 

where pu is the estimate of the unfiltered model error (i.e., 
from (13) with no data assimilation) and we have assumed that 
this model error and the observational error are uncorrelated. 

2. Using the forecasts in an assimilation run, uJ• we may 
estimate the difference covariance 

zsf= < (w ø - Hu f) (w ø - Huf)T> t (31a) 
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as 9 

Af = HPfH r + R (3 lb) 

where PT is the estimate of the forecast error (i.e., from KF 
equation (13)) and we have again made use of the assumption •,- 
that this model error and the observational error are •,6 
uncorrelated. 

:55 

3. Using the analysis in an assimilation run, u a, we may 
estimate the difference covariance between the observations •4 

and the analysis at points where data are assimilated 

A a = < (w ø- Hu a ) (w ø- Hu a )r> t (32a) 
2 

after some manipulation as 0 

A a -- R- ItpaIt r (32b) 

where pa is the estimate of the analysis error derived from the 
KF formalism (i.e., (14)). The formula (32b) accounts for the 
fact that the same observational error affects both the 

observation and the analysis [cf. Miller, 1990, p. 11,466]. 
4. At stations where data are withheld the differences with 

data A w would be formally the same as (32a), but the 
theoretical estimate would be similar to (3lb) since the 
analysis error is independent of the observational noise at 
these points: 

A w = HP aH r+R. (33) 

All these A are full difference covariance matrices, but we will 

only look at the square roots of their diagonal elements, the 
rms differences between the observations and the model- 

simulated variables. Since all the formulas above are written 

in terms of the reduced state space variables, consistency 
requires that the direct comparisons ((30a), (31a), (32a)) use 
the projection of the model fields into the reduced space of 
EOFs. Thus the observational error R used in the theoretical 

estimates ((30b), (3lb), (32b), (33)) should account for the 
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Rms differences with observations as a function 

of distance from the equator. The KF run used 17 EOFs, and all 
results are truncated to 17 EOFs. Actual values are indicated by 
open circles, theoretical estimates are indicated by crosses. 
(a) Unfiltered run. (b) Analysis at stations with data withheld. 
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Figure 6. Actual and estimated differences between sea level 
observations and model output from unfiltered and KF runs. 
Differences are defined by (30)-(33). The Kalman filter uses 
93 EOFs, and the output is reduced to 93 EOFs. 

additional sampling error, i.e., the lessened ability of the true 
EOFs to represent the observations compared with the true full 
state space. Recall that this is one possible interpretation for 
R' (compare the discussion at the end of section 3). 

Actual and estimated errors for the 93 EOF case are shown in 

Figure 6. (Instead of the mean over the run, the estimates at 
the end of the run are shown. This was done because we had 
not saved all estimates from all 34 runs with data withheld. In 

all the cases we have examined the estimates converge 
quickly, as expected, so the final estimate is very close to the 
mean.) In general, we judge the estimates to be fair to good 
predictors of the actual error. In most cases the estimate 
predicts the actual values to within a centimeter or two. While 
some scatter is to be expected, there are a number of points 
where the estimated and actual differences are quite different. 
Among them are several from the most telling comparison, 
the case of withheld data. 

The mean of the estimates for the unfiltered case and the 

assimilation compared to withheld data are within a few 
percent of the actual means, while the mean estimates of the 
forecast and the case with all data assimilated are each about 

17% higher than the actual means. Agreement in the mean is 
more or less guaranteed for the unfiltered case by the procedure 
used to choose the error model parameters of (23). The 
estimates for the KF runs are not so constrained. It is 

especially pleasing to see agreement with the actual values in 
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the mean of the estimates E TM for the error in the analysis at 
points where data are not assimilated since this is the analysis 
error we most want to know. However, the estimated E TM can be 

correct if the analysis and observational errors are both 
incorrect as long as their sum is correct (see (33)). That the 
estimates of differences for points where data are assimilated 
and for forecasts are both high suggests that the estimate of R 
may be too high. The discrepancies are somewhat worse for 
the 17 EOF case and increase as the number of EOFs is reduced. 

The discrepancies could be reduced by lowering our estimate of 
R'. 

One might conclude that despite the great uncertainty of our 
ß 

underlying noise estimates, the KF estimates have captured the 
main features of the analysis errors. Regardless, a significant 
structural problem is revealed in Figure 7, which shows the 
actual and expected errors as a function of distance from the 
equator (absolute latitude). We have shown the 17 EOF case; 
the others are similar. The actual errors scatter, with no 

systematic latitude dependence. The estimates have a definite 
latitudinal dependence with a maximum at about 7 ø. Since the 
observational noise was taken to be the same at all points, 
this discrepancy points to flaws in our model for the system 
noise Q. 

While the above cautions against reliance on the details of 
the estimated error, our estimates do provide a roughly correct 
idea of the error magnitude, erring slightly to the high side. 
Maps of estimated errors are provided in Figures 8 and 9. They 
clearly show the improvement that the analysis provides 
compared to the unfiltered simulation. This improvement is 
more striking when one looks at the smoother fields that 
result by projecting onto the EOFs. The lower error for 17 
EOFs reflects the greater degree of smoothing; the amplitude 
of the signal is lower as well. The errors at the grid scale are 
estimated by adding P' to pa, where P' is the error due to the 
discarded modes estimated from the Monte Carlo calculation, 

see (19). Note that the grid scale estimates are a bit smaller 
for the KF with 93 EOFs than for the one with 17. 
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Figure 10. Maps of sea level for December 1982: (top) 
unfiltered (no assimilation); (middle) analysis from the 
Kalman filter with 17 EOFs; (bottom) analysis from the 
Kalman filter with 93 EOFs. 

6.3. Sea Level Maps 

The fruit of this work is a set of analyzed maps of sea level, 
combining tide gauge observations with an estimate from a 
wind driven ocean model. Maps for selected Decembers are 
shown in Figures 10-14. In each figure we show the unfiltered 
(no assimilation) sea level field and the analyzed fields from 
the reduced state space Kalman filter with 17 and 93 EOFs. 
Shown are three warm events (1982, 1986, 1991; Figures 10- 
12), one cold event (1988; Figure 13), and one non event 
(1990; Figure 14). Generally, the two KF analyses are similar 
at large scale, with the 93 EOF analysis providing a more 
detailed, less smooth field. In two of the warm events the 

assimilation makes an obvious systematic difference, moving 
the maximum from the coast in the unfiltered field to the 

central equatorial Pacific. This change suggests a systematic 
model problem, though it does not tell us whether to blame the 
model or the winds driving it. For the 1982 warm event, the 
available data are too sparse to have such a strong influence, 
although it is also possible that this very strong event truly 
had a different structure. The unfiltered version of the cold 

event (1988) is closer to the analyses, though centered 
slightly farther east. In the more or less normal year of 1990 
the analysis again moves the equatorial maximum to the west. 
It also increases its amplitudes. Changes elsewhere are small. 

7. Discussion 

The results we have presented above indicate some success 
in the primary goal of this work: we have combined the 
available tide gauge data with a wind-driven ocean model to 
produce analyzed maps of sea level in the tropical Pacific. The 
maps improve on what the model alone could generate. We 
were able to demonstrate the extent of this improvement by 
comparisons with data withheld from the assimilations. The 
comparisons show substantial (=1 cm rms) improvement on 
average, with the most consistent positive results in the 
region within 15 ø of the equator. There is also theoretical 
reason to believe that our maps are superior to those produced 
from the sparse array of tide gauges alone (e.g., the maps 
produced by the Sea Level Data Center at the University of 
Hawaii). Our assimilation procedure ensures plausible time 
continuity, and the model at the core of the procedure enforces 
physically motivated dynamical constraints on the analyzed 
fields. 

We have demonstrated the reduced state space Kalman filter 
as a feasible data assimilation procedure in a real 
oceanographic problem. The Kalman filter is generally 
acknowledged as a potentially optimal data assimilation 
procedure, but one that is prohibitively costly because it calls 
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for the quite imperfect simulation models available for large- 
scale oceanography. Even if this were not true• it is hard to 
conceive of a real oceanographic problem where we know 
enough to fill the requisite system and observational noise 
matrices. Even if we did, the length of oceanographic 
assimilations is so short that detailed error models are 

unlikely to help much. This is a consequence of the Slow 
convergence of the error covariance matrices with sample size, 
which makes it unlikely that even the correct long-term error 
statistics will match in any detail the statistics for the 
relatively brief periods we work with. 

Finally, we argued that the detail may actually be harmful, 
because it encourages the assimilation to locally overfit the 
too sparse data. The deleterious effects of too much structure 
have been pointed out by many authors of data assimilation 
studies. Bennett and Budgell [ 1987] showed that the Kalman 
filter will create unrealistic local features if the noise model 

has too much power at small scales. The review by Busalacchi 
[1996] shows the need for smoothness constraints to be a 
recurrent theme in the application of variational (adjoint) 
methods to tropical oceanography [cf. Long and Thacker, 
1989a, b; Moore et al., 1987; Sheinbaum and Anderson, 
1990a, b]. In addition to dissatisfaction with the structure of 
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Figure 11. Maps of sea level for December 1986: (top) 205 unf'te,'ed (no assimilation)' (middle)analysis r,'om the 2SS '"'7" 
Kalman filter with 17 EOFs; (bottom) analysis from the 140E 160E 180 160W 140W 120W 100W 80W 
Kalman filter with 93 EOFs. 

for the calculation of error covariance matrices whose 

dimension is the square of the size of the model state space. 
Our approach is to reduce the size of the space used for the 

covariance matrices needed to compute the Kalman gain. The 
work reported here required literally hundreds of experiments, 
each assimilating data once a month for 18 years. It is 
perfectly feasible to run them on a workstation in a week's 
time. It is true that while the model we used had a fairly high 
resolution (2 ø x 0.5ø), it is far simpler and faster than an ocean 
GCM. Nonetheless, there is nothing about our procedure that 
does not carry over to models of arbitrary complexity. The 
limiting cost factor would be the ability to run the model 
itself, not the KF procedure. While the method is quite 
general, it is true that the tropical oceans are an especially 
favorable environment since, as is well known, variability 
there is dominated by a relatively few large-scale structures. 
However, we believe the approach will prove broadly 
applicable in oceanography. An encouraging example is 
FMR's application of a similar method to an idealized 
midlatitude jet. 

We argued that the reduction in the size of the filter matrices 
is driven by more compelling considerations than 
computational cost. Dee [1995] points out that the formal 
assumptions of Kalman filter theory almost surely do not hold 
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Figure 12. Maps of sea level for December 1991 ß (top) 
unfiltered (no assimilation); (middle) analysis from the 
Kalman filter with 17 EOFs; (bottom) analysis from the 
Kalman filter with 93 EOFs. 
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Figure 13. Maps of sea level for December 1988: (top) 
unfiltered (no assimilation); (middle) analysis from the 
Kalman filter with 17 EOFs; (bottom) analysis from the 
Kalman filter with 93 EOFs. 

adding structure made the search for the optimal solution 
poorly conditioned. Ameliorating tactics tried in the 
variational context include adding a curvature penalty to the 
cost function, weighting the large scales of the prior 
estimates, and restricting the iteration count. The approach 
we take here is built on acceptance of the inherent 
impossibility of accurately reconstructing details of the ocean 
state from the limited data available. 

In section 5 we demonstrated that the reduced state space KF 
produced as good an analysis as a full state space filter, one 
that kept a row and column for every variable at every model 
grid point. The more extensive study reported in section 6 
demonstrated our thesis to the point of embarrassment: 
reducing the state space to only five modes gave results barely 
distinguishable from those obtained with 93. A priori, we had 
expected that tens of modes would suffice, but that many tens 
would also be necessary, and that the most elaborate 
oceanographic problem now imaginable might require 
hundreds. On the basis of the assimilations reported here, it 
would be hard to argue that more than 17 modes are needed. 

A possible explanation is that with only 34 data points to 
assimilate, only a handful of structures are required by the filter 
gain. No doubt there is some truth to this. It would surely 
hold if the structures had been chosen to capture efficiently the 

influence of the data (as with Bennett's [1992] representors), 
but that has not been done here. The issue may be investigated 
further by choosing a problem with far more data to 
assimilate. Reverdin et al. [1996] have used the same 
machinery to assimilate 86,000 XBTs and bathythermographs 
in the same tropical region. Results with 17 modes were 
noticeably better than with fewer modes, lending modest 
support to this explanation. A planned assimilation of 
altimetry data should shed added light on this issue. 

That the reduced state space Kalman filter did as well as the 
grid point one supports our argument that our very limited 
knowledge of the error structure makes it pointless to use the 
full state space in the filter. Unfortunately, the results here go 
beyond what we desire: apparently, the error models we use 
(and perhaps the dynamic model as well) are so poor that 
going beyond a very few degrees of freedom extracts little 
additional information from the data. 

Attention is best directed to the model and error estimates, 

not to expanding the filter. The reduced state space approach 
is helpful here, because it makes it feasible to perform many 
assimilation experiments. It also helps by reducing the 
number of parameters that must be determined to fit the error 
model. Adaptive approaches [e.g., Dee et al., 1985] become 
realistic possibilities. Earlier, we discussed some diagnostics 
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Figure 14. Maps of sea level for December 1990: (top) 
unfiltered (no assimilation); (middle) analysis from the 
Kalman filter with 17 EOFs; (bottom) analysis from the 
Kalman filter with 93 EOFs. 
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that revealed shortcomings of our error models (e.g., Figure 6) 
and some possible fixes (e.g., reducing R'). It is beyond the 
scope of this paper, but the subject of tuning error estimates 
merits a comprehensive study. Though it cannot 
automatically correct systematic model biases, the Kalman 
filter framework is useful for analyzing model errors, an 
essential step toward model improvement. 

One of the oft cited virtues of the Kalman filter is that it 

produces estimates of analysis errors. In this work we were 
able to compare the theoretical error estimates produced by the 
KF machinery against actual errors. Agreement did not extend 
to the details; only the gross features matched. FMR also 
reported some discrepancies between error estimates and actual 
error. Discrepancies ought to be expected given that the KF 
estimates of analysis errors rely on specifications of poorly 
known observational and model system noise covariances. 
Our experience raises the question of how far one should trust 
aspects of the theoretical estimates that have not been verified 
in some way. This has to be done carefully, since it is likely 
that obvious discrepancies between theoretical and actual 
errors will be eliminated by being "used up" to tune 
specifications of the noise structure. 

Our approach to the Kalman filter opens up a number of 
avenues that should be pursued. Learning how to use 
assimilations to improve the specification of error models is 
at the top of the list [cf. Chan et al., 1996]. In the near future 
we plan to apply this methodology to the coupled ocean 
atmosphere E1 Nifio-Southern Oscillation forecasting model of 
Cane et al. [1986]. We would like to demonstrate the 
feasibility of using it with an ocean general circulation model, 
especially to assimilate altimetric sea level data. As with tide 
gauge measurements, altimetry provides no direct information 
about subsurface thermal structure. Data assimilation 

experiments have shown the value of surface observations for 
models with substantial vertical structure to be limited [e.g., 
Long and Thacker, 1989b] without the use of a priori empirical 
information to connect the surface and subsurface [e.g., Ezer 
and Mellor, 1992]. Our procedure is intrinsically multivariate; 
furthermore, it automatically fills in the horizontal gaps 
between orbital tracks. Thus it seems well suited to this task. 
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