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ABSTRACT

A simple model has been developed to study the wind-
driven equatorial ocean circulation. It is a time dependent,
primitive equation, beta plane model that is two-dimensional
in the horizontal. The vertical structure consists of two
layers above the thermocline with the same constant density.
The ocean below the thermocline is taken to be of a higher
constant density and to be approximately at rest. The sur-
face layer is of constant depth and is acted upon directly by
the wind. The depth of the lower active layer is dynamically
determined. This is the simplest vertical structure which
allows an undercurrent.

The linear response of the model has been investigated
thoroughly by analytic methods, as well as numerically. The
nonlinear response has been studied numerically with the aid
of some simple analytic arguments. The numerical scheme em-
ploys a variable mesh spacing, is fourth order in space and
energy conserving (except for boundary effects). Small-scale
noise is suppressed by a special treatment of the gravity wave
terms.

The linear responses to uniform southerly and easterly
wind stress and the nonlinear responses to uniform wind stress-
es from the south, the east, the west, and the southeast have
been studied numerically. The linear results are in agreement
with analytic theory. In all cases, the surface flow is estab-
lished within twenty days, a timescale determined by friction.
There is also a timescale for the establishment of large-scale
pressure gradients and mass transports. Linear theory shows
that this "setup time" varies linearly with the time it takes
for planetary waves to cross the ocean in the zonal direction.
The nonlinear setup time can be either longer or shorter than
the corresponding linear time, depending on the case, but in
all cases would be six months or more for the world's oceans.
Since this is at least as long as the timescale of the monsoon-
al wind systems, steady state theories should be applied to



equatorial oceans with caution.

Flows become nonlinear within two weeks. A substantial
amount of the energy put in at the surface by the wind stress
is advected downwards by the strong vertical motions that arise
near the equator. In the presence of meridional motions, ex-
changes of relative and planetary vorticity are dynamically
significant.

The nonlinear response to an easterly wind includes
an eastward equatorial undercurrent in qualitative agreement
with observations in many respects. In the linear response,
the vertically integrated mass transport is westward at the
equator. The flow that returns the undercurrent transport to
the west takes place in the lower layer within 50 of the equa-
tor. The response to a west wind has eastward currents in
both layers at the equator with a maximum at the surface.
Both zonal wind cases exhibit variations in the zonal direc-
tion. It is argued that such variations are required by the
dynamics in the absence of large frictional forces.

The zonal mean state in response to a southerly wind
has a narrow eastward jet at about 30 N and a broad area of
westward flow at the equator. This state is barotropically
unstable and after about 100 days westward propagating waves
appear. With a southeast wind there is an eastward jet at
40 N and the mean position of the undercurrent shifts south of
the equator. The undercurrent meanders with longitude but is
steady in time. In this and the south wind case, the waves
appear first at the western side of the basin and then spread
eastward across the basin. There are no meanders in the zonal
wind responses, suggesting that observed undercurrent meanders
are instabilities of the equatorial current system as a whole
and not of the undercurrent itself.

Thesis Supervisor: Jule G. Charney
Title: Sloan Professor of Meteorology
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1. Introduction

Since the vertical component of the Coriolis force van-

ishes at the equator, the geostrophic balances which dominate

the dynamics of the extra-equatorial oceans must break down.

The most striking physical manifestation of this singularly is

the Equatorial Undercurrent, a narrow (half width of 10), fast

(speeds up to 170 cm/ sec), eastward flowing subsurface current

in the thermocline of all the world's oceans. (While it is a

permanent feature in the Atlantic and Pacific at most longi-

tudes, it has been observed only intermittently in the Indian

Ocean.) Many of the characteristics of the undercurrent are

highly variable: e.g., the downstream velocities and trans-

ports may vary by a factor of two or more at different longi-

tudes or at different times. Available observational data

allows many of these variations to be related systematically to

variations in the winds over the equatorial ocean.' However,

the evidence is, in general, too spotty to allow such correla-

tions to be conclusive. Philander (1973b) presents a thorough

review of the measurements of the undercurrent made up to 1973.

An important series of measurements of the undercurrents in the

Atlantic was made during the GATE exeriment in the summer of

1974. (Preliminary results are available in Duing et.al.,

1975). The most important finding was a meandering of the

undercurrent core between 11S and 1ON at all observed longi-

tudes between July 26 and August 19. The period of these

meanders was about 18 days.

A second important consequence of the vanishing of the



Coriolis term is that equatorial motions have time scales

which are very much shorter than those of midlatitude motions:

the baroclinic time scale is weeks at the equator, as against

years at mid-latitudes. The most impressive instance of this

short time scale is the reversal in direction of the Somali

Current within a month of the onset of the southwest Monsoon

(e.g., Leetmaa 1973). In general, time dependent.oceanic

motions with zime scales longer than a few days have received

relatively little attention. Equatorial regions are rewarding

areas for the study of such time variations because of the

rapidity of the ocean's response to atmospheric forcings. The

Indian Ocean is particularly favorable because, while the wind

systems over the Atlantic and Pacific Oceans have monsoonal

components, the monsoon regime is predominant over the Indian

Ocean. The winds there reverse direction completely twice a

year and the currents are known to vary greatly. NeVe-.theless

there have been few theoretical studies of time depEr t

phenomena in equatorial oceans. Cox (1970) and Lighthll1

(1969) investigated the setup of the Somali Current in rcrDonse

to the onset of the Southwest Monsoon. On the basis of a

numerical simulation, Cox concluded that the Somali Current

began to flow northward in response to the local winds along

the African coast. Lighthill's analytic model suggested that

the propagation of signals from the interior of the ocean

could be the causal mechanism. Gill (1972) applied a Light-

hill-like model to the undercurrent in the western Pacific.

He associated the undercurrent with the second baroclinic mode



21

Kelvin wave which propagates in from the western boundary. It

is not clear how such a model explains the presence of the un-

dercurrent as a more permanent feature.

In contrast to the situation for time varying equatorial

currents, numerous theoretical models for the steady state

undercurrent appear in the literature.. These have recently

been reviewed by both Gill (1972) and Philander (1973b). For

this reason we shall forego a detailed review here; rather, we

shall discuss them only to the extent needed to establish a

theoretical context for the present work. On the basis -of his

observations in the Pacific, Knauss (1966) estimated that the

only negligible terms in the momentum equation were those

giving the time rate of change of momentum and the horizontal

component of the Coriolis force due to vertical motion. (He

did not consider horizontal eddy diffusion processes.) The

upshot is that a great variety of processes are available to be

used as explanations for the undercurrent. Since there is a

certain amount of freedom in the choice of eddy coefficients,

all of these can be expected to give agreement with at least

some of the observed scales. In what follows, we seek to iso-

late those processes which are most significant.

We shall immediately restrict ourselves to those models

which idealize the thermocline as a discontinuity between a

shallow upper homogeneous layer and a deeper lower homogeneous

layer of greater density. The lower layer is assumed to be so

deep that its horizontal pressure forces and velocities vanish.

As shown by Charney (1955) the upper layer of such a model is
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equivalent to a single layer homogeneous ocean with the force

of gravity reduced by a factor Ap/p, the relative density

difference between the two layers. Models with thermohaline

components ,(Robinson 1960, Philander 1972, 1973a) are required

to explain certain effects at depth; for example, the double

celled structure often observed in the Pacific (see Philander

1973b).: Homogeneous models appear to be sufficient for ex-

pla-in-ing observed features above the thermocline.

The-most basic physical notion about the undercurrent

is the idea of flow down a pressure gradient (Charney 1960).

The prevailing easterly winds pile up water at the western side

of the -ocean basin, thus establishing an eastward pressure

gradient. .Stommel (1960) exploited this idea to obtain an

eastward flowing subsurface current in a linear model with

vertical friction. He assumed free slip boundary condition at

the bottom .and that the vertically integrated transport van--

ishes at the equator. In a similar model without the latter

two assumptions, Charney (1960) and Philander (1971) found that

the current at the equator did not reverse with depth. In any

case, one would wish any theory to account for the substantial

eastward transports observed at the equator. in the linear

theory of Gill (1971), the pressure gradient force is balanced

by the horizontal mixing of momentum. By using an unrealisti-

cally large value for the coefficient of horizontal eddy vis-

cosity (108 cm2 sec-1), Gill obtains the observed latitudinal

scale for the undercurrent, but the transport is too low by a

factor of at least four.



Non-linear theories have ignored the downstream inertial

terms,. The (suspect) assumption is made that the zonal and

meridional velocities have the same scale. Then, since the

meridional length scale (an equatorial boundary layer scale)

is so much shorter than the zonal one (the length of the ba-

sin), it follows that in the momentum equation the downstream

inertial term is negligible relative to the cross-stream

inertial term. Attention is then directed to the meridional

circulation. For an -easterly wind, the Ekman drift in the

surface layers will be poleward. Continuity then requires-a

compensatory equatorward mass flux at depth, producing an up-

welling region at the equator to complete the fluid circuit.

Fofonoff and Montgomery (1955) considered the subsurface flow

in the light of the barotropic vorticity equation. If it is

assumed that a parcel approximately conserves the vertical

component of its absolute vorticity, it must change- its rela-

tive vorticity to make up for the loss of planetary vorticity

as it moves equatorward. This results in an eastward flow at

the equator. It may also be shown that the meridional circu-

lation near the equator enhances the eastward transport at the

equator regardless of whether the wind is easterly or westerly.

(See Robinson (1966) for an analytic demonstration; Gill (1972)

gives a more physical argument.)

The models of Charney (1960), Charney and Spiegel

(1971), Robinson (1966), and McKee (1973) all incorporate the

nonlinear effects due to the circulation in the meridional

plane. The first three include momentum mixing in only the
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,vertical direction. McKee's model is an extension. of Gills

(1971) -model into the non-linear regime; horizontal -eddy

viscosity is the important frictional force here. A more

realistic .value for the zonal velocity is obtained, compared

to the linear model,but an unreasonably large value for the

eddy coefficient is again used (108 cm2 sec - 1) to*obtain the

observed undercurrent width. The models of Charney (1960) and

Charney and Spiegel (1971) (the first calculates the flow

only at the equator by assuming it is an axis of symmetry; the

second paper extends the first model to a meridional plane)

give the observed undercurrent velocity and width using a

value for the vertical eddy viscosity coefficient (15 cm2 sed- )

in agreement with existing observational evidence (see Section

2.2). This model also gives good agreement with the observed

vertical profile of the undercurrent. Vertical viscosity must

be of some importance at depth in order to obtain a non-con -

stant profilebelow the boundary layer. Most importantly, a

mechanism for the vertical exchange of momentum is needed to

introduce the wind stress into the water. There is no similar

logical necessity for introducing a significant amount of

horizontal mixing. Fu'rther, there is no evidence that modeling

such mixing gives better agreement with observations.

Previous work thus shows that it is necessary to consi-

der vertical eddy viscosity and inertial effects but not

lateral eddy viscosity in order to model the undercurrent

effectively. As noted above, all of these models neglect any

variation in the zonal direction (except that the zonal
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pressure gradient is taken as constant). This makes it impos-

sible to ask a number of interesting questions; for example,

one cannot investigate the undercurrent meanders observed

during GATE. More generally, the issue of the relation of the

undercurrent to the entire equatorial current system cannot be

explored without considering the whole ocean basin.. Since

there is a substantial eastward transport at the equator, there

must be compensating westward flow elsewhere in the ocean

basin. Further, many time varying effects are inseparable from

zonal variations. For example, the length of time,it takes

for the sea surface to set up from rest in response to a wind

stress is determined by the speed of waves which propagate in

from the boundaries of the basin.

In order to investigate questions of this sort, our

model will be time dependent and two dimensional in the

horizontal. Since the phenomena of interest are confined to

an area near the equator, the basin need not have a great

latitudinal extent; 15'S to 150 N has proven to be sufficient.

The model equations are solved numerically because it is

imperative that they be fully nonlinear. A stretched coor-

dinate system is used so as to give greater resolution near

the equator where smaller scales of motion demand higher reso-

lution.

In order to make it practical to perform many numerical

integrations, the vertical structure is drastically simplified.

It consists of two layers above the thermocline with the same

constant density. The ocean below the thermocline is taken to
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be of a higher constant density and to be approximately at

rest. The upper of the two active layers is a constant depth

surface layer which is acted upon directly by the wind stress.

The lower active layer is not directly affected by the wind.

Its depth is variable, with the variations being dynamically

determined. The two layers communicated via the vertical

velocity at their interface as well as being frictionally

coupled. This is the simplest vertical structure which will

give an undercurrent.

Of course, this simplification prevents the simulation

of the detailed vertical structure of the undercurrent. It is

not our intention to do such numerical simulations. Previous

work (especially Charney and Spiegel 1971) provides a bridge

for relating the results of our simple model to the real world.

Our philosophy is to treat the numerical experiments reported

here in the manner of laboraLory experiments. We do not seek

to simulate the real world; we seek merely to preserve enough

analogy to the real world for the results to give insight into

natural phenomena.

There are a large number of phenomena which may be

investigated with such a model. In the present study we impose

very simple wind stress patterns and study the evolution from

a state of rest and eventual steady state configuration of the

model ocean. To aid in the interpretation of the numerical

experiments, some analytic models are developed. These provide

a descriptive vocabulary as well as checks on the numerical

results-.



2. Formulation of the Physical Model

In this section the equations for the simplest vertical

structure which will give an undercurrent are derived, and in

the following section the values of the parameters to be used

in the numerical experiments are chosen.

2.1 Model Equations

Since we are concerned with the inertial and viscous

dynamics of a wind-driven ocean, thermohaline effects will be

ignored. We divide the ocean vertically into N stable material

layers which are assumed to be non-mixing (Fig. 2.1). For

any quantity q the average over the jth layer is defined as:

Then the equations of motion become, in standard notation,

The horizontal component of the Coriolis force due to the ver-

tical motion has been omitted; it may be shown negligible a

posteriori (sufficient conditions are given by a scaling argu-

ment). The vertical component due to horizontal motion is

also ignored; the pressure is then given hydrostatically.

Assuming a constant surface pressure and a flat bottom (as is
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sufficient for our purposes) we may write:

N

The viscosity in the model is considered to be due to turbulent

eddy processes, with different horizontal and vertical struc-

ture but isotropic in the horizontal. Following Kamenkovich

(1967) and Kirwan (1969) the operator FH, which gives the

horizontal eddy viscous terms is written in a vector invariant

form. Details may be found in Appendix A. The horizontal

stress term at the surface, T is taken to match the wind stress;
-O

otherwise T. is the frictional stress at the interface between

layers. It is modelled in the form:

%=-
Since T. (v uz ) , a heuristic argument suggests that~3 v z=zj

K ~ v /H*, where H* is a characteristic layer depth.

The usual finite-difference assumptions that the layers

may be treated as homogeneous are made:

We now identify the bottom layer with the water mass below the

thermocline and regard it as being sufficiently deep so that

its velocity vanishes. Equatorial regions are a favorable

envirornment for this approximation: the thermocline is shallow

(150 - 200 m), the wind stress projects about twenty times more

strongly on the first baroclinic mode than it does on the baro-

tropic mode (Lighthill, 1969), and, unlike midlatitudes
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(Veronis aid.Stommel, 1956), the baroclinic signals are 'dnly

about-one order of magnitude slower than the barotropic.

Observational evidence also tends to support the validity of

this.approximation (see Philander, 1973 for a summary).

Since the velocities in the lowest layer vanish, the

1pressure gradient must vanish there as well . This allows h
N

to be eliminated in (2.2). For.a single layer the equations

become:

where /0 -

In (2.4) the wind stress appears as a body force. This

is a commonly used modelling procedure in oceanography; for

many purposes it can be rigorously justified (e.g. Charney

1955). For some purposes, such as modelling the undercurrent,

a difficulty is created by introducing the wind stress ,s a

body force averaged over the uppermost layer. Consider-a curl-

free wind stress vector introduced in this manner. It may be

1
In order to deduce that V*PN = 0 from the lowest layer

momentum equation ((2.1) for j = N), we must neglect the stress
term = Ku - that appears there. This term is quite
small.N-lIf it were not neglected and hN is eliminated, it
would'appear in the momentum equation for each layer. We feel
that our modelling of the stress due to turbulent mixing is too
crude to justify complicating the equations by retaining this
small term.
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balanced by the gradient of the height field, allowing the

velocities to be identically zero (as is consistent with-the

Sverdup relation). Note that'such a solution isa-solution to

the full non-linear equations. Similar no-motion solutions

can easily be found for a multi-layer model Whether or not the

bottom layer is constrained to be motionless: %the layer depths

may always adjust to reduce the pressure gradient to zero in

each subsurface layer.

For example, consider a constant easterly wind stress

(of magnitude T per unit mass) applied to a model ocean with

one active layer. The steady state solution to (2.4) is

The wind stress is balanced by the zonal pressure gradient. In

reality this pressure gradient is sufficient to drive the

equatorial undercurrent because the fluid at depth feels the

pressure force but not the wind stress (Charney 1960; Gill

1971). Obviously the layered models miss this-effect.

We wish to emphasize that such models are not wrong in

some simple sense. In fact, the profile of the thermocline

depth specified by (2.5) is very close to what is observed at

the equator (cf. Gill 1972, Fig. 3). The difficuty is that

the feature of interest is missed by the layered models because

they consider only the depth averaged currents within each.

layer. A correct treatment of the wind stress would introduce

it as a boundary condition e.g. vu = T at the surface.
v~This guaranteesthat with a non-zero wind stress there is no

This guarantees that with a non-zero wind stress there is no



solution where the velocities vanish at all depths., The

vertically averaged velocities may vanish. For the example

discussed above, this could come about at the equator if the

surface flow driven westward by the wind stress were just

compensated by the flow at Cepth driven eastward by the pres-

sure force. (In reality, inertial effects give a net eastward

transport at the equator.) This is precisely the mechanism

for generating an undercurrent referred to above. To capture

this essential mechanism we modify the model with a single

active layer. This upper layer is divided into two parts: a

surface layer of constant depth n and a lower layer of variable 0

depth h (Fig. 2. 2). There is no density difference between

these two layers and transfer of mass and momentum between the

two is permitted. The wind stress is felt directly only by the 0

surface layer. This is the simplest vertical structure which

will give a steady state undercurrent.

Denoting the average of a quantity q over the upper S

layer by q and over the lower by -I define:

then

where z is the height of the interface between the two active

layers (Fig. 2.2). This says that the suction into (or pump-

ing out of) the surface layer is the vertical velocity at the

interface less the change in the interface height. Making



assumptions (2.3) abouc tne averages of nonlinear terms we

obtain:

V k h + to + ~K 4- 2 -

k 4
tt

(KB is a bottom friction parameter usually taken equal to K).

To avoid spurious sources or sinks of energy u(z ) must

be given by:

which is consistent with the notion that u varies more rapidly

within the boundary layer. The energy equation for this sys-

tem is then:



Next, Eqs. (2.6) are non-dimensionalized. Since a

variety of phenomena with different scales will occur within

the model basin there is no single consistent scaling. The

non-dimensionalization used is given in Table 1, together with

the dimensionless parameters it introduces and the numerical

values used inthe model runs.

One final consideration brings the equations into their

final form. In order to facilitate the introduction of varia-

ble mesh spacing, general orthogonal coordinates are introduced.

Let the coordinates in physical space be (x*, y*) and the grid

coordinates in the "computational space" be (x, y). That is,

there will be equally spaced intervals (Ax, Ay) in (x, y).

Define:

then with some obvious changes in notation and with:
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We consider three possible sets of boundary conditions

for this set of equations:

u = v = 0 at all lateral boundaries (2.

u = = 0 at meridional boundaries;

v = _u = 0 at zonal boundaries

S=0 at meridional boundaries (.

v = 0 at zonal boundaries

We generally use (2.9a). Eq. (2.9b) is based on the

notion that the northern and southern boundaries are artificial;

(2.9c) is consistent with taking the horizontal eddy viscosity

to be zero. In all cases, there is no special boundary treat-

ment of the layer depth; the boundary is computed from the last

of Eqs. (2.8).

Written in this way the equations allow treatment of a

variety of geometries. It would be straiqhtforward to treat

spherical coordinates or a basin whose boundaries are not

perpendicular to the equator. In the present investigation,

however, we restrict ourselves to a rectangular basin on an

equatorial beta plane (e.g., Veronis 1963a, b). Since the

meridional extent of the basin will generally be 150 of lati-

tude on either side of the equator, the beta plane is an

excellent approximation. As noted in Appendix A, with this
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coordinate system we may approxirate the horizontal viscosity

FH by the usual horizontal Laplacian of the velocity compo-

nents. The coordinate stretching is independent of the

perpendicular direction: i.e.,

-- URN 0

In this case, m = m = 0 which simplifies the equations
xy yx

considerably.

2.2 Choice of Parameter Values

The values for the model parameters given in Table i are

intended to be a "standard" set for all the model runs.

Deviation from these values will be noted where appropriate.

The standard value for the wind stress (.47 gm cm-1 sec - 2 ) is

approximately the mean value over the equatorial oceans. The

relative density step Ap/p between the active layer and the

layer of no motion below it is taken as .002. This is a

representative value for the density step across the thermo-

cline in equatorial waters.

Vertical eddy viscosity is to be the principal dissi-

pative mechanism in the model. The argument which follows

(2.3) related the coefficient of interfacial friction K to the

vertical eddy viscosity vv by

where H* is a characteristic vertical distance between fluid

elements in the active layer. H* is taken to be 100 m. -- one
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Table 1 Non-dimensionalization (primes on dimensional quan-
tities)
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half the depth of the active layer.

The same value of H* is used to determine the bottom

friction parameter KB . This is at once the most reasonable

and the simplest choice. It remains to choose the coefficient

of vertical eddy viscosity v . In the interest of simplicity,

we take our standard value to be independent of depth; hence

K = K. Robinson (1966) used a value of 104 cm2/sec, which he

found by identifying the Ekman depth with the extra-equatorial

mixed layer depth. This identification is surely incorrect

and the value much too large. Knauss (1966) calculated a

value of 5 cm2 sec-1 by fitting a parabola to the velocity

profile of the undercurrent observed in the Pacific. Williams

and Gibson (1974) applied universal similarity and local

isotropy assumptions to measurements of small scale temper-

ature fluctuation at 1500 W and a depth of 100 m. They found

values of v of 25 cm sec-1 at the equator and 12 ,cm sec - I at

10N. Charney (1960) and Charney and Spiegel (1971) found that

their models best fit the observed undercurrent for a value of

the eddy viscosity in the range 14-17 cm2 sec-1. These models

give eastward flow at the surface in the face of an east wind

but this may, in fact, be a realistic feature. Not only has

such a situation been observed (at 1500 W by Taft, et, al.,

1974), but our calculations indicate that the addition of a

northward component to the wind stress (as is generally pres-

ent in the real oceans) gives eastward surface flow at the

equator in conformity with more typical observations. In the

light of all of this evidence, we use 15 cm2 sec-I as a
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standard value for vv, feeling some confidence inj <at 1eatt)

the order-of magnitude of the choice.

It is-essential to postulate some vertical mixing in

order to have a physical mechanism by which the'vind drives

the ocean circulation. There is no similar necessity for -

including a horizontal mixing of momentum. Further, there is

very little basis for assigning a numerical value to the

coefficient of horizontal eddy viscosity. (Even the form that

we use for the functional is justified primarily by simplicity

and tradition.) For these reasons we wish to use a value of

the horizontal eddy coefficient that is small enough to.-have

no significant effect on the equatorial dynamics. Two con-

siderations prevent us from simply taking this coefficient to

be zero, the first numerical and the second physical.

" 'It is well known that numerical calculations of geophys-

ical flows often exhibit spurious short wavelength computa-

tional modes (e.g., two grid point waves or "checkerboard"

patterns; see, for example, Messinger, 1972). These not only

destroy the accuracy of the calculation but may contribute to

so-dalled nonlinear computational instabilities. Some mecha-

nism is required to suppress their growth: either a smoothing

operation of some kind which redistributes their energy to

longer wavelength components, or a dissipative operator which

acts to damp them. Energy conserving difference schemes (e.g.,

Arakawa, 1966), as well as the special treatment of the gravi-

ty wave terms used in our model (see Section B.5) are examples

of smoothing devices, albeit implicit ones. Our "momentum



waves" (Section B.5) a-e a more explicit smoothing device..

Dissipative mechanisms have a physical basis: a horizontal

eddy viscosity is a parameterization of processes at scales

too small to be resolved by the grid point computation. As a

matter of taste, we prefer to rely on the well studied,

physically motivated, viscous damping rather than computation-

al devices whose effects are less well known. For this form

of viscosity the amount of damping of the shortest waves the

grid will resolve depends on a Reynolds number based on the

physical distance between grid points. For an unequally spaced

grid the largest grid spacing will determine the viscosity

needed. For the grid that is used sole reliance on such a

mechanism demands a viscosity large enough to have a signifi-

cant effect on the flow near the equator, the region of

primary interest in this work. However, the local grid spacing

there allows a viscosity an order of magnitude smaller.. It

was determined by experimentation that the value in Table.l is

large enough to dominate the effects of "computational viscos-

ity" near the equator where the grid is closely spaced though

the latter may be the more important mechanism where the grid

is coarse.

A more stringent lower bound on the value of vH arises

from a physical consideration. As will be shown -in Section

3.3, no-slip boundary conditions cannot be applied to all

velocity components in the absence of-lateral friction. (Only

the normal transport may be specified this case.) We there-

fore expect sidewall boundary layers whose thickness will
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depend on -la power of) the coefficient of lateral eddy viscos-

ity. If A is the Ekman number based on this coefficient,-

then there will be A1 / 3 layers at the meridional walls and t

A1l/4 layers at the latitudinal walls to reduce the Vertically

integrated mass transports to zero. Interior to these layers

there will be A1/2 layers to reduce the wall velocities in

each vertical layer to zero. (See Section 3.3; also Pedlosky,

1968.) For the values of vH in Table 1 this implies thick-

nesses of 30, 14, and 3 km for the three types of layers.

Resolving such small scales would be extremely costly

in computer time. Fortunately, it is not necessary to do so

in order to calculate the interior flow correctly because the

internal dynamics of the sidewall boundary layers have a

negligible effect on the interior flow. Rather, it is overall

properties of these boundary layers which are important for,

the interior. The boundary layers have the role of reducing

certain interior velocity components (or integrated mass

fluxes) to zero. The interior flow cannot be correct unless

this is done, but the details of how it is done within the

boundary layer have little influence on the interior solution.

An analogous example is the replacement of an Ekman layer with

a boundary condition on the mass flux. (Also see Orzsag and

Israeli, 1974.)

As a further example, consider the Al/ 2 layers. The

wider layers reduce the vertically integrated mass flux to zero

at the walls but they do not make the velocity zero at all

depths. In our model the AI/ 2 layer provides the necessary



upwelling (or downwellinq to bring the velocity within each

of the two active vertical layers to zero at the walls. The

grid spacoing is too coarse to resolve any structure within the

very narrow A /2 layer, but the necessary vertical mass

exchange takes place in the model calculation. (Virtually all

of it occurs at the grid point on the boundary.) We performed

a number of numerical computations in which the grid spacings

near the boundaries were varied. These experiments verified

that increasing the resolution beyond a certain point (i.e.,

the grid configuration given in Table 2) changed the interior

solution by less than 3%, although it did make a significant

difference in the magnitude of the currents near the sidewall

boundaries. Further experiments showed that the value of vH

given in Table 1 (5.86 x 105 cm2 sec-1) is sufficiently large

so that horizontal eddy viscosity rather than the "computational

viscosity" of Section B.5, is the principal viscous mechanism

entering into the momentum balance at the walls.

The size of the basin plays a role in determining the

flow. Since our interest is in equatorial regions it would be

wasteful of computer time to extend the basin too far toward

the poles. On the other hand, the northern and southern walls

of the basin should be sufficiently far from the equator so

that their presence has negligible influence on the dynamics

in the region of interest. The possibility of separating the

effects of zonal walls from the equatorial dynamics depends on

these dynamics being locally determined; i.e., "trapped" to the

equator. That this is the case is borne out by our subsequent
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analytic investigations (Chapter 3); it is also evident from

the flow field pictures obtained from the numerical calculations

(Chapter 5). We performed two numerical experiments which dif-

fered only in that the zonal walls were 150 and 200 from the

equator, respectively. (A uniform easterly wind was used; all

other parameters were as given in Table 1.) The flow in the

vicinity of the equator (80 S to 80N) was the same in both

cases. We have therefore taken the meridional extent of the

basin to be from 150S to 150N. The zonal width of the basin

(28.60 of longitude) is smaller than that of the world's oceans,

but is large enough to have a broad interior region where the

dynamics may be clearly separated from the dynamics of the

meridional boundary layers.

There are two possible choices for the mean depth of the

whole active layer: the observed depth of the thermocline or

the equivalent depth of the first baroclinic mode (cf., Light-

hill, 1969). Both give approximately the same value: 150 to

200 m. We choose the higher value because it reduces the

chance that the layer depth will go to zero at some point. If

this happened, the numerical model would be unable to continue

the calculation.

The presence of the surface layer introduces another

parameter, the layer depth n. The numerical value we attach

to n will determine how the vertically integrated transport is

divided between the two active layers. For example, if n=25 m

and H, the total depth of the layer, is 200m, then us is the

average zonal velocity in the top 25 m and u is the average
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zonal velocity in the -Aext 175 mrr. --Their depth-weighted sum

25 us + 175 ul is the zonal transport. The choice of the

surface layer depth has two effects on the model physics, as

may be seen by considering its effect on the transport equa-

tions. First, the bottom drag is proportional to the lower

layer velocity, whose value will depend on the value of n.

This is true even in a linear model (cf. Section 3.1). The

second effect is nonlinear, and comes about because we make

the modelling assumptions (2.3) that the velocities are

independent of depth within each layer. This means that the

way we choose to divide up the average velocity affects the

size of the nonlinear terms.

Because the choice of the surface layer depth does

affect the model physics, we seek a physical bases for deter-

mining its value. Unfortunately, the available observational

evidence from the world's oceans is not sufficient to help us

choose this parameter. We make the choice on theoretical

grounds. Consider a shallow homogeneous ocean driven by an

imposed wind stress. The ocean is specified to be shallow so

that the horizontal component of the Coriolis force may be

ignored everywhere. Extra-equatorially, the wind stress is

felt in an Ekman layer of depth DE = [2vv/f]l/ 2 . Below this

boundary layer (and away from the bottom) the dynamics are

inviscid and geostrophic. The influence of the wind stress is

indirect: it is transmitted via the boundary layer pumping of

the Ekman layer. (See, for example, Charney 1955, Pedlosky

1968, or Robinson 1970 for a detailed account.) As the
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equator is approached, the Ekman depth DE iicreases, becoming

infinite at the equator in the absence of additional dynamical

balances. We are, however, interested in modelling a para-

meter range when the wind stress is sufficiently strong and

the value of the vertical viscosity sufficiently small so that

inertial effects become important in the vicinity of the .equa-

tor. A measure of these effects in the boundary layer is a

Rossby .number. based on the boundary layer velocity, the local

Coriolis parameter and a length scale set by the distance from

the equator. For a wind stress per unit mass of magnitude T

the velocity scale in the Ekman layer is given by

zV

-Then

• E (2.10)

Now the inertial terms will enter into the boundary layer mo-

mentum balance (along with the Coriolis and vertical friction

terms) when the Rossby number is order one. As the equator is

approached, the Rossby number increases. We expect that equa-

torward of some latitude Yc the inertial effects will prevent

the boundary layer from deepening any further. In fact, if the

velocities increase toward the equator, we may expect that the

boundary layer will get shallower. These expectations are
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borne out by the numerical' calculation of Charney and

Spiegel (1971). If we assume that the boundary layer stops

deepening when R = .5 and use the values in Table 1 (i.e.,
o

T = .5 cm 2 sec - 2 , Vv = 15 cm 2 sec-1), we obtain Y = 20. The

Ekman depth DE is approximately 25 m at this- latitude. (Note

that neither of these .is very sensitive to the precise value

of Ro for Ro = 0 (1)), These values agree well with Charney

and Spiegel's calculation for the same parameter values (see

their Fig. 1). On the basis of this argument we choose the

value n = 25 m so that our surface layer will contain the

boundary layer to be expected from a continuous model.

It remains to make a few remarks about the grid spacing

we employ. Because our spacial differencing scheme is fourth

order, it requires fewer points than a second order scheme to

obtain a given accuracy. The position of the points in the

grid we generally employ is given in Table 2. In the latitu-

dinal direction the narrowest spacing occurs near the equator,

where the grid interval is 30 km. The widest grid spacing

(140 km) occurs at about 90 north and south. The grid spacing

narrows to 33 km at the zonal boundaries. The intent is to put

more points where the features of greatest interest (and/or of

smallest scale) occur and not waste points elsewhere: more

than one-third of the points lie between 2.50S and 2.50N. In

the longitudinal direction the narrowest spacings (33 km) occur

at the eastern and western walls where the boundary layers

occur; the widest spacing (176 km) occurs at the center of the

basin.



Table 2 Positions of the Points in the Standard Grid

Values are given in degrees of latitude or longitude (10 = 111 km)

(i) Longitude

0.0 0.30 0.61 0.96 1.36 '1.85 2.45 3.21 4.15 5.28

6.58 8.00 9.52 11,09 12.70 14.32 15.95 17.56 19.13 20.65

22.07 23.37 24.50 25.44 26.20 26.80 27.29 27.69 28.04 28.35

28.65

(ii) Latitude

-15.00 -14.70 -14,36 -13.94 -13.38 -12.61 -11.60 -10.42 -9.16 -7.89

-6.68 -5.57 -4.59 -3.75 -3.05 -2.46 -1.97 -1.55 -1.19 -0.86

-0.56 -0.28 0.00 0.28 0.56 0.86 1.19 1.55 1.97 2.46

3.05 3.76 4.59 5.57 6.68 7.89 9.16 10.42 11.60 12.61

13.38 13.94 14.36 14.70 15.00

• • * *
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3. Linear Analytic Solutions

3.1 Formulation of the Mathematical Problem

We now consider Eqs. (2.6) on an equatorial beta plane

with no-slip boundary conditions (2.9a). Let 1 =, the mean

depth of the lower active layer and H = 1I+ n1. To facilitate

analytic treatment we scale the variables as follows:

We take the length and time scales as the baroclinic

equatorial ones (e.g., Matsuno, 1966; Blandford, 1966):

c:: (,j'H)i '  , = 2.-Q./R

These lengths and time scales are internal scales, picked out

by the dynamics of the fluid motions. We assume that the wind

stress is a smooth function at these scales and that the dimen-

sions of the basin are large compared with L. (For the values
-i

in Table I, L = 296 km, T = 42.6 hours and c = 1.92 sec -1.)

Velocities are related to the wind stress by 2 ' 0/( HL).

Dropping the primes the scaled equations are:

VW- o(V'UF'-
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+ A +2lS

where the following non-dimensional nu mbers have been intro--

duced:

Rossby number -

Horizontal Ekman number ,A H

Interfacial Ekman number Yr= K/(L bLd -3)) (2i)

Bottom Ekman number K/(ALR)

Non-dimensional boundary layer depth , /= /

The three numbers yI, y and a are logically independent

parameters as the model is formulated. However, since they are

all related to vertical friction, there is a physical basis for

ordering them relative to one another. First, we expect that
-1

K and K are approxilmateiy equal so that = 0( y). From
B

the arguments of Section 2.2 we expect r to be on the order of

the Ekman depth, nE, at the edge of the equatorial boundary

layer y = L. Now

, "21,/ '' ) - ,/, t



where H* is a charateristic layer depth (cf (2.2) ff). As be-

fore we take, H* = H/2, so

c/H

so that

and we may write

where a and b(e are order one constants,

C (.3)

(If we take a = b := 1

then this scaling is comparable to that of Philander (1971),

1/2
except that our velocity scale is y times his--but see (3.7)

below.)

Since it is the linear dynamics of the model which are

to be investigated analytically, we linearize (3.1) .by assum-

ing E E 0.

The equations become

A
+~ l-k'1 L

,% f
It 7av - 4 ( U LA)^ L b~ L(0%. lo~o

(&'ts)

(3. 7)
Df e )- ,'} d-

nc~d ltl)- OCa")

h,-V- W-4- L_ I d -7_

A.- 0 ( 1 - "=czDefine



The quantity U is the (scaled) vertically integrated

mass transport. In order to elucidate the physical meaning of

u consider the following relations derivable from (3.7):

-- •7. L- ir.. 1 (3.

We now interpret U as a boundary layer correction to the in-

1terior velocity u . The first of Eqs. (3.8) says that the

vertically integrated velocity is the sum of the interior

velocity and the boundary layer velocity; the second equation

says that the velocity in the surface layer is composed of a

component independent of depth and a correction for the surface

boundary layer. Extra-equatorially u is the geostrophic inte-

rior velocity while a is the Ekman layer transport. Henceforth

we will refer to - as the boundary layer velocity.

By taking appropriate combinations or (3.4) and (3.5)

one obtains

+ y E+ -
A &

+ A (2)r~

-% -, d%.b Id

(3.1)

(3' )OQ)

where

We are interested in paraimeter ranges for which vertical

friction is more important than horizontal fric tion: A << y,

aX
A ~:

t V

ve -"Vk 4
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YI. We also assume that y,yI < 0(1). For the values of the

parameters given in Table 1.

0( ./2 A= -= / o -'

and this is the case. Horizontal friction will be neglected in

the interior of the basin, including the equatorl. Boundary

conditions and sidewall boundary layers will be discussed in

Section 3.3, where it will be shown that A must be non-zero to

allow the governing equations to satisfy the no-slip conditions

(2.9a). It will also be shown that with A = 0 the appropriate

boundary conditions are only that the normal component of u

vanish at the walls.

3.2 Solution of the Steady State Interior Problem

\ We now consider the system which results from assuming

that all time derivatives are identically zero. It is conven-

lent to work from Eqs. (3.9) and (3.10). We neglect horizontal

friction and impose the condition that the normal component of

the mass transport vanish at the boundaries. Eq. (3.9) is

solved for the components of the boundary layer velocity:

Strictly, this neglect is justified in the equation
for Z (3.9) if A << y; with the values given above Y~ is an
order of magnitude larger than A Similar neglect in the
equations fo5 u requires A << YYT whereas with the values we
are using yy is only slightly larger than A. Nevertheless,
the qualita-ive results of this analytic treatment should be
in agreement with the linear numerical computations.
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The steady state form of the continuity equation allows

us to introduce a mass transport stream function T with

The boundary condition now becomes T = 0 at the boundaries. A

vorticity equation in ' may then be derived from (3.10):

Extra-equatorially (y > O(E)) it is clear what to expect.

To highest order the boundary layer velocity i, is directed 900

to the right of the wind stress with magnitude jlI/y. It is

the "Ekman layer" transport. To highest order we may set the

right hand side of (3.14) to zero, reducing it to the Stomarmrel

(1948) model for the mass transport stream function. As is

well known, this equation admits bcundary layers at the zonal

boundaries and at the western side of the basin, but not at the

eastern side. The appropriate boundary condition for the inte-

rior problem is T = 0 at x = XE, the eastern boundary. The

solution is

42X fr 2A (/)



(K is a constant determined by the condition that the integral

of h over the basin be zero.)

-2For lyl < 0E) i becomes 0(E - 2 ) so that the right hand
y

side of the vorticity equation (3.14) becomes 0(1). Hence,

there is a region at the equator in which the circulation con-

trolled by the interfacial friction, which itself has no net

transport, induces a mean circulation via bottom friction.

Note that if the bottom friction parameter, Y, is zero, the

flow in the interior of the basin (including the equator) is

completely described by (3.12) and (3.15). In order to inves-

tigate this bottom frictional circulation, we proceed more

formally.

First, make use of the relations (3.3) to- write.

To simplify the exposition, we will take c = d = 1. Now re-

scale y: y = E . Then, using (3.12) when y < 0(E) we may write

Now write

S)'f

with /T (%( L C , - , etc.J J •



and where () is the solution to (3.5). At the equator '(1)

determines the part of the transport which is due to non-local

(1) (2)conditions; H and (2 ) depend only on the local winds. The

equations for these equatorial boundary layer transports are

-77~.* "'

We will pursue the solution only for the higher order stream

function H . (Since the equations have the same form, the

mathematical problem is the same for each.) It may be shown

that, as with (3.14), the equation for H(1) admits a boundary

layer only at the western side. The boundary conditions for

(3.16) are then

It is convenient to change variables by defining a = X - x;
E

(3.16) may then be written

with If "' _ at ql O

this is a diffusion-like equation with a the time-like variable,

To solve it, the Laplace Transform in the a direction is first

taken, the resulting ordinary differential equation in is solved

subject to the boundary conditions at infinity, and then the

inverse transform taken. After some manipulation, the result
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We are now in a position to describe the non-zero trans-

port circulation induced by bottom friction (at least for an x

independent wind stress). The most important conclusion to be

drawn from the above formulas is that for a zonal wind stress

the net transport at the equator is in the direction of the

wind. This is, of course, contrary to what is observed for

the undercurrents. It says that we must look to other (i.e.

nonlinear) effects to explain the undercurrent. For any wind

stress pattern the flow will be predominantly zonal (u

0(E v )), since flow along the equator is favored. For a

meridional wind it may be shown from (3.17) and (3.19) that the

transport will be in the direction of the wind drift current in

both hemispheres. The fluid circuit will be closed by a weak

interior transport directed opposite to the wind and a downwind

flow in the western boundary layer. For any wind stress pattern

the diffusion-like nature of (3.17) means that the region of

frictionally induced transport will broaden from east to west.

This description will be compared with the steady state linear

numerical results in Chapter 5.

To summarize, we have found that the steady state inte-

rior circulation consists of two parts. The first part, des-

cribed by (3.12) and (3.14) has a Sverdrup balance everywhere

for the transport and essentially a wind drift solution for the



boundary layer. The second part, described by (3.18) is impor-

tant in a region extending about 300 km on either side of the

equator. (Note that although C = 1 corresponds to only y = 30
-i

km,;variables fall off slowly--like 1 in some cases.) There

is a- net transport at -the equator in the direction of the zonal

wind.- -Return' flow also takes place within this frictional.

region. These results may be compared with those of Philander

(1971) for a homogeneous ocean continuous in the vertical.- For

that model, the frictional layer deepens toward the equator and

extends throughout the ocean at the equator. The boundary la-

yer in which this happens is embedded in a more diffuse bound-

ary layer in which bottom friction is important. There is a

net transport in the direction of the zonal wind in the first

of these layers, which is returned in the broader layer. It

appears that our modelling assumption, which fixes the boundary

layer depth, has the effect of combining these two layers.

3.3 Sidewall Boundary Layers

It is clear from (3.4)-(3.6) or (3.9) and (3.10) that

some lateral friction is necessary to reduce the tangential

velocities to zero at the walls. From the latter set it may

also be seen that the normal velocities may be nonzero in the

absence of lateral friction. Consider for example, (3.9),

(3.10) with all friction terms set to zero. Eqs. (3.10) are

simply the inviscid shallow water equations which permit us to

impose the value of the normal component of the transport,

nr at the boundary. (This is well-known; -the solution for



this form of (3.10) given in the next chapter may be taken as

a constructive proof.) Eq. (3.9) with A = 0 contains no

horizontal derivatives, so it is not possible to impose any

boundary conditions at the side walls. Restoring the.vertical

friction couples the equations but does not increase the number

of horizontal derivatives in the set of equations (3.9), (3,10).

It may then be possible to impose a different boundary condi-

tion on some combination of - and u but the number of side wall

boundary conditions is unchanged. In any case, the most natu-

ral condition to impose is that the transport normal to the

boundary should vanish at the sidewalls, since we do not wish

to consider mass sources or sinks at the boundaries. Since in

the inviscid solution the normal velocities in the two layers

need not be zero, one may anticipate that vertical exchanges of

mass (upwelling or downwelling) between the friction layer and

the layer below may be required to make the velocities in each

layer vanish at the boundaries.

These results are similar to those of previous investi-

gators who have considered a homogeneous model with a vertical

frictional layer (e.g., Pedlosky, 1968; Robinson, 1970). The

supposition that the fluid is homogeneous and hydrostatic means

that the pressure gradient is independent of depth. Since the

normal velocity in the interior will generally be different

from that in the frictional.layer it. is not possible for the

pressure gradient to adjust the velocity to zero at all depths.



We' now consider the sidewall boundary layers required

to close the steady state circulation described in the previous

section, beginning with the upwelling layers needed to bring

the individual velocity component to zero at the walls. Let

UB = (UB' B) be the boundary layer velocity in such a layer

and let B = i + iv . The relevant equation is derivable from
B B B

the steady state homogeneous form of (3.9). To highest order

in E this is

with the boundary condition that at the walls

where u, - are given by (3.12). At the eastern and western

boundaries the 2/y2 term may be neglected; this is true even

at the equator provided A << E (cf Eq. (3.12)). At the

western wall, for example the solution is approximately

2 2
At the northern wall y = y , the term a /;x in (3.22) is negli-

gible and

The solution at the eastern side is similar to that at the west;

that at the southern boundary is similar to that at the north,

There are no east-west or north-south asymmetries among these



layers. -From the equations above we may readily determine the

boundary layer scales S:

S (2A/ j r 4 > (A/E 4dA

Dimensionally 6 " 10 km, 4 km and 1 km for y = 00, 30 and 150,

respectively.

The boundary layers required to satisfy the boundary

conditions on the vertically integrated mass transports are

familiar in the oceanographic literature and we will treat them

only briefly here. (See, for example, Pedlosky 1968 or Robin-

son 1970 for a more complete description). The boundary layer

correction for the interior solution ' given by (3.15) must

satisfy the homogeneous form of the vorticity equation (3.14)

with A 1 0; i.e.

with the boundary conditions that Y + TB = 0 and its normal

derivative a/an(; + 'B ) = 0 at the walis. The first of these

conditions requires corrections to T at the western, northern

and southern boundaries. In the western boundary layer the

term representing the advection of planetary vorticity may

be balanced either by bottom friction (Stommel, 1948) or hori-

zontal eddy friction (Munk, 1950). The former will be true if

A << y and the latter if y << A1 . If neither of these ine-



qualities hold neither kind of friction will be negligible.

The bottom frictional layer has thickness and the horizontal

frictional layer thickness A / 3 . At the zonal boundaries there

will be either a bottom frictional yl/2 layer or a.horizontal

frictional A1/ 4 layer depending on which of y or A 2 is the

larger. It is not possible to satisfy the normal derivative

1/4condition on fB with bottom friction alone; A layers at

all the walls may be required to accomplish this, (Such a

layer is needed at the eastern side; the tangential transports

in it are only order A / 2 , See Pedlosky 1968).

Finally, the equatorial boundary layer transport R(1)

given by (3.18) requires a corner layer correction at the

western side. This correction must also satisfy (3.23). For

the corrections BY it was possible to neglect the derivatives

in the tangential direction; in this case the meridional deriv-

2  4
ative will be negligible only if A << yE E.

With the exception of the inviscid western boundary

layer that forms in order to make the normal component of the

vertically integrated transport zero at the walls we will not

consider time dependent boundary layers in this work. These

layers could be calculated by taking the Laplace Transform of

the time dependent version of (3.22) and the time dependent

potential vorticity equation (instead of (3.23)).

3.4 Solution of the Time Dependent Interior Problem
s 1

We consider here the initial value problem with u = ul

h = 0 at t = 0. A is taken to be zero and we impose the condi-
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tion that the normal component of the vertically integrated

mass transport vanish at the walls.

We again work with the equations in the form (3..9),

(3.10), beginning with the first of these. To the highest

order this is an equation in u alone since u < 0(E - 2 ) for all

time. Eq. (3.9) is now readily solved. First, rewrite it in

the form

which is first order in time with only a parametric dependence

on x and y. The solution is

It is sufficient for our purposes to consider a wind stress

which is a step function in time turned on at t = 0. In this

case

x~i-t LytY. ([(2s)

The timescale for the buildup of this component of the

current system is clearly E-1 - 20 days for the values in Table

1. For times long compared to this the solution approaches the

Ekman wind drift solution extra-equatorially. At the equator

it is a current in the direction of the wind whose magnitude

is limited by friction (cf. (3.12)).
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For short times (t<<O(E - )) and points sufficiently near the

equator (Iyl<<O(t-l)) (3.25) simplifies to Z=tT; i.-e. the so-

lution is in the direction of the wind and grows linearly with

time. Right at the-equator the solution valid for all time is

simply U=TE- [l-e -Et ] so that the U at the equator is always

in the direction of the wind with magnitude approaching

Eqs. (3.10) with the bottom friction term neglected are

just the inviscid shallow water equations. The term Y(i-u) in

(3.10a) is less than O(E) for all time and so it might seem

that such neglect is justified. This is indeed the case away

from the equator (jyl>>E), but it is clear from the steady

state solution (Eq. (3.15)ff ) that the bottom friction term

will eventually become a non-negligible part of the vorticity

balance at the equator. The inviscid equations will hold for

all time away from the equator and for some initial time

period even at the equator. Since it is the small time linear

behavior that provides the most insight into the non-linear

case and since the inviscid equations are easier to treat ana-

lytically, we will confine our analysis to these equations.

(Actually, the term ya may be treated as a forcing term in ad-

dition to the wind stress and readily included in the analysis

to be described below. The term -yu is the one which causes

serious complications.)

The method of solution for (3.10) in a bounded equatorial
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ocean is of.great interest in its own right as well as being

rather involved. We have therefore found it advisable to de-

vote the entire next chapter to these inviscid shallow water

eguations. :For the reader who is not concerned-with themeth- S

odology or the details of the results we provide here a brief

summary of:the principal results of that analysis as they apply

to ap x-independent wind stress turned on at t=0Oand steady 0

thereafter. A more detailed account of the response for the

speciaX cases T=(-1,0) and T=(0,1) will be given -in Sections

5,,Qan4 5.4, respectively.

There are four types of waves that are free solutions

the inviscid form of (3.10): inertia-gravity waves,-Rossby

waves, the mixed mode or Yanai wave and the Kelvin wave (see

Fig. 4.1) -All of these are essentially standing waves in the

north-south direction. Inertia-gravity waves play only a minor

role in the adjustment problems of interest to us. The Rossby

wave have westward group velocity for long wavelengths and

(slow)-eastward group velocity for short wave-lengths. The

smaller the meridional index n, the more equatoriallyconfined

.the Ro.ssby.wyave and the faster its group velocity. Heiice dis-

turbances propagate more quickly at the equator. The Kelvin

wave and mixed mode have eastward group velocity at all wave-

l-engths; fQorsmall wavelengths the mixed mode behaves like a

Rossby wave,

The solution to the forced.,problem in an unbounded equa-



torial ocean-is obtained as an eigenmode expansion. There is

a one-to-correspondence between these eigenmodes and the free

wave solutions to the unforced problem. The response to an

x-independent zonal wind stress consists of inertia-gravity

waves needed to satisfy the initial conditions, a steady v

component, and secularly growing u and h components. The sec-

ularly growing part of the solution tends to be equatorially

confined; extra-equatorially v tends to the wind drift solu-

tion. The response to an x-independent meridional wind stress

consists of inertia-gravity waves and steady u and h fields.

There is no steady v component. Extra-equatorially u tends to

the wind drift solution; at the equator the sea surface sets

up so that its slope balances the wind stress.

To complete our description we must consider the effects

of meridional boundaries. (The zonal boundaries are taken

sufficiently far from the equator so as to have negligible ef-

fect on the flow there.) We take account of the boundaries by

adding to the unbounded forced response those free wave solu-

tions of (3.10) which will make the total solution satisfy the

boundary conditions. A mode incident on a western boundary ex-

cites a response which is as equatorially confined as it, it-

self, is. Most of this response remains near the boundary

forming a strong boundary current. Unlike the mid-latitude

situation, a mixed mode or Kelvin wave will be part of the

response. The latter propagates away from the boundary quick-
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ly; the former remains near the western side, though it shows

some effects extending into the basin. A mode incident on an

eastern boundary excites a response which is less equatorially

confined than itself. The more equatorially confined parts of

the response propagate away from the boundary the most rapidly.

Extra-equatorially, this response asymptotes to a coastal Kel-

vin wave.



4. Time Dependent Forced Shallow Water Equations in an

Equatorial Basin

4.1 Introduction

In Section 3.4 it was shown that finding. the time de-

pendent vertically integrated-transport of the linear model

amounted to solving the inviscid shallow water equations on an

equatorial beta plane. The linear shallow water theory is of

great interest in its own right. For example, it has been

used for an unbounded ocean (O'Brien and Hurlbut, 1974) to ex-

plain the equatorial jet which forms when the southwest monsoon

begins to blow over the Indian Ocean (Wyrtki, 1973). The ef-

fects of boundaries must be taken into account to obtain a

complete description of the ocean's response. Once the solu-

tion to this problem has been obtained, the linear baroclinic

response of an ocean with arbitrary stratification may be con-

structed as a synthesis of the response of individual vertical

modes (e.g., Lighthill, 1969). Associated with each mode

there is a different equivalent depth (see below) which enters

the scaling, but the scaled mathematical problem is the same

for each baroclinic mode. (The barotropic response has a qual-

itatively different behavior because it is not equatorially

confined. It is more like the mid-latitude case (See Lindzen,

1967.)

The equations are the inviscid form of (3.10) and (3.11).

We rewrite them here in the form



ut - yv + hx = F

v t + yu + hy = G ('t

ht + Ux + vy = Q

The scaling for these equations is as given in Section

3.1. F and G are the wind stress components T(x) and T (y)

The equations have been generalized to include a heat (or buoy-

ancy) -source Q.

In the parlance of tidal theory, these are the equations

for the vertical mode of equivalent depth H* = (Ap/p). For

the numbers we are using (Table 1) H* = .4 m. The quantity

which effects the length and time scales is c = (g'H)1/2 _

(gH*)1/ 2 ; this is the same whether defined in terms of "reduced

gravity" or "equivalent depth". In tidal theory, F and G are

the projections of the momentum forcing terms (e.g., wind

stress) onto this baroclinic mode; Q is the projection of a

mass or buoyancy source. We note that for an ocean with such

a small equivalent depth, the beta plane is an excellent approx-

imation to the spherical geometry in the sense that the solu-

tions to the unforced version of (4.1) are close to the eigen-

functions on a sphere *(Lindzen, 1967, Lonquet-Higgins, 1968).

Sihce the solution of the entire problem is rather com-

plicated, it would be well to outline our method of attack. In

the next section the free wave solutions of (4.1) are reviewed.

These provide a useful vocabulary as well as themselves enter-

ing into the solution of the forced problem. The following
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section considers the forced response in an unbounded basin.

Useful solutions are obtained by. taking a forcing that is a

step function in time (i.e., the forcing is turned on at t=O;

the response is initially zero). The zonalspatial structure

is simplified by considering only two cases:,an x-independent

forcing and one which is a step function in x. (With such sol-

utions in hand, the response to a delta function (ip time and/

or space) may be found simply by differentiating; the response

to an arbitrary function may be found by a convolution.) In

the final section of this chapter we present a method for cal-

culating the effects of the boundaries on the unbounded solu-

tions.

4.2 Free Wave Solutions

The free solutions (F=G=Q=O) to (4.1) for an infinite

ocean with the boundary conditions

u, v, h + 0 as lyl

may be writtten (Matsuno, 1966; Blandford, 1966).

(u, v, h) = expi(kx - n,j (k)t) n,j (k,y) (g)

As a rule, n indexes the meridional structure (it is

analogous to the meridional wave number) and j, the wave type

(inertia-gravity or Rossby). The subscript pairs (n, j) range

over the set

'I = (-l,), (0,1), (0,2)3 U f(n,j)) n>0, j=1,2,31 (t.3

For n>0, the nr,j(k)'s satisfy the dispersion relation
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For a given n and k there are three real roots to this equa-

tion, indexed by j=1,2, or 3. For definiteness we distinguish

among these by their values as k 0

Then j=l and j=2 label inertia-gravity waves with phase

speeds to the east and west, respectively, while j=3 labels the

Rossby waves. When n=0 the root w=-k of (4.4) must be rejected

because the corresponding u and h functions become unbounded at

infinity. The acceptable n=0 mode is referred to as the mixed

mode or Yanai wave. The dispersion relation (4.4) simplifies

to

-1

0,3 ,

For definiteness take 01> 0; then w02 < 0. We have la-

belled the equatorial Kelvin wave by n=-l. Its dispersion re-

lation is simply

-i

(We drop the redundant second subscript.) The dispersion rela-

tions (4.4), (4.5), (4.6) are displayed in Fig. 4.1 for w>0;

since w(-k) = -w(k), the values for negative w may be obtained

by reflecting the graph through the origin.

The vector functions nj (k,y) specify the meridional

structure of U, v, and h for each wave. First define three
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vector functions of y only:

where (n is the nth (normalized) Hermite function. (The Her-

mite functions are described in Appendix E.1.) For n>O

For the Kelvin wave, n=-l,

"I- ., (-yy 
(..

Finally, the N's are normalization factors defined in Appendix

E (E6).

Having established our notation, we wish to describe

some of the characteristics of these solutions with the aid of

Fig. 4.1. The higher frequency branches in Fig. 4.1 are the

dispersion curves for j=1 and 2; i.e., the inertia-gravity

waves. The lower frequency curves for n>O are Rossby waves.

The nomenclature is carried over from the mid-latitude case:

for the first set, the restoring forces are primarily inertial-

gravitational while for the latter, they are primarily the gra-

dient of planetary vorticity. The difference in frequencies

and phase speeds between the two classes of waves is much less

than for mid-latitude baroclinic waves; an equatorial ocean re-

sponds much faster than a mid-latitude one. The Rossby waves

all have a westward phase velocity. The dotted line 2 kw=-l
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divides those waves with eastward group velocity from those

with westward group velocity. For the Rossby modes v and h are

in approximate geostrophic balance for large k, while as k-0O,

u and h approach geostrophic balance. (Recall that differenti-

ation by x multiplies by ik and that for the Rossby modes, w-3O

as k-j. Then the large k limit follows immediately from the

definitions (4.7) and (4.8). The small k limit may be obtained

by judicious use of (E3).) It will prove useful to define a

special multiple of the Rossby modes for k=O (cf., (E7)):

P has u and h in geostrophic balance and vO.

The Yanai wave or mixed mode (n=O) behaves like a Rossby

wave for small wavelength waves with westward phase speed; it

behaves like a gravity wave for k>0. The equatorial Kelvin

wave has behavior analogous to coastal Kelvin waves with the

equator acting like a boundary: the meridional velocity is

zero and the zonal velocity is geostrophically balanced by the

cross-stream pressure gradient; the downstream momentum balance

is like that for a gravity wave. Both the Kelvin wave and the

mixed mode have eastward group velocity for all wavelengths.

From the symmetries of the Hermite functions and the re-

lations (E4), it follows that the eigenfunctions indexed by

even n have u and h components which are anti-symmetric and v

components which are symmetric about the equator; those indexed



by odd n have the opposite symmetries. It also follows that

the smaller n is the more equatorially confined the mode is.

Note that all of the modes have in+ and n-1 coupled in their

u and h field, except for n=0 and n=-l. Finally, we note that

for a given zonal wave number the larger n is the smaller the

group velocity. As we shall see, all of the properties men-

tioned in this paragraph have important consequences for the

response of a meridional boundary to an incoming mode.

4.3 Forced Response in an Unbounded Basin

The shallow water equations (4.1) may be written in the

compact form

4-ai - =- FT where u E (u,v,h) and F = (F,G,Q) J4./o)

Superscript T indicates transpose and 2 is an operator depend-

ing only on the spacial variables x and y. Fourier transform

u and F from (x,y,t) space to (k,y,t) space by applying the

operator ,8 dx to each component. Then

where

It now follows immediately that the free wave solutions (4.2)ff.

to (4.1) yield the vector eigenfunctions of 0 (k,y); i.e.,

(Kt(Kx (1:~%C~il)
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where the eigenvalues iwn,j are given by the free wave disper-

sion relation (4.4) - (4.6). In Appendix F it is shown that

these eigenfunctions are orthogonal and complete. This means

that any vector forcing may be expanded in the nj' if its

components may be expanded in Hermite functions. As a general

rule, a function may be represented as a convergent series of

Hermite functions if it is square integrable in the interval

(-o, +e). Questions of convergence make for some nice mathema-

tical problems, but in view of our purpose such questions may

be circumvented. We are concerned with ocean basins in equa-

torial regions of limited latitudinal extent. The form of the

forcing function (or the response) beyond the limits of the

basin should make no difference to the basin response so the

forcing may always be taken to go to zero sufficiently rapidly

as lyl - o. For example, any physically reasonable ,forcing may

be multiplied by exp(-by2), b<<l to guarantee convergence with-

out changing its value near the equator. The projection of

this forcing onto the modes with n small will be unchanged

(since these modes have small amplitude away from the equator).

The fact that modes with n large might be affected by this al-

teration is an indication of the fact that these infinite beta

plane modes are not the eigenfunctions for a bounded basin.

(The correct modes involve the parabolic cylinder func-

tions which give v=O at the zonal walls.) Those modes which

have their turning latitudes equatorward of the latitudes
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bounding the basin will be essentially unaffected by the walls.

For an ocean bounded at ±150 with a baroclinic radius of defor-

mation of .300 km this means those modes with n<12. Higher

modes must be corrected by considering the effects of walls at

a finite distance from the equator- Such changes will make

little difference near the equator where the amplitudes of

these modes is small. Furthermore, we feel that it is gener-

ally preferable not to calculate the extra equatorial flow by

correcting the infinite beta plane modes, but rather to use a

more local approximation (e.g., a "mid-latitude" beta plane,

cf., Lindzen, 1967). In summary, since our problem is to cal-

culate the equatorial response we needn't concern ourselves

much with,questions of convergence or the influence of north-

ern and southern boundaries. The chief exception to this

statement is the possibility of fast moving boundary trapped

modes which may turn the corners at the bounding meridians and

propagate into the equatorial region (e.g., coastal Kelvin

waves; see Moore, 1968).

The completeness of the eigenfunctions means that for

any (physically interesting) forcing function we may write

where E is the set of permissible subscripts, (4.3). Formu-

las for computing the b ,'s are given in Appendix E.2. Once

the bn, js--the projections of the forcing onto the eigenfunc-

tions--are obtained, one proceeds in the manner usual for



eigenfunction expansions:

Let k'

then

an equation familiar from the linear oscillator problem. If

the initial conditions are that u=O at t=0 and the forcing is
-tat

at a single frequency - so that eb-l(t '(L) ,f ew

As with the linear oscillator, the first term has.the

same time behavior as the forcing, while the second is the free

wave response needed to satisfy the initial conditions.

Clearly, the closer the forcing frequency is to the natural

frequency the larger the response. At resonance ao= wnj and

anj = tB .(k)--secular growth. For a steady forcing a=O so
n,j n,3

that

In a formal sense the problem of finding the ocean's

response to an arbitrary forcing is now solved--one need only

invert each Fourier transform an,j (k,t) nj (k,y). This i's,

in general, extremely difficult: such expressions have a very

complicated dependence on k. Some simplifications are clearly

in order. To begin with, we consider only the case where F is
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steady and the initial conditions are u=v=h=0 so that (4.14)

applies. This amounts to seeking the response to a step func-

tion in time; the response to other time structures may be

found by a convolution.

One pbssible strategy is to restrict oneself to long-

wave forcings (Lighthill, 1969; Cane, 1974). With the long-

wave approximation, the inertia-gravity mode w n s are in-

dependent of k while the Rossby modes are nondispersive

(w,3 =-k(2n+l) ); the necessary inverse transforms are not

difficult to calculate.1 Here we employ a different strategy.

We solve the, problem for a step function in x.

First we find the response to an x-independent forcing

F = F(y) everywhere, and then modify it to account for theq

forcing "turning off" for x<X. The first part is simpler.than

the long wave approximation but qualitatively similar. The

step function case is directly applicable to some physically,

interesting situations (e.g., the Somali jet), as well as al-

lowing the response to an arbitrary zonal structure to be cal-

culated by convolutions.

The response to an x-independent forcing F(y) is a sum

+~ Z UnR where
K K ni n R

1We exploit the one-to-one correspondence between the
eigenfunctions n and the free waves expi(kx-w.t) 4 as

well as between the eigenvalues and free wave frequencies to
carry over the free wave nomenclature.
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Li..

G,R, and K denote inertia-gravity, Rossby and Kelvin modes,

respectively. To see how the secularly growing terms arise,

consider (4.14) for the nth Rossby mode. After making the long

wave approximation n, % -k/(2n + 1), the Fourier synthesis of

(4.14) yields

QhG C 3. t)t + - (vi

For an x-independent forcing this is just

zx/Z4 3 -x XI -(4.18)
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This shows that the secularly growing part of the solution may 0

be viewed as the sum of a locally forced part which goes like

-x, and a propagating part (required by the initial conditions)

-1 which goes like x + t (2n + 1) .

We now wish to describe the response in words. Suppose

first that the forcing consists solely of an east-west wind

stress (i.e., F = F(y); G = Q = 0). The response consists of

secularly growing u and h fields, plus a steady v component:

(u, v, h) = (t U(y), V(y), t H(y)) (4.19)

In addition, there is a series of inertia-gravity waves which

are required to satisfy the initial condition v = 0. The steady

v field asymptotes to the wind drift value -F(y)/y as y + m and

the Coriolis balance becomes dominant. At the equator the

Coriolis term is absent and the wind stress causes a steady

acceleration in the direction of the wind: u = t F(0). As a

general rule, the time growing part of the response will be

equatorially confined. From a mathematical point of view the

solution is best explained in terms of the dispersion diagram

(Fig. 4.1) and Eq. (4.14). The forcing function has zero

frequency and zonal wavenumber so it lies at the origin of the

dispersion diagram. This is a point of resonance for the Rossby

and Kelvin waves resulting in a secularly growing solution. The

steady part v = V(y) is the forced response of the inertia-

gravity modes at k = 0 (not on resonance), while the oscillating
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Fig. 4.2 Response to F=1, G=Q=0 in an unbounded basin.
See Equation (4.19).
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part is made up of inertia gravity waves with k = 0. Figure

4.2 shows the functions U(y), H(y), V(y) of (4.19) for the case

F 1 i. (This solution was first obtained by Yoshida, 1958.)

This solution has the symmetry associated with n odd: u and h 0

are symmetric about the equator and v anti-symmetric. U and H

are equatorially confined while V asymptotes to -1/y.

The response to a purely meridional wind stress (G = G(y), 0

F = Q = 0) is very different, consisting of steady u and h

components and a series of inertia-gravity waves of zero zonal

wavenumber which are required to satisfy u = h = 0 at t = 0. S

There is no steady (or other non-oscillating) v component.

Extra-equatorially, the steady part of the solution U*(y), H*(y)

approaches the wind drift:

as yIl c 0, U* (y) + G(y)/y, H*(y) - 0 .

At the equator the Coriolis term vanishes and the wind stress is

balanced by the "sea-surface setup" -- that is,- by dH*/dy.

Mathematically speaking, the response comes from the inertia-

gravity modes at the points on the axes k = 0 of Figure 4.1.

While the forcing is again at k = 0, w = 0, there is no resonant

response in the Rossby and Kelvin modes becaise these modes have

no meridional component at k = 0. Figure 4.3 shows U*(y) and

H*(y) for the case G = 1. This solution has the symmetry

associated with n even. U* = 0 at the equator and asymptotes

to 1/y as y - w; these constraints determine its general shape.
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Finally, we remark that the response to only a heating

function forcing (F = G = 0, Q =.Q(y)) has the same general

components as the case of a zonal wind stress; that is, a form

like (4.19) plus inertia-gravity waves. Of course, on a less

superficial level of description, it is very different. For

example, the response to Q = 1 is simply u = v = 0 and h = t;

no gravity waves are excited. (Such a large-scale heating sets

up no gradients and hence creates no motions.)

With the x-independent solution in hand, we may proceed

to'the step function response. Let the forcing be given by

F(x, y) = F(y) S(x - X), where S is the Heaviside step function

(S(x) = 0 for x < 0; S(x) = 1 for x > 0). Without loss of

generality we may take X = 0. If the solution for the x-

independent case is applied for x > 0 with u = v = h = 0, then

the forced response is accounted for, except that the jumps in

u, v and h at x = 0 are not consistent with the original

equations. Call this part of the solution U(1) The problem

is thus changed to one of adding free solutions which make the

total solution satisfy the appropriate jump conditions. For our 0i

method of'solution it is sufficient to note that the jumps in u

and h must be zero. If we find free solutions which "match" the

values of u (I ) and h (1 ) at x = 0, the total solution must have

a v component which satisfies the correct jump condition. These

free solutions consist of a part U( 2 ) which is needed if F or

(3) 0. The solution is a sumQ y 0, and a part U , needed if G $ 0. The solution is a sum
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Here, UK, Un,G and UR are given by (4.15) - (4.17), J is the

Bessel function of order n and the terms are non-zero only for

the ranges of x and t shown.

We now wish to show how the solution shown in (4.20) -

(4.27) is obtained. Consider first the non-gravity wave part of

(2)
U (2). As remarked above (see 4.18) each Rossby and Kelvin mode

piece of the solution U ( 1) may be viewed as consisting of a

locally forced part varying like C x and a propagating part,

which goes like t - CnX. Only the latter violate the jump

conditions. But since each such propagating part is a free

solution of (4.1), the jump conditions can be matched by

considering how these modes propagate through x = 0. The nth

Rossby mode may be thought of as a synthesis of Rossby waves

with amplitude 6(k), where 6 is the Dirac delta function. It

has a group velocity of magnitude 1/(2n + 1) to the west. Each

such mode continues to propagate westward beyond x = 0, so we

must add these propagating solutions for x< 0 (4.22). The

Kelvin mode propagates eastward with group velocity 1. At

time t the propagating mode arriving at a point x must have

originated at a point x0 = x - t. If x < 0, there was no

forcing at xo and no such mode was generated. Hence, for points
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x < t, we must subtract off the propagating part of the Kelvin

mode which was included in the response to the x-independent

forcing, (4.24).

The inertia-gravity wave parts of the forced response

were all waves with zero wavenumber; the nth such mode propagates
-i

to the east with group velocity (2 (2n + 1))-1. Since the

forcing extended only as far to the west as x = 0 at time t,

the nth inertia-gravity mode will be present only for x <

t/(2 (2n + 1)), (4.21). The same result holds for the inertia-

gravity waves forced when the north-south wind stress G is non-

zero, (4.24).

It remains to calculate the free solutions needed to

correct for the jump in u and h which results from the steady

part of the response to G. Our technique for doing this is less

intuitive than what was done above; it is as readily described

for an arbitrary time dependence for u and h as for the special

case where these are independent of time. Suppose then that the

u and h components arising from the x-independent problem are a

sum of terms, each of which has the form

(u, o, h)n = a*(t) + b*(t) Pn (4.28)

at x = 0. Let us begin with the special case where

a*(t) = ae , b*(t) = be-t (4.29)



The free wave solutions needed to satisfy the jump conditions

at x = 0 must have the same time dependence -- they must have

frequency w. To be free solutions with meridional index n,

their zonal wavenuiber K must satisfy the dispersion relation

(4.4). There are two possible values of K, K = K+ (+ ) or K (w),n n

where

+

Note that K may be complex, in which case the modes are trapped
+

at x = 0. If K- are real, then one mode has group velocity to

the west and the other group velocity to the east (see Fig. 4).

(We ignore the special case K' = K when the group velocity is

zero.) This is which depends on whether we are in the inertia-

gravity wave frequency range or the Rossby wave frequency range.

For the Rossby waves (w small) the propagating mode associated

with K is the one with eastward group velocity.

Let us call the K corresponding to eastward group

velocity (or eastward trapping) K (W) and the westward

propagating (or trapped) one K n(U)). The corresponding freentw

waves U and U have the respective forms
~n,e ~n,w

(4.31)

yrr
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(cf., (4.8)). If such waves are generated at x = 0, the one

labelled with an e will exist only to the east and the one

labelled with a w only to the west of x = 0. -The condition that

u and h have no jump at x = 0 will be satisfied if amplitudes

A and A can be calculated for the modes (4.31) to cancel thee w

jump caused by the original u and h (i.e., those specified by

(4.29)). That is, A 'w) and A (w) must be found to satisfye w

for all y. This is equivalent to the pair of equations

a = w (A + A ); b = A K + A K (4.32)e w e n,e w n,w

which has a solution. (We again ignore the point of zero group

velocity where K (co) = K (w).)n,e n,w

We now have in hand a solution for the response to a

step function forcing in the special case (4.29) when the forcing

is at a single frequency w. This may be used to solve the

general case, (4.28). First transform from the time domain to

the frequency domain:

C/ t

Then



showing a* and b* as a synthesis of waves. (Note that a(ip) is

just the Laplace transform of a*(t) with p = -iw, the transform

variable.) Eqs. (4.30) and (4.32) are then solved as before,

except that a and b are now functions of w, The final step is

to synthesize the waves by integrating the expressions

A (w) U (W) and A (w) U (w) over all w. That is, the
e ~n,e w ~n,w

transform is inverted to return to the time domain from the w

domain.

For some time dependences this transform may be impos-

sibly difficult to invert, but we need only concern ourselves

with the steady part of the response to a north-south wind

stress. In this case, (4.28) takes the form given by (4.15),

i.e.,

Since this is steady in time, we expect the waves needed to

synthesize the jump correction to have low frequencies. By'

assuming

w2 << (2n + 1)-1 (4.33)

we may write

- 4-0(,o
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If we retain only the highest order terms, the transforms are

readily inverted and Eqs. (4.25), (4.26) and (4.27) are obtained.

(To get (4.26) we also retain the term (2n + 1)w in the approx-

imation to K when it appears in the exponent in (4.31).
n,e -2

Then the solution is a uniform approximation for x 0(-2);

cf., Lighthill, 1969.) The expressions (4.25) obtained for the

"long wave" westward propagating modes are exact; they are just

the free Rossby modes which lie at the origin of the dispersion

curve with steady u and h components and v identically zero.

The mixed mode solution (4.27) is also exact, because the

approximate relation (4.34) for Kn,e is exact for n = 0. From

Laplace transform theory the small w approximation made for the

n > 1 eastward propagating modes is known to be an asymptotic

solution for large t. It is an excellent approximation to the

exact solution. (The exact solution is a series of terms of

the form (x/z)n/ 2 n (2/z) where z = t - (2n + 1) x and Jn is

the nth Bessel function. See Cane and Sarachik, 1975 for a

further discussion.)

The distance these modes propagate; i.e., the limit

x < t {8 (2n + 1)} in (4.26) was found by calculating the

maximum eastward group velocity for the Rossby waves using the

approximate dispersion relation,

k

2n + 1 + k 2

which is valid for small w, i.e., when (4.33) holds.
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All of the eastward propagating modes, are essentially ,

trapped to the discontinuity at x = 0. Due to the.form of the

argument of the Bessel functions which appear in (4.26) and

(4.27), the region where they have substantial amplitude grows 0

thinner as-time increases. In synthesizing these forms most.of

the amplitude was in the waves which lie at the lower left hand

#.portion of the dispersion diagram (i.e., w << 1, -k >> 1).- 0

These waves have very low.group velocity so the "disturbance"

moves away. from x = 0 very slowly. This is true for.the mixed

mode as well, although its leading edge propagates awayqguite S

quickly.

4.4 Forced Response in a Bounded Basin

As indicated in the introduction to this chapter, the

forced response of the equatorial ocean in a bounded basin will

be calculated by first finding the motions that would be forced

in an unbounded ocean. This was done in the preceding section.

We now turn to the task of finding the free solutions of (4.1)

needed to reduce the normal velocities to zero at the walls.

That is, we seek the boundary response to the motions forced in

an unbounded basin (e.g., the reflections of waves at the walls).

As discussed in Section 4.2, only the effects of meridional

.boundaries will be considered in this section. We assume the

latitudes of the zonal boundaries are sufficiently high so that

they have negligible effect on the equatorial region. The basin



is taken to be rectangular with boundaries at x = 0, x = XE

and y = + w.

The problem of finding the free modes needed to satisfy

the boundary conditions is similar to the problem of finding

the free modes needed to satisfy the jump conditions at a

discontinuity that was treated in the preceeding section. There

were two constraints operative in that case: the jump in u and

the jump in h both had to be reduced to zero for all time arind

all y. Here there are also two constraints. First, u = 0 at

the boundary for all time and all y. Second, the free modes

which are needed to satisfy this condition must also be ones

which propagate energy away from the boundary into the interior

of the basin. For example, the free modes generated by the

boundary response at the western side must have eastward group

velocity.

Our technique for calculating the boundary response is

similar to that employed in the step function case. We will

explain how to do it for the case when the motion incident at

the boundary is at a single frequency w. The case of an

arbitrary time dependence is then calculated by transforming

from the time to the frequency domain, obtaining the response

for each frequency, and then transforming back into the time

domain.

Let us assume that the incident motion has a u component

at the boundary of the form
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u = a J+1 (y ) eit (4.35)

where 4J+1 is, as before, the J + i Hermite function, so that

an arbitrary function in y is a sum of such terms. Moore (1974)

has shown how to calculate the boundary response to such a form.

We review the method here. At a western boundary we seek a sum

of eastward propagating (or trapped) solutions of (4.1), i.e.,

the Un,e of (4.31), which will cancel u at the boundary. That

is, we wish to calculate the amplitude factors aJ,n so that the

sum

(a 0) 0) 4- + C + 1/' - (4.36)

has a zero u component. Recall that the mixed mode and Kelvin

waves have eastward group velocity for all k and w. Since for

a given w there is only a single k which satisfies their

dispersion relations they are unambiguously specified as

functions of w. The additional subscript "e" is redundant. As

mentioned in Section 4.2, the u component of each n with
-n,e

n > 0 may be written as a linear combination of in+l and in-l'

i.e.,



Since 0 3 ±Kn,e, the coefficients are always non-zero for n > 0.

Also, it is clear that if J is even then only those modes with

n even have a u component with the same symmetry as J+1'

Similarly, if J is odd, only the odd n modes have the same

symmetry. Hence, only those modes with the same odd-even

parity as J need appear in the sum (4.36).

With these facts in mind, we may construct an algorithm

for calculating the coefficients aJ,n . Only modes with n J

and n E J mod 2 are needed. First, find a to eliminate 9J+l

in the sum (4.36). This leaves lJ-I with a non-zero coefficient.

Calculate aJJ-2 to eliminate it. Continue in this way, choosing

a to eliminate n+1 for n = J-2, J-4, ..., until n = 1 or. 2.
J,n

Which value one arrives at will depend on whether J was odd or

even. Let us assume J was odd, so n = I. At this point, (4.36)

has only a non-zero coefficient for qo. We still have the

Kelvin mode (n = -1) available. Its u component has only the

single Hermite function o0 . Therefore, when its coefficient is

chosen to eliminate o, (4.36) will have its u component identi-

cally zero. If J had been odd, we would have gotten to N = 2

with only the coefficient of i, non-zero. The mixed mode (n=0)

can then be used to eliminate 1 and leave the u component of

(4.36) identically zero. This procedure is, precisely,

(1) Let o_""'o = v07S or iSv o-4'
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(2) CL 3 .3 J -Y2 Wi4-I/( w 4 K e)lr-

(4.37)

(4) A .

A mode incident on a western boundary thus stimulates a

boundary response consisting of modes with the same symmetry and

equal or lower meridional index n. The crucial property that

allowed the procedure for calculating the a ,n's to terminate is

that for all frequencies there is an eastward propagating wave

whose u component consists of a single Hermite function. There

is no similar simply structured wave propagating westward -- the

Kelvin wave and mixed mode have eastward group velocity at all

frequencies. Because of this, an eastern boundary cannot

respond to an arbitrary incident u component with a series of

modes with lower meridional index. Instead, the eastern boundary

response is an infinite series of modes with higher meridional

index. Formally, the eastern boundary response to the form

(4.35) is a sum
on

The coefficient a is calculated according to the rules:
J,n
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(2) (.9 ). -- Z. JI (4.39)

We now have a procedure for calculating the boundary

response at the west or east for motions with an arbitrary

spacial structure but with time dependence being an oscillation

at a single frequency. As indicated above, these results may

be extended to a motion with arbitrary time structure. To do

this, analyze this time dependence into its frequency spectrum,

calculate the boundary response as a function of frequency, and

then synthesize overall frequencies to obtain the time depen-

dence of this response.

We need only evaluate this final transform for the case

where the original forcing is a step function in x and t. This

includes the case where the forcing is independent of x, that

is, the step is outside the basin. It is not difficult to do

this if we make use of our previous results. In particular,

the transforms that must be evaluated are similar'to those that

arose in finding the unbounded response to a step function

forcing, if we again make the approximation (4.33) that w is

small. The complete solutions are rather lengthy and will not

be given here; see Cane (1974) and Cane and Sarachik (1975) for
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further details. Here we will only discuss some of the quali-

tative features of the boundary effects for the case of an x-

independent forcing. Some supporting computational details are

given in Appendix E.3. In Chapter 5, we will describe the

,complete basin response to the forcings F = i, G = Q = 0 and

G =1, F = 0.

We now consider the boundary corrections to the unbounded

response to an x-independent wind stress, Eqs. (4.15) - (4.17).

The inertia-gravity waves (4.15) all have eastward group velo-

city and k = 0. At a western boundary, the response to each

such wave is a similar wave with equal amplitude but exactly out

of phase. .The effect is a cancellation of the original wave

which propagates away from the boundary with the group velocity

of the wave. This response is exactly like the step function

case, Eqs. (4.21) and (4.24). These k = 0 inertia-gravity waves

are carrying energy into an eastern boundary. The response must

be motions which carry this energy away from the boundary. The

largest fraction of this incoming energy goes into a long

-1(k = -w ) ,westward propagating wave with the same frequency.

This .fraction is approximately 1 - 2n for the wave with

meridional index n. The remaining energy goes into an infinite

series of boundary trapped modes with the same frequency and,

,meridional .index m> n and m = n mod 2 (see Appendix E.3).

. ..The Kelvin mode part of the unbounded solution (4.17)

which grows like t, may be cancelled at a western boundary by a
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free;Kelvin mode with the same amplitude and t, x structure

like x - t'. This is precisely like the step function response,

(4.23). .As was remarked in that connection, we may say that

the original response is the sum of a locally 'forced past that

gOes like x and another eastward propagating part that goes like

t - x. The western boundary has the effect of cutting off the

forcing to the west of x = 0. This results in the propagating

part of the original solution being absent for x < t, leaving

only the locally forced part. The secularly growing Rossby

modes (4.16) have qualitatively similar behavior at the eastern

boundary. These modes propagate energy westward; the effect of

the boundary is to cut off the source of these modes; it turns

the forcing into a step function forcing which is non-zero only

for x < XE. The eastern boundary response to these modes 'is

like the step function solution, (4.22), except'that the origin

is shifted from x = 0 to x = XE and the amplitudes have-opfosite

sign.

The boundary response is of two different types. The

first is due to the effect of converting the forcing function

into a step function at the boundary, thus cutting off the

energy source for motions which would otherwise propagate into

the basin from beyond the boundaries. The k = 0 inertia-gravity

waves 'and Kelvin mode at the western boundary and the "long wave"

Rossby modes at the eastern boundary are examples of this type
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of response. The other type of response is a reflection: a S

motioR incident on the boundary carries energy from the interior

toward the boundary. Since this energy cannot propagate through

the boundary, the presence of the boundary excites motions which

reflect this energy back toward the interior. These motions may

freely propagate into the interior or they may be trapped to the

boundary, thus allowing energy to accumulate there. The eastern S

boundary response to inertia-gravity waves discussed above is an

example of a reflection. In this case, the motions generated at

the boundary consisted of both boundary trapped modes and propa- 4

gating waves.

The.reflection of Kelvin waves at an eastern boundary is

another example of this type. For an incoming wave with a

frequency w > 1 + r2/2 the reflection is a series of inertia-

gravity waves with odd meridional index n. Some of these (i.e.,

those for which n is high enough to make the expression under

the radical sign in (4.30) negative) will be boundary trapped.

For 1 - r/2 < w < 1 + V//2 all the reflecting modes are

boundary trapped since there are no westward propagating waves

at this frequency. At lower frequencies the response will be in

Rossby waves; again, some of these will be boundary trapped. It

can be shown (Moore, 1968) that the response to an incoming

Kelvin wave asymptotes to a coastal Kelvin wave as y becomes

large. In our case, (4.17), the Kelvin waves present synthesize

to have a linear time dependence. The reflection consists of an
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infinite series of Rossby modes with odd index n. (These are

given by (E13).) They are similar to the free modes, '(4.22),

that arose in the step function case. The mode with index n

has a t, x-dependence like t + (2n + 1) (x - XE) and propagates

away from the boundary with group velocity (2n + 1) -1. Since

the lower n modes propagate faster, at a given time t, this

response extends further into the basin near the equator and

becomes narrower with increasing y. As noted above, this

response asymptotes to a coastal Kelvin wave with increasing y.

Because of the beta effect, this coastal Kelvin wave has a non-

zero component of group and phase velocity in the direction

normal to the coast so it can propagate away from the coast,

albeit slowly (Moore, 1968).

The Rossby mode, (4.16), which is part of the unbounded

response to a zonal wind stress, carries energy into the

western boundary. The reflection, (Appendix E.3) must have an

equal energy flux to the east. It consists of modes with meri-

dional index lower than or equal to that of the incoming mode.

Most of these modes are a synthesis of short wavelength Rossby

waves with low group velocity so that these modes stay near the

western boundary. Most of their energy is in the v component,

which is in geostrophic balance. Since their group velocity is

so low, their energy density must be high in order for their

energy flux to balance that of the incident motion. These

features are qualitatively similar to the mid-latitude case.
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This asymyetry in the -character of the eastward 4nd'wetward

propagating Rossby waves helps to explain why currents intensify

on the western side of the ocean (Pedlosky, 1965)-.. In addition,

this reflection has features which are distinctly equatorial. S

Specifically, each incoming wave reflects as a whole series of

waves, including the mixed mode or the Kelvin wave. The mixed

mode's behavior is similar to the Rossby modes. It shares the 0

Bessel function behavior of the Rossby modes which results in

the boundary current becoming thinner and more intense with

time. Most of its amplitude remains near the boundary, though S

its leading edge propagates away with group velocity one. The

Kelvin mode has a very different behavior. Kelvin waves have

group velocity 1 at all frequencies. They carry energy away S

from the western boundary quickly, so that less of the incoming

energy flux remains in the western boundary current than is the

case for mid-latitudes.

The boundary response to the steady current which results

from a north-south wind stress will not be discussed here (see

Section 5.2). We only remark that it is qualitatively similar

to the step function response. The eastern boundary response

is a series of Rossby modes like those of (4.25) which have

v " 0 and u and h independent of x and t. The western boundary

response is a series of boundary trapped modes like those of

(4.26); they result in an intense, narrow current along the

S
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western boundary. The amplitudes of these modes may be-

computed by the algorithms (4.37) and (4.39).

The most prominent effects of the boundaries were

summarized in Section 3.4.
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5. MODEL RESPONSE TO SIMPLE WIND STRESS PATTERNS

5.1 Introduction

In this chapter we consider the model response to some

simple wind stress patterns. The results presented were

obtained from the nurerical integration of the model described

in Chapter 2. The analytic results of Chapters 3 and 4 will be

used to elucidate the model's behavior. Using the parameter

values in Table 1, a timestep of .95 hours, and the grid of

Table 2, it takes one hour of IBM 360/95 time to compute the

nonlinear response for 400 days. The linear response can be

calculated about 20 per cent faster.

The linear response is of some interest in its own right,

particularly in view of recent work on equatorial waves. We

are also interested in it here because of the light it sheds on

the more realistic nonlinear response. Consideration of

certain symmetries make the results presented below applicable

to other wind stress patterns. The linear response to a

uniform westerly wind may be obtained from that to the easterly

wind by reversing the sign of all velocity components (u, v, w)

and the layer depth, h. That is, the pattern of the response

is the same but the amplitude has opposite sign. A similar

rule holds for obtaining the linear response to a northerly

wind from that to a southerly wind. The nonlinear response to

a uniform northerly wind may be obtained from the south wind

response by reflecting the latter solution about the equator
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and changing the sign of v. Formally, if u4y),; v(y), hey) is

a solution for a uniform south wind, then u(-y), v(-y), h(y) is

a solution for a uniform north wind. There is no simple rela-

tion between the nonlinear responses to an east and west wind

stress. A helpful way to orient oneself through all of this is

to begin by considering what the wind drift part of the solution

is.

Although the figures presented below are largely self-

explanatory, a few preliminary comments may prove helpful.

Values of quantities are generally in the scaling given in

Table 1. Energy integrals are in units of 102 m sec a 2

where a is the radius of the earth. Values of horizontal

-2 -1velocities shown on the graphs are in units of 10 msec
-i

(= 1 cm sec -1). The values of the contour interval or scaling

given below the graph reflect the original scaling of 1 msec-l

(see, e.g., Fig. 5.4). The values for vertically integrated

2 2 -1transports were originally scaled in units of 10 m sec

2 -1while the labels on the graph are in units of m sec (e.g.,

Fig. 5.5). The graphs labelled "layer depth" are, strictly

speaking, the deviation of the layer depth from its mean value.

The values below the graph are in units of 100 m., while the

contour lines are labelled in units of m. Recall that for this

model, hs , the deviation of the surface height from the mean,

is related to the deviation of the layer depth by h = Ap/p
-32x10 h.
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Most of the graphs are-plotted in the "computational"

(stretched) coordinates. This allows the graphs more area in

the regions of greatest interest. Note that the arrows (e.g.,

Fig. 5.4) are all the same length; the magnitude-of the

velocity is given at the tail of the arrow and its direction' is

the direction of the flow without regard to stretching. -That

is, an arrow oriented 45 degrees from the horizontal has equal

u and-v components even though the stretching may be such that

moving 1 cm along the page in the x direction represents 5

times the physical distance of a 1 cm space in the y direction.

5.2 Linear Response to a Uniform South Wind

We are concerned here with the linearized equations

-1(i.e., (2.8) with R0  0 except F R finite and h = H = mean0 r 0 1

depth of the lower level everywhere except in the pressure

gradient terms; cf., Section 3.1). The wind stress is taken as

a step function turned on at t = 0; the wind is uniform over

the basin from the south with a stress of .465 dynes/cm2

Other parameters are given in Table 1; the grid is described

by Table 2. In chapters 3 and 4 the analytic tools were

developed to solve for the model response to such a forcing.

We now make use of those results to interpret the numerical

computation, beginning with a review of the qualitative fea-

tures of the initial time dependent behavior.

The method of Chapter 3 was to divide the flow into a

vertically integrated transport u and a boundary layer velocity



109

u. Extra-equatorially a is the Ekman transport. Extra-

equatorially it quickly [0 -(20 days)] becomes a wind drift so

that v = 0 and u is eastward in the northern hemisphere and

westward in the southern hemisphere. Within about 30 of the

equator (cf., (3.25)) there is a boundary layer in which.inter-

facial friction is important; at the equator U = 0 and r =

T(Y ) E- 1 .1 - e-Et}; this boundary layer effects the transition

between the flow at the equator and the extra-equatorial wind

drift solution.

The response of the transport has even symmetry about

the equator (that is, u and h are anti-symmetric and v is

symmetric about y = 0). The response exclusive of boundary

effects consists of: a steady forced component with v identi-

cally zero; and a time varying component composed of inertia-

gravity waves (including a mixed mode) with zonal wave number

k equal to zero (4.15). The steady component is depicted in

Fig. 4.3. It has u = T /y for large y and u = 0 at the

equator so lul has maxima near the equator. At the equator the

wind stress is balanced by the height gradient.

We now describe the boundary response to this flow field.

At the western side the boundary response to the steady current

is a synthesis of free Rossby modes with low frequency and high

wavenumber; i.e., the lower left hand corner of the dispersion

diagram, Fig. 4.1. This response is boundary trapped; that is,

it has such a low group velocity that it can't escape from the
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boundary region (except for the mixed mode; cf., Section 4.4).

It transports water from south to north, but only at'the

western side-of the basin. The inertia-gravity waves (inclu-

ding the k = 0 mixed mode) initially generated all have east-

ward group velocity. Therefore, as discussed in Section 4.4,

the western boundary response to the nth such wave is a wave

of equal'and opposite amplitude propagating away at group

velocifty (4h + 2)- 1 . The effect is to just cancel the original

wave.

At the eastern side the response is more varied. There

are no propagating waves at the frequency of the mixed mode;

hence, the response to it is a series of boundary trapped modes.

When an inertia-gravity wave with its meridional structure

indexed by n > 0 Impinges on the boundary the response is a

series of boundary trapped modes together with a propagating

inertia-gravity wave of index n with westward group velocity

and wave number k = -(2n + 1) ; a long wave. Most of the

energy-goes into this propagating mode. When this reaches the

western side, most of its energy will go into a reflected

eastward propagating wave of index n and k = 0; that is, a

wave like the original gravity wave. Propagating modes with

lower meridional indexes will also be excited, but with much

smaller amplitude.

The part of the boundary response described so far thus

consists of boundary trapped modes plus some gravity waves
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which bounce back and forth across the basin. We anticipate a

final state in which the windostress is balancpd by the tilt of

the-sea surface in the interior (cf., (3.15)). Using the-

scaling and notation of Chapter 3,

6y) t Y) (5.1)

The last equality holds when the wind stress is constant;, the

first as long as T(y) is a function of y only. In such a case,

the wind stress has no vorticity so the Sverdrup balance

requires that the transport in the interior vanish. It is

possible that the state described by (5.1) would never be

reachedin the absence of friction. Nevertheless, one would

expect the inviscid motions to adjust toward it or oscillate.

around it. Since the boundary trapped motions cannot effect

this adjustment, it must be done by the part of the solution

which has not yet been discussed; that is, the eastern boundary

response to the steady part of the unbounded solution.

Denote the incoming steady velocity and height fields

by U (y) and H (y) respectively. These satisfy

yU + H = T ( ) . (5.2)

It follows from Section 4.4 that the eastern boundary response

to this, which we will denote with superscript-E, must consist

of wave packets which propagate energy westward and-synthesize

to a form which is independent of time and has UE and -UI at
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the eastern boundary x = XE. The response solution may be

found by the methods of Section 4.4 or one may simply -recognize

from the results presented there that the answer must be of the

form

E- E E C 2 n(U , VE hE ) = C P R2 n  (5.3)
n=l

This is a sum of Rossby modes of zero frequency and zero zonal

wave number. They fall at the origin of the dispersion curve,

Fig. 4.1. Each mode has V = 0 and U and h in geostrophic

balance so that

VE = 0; yUE + h E =0. (5.4)

A mode indexed by 2n has westward group velocity of magnitude

-i
(4n + 1) ; hence, for a given x and t

E E (x 2 n
UE (x, t), 0, h (x t)) C P n (5.5)

n=l

where N = N (x, t) is the largest integer such that

XE - (4N + 1)

This simply says that the solution at a point (x, t) consists

only of those modes which propagate energy fast enough to have

reached x from the eastern boundary. Since the group velocity

decreaseswith increasing n, and since the modes with smaller n

are more equatorially confined, for a given distance from the

eastern'boundary the response is felt more quickly the closer
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one is to the equator. This is shown schematically in Fig. 5.1.

There is no effect for points with x < XE - t/5. Right at

the eastern wall all modes are present; adding (5.2) and, (5.4)

y (UE + U) + (h + hE  = T (y )

Since UE + U = 0

(h + hE) = T y ) or (hI + h) = (y ) dy

which is the balance described by (5.1). For a point away from

the wall

(UI + UE V + VE , h I + hE) = (O, 0, T(Y) dy)

- C P n

n=N+l

so that the last sum gives the deviation from a state of no

motion with the wind stress balanced by the tilt of the height

field. For a fixed x, N increases as time passes -- more and

more modes arrive at the longitude x -- so the balanced state

is approached more closely.1

There may be some initial puzzlement when one first

considers the mass fluxes that go with the solution outlined

1We have obviously finessed the question of the conver-
gence of the series (5.5). See the remarks in Section 4.2.
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above. The djustment which is to be reached requires that

mass be moved from the southern to the northern hemisphere, yet

the modes which apparently do the adjusting have no north-south

velocities associated with them. The mass flow may be

described as follows: When the inertia-gravity waves which are

initially excited are cleared away, there remains a steady flow

toward the eastern wall north of the equator and away from the

eastern wall south of it. As the front which marks the edge of

the eastern boundary response (the dotted line of Fig. 5.1)

moves away from the wall it leaves behind a region where the

zonal velocity is reduced in magnitude. Hence, there is a

convergence of mass into this region north of the equator and a

divergence out of it south of the equator. If there were no

western boundary, this process would simply roll on toward

x = -m. The presence of a western boundary makes it necessary

for the mass flowing westward in the southern hemisphere to be

carried northward across the equator in a western boundary

current. It then flows eastward to pile up behind the front

advancing from the east (Fig. 5.1). Finally, we note that

there is-some recirculation associated with the western boun-

dary current. This is required to give conservation of

potential vorticity in the boundary current.

We now turn to the numerical calculation of the linear

response to a uniform south wind. The wind stress is turned on
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suddenly at t = 0; as with the analytic model, it is a step

function in time.

Some of the gross characteristics of the evolution

are implicit in Fig. 5.2, which gives the kinetic energies of

the surface and lower layers and the potential energy in the

basin. (These are defined after Eq. 2.6).) In sixteen days,

the surface layer kinetic energy has attained 98 per cent of

its final value, a value which changes little after this time.

The lower layer kinetic energy rises to about its final value

in only eight days, reaches a peak at 32 days and then dimin-

ishes until about day 60, at which point it remains approxi-

mately constant. The potential energy continues to rise as the

sea surface tilts to balance the wind stress. Even after 400

days, it has not reached a final value. However, Fig. 5.3,

which gives the energies in the region between 5.69 S and

5.60 N, shows that in the vicinity of the equator, the poten-

tial energy has attained its approximate final value within

100 days and is within l/e of this value within 60 days. All

of these time scales are consistent with analytic theory. The

boundariy'-iyer velocity - is expected to spin up with a time

scale of 20 days (Eq. (3.25) ff.). Disregarding the bound-

aries, the transports are initially due to the generation of

gravity'wves with frequencies on the order of a few days. The

discussion above suggests that the height field and transports

(and hence, the PE and lower layer KE) in the equatorial region
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should be close to their final value when the first Rossby mode

which originated at the eastern boundary has r4ached the

western side. For the present model, this time is 96 days. In

extra-equatorial regions, adjustment is via the much slower

modes with a higher index n (for example, the mode n = 10,

which has its turning point at about 130, would take 400 days

to cross the basin). In summary, the wind stress is felt

directly by the upper layer which is quickly spun up to approx-

imately its final value. The lower layer is set in motion by

pressure gradient forces and by friction, but not, in this

linear case, by advection of momentum from the surface layer.

The lower layer KE never exceeds 1/5 of that of the upper layer.

As the height field sets up to balance the wind stress, the

potential energy continues to increase, though it adjusts

quickly in the vicinity of the equator.

We now consider the flow fields in some detail. At all

times the model response exhibits the expected symmetries:

meridional velocities are symmetric about the equator; zonal

and vertical velocities and the height field are all anti-

symmetric about-the equator. Figs. 5.4 a and b rshow. the velo-

cities in the two layers after eight days. Since this is

too short a time for the boundary effects to propagate far into

the basin, the interior flow is uniform in x. The only substan-

tial interior meridional velocity in the surface layer occurs

in the region form 1.50 S to 1.5 N, with a maximum of
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.8m sec at the equator. This'is clearly a product ..of -the

frictionally induced component v; there is an opposite and

(approximately)equal meridional transport in therl6wet.layer.

This roll circulation is completed by a-narrow region of strong

downwelling centered at 1.20 N and a corresponding.upwelling

region south of the equator. The zonal component-of the

-interior flow is essentially given by the Ekman wind-drift -- S

to the-right of the wind in the northern hemisphere and.to the

left of it in the southern hemisphere. The magnitude of. this

component increases toward the equator until the effect of the

interfacial friction becomes significant, reducing it to zero

at the equator. Poleward of about 2.50 the lower layer zonal

flow is in the same direction as that in the upper layer, being 0

driven that way by both frictional and pressure forces.

Equatorward of this point the lower layer flow is opposite to

that above. Thus, vertically integrated transport is every-

where eastward in the northern hemisphere and westward in the

southern, with extrema at 30 (cf., Fig. 4.3). The interior-

surface height is consistent with this transport: it tilts

upward from-30 S to 30 N and returns rapidly to zero poleward

of these latitudes.

The boundary responses are already discernable by 8 days.

The strongest meridional velocities in both layers occur at the

-western boundary. The maximum transport is at the equator,

though-the subsurface extrema are at 30. At the eastern side,
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the.boundary effect is seen most clearly in h. and U1 -

At this time, the fastest moving symmetric-mode in = 2) should

have its leading edge 2.50 from the eastern boundary. On-ly

at the eastern side does the layer depth slope upward to the

north poleward of 30.

At 16 days the pattern of the adjustment process may be

seen from the vertically integrated transport, Fig. 5.5;. The

meridional transport shows an intense, narrow, northward jet

along the western boundary. Adjacent to this is a broader,

weaker southward jet. This is due to the Bessel function

behavior of the boundary response described in Chapter 4. -The

northward jet is stronger and narrower than it was at 8-days,

at which time the southward flow was not apparent. .The zonal

component shows a wavelike pattern with the wavelength increas-

ing and the amplitude diminishing to the east (note that by

this time the leading edge of the mixed mode would have propa-

gated 240 of longitude from the western boundary). iThis

pattern merges into the westward moving region of lower trans-

port near the eastern wall.

The evolution of the model circulation proceeds as we

have outlined above. Significant meridional transports take

place only near the western boundary. These northward currents

continue to narrow, reaching a width of less than 10 in 30

days; thereafter, frictional forces prevent a further narrowing

(Lighthill, 1969). The zonal flow also shows the wavelike
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Bessel function pattern squeezing toward the western boundary.

The only other sizeable meridional velocities are equatorially

confined: by day 16, these frictionally controlled currents are

within l/e of their final values. The main adjustment proceeds

from east to west, leaving a region where the height slopes

upward to the north and the zonal velocities are reduced.

Indeed, in 'some places the transports are opposite to the wind

drift velocity (e.g., they are westward north of the equator).

We note also that the boundary trapped modes generated along

the eastern wall turn the corner and proceed westward along the

northern and southern boundaries. As is the case for the

western boundary current, the layer depth tilts to geostrophi-

cally balance these boundary currents. Figs. 5.6 a, b and c

depict the velocity fields and layer depth contours at 40 days.

At this time, the leading edge of the eastern boundary response

is at x = 160

Figs. 5.7 a, b and c afford a different view of the

adjustment process. They show north-south sections of the

layer depth at positions 3.20 from the eastern boundary, at the

center of the basin, and 3.20 from the western boundary. These

figures clearly support the claim that the adjustment process

proceeds from east to west with the equatorial region reaching

its final configuration most rapidly. After 20 days, the n = 2

and n = 4 modes will have passed the point 3.20 from the

eastern boundary and the layer depth in the equatorial region
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(i.e., 50 S to 50 N) has already reached its final value. The

points at 12° N and 12° S do not adjust until day 100. At the

center of the basin (x = 14.3 ° ) the n = 4 mode passes at day 64

after which the equatorial region is spun up; the points at 12o

take about 300 days to reach their final state. The comparable

times for x =.3.20 are 114 and over 400 days respectively. We

may say that the equatorial region spins up on the order of 100

days. Fig. 5.8 showed a similar picture for the zonal transport

at the center of the basin.

Figs. 5.9 and 5.10 show the currents, the layer depths

and the.contours of the zonally integrated transports at 398

days. The layer depth contours (Fig. 5.9c) reveal the extent

to which adjustment is complete. The contours are by and large

zonally oriented, sloping upward from a displacement below the

mean depth of 22 m at the southern edge of the basin to one

22 m above it at the north. Only a small region at the north-

west and southwest corners deviate from this pattern. The

surface currents show zonal wind drift currents together with

the meridional current in the equatorial friction layer. In

most of the basin the lower layer currents are just those

needed to reduce the vertically integrated transports to zero.

The zonal component of these currents is in geostrophic balance

with h. The exceptions to this description can be seen in

Fig. 5.10, which depicts the vertically integrated transports.

There is a substantial northward transport at the western
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boundaryt(though its maximum value, 33.5 m2 sec - , is less

,2ithan 1/1 of t he maximum of 118 m2 sec attained at- day 30).

Part of this -- a constantly diminishing part -- is required to

move fluid from south to north to complete the overall adjust-

ment to a final steady state. The remainder is needed to'

complete the circulation induced by bottom friction in an

equatorial botindary layer (eq. (3.17) ff.). Away from the

b6undary this circulation is primarily zonal with'the net'

transport across the equator (cf., (3.21)). As predicted, the

boundary layjer broadens from east to west. Superiiposed on 0

this steady-state pattern of zonal transport, one may see-the

wavelike pattern associated with the western boundary current.

Note how similar the currents at 398 days are to those at 40

days (Fig. 5.6). The currents, even in the lower layer, are

largely given by the friction component u and the frictional-

spin up time'is on the order of 20 days. There is a marked

difference in the layer depths (Figs. 5.6c and 5.9c) which

adjust- on the transport setup time scale, 0 (3 months) at the

equator.-

5.3 Nonlinear Response to a Uniform South Wind

In this section we will treat the nonlinear (Eqs. 2.8)

response to a wind which is everywhere from the south. Except

for the nonlinearity, this case is governed by parameters

identical to those of the linear response discussed in the

previous section.
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An overview of the spin up processis given by Figs.

5.11 ad 5.12, which depict the energies integrated over the-

entirebosin and the equatorial region, respectively.- As in

the 1inearzcase, the surface layer kinetic energy quickly ,

(order 8 days),rises:to within 1/e of its final value as the

wind stress transfers energy to the ocean. Thereafter,, the,

increase in surface energy is slowed, but the iqcrease in lower

layer kinetic energy and potential energy continue until abQut

-3 -3
day 150, reaching peaks of 5.8 x 10 and 3.3 x 10 , respec-

tively. Recall that in the linear case (Fig. 5.2) KEl was.

-3
always less than 10- , while PE took 400 days to reach a value

3 -3
of.3 x 10 . The final mean value for KEs of 3.8 x 10 is

-3
only. slightly smaller than the linear case value of 4.4 x 10

- .

These differences suggest the importance of vertical adyection

as a mechanism for transferring momentum to the lower 1ayer.,

After such a transfer has been made, the lower layer;currents

may transport significant amounts of mass. This allows for a

faster buildup of potential energy than ispossible when mass

redistribution is accomplished primarily via the thin.surface

boundary layer, as is the case in the linear model. A compar-

ison of Figs. 5.11 and 5.12 shows that about half of the kinetic

energy but only about 10 per cent of the potential energy is in

the region within 5.60 of the equator (about 1/3 of the basin).

Beginning at about day 100 an oscillation with a period

of 29 days may be observed in the surface kinetic energy. At



140

6.00E-03 -r-r-T7-r TTVT- -1 I - -TT - I T r TT TT T -T

5 OOE-03 KE

4 00E-03

3 00E-03

PE
S0O-03 ]

S.00E-03 -

0.0 -

50. 100oo. 150. 50so 300. 350. T-
*E LAYERS KE LAYERI .'E

E;fhrIES FR X* 0 0 TO ,6 Y*-15 0 TO 15 0 , T 5 25 TO ?9S 18 DAYS
NEE3- N4tCH3 30X44STR DEL-.5 E-i.E-8,.8-BI- 001 VI?- S OJTH EVERYV-fRE 07/15/02

Fig. 5 .11 Energies from 150S to 150 N, Nonlinear. South wind.



141

[TT-'-- Fr TT T -F -T T-T IT 1T ~ 1 F11T-T-TV -

2 50-03 -
-o K -E

2 00E-03

SKE s

I 5 -03 / -

I 00-03

5.00OE04 PE

00

J_.L__LLr .LLLI.J _ A __J.__LfiL___LI_._LLL LLLL _
50. 100. 150 200. 250. 300 3~0.

•KE LAYERS KE LAYERI E

[RGI!ES FOR X- 00 TO 28 6 Y- -5 10 5 6 ,T* 5 25 TO 35 1;8 DAS
N-E3 N4Ci3 3OX44STR [ELT- 5 E-1 E-8;& .BI; Cl 0i IliOVN S SOUt flEVE YfV-RI 07/1i51/C

Energies from 5.6 0 S to 5.6 0 N. Nonlinear. South wind.Fig. 5.12



142

about day 100 an oscillation with a period of 29 days may be

observed in the surface kinetic energy. At about 150 days, an

oscillation in the potential energy sets in approximately in

phase with this. The lower layer kinetic energy starts to

decrease, eventually leveling off to oscillate about a steady

value, the oscillations being out of phase with those in the

other quantities. This suggests an instability which draws its

energy primarily from the kinetic energy of the flow in the

lower layer. Fig. 5.13 shows a plot of phase lines of the

lower layer zonal velocity at the equator -- the abscissa is

distance along the equator, the ordinate is time. Beginning

near the western side at about day 100 and appearing later at

the eastern side, a very regular progression of phase from east

to west may be observed (similar plots of the other variables

give essentially the same picture). These waves have a period

of .29 days and a phase speed of 32.5 km/day, giving a wave-

length of 950 km.

,In order to understand the phenomenology of this spin up

we turn to a consideration of the evolution of the currents

and the layer depth. In the early stages some insight may be

gained by a comparison with the linear case. Many of the

features of the flow pattern can be understood by considering

the kirrematic effects of the vertical and meridional advections

on the linear response.
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Fig. 5.14 shows the layer depth in the equatorial

region at 8 days. With the exception of some boundary regions,

this field is very nearly anti-symmetric about the equator.

There is little to distinguish the interior from the linear

response. The circulation pattern in both layers is

similar to the linear response at this point, but some distin-

guishing asymmetries are already present. The principal

differences may be summarized as follows.

In the surface layer the maximum meridional velocity

occurs at approximately 1o N, rather than on the equator as is

the case for the linear response. This may be attributed to

the self-advection of northward momentum by the surface

currents near the equator. As in the linear case, the meri-

dional-velocity goes to zero at about 30N and 30 S.' A similar

advective effect is observable in the zonal component of the

"surface current. The maximum westward flow still occurs at

1.i2 S, but its magnitude is less (.41 m sec - I compared to

.59 m sec-1). Westward momentum has been advected northward so

that the surface flow is westward to 1.20 N. The eastward

momentum in the surface layer north of the equator has also

been advected northward -- but not beyond 30N, where the

meridional velocity goes to zero. The effect is to compress

the eastward flow into a narrower, more intense jet. The

eastward flow at 2.50 N is at speeds of .9 ms- 1 , compared to
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-!
the linear maximum of .59 ms 1 at 1.20 N. At this time,

vertical velocities are everywhere negligible in the interior;

flow in the lower layer is small everywhere. The trend is thus

toward the development of an eastward jet, now centered at

2.50 N with a broader, slower westward flow at the equator.

This pattern is evident in the zonal transport, Fig. 5.15.

By 16 days, the degree of asymmetry is marked. The

eastward jet is not centered at 30 N, where the surface flow

reaches speeds of 1 m sec - 1 (Fig. 5.16a). This jet is quite

-1
narrow; its velocity falls to less than .2 m sec within 10.

There is a considerable horizontal convergence into the jet,

-4 -1
resulting in a substantial downwelling (w = 1.5 x 10 msi )

at 30 N. Elsewhere in the interior the vertical velocity is

negligible. This downwelling advects eastward momentum into

the lower layer so that the flow there is also eastward (Fig.

5.16b). The result is a large vertically integrated transport

to the east -- a factor of 5 larger than in the linear case

(cf., Figs. 5.17 and 5.5). Returning to the surface flow,

south of about 20 S the currents are essentially the wind drift,

as in the linear case. From about 20 S to about 20 N, the

interior flow is everywhere to the northwest. In the linear

case, this was the region where the flow was given by the

wind drift, plus interfacial friction solution (3.25). The

nonlinear case shows a maximum meridional component north of

the equator and a non-zero component to the west everywhere.
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As above, these effects may be understood by considering the

,effect of northward advection on the linear solution. The

current shears are smaller here than in the linear case, and

the region of substantial northward flow is broader, while the

maximum northward velocity is lower by a factor of. two., In the

lower layer, the flow is greater than .05 m sec -I only near the

lateral boundaries and between 20 S and 40 N.

Figure 5.18 shows the fields at 40 days. The patterns

are substantially similar to those at 16 days. We note that

the interior flow is approximately steady and independent of

longitude. The primary exception to this is the layer depth

which shows a more uniform tilt to the north at the eastern

side, similar to the linear case. It also shows a suggestion

of a wavelike structure at about 40 N. The part of the inte-

ri.or field which is independent of x and t may be described in

terms of four regions:

S ) South of about 2.50 S the response is essentially

linear, like that discussed in the previous section. The domi-

nant feature is the surface wind drift current to the left of

the wind.

(2) From 2.50 S to about 2.50 N the surface flow turns

from northwestward to northeastward to due east. Vertical

-5 -l1velocities are everywhere upward and small (0 (3 x 10 ms)),

with. most of the upwelling south of the equator. The zonal

component of flow in the lower layer is to the west south of
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1Q S and to the east north of that, with a magnitude comparable

to the upper layer zonal component near the equator. The' meri-

dional component is southward everywhere.

(3) From 2.50 N to 50 N there is an eastward zonal jet

in both layers: at 30 N the upper layer flow is'as high'as

1.2 m sec-1; the lower layer flow is over .4 m sec- . By this

point, the meridional component of flow is negligible in both

layers. There is strong convergence into the jet with large

downwelling at its core (w = 3 x 10-4 ms- ).

(4) North of about 50 N the model response again becomes

wind drift dominated and essentially linear.

This description is in close agreement with the x-

independent, steady state calculation of Charney and Spiegel-

(1971). (See their Figs. 11 and 12.). The only notabl4

disagreements are that their surface velocity in the jet is

smaller (less than 1 m sec-l), their downwelling region is

broader, and their upwelling region narrower than ours. We now

seek a simple model (independent of x and t) to elucidate the

physics of this flow.

Regions (1) and (4) are explicable in terms of the

linear dynamics of the last section. Now consider the surface

flow in region (2). A parcel in the vicinity of the equator

will acquire a northward velocity component '(frictional forces

give it a component in the direction of the wind). As it moves

northward, it acquires cyclonic planetary vorticity. Since it
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(approximately) conserves its total vorticity, it must acquire

anti-cyclonic relative vorticity. The effect is to turn the

parcel clockwise toward the east. As long as the parcel moves

northward, it is able to acquire energy from the wind stress.

At some latitude the parcel's northward momentum is being

converted into eastward momentum more rapidly than it is replen-

ished by the wind. Eventually, the parcel will be travelling

due east, still carrying the approximately zero total vorticity

it had near the equator. To the north of this, the flow is in

the wind drift regime where the vorticity of surface parcels is

approximately the local planetary vorticity. The transition

between the two flow regimes demands a shear layer in which the

surface eastward velocity is reduced to the north, thus adding

enough positive vorticity to the flow to match it to the

planetary vorticity. This is accomplished by the downwelling

in the jet which transports the eastward momentum downwards.

We formulate the following simple model to obtain some

quantitative descriptions to accompany this qualitative

description.

,In region (2) the surface flow is governed by the fol-

lowing approximate equations

dudt- yv = 0 (5.6)

dv
dt + ayu = T/ 7 (5.7)
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where

d _
dt ay

so that the first equation expresses the conservation of

vorticity. In addition to taking 3/3t = 8/Ex E 0 a number of

other simplifications have been made, the least defensible of

which is the neglect of interfacial friction. This was done to

make the equations analytically tractable -- its inclusion

would change the numerical values slightly, but not the

character of the solution. The pressure gradient term is small

compared to the retained term. The vertical velocity is small

throughout this region and the vertical advection term is about

1/2 the retained meridional advection term in the upper layer.

Its principal effect can be captured by multiplying the solution

for v obtained below, (5.8), by (2/3) = .8. An energy equation

may be formed from (5.6) and (5.7),

1 d 2 2 T
(u v) v2 dt

By making use of the definition dy/dt E v, this may be inte-

grated to yield

S+ v 2 y + Const.

From (5.6)

B 2
u = ~ y + ay + b .
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We now simplify things further by assuming that u = v = u = 0
y

s -1 s -1
at the equator (actual values are v .6 ms 1 , u -.2 ms ,

s - -1
and u = 10-7 S ) and so obtain

y

2 2 4
u v - 2 - . (5.8)

The position of the jet is at a latitude yJ where v = 0:

/71 T 1/3 0
S= 2 2 = 340 km 30

At this latitude

Y 2  T/)2 1/3

J )-1u 2 = 1.2 m sec
Ju 2 B

These values are in excellent agreement with the numerical

calculation. -We may also obtain a scale for the other velocity

component by considering the latitude Ym where v is a maximum:

= ~ i /

(5.9): , . e , sc "



159

This agrees quite well with the maximum in the numerical

calculation, but the position is further to the north (about

2.50 N). If we had made the initial velocity at the equator

non-zero, the effect would be to increase Vm and to move YJ and

Ym slightly to the north. We also note that the jet must, in

fact, form before the meridional velocity is identically zero in

order to permit the downwelling required to maintain the zonal

momentum balance. Turning to the jet itself, the requirement

that the vorticity of the flow be brought up to the local

planetary vorticity in order to match onto the linear regime

gives a scale for the width Y of the shear zone.

8 (Y + Y) n Uj/y =Y = .35 Y = 1.10

This is the right order but slightly too wide (the model

results show Y = .80). The principal neglected term is the

downwelling term (the model's analogue to the vortex stretching

term) which would tend to make the jet wider. One feature of

this description which agrees well with the numerical calcu-

lation and that of Charney and Spiegel (loc. cit.) is that the

zonal velocity of the jet falls off more.rapidly to the north

than to the south.

The fluid which descends in the jet arrives in the lower

layer with considerable eastward momentum and negative relative

vorticity. The meridional velocity component in region (2) is

southward in order to satisfy the continuity equation

A - 4
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(hv1) =-v (5.10)
y y

1 Sand the (approximate) condition that v = v = 0 at the southern

edge of the region. Parcels will approximately conserve their

total vorticity because vertical exchanges are small:and because

both f and variations in the layer depth are small (so that-the

variation of potential vorticity is given by the variation of

vorticity). As a parcel travels southward, its planetary

vorticity decreases so its relative vorticity must become less

negative and may even become positive.

-Let us now trace a parcel southward after it leaves the

region of the jet. Its initial conditions (i.e., u > 0 and

u > 0)-mean that it starts out with an eastward velocity

which becomes progressively more westward as it travels south.

Note that a parcel which makes it to the eastern side before

turning east slows its westward flows and "uses" its vorticity

to enhance its meridional flow. There is a region of large

southward transport at the eastern side centered at about 1.80

N. As the parcels flow toward the west-southwest the westward

component of flow increases, but at a decreasing rate. This

latter effect is due to the increase of relative vorticity

(i.e., u ) goes to zero. In our calculation this occurs at

about .30 N. Note that north of this point the flow impinging

on the western boundary turns clockwise to the north (its

relative vorticity < 0) while south of it the flow turns
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counterclockwise to the south ( > 0). This flow continues

south along the boundary until it meets a northward current,

which, since it comes from the south, must have negative

relative vorticity. ,Both currents then turn eastward (this

junction. is at 1.50 S at 40 days and at 30 S at 80 days.,

Parcels which travel this far south in the interior.must also

begin to, flow eastward as their relative vorticity increases.

We note that there is an eastward flow with currents larger

than .1 m. sec - 1 in the region from 1° S to about 30 S. At the

eastern side of this region some of the water turns north and

some south, consistent with the idea that the flow contained

parcels with both positive and negative relative vorticity..

The upwelling in this area is not large. The vertical

exchanges in this model are characterized by a weak Ypwelling

almost everywhere, with narrow regions of strong downwelfing

at the western side in the vicinity of the equator and in.the

jet at 3° N (especially at its eastern end),,

Before continuing the. discussion of the. evolu.tionof.the

model calculationwe wish to make two remarks about. the fore-

going discussion. It 'is pleasing to be able to obtain an

explanation of the motion which is independent of the value of

the frictional parameters since these are so uncertain. The

neglect of friction in (5.6) and (5.7) is justified if the ,

vertical friction coefficient.K/t in (2.6.) is small compared

to the advective operator v /y. ,The latter.may be estimated

from (5.9):
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while with the values in Table 1 the friction coefficient is

6 x 10 sec -I . The excellent agreement of our analysis with

the numerical results is probably due to the neglect of fric-

tion being compensated by underestimating the actual initial

velocity in obtaining (5.8).

Our second remark serves as a preface to the further

evolution of the flow. It concerns the implications of the

foregoing analysis for the susceptibility of the flow to shear

instatility -- the distinguishing characteristic being that the

growing perturbation draws its energy from the kinetic energy

of the mean flow). For non-divergent inviscid flow a necessary

condition for instability is that the vorticity -- f - u , in

our case -- have an extremum. Though our situation is more

complicated, this simple criterion still serves as a useful

guide (see discussion below). This condition is usually not

met by geophysical flows because the gradient of planetary

vorticity, 8, is large enough to ensure that the gradient of

total'vorticity, - Uyy, is monotonic. The flow in region (2)

described above was characterized by the conservation of total

vorticity, thereby neutralizing the stabilizing effect of beta.

Recall that the key ingredients that create this situation are

a non-zero meridional velocity, to permit exchanges of relative
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and planetary vorticity, and the absence of a wind stress curl

to alter the total vorticity. A number of considerations

permitted our description to be greatly simplified. In parti-

cular, the fact that throughout the region vertical velocities

are not large and the layer depth does not vary greatly allowed

us to consider the vorticity balances within each layer

separately. The fact that the flow was approximately x-

independent reduced the relative vorticity to the meridional

shear of the zonal flow.

Since the vorticity gradient is constant, the flow is

marginally unstable; an additional process which produced a

region of stronger (or weaker) shear will cause this necessary

(but not sufficient) condition for instability to be met. The

model calculation does exhibit numerous extrema in the profile

of f - u . For example, after 80 days of model time at 4

longitude 9.50 from the western boundary, the upper layer has a

maxima at 0.30 N and 1.50 N and minima at 0.90 N and 2.50 N;

the lower layer has maxima at 0.60 S and 0.90 N and minima at

0.30 N and 1.5 N.

We resume the discussion of the evolution of the flow

with Fig. 5.19, which shows h at 119 days. The waviness.

suggested in the earlier figures at 40 N (Fig. 5.18) is now

clearly evident. Note that it now extends further to the east

and that there is a wavy pattern developing at 40 S as well.

Recall that the energy graphs (figs. 5.11 and 5,12) show some
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evidence of an instability by this time. At 160 days the lower

layer kinetic energy reaches a peak and the instability is

readily apparent. Fig. 5.20 shows the flow at this time. The

overall pattern in the velocity fields is similar to.that

described above for day 40, but there is an additional wavelike

disturbance, especially evident in the lower layer velocities,

Fig. 5.20b. This is no longer confined to the western side,

but is present in equal amplitude across the width of the basin.

By about day 200, the flow settles into a repeated pattern with

wavelike disturbances propagating (in the phase sense) across

the basin from east to west (see Fig. 5.13). Figs. 5.21 show

the fields in the entire basin during this final period of the

flow's evolution. The surface velocities exhibit a marked x-

independent pattern, though superimposed on this there is a

wavelike pattern of approximately 1/3 the amplitude of the

(zonally averaged) mean flow. In the lower layer flow (Fig.

5.21b), the x-independent pattern is barely discernible; the

amplitude of the instability is approximately equal to that of

the mean flow. The variations in the layer depth (Fig. 5.21c)

are dominated by this instability from 70 S to 70 N. Poleward

of these latitudes it exhibits a general south to north tilt

similar to the linear case (cf., Fig. 5.7). The maximum

apmplitudes of the wave occur at 5° N and 4o S. Figs. 5.22a, b

show the zonal and meridional transport. The wave-pattern is

particularly clear in the v component because the x-independent
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part of the meridional transport is approximately zero (cf.

(5.10)). The amplitude maxima of v occurs at approximately

1.60 S and 2.6o N. The maxima of the wavy part of u at approx-

imately 2.4o S, 1.20 N, and 3.60 N. These positions vary

slightly with longitude. The approximate phase relations are:

us and ul are out of phase, while vs and vI are in phase. The

v components lead us by 1/4 wavelength; us and h are in phase.

As mentioned above, the frequency is 29 days and the wavelength

is.950 km.

It is of interest to compare our results with the results

for the stability of equatorial currents given by Philander

(1975).,. On the basis of the vertically averaged zonal velocity

we. can.crudely fit the model currents to a sech 2 profile, viz.

U = U0 sech 2 y/L + U1

bg7ms-i -i

by taking Uo -.7 ms, U = +.4 ms and L 00 - 200 km.

Then

U
Ri _8 Rg - -1 to -4

U BLo

From Fig. 3 of Philander (loc. cit.) the wavelength of the

fastest growing wave for these parameter values is approxima-

tely 21TL -- between 600 and 1,200 km in our case. This is

consistent with the model results.
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Fig. 5.23 shows meridional sections of the layer'depth

h at various longitudes. These should be compared with the

similar figures for the linear case (Fig. 5.7). In the'large

there is a tilt upward from south to north at all longithdes,

with this feature being barely evident at the western- side

(Fig. 5.23c) and becoming increasingly pronounced as one moves

eastward. The adjustment is more like the linear case at the

eastern end. At &ll longitudes there is a tendency for i t-

adjust toward a final state poleward of about 70, while oscil-

lating about a mean state equatorward of those latitudes. The

extra-equatorial adjustment occurs more rapidly at the eastern

side (Fig. 5.23a) than in the center of the basin (Fig. 5.23b)

as in the linear case. Even after 400 days the flow at the

western side appears to be very different from the expected

final state. The oscillations in the equatorial region are

clearly a result of the instability. The mean profile shows

that at all longitudes the general tilt to the north is inter-

rupted to allow for troughs (and the associated ridges) are a

result of the tendency of h to be in geostrophic balance with

the strong zonal currents in the lower layer., These features

are more pronounced at the western side than they are at the

eastern side. Fig. 5.24 shows a meridional section of the

zonal transports at the center of the basin, comparable to

Fig. 5.8 for the linear case. The transports are more than an

order of magnitude larger than those in the linear case. As
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with the layer depths, there is an adjustment toward a final

state extra-equatorially and an oscillation about a mean in the

vicinity of the equator.

5,4 Linear. Response to an East Wind

,,In this section we are concerned with the linear response

,..of the model to a wind of constant magnitude which is every-

where from the east. (See Section 5.2 for a precise specifica-

tion of parameters; the sole difference here is that the wind

-2stress of .465 dynes cm is from the east rather than the

south.) We begin by applying the analytic results of chapters

3 and 4 apply to this case.

The solution for the boundary layer velocity i defined

by (3.8) is given by (3.25). It evolves to a steady state on

the frictional timescale of 20 days. Extra-equatorially, u

approaches the Ekman wind drift solution; flow is poleward in

both hemispheres. Consequently, there is a strong upwelling at

the equator. The flow at the equator is westward, in the direc-

tion of.the wind ( u = Z(x) E-1 (1-e-Et), i~ = 0). There is a

boundary layer extending about 300 km from the equator in which

interfacial friction is important. Within this layer the flow

turns from being zonal to being meridional. The non-zero u

component requires sidewall boundary layers of width 0(A1/ 2)

where A is the horizontal Ekman number. An upwelling region at

the eastern end of the equator and a downwelling layer at the g
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western end are needed to complete the fluid circuit, Down-

welling layers will also be required at.the northern and southern

boundaries of the basin to bring 9 to zero. (See Section 3.3).

The time dependent solution for the vertically integrated

transports and the layer depth h may be found by the tnethods of

Chapter 4. It will have i and h symmetric and "v antisymmetric

about the equator. In the absence of boundariie's, thispart of

the model response would consist of inertia-gravity waves to-

gether with functions of the form (4.19), vis.,

(Ui, 7, h) = (U(y)t; v(y), H(y)t) (5.11)

These functiohns are depicted in Fig. 4.2 for thewind stress

F=l, which is just the negative of the present case (also see

(4.15) - (4.17) and (E16)). Note that U and H are equatorially

confined, while V goes to zero at the equator and approac hes

-F/y as y increases'. Most of the energy put in by-'the wind"'goes

into (5.11); relatively little goes into the inertia-gravity

waves.

The bouhdary effects on the inertia-gravity waies' a're

similar to those for the south wind case discussed in Section

5.2. Briefly, these waves are reflected at the meridional

boundaries but they lose a part of their initial energy to

boundary-trapped modes with each reflection at the eastern

side. It is clear that the adjustment to a final state"will be

accomplished by the boundary effects on the secularly growing

part of (5.11). As with the south wind we anticipate that the

final state will be one in which there is no motion and the sea



182

surface tilts up uniformly from east to west to balance the

wind stress;-this is consistent with the Sverdrup relation

"(3.15). If we choose a velocity scale so that F=-l7 then this

state is

.0 = = 0; h = -(x-xE/2) (5.12)

There are some crucial differences from the south wind case

which make the spin up process far more complex with an easter-

ly wind stress. First, the unbounded response (5.1ii) is not

steady. More importantly, this response is composed of both

Rossby modes and a Kelvin mode, so that not all propagating

modes have group velocity in the same direction.

Denote the Kelvin mode of (5.11) by K0 and the Rossby

modes collectively by R . U and H being equatorially confined

implies that the amplitude of the Rossby modes falls off rapid-

ly with n [cf. (4.16) and (E16)]. The eastern boundary response

to RO is a sum of Rossby modes which we will denote collectively

by R1 [.these modes have the form (4.22)]. The nth such mode

propagates away from the boundary with group velocity (2n+l)-1

so that the response extends farthest from the boundary at low

latitudes. R1 is .an infinite set of modes; if all modes were

present at a point x, then R0+R +V(y) would have zero velocity

Scmponents and h=-(x-xE), except that the Kelvin mode component

tequired for such a state is missing. That is, the eastern

boundary reflection of R .tends to adjust toward zero velocities

and a height sloping upward to the west independent of time.

Note that it tends to make the height too low everywhere:
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h ± -(x-xE) instead of (5.12). This part of the response is

analogous to the-process that affected the adjustment in the

south wind case. Here it is not sufficient to bring the ocean

to a steady state.

R1 are not the only Rossby modes generated at the eastern

boundary. The Kelvin mode K0 is reflected as a series of Rossby

modes R';.these have a linear time dependence (see Eq. (E13)).

At the eastern boundary they asymptote extra-equatorially to a

coastal Kelvin mode which will turn the corners at the northern

and southern boundaries of the basin.

At the western side, the response to K0 is a Kelvin mode

K1 (4.,23) propagating eastward with unit group velocity such

that

Ko +K= d-txO

thus eliminating the secularly growing K0 . In response to R0

there is a K' - 71/4  (t-x) (E17), so that not all such1 
-1

growth has been eliminated. In addition,, the reflection R .is

composed of boundary trapped Rossby modes (E15); these have

only a minor role in the spin up of the basin.

At time t = xE modes K1 and K' arrive at the eastern

boundary, thus altering the form of the reflection of'the Xelvin

mode there. K1 changes the secularly growingset of modes R'

into a set R2, each of which has constant amplitude in- time.

and space. The reflection of K' is a secularly growing set R2
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but with smaller amplitude than R1. This reflection thus tends

to bring the basin closer to a steady state.

At t = 3xE the leading edge (or wave front) of Ri and

R1,(the n = 1 Rossby mode) has crossed the basin from east to

west. The presence of R1 at the western side alters the time

dependent Kelvin mode reflection K1 to a steady (in space and

.time)- Kelvin mode K2. The reflection of R1 creates another

time growing Kelvin mode K2, but with smaller amplitude than

K'
-1

At t = 4xE the leading edge of R2 and R2 reaches the

western, boundary, while K2 and K2 just reach the eastern bound-

.ary. Again, the reflections of the unprimed terms have con-

stant amplitude, while the primed terms' reflections are non-

steady. At this time there are no R's or K's with their

leading edge in the interior of the basin. In this sense, the

s tuation is similar to conditions at t = 0 and a cycle has

been completed; there is a periodicity with period 4xE . It is

not yet clear how many such cycles it takes before (5.11) is

approaphed, arbitrarily closely. This information is most

readily obtained from the numerical simulation.

..Before turning to those results however, we wish to re-

mark further. on some of the features of the preceding descrip-

tion. Both the eastern and western boundaries participate ac-

tively in the adjustment process, because the fact that the

forcing excites the Kelvin mode makes it impossible for the
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adjustment to proceed solely from the east. The-final state

is not approached'monotonically; for example, the gradie-nt of

the layer depth tends to "overshoot" its final value. In

appearance, this is reminiscent= of the response of a tilted

pan of water,-. though the mechanism responsible here is not'

gravi-ty' waves. As before, the-more equatorially confined-modes

trfavel 'the -most rapidly, but here it does not follow immediite-

ly that the equatorial region adjusts more- rapidly (tfihughl this

does turn out to be the case). The Kelvin wave has negligible

amplitude extra-equatorially, influencing that region only via

the coastal Kelvin modes generated when it is reflected'at-the

eastern- end of the equator. Hence, all the extra-equatorial

adjustment proceeds from east to west.

Figs. 5.25 and 5.26 show the energies for the basin as

a whole and for the equatorial region, respectively-. --The'-'

upper' layer kinetic energy reaches its maximum value in -the'

frictional spin up time (20 days). Since there is fi ven~*ial

advection of momentum, the lower layer kinetic energy remains

much smaller than that of the upper layer. This was also true

of the previous linear" case, Fig. 5.2. "Th mos 'st tiking

feature of these plots is the damped oscillations which appear

in all fields, though they are most clearly seen in the potien-

tial energy curves. This oscillation has an 80 day period;- the

initial peak is at day 42 and the first minimum'at day 82.

The crest to trough difference from day 200 to 240 has 30
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percent of the amplitude of that from day 42 to day 82.

These oscillations in the energies are obviously related

to the reflections from the basin walls described"above. The

fundamental time period that emerged in that analysis is the

time it takes for a Kelvin wave to cross the basin, t = xE

with the scaling of Chapter 3. For the model parameters used

here, this time is 19.2 days. It was remarked earlier that

--the adjustment pattern repeated after 4 such time periods; this

- agrees well with the observed 80 day period. The potential

energy is a minimum at t = 80, 160,...days. At these times,

the leading edges of the last Kelvin mode generated has just

reached the eastern boundary, while that of the last Rossby

modes has just reached the west. The PE maxima occur at t = 40,

120,...days. At 40 days the leading edge of the first Rossby

-modes generated at the eastern side (R1 and R{) are two-thirds

of the way across the basin while the second set of such modes

(R2 and R2) are one-third of the way across.

- Figs.- 5.27 and 5.28 show profiles of the layer,-depth at

the equator at various times. If the height were set up to

balance the wind stress (5.12), the layer depth profile would

be a straight line 21.8 m below it at the eastern side (the

dotted line in Fig. 5.27). During the course of the adjustment

the profile tends to be below this final value everywhere. The

profile at 8 days (Fig. 5.27) shows a flat center section in

which the boundary influences have not been felt; here h is
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decreasing in accordance with the unbounded solution (5.11).

At-this time, the Kelvin mode generated at the western bourndary

(K1 + Kl) has propagated 120 into the basin. This is evident

in the sloping region at the western side of the basin. Near

the wall there is also evidence of the effect of the boundary

trapped modes. At the eastern side there is another sloping

piece to the profile extending 40 into the basin. This is due

to the Rossby modes generated at the boundary (R1 + Ri); the

fastest of these, the one with meridional index n = 1, would

have propagated 40 at this time.

At 14 days the. two boundary influences would meet at a

point three-quarters of the way across the basin. Up until

this time, the magnitude of the zonal transport at this point

has increased according to (5.11). Hereafter the slope of the

height field at all longitudes on the equator will be'up toward

the west, thus reducing the zonal acceleration. In fact, it is

evident from Fig. 5.27 that by 24 days this gradient is general-

ly sufficient to balance the wind stress so-that the.i magnitude

of the westward transport will no longer increase. The slopes

at the eastern side become -steeper than -what is required to

balance the wind stress so that the transport here becomes east-

ward and the layer deepens. All of these comments about the

transport are confirmed by Fig. 5.29. This region of eastward

flow is behind the front formed by the Rossby modes (R2 + R)

which are the reflection of the first Kelvin mode (K1 + KI) to
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cross the basin. The region propagates out from the eastern

boundary beginning at day 20.

The profiles at day 40 (Fig. 5.27) and day 80 'indicate

why the former time is a potential energy maxima and the latter

a minima. Fig. 5.28 shows that the later minima are very close

to the final state. Fig. 5.30, which shows the zondl transports

at the equator, indicates that the equatorial region takes

approximately 250 days to spin up to something like its final

isteady state. This time scale agrees with the energy diagram,

.Fig..5.26. Fig. 5.30 also shows that it takes on the order of

200 days before the zonal transports are uniformly westward.

Note that the adjustment appears to occur at the eastern side

at an earlier time.

Figs. 5.31a, b, and c show north-south sections of the

- layer depth at longitudes near the eastern boundary, at the

center of the basin, and near the western boundary, respectively.

At each longitude the steady state profile would be a horizon-

tal line. At all longitudes this is approximated more rapidly

at latitudes close to the equator. Near the eastern wall h -

- 16.5 m at all latitudes after 300 days. At the center of the

basin the expected final value h = 0 is approximated only with-

in about 70 of the equator even after 400 days. There is still

a strong tilt at the northern and southern walls to geostrophi-

cally balance the boundary jets present there (Fig. 5.35). The

profile at 3.20 of longitude (Fig. 5.31c) is even further from
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its steady state value (h ~ + 16.5 m at all latitudes), though

it copld be argued that this is approximated within 60 of the

equator.

The preceding discussion has touched on most of the

elements of the spin up process. A more integrated view is

presented in Figs. 5.32 to 5.35 which show the model variables

at 16, 40, ,200 and 400 days, respectively. In the upper layer,

the wind driving is much greater than the pressure forces and

the currents behave like U. The velocities at the equator are

eaetward; they turn to be poleward within 40 of the equator.

.By.16 days. the transports associated with these currents have

decreased the layer depth at the eastern end of the equator and

raised'it at the western end. Near both sides the gradient is

steep enough so that the lower layer flow there is counter to

the wind direction. Almost everywhere else, interfacial fric-

tion has dragged the currents in the same direction as those in

the upper layer. The exceptions are the meridional flow near

the equator and the eastern boundary. At the zonal boundaries

there is a narrow flow in the direction of the wind. It may be

shown (Moore 1968) that these coastal Kelvin modes are the n=0

infinite equatorial beta plane modes which were rejected be-

cause u and h became unbounded at infinity (cf., Section 4.2).

At 40 days (Fig. 5.33) the layer depth changes are

largely confined to the boundaries, an area with o of the

equator, and the eastern side. The Kelvin modes along the
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sFig. 5.32a u vectors at 16 days. Linear. East wind.
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eastern boundary have propagated to the zonal boundaries and

turned the corner. For example, the flow along the northern

boundary is now opposite to the wind at the eastern side. The

coastal flow further to the west has now turned the corner and

is headed toward the equator along the western boundary. In

order to accomplish this it first built up the sea surface.

height in the corner so the turn could be made geostrophically.

Further south the boundary flow remains poleward. At the east-

ern side some of the slowly propagating Rossby modes generated

from t = 0 have moved away from the boundary. This is clear

from the extra-equatorial flow pattern. Behind (i.e., to the

east of) this region of equatorward flow in the lower layer

(Fig. 5.33b) there is a region of poleward flow due to the re-

flection of the Kelvin modes which arrived at the eastern side

at day 20. Fig. 5.33d shows the transports at day 40. The

largest meridional transports are those associated with the

western boundary currents near the equator. These are now

larger than the zonal transports anywhere in the basin. There

is an area of eastward transport at the eastern side of the

equator. This is needed to increase the layer depth there

(Fig. 5.27). The lower layer flow is eastward at all longitudes

on the equator. This "undercurrent" is very narrow, with a

half-width of less than 50 km at the center of the basin. The

scale is determined frictionally. The undercurrent comes about

because the transport in the upper layer, which is due to the
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balance between the wind stress and the interfacial fricti b

term, is everywhere more westward than the Vertibally inte-

grate4 transport required at this stage'of the evolution.The

direct cause of the eastward flow at depth is the pressure

gradient force (Charney 1960). As we have mentioned before,

an important signature of the observed undercurrent not repro-

duced by a linear model is that the vertically integrated '

transport at the equator be large and eastward. The maximum

ul is less than .1 in sec -1 at day 40.

Fig. 5.34 shows the layer depth and transports at 200

days. The former is close to its final value near the equator

and near the zonal boundaries. Transports at the equator are

in the direction of the wind at almost all longitudes.

By 400 days (Fig. 5.35) the model ocean is close to its

final state everywhere in the basin with the exception of the

northwest and southwest corners. The upper layer is -given

primarily by the wind-drift-frictional solution (3.12) with.

the lower flow having an equal and opposite mass flux so that

the vertically integrated transport is zero. There is signifi-

cant downwelling at the northern and southern boundaries, the

western end of the equator, as well as the region near the

equator ( +±10) where vs is decreasing rapidly in magnitude.

There is significant upwelling along the equator, with the

maximum vertical velocity (1.5 x 10-3m sec- 1 ) in the entire

basin occurring at its eastern end. There are no exceptionally
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fast, boundary currents. The "undercurrent" maximum velocity is

only-.2,m sec-1 and its half-width is only .50. Both of these

numbers are determined primarily by the vertical eddy viscosity.

The principal feature omitted by this description is the S

net transport,evident in Fig. 5.35d. Such a circulation was

.predicted in Section 3.3. Recall that this net transport is in-

duced by the friction at the bottom of the lower active layer; 0

without this bottom friction the transport would be-zero every-

where. 'As,predicted, this circulation occurs in an equatorial

boundary 'layer which thickens from east to west. The transports S

are predominately zonal and increase toward the west. Transport

at -the equator is in the direction of the wind; there is a re-

turn transport at higher latitudes with a meridional "leakage" 0

of fluid toward the equator. The fluid circuit is closed by a

western boundary current. The layer .depth deviation, associated

iwiththis circulation is present in Fig. 5.35c, but is more S

readily seen in Fig, 5.31.

5.5 Nonlinear Response to a Uniform East Wind

In this section we consider the nonlinear response to

a uniform east wind. Except for the nonlinearity the governing

parameters are identical to those in the previous section.

Among the simple wind stress patterns this is the case which

is most closely related to the observed undercurrent; the wind

stress mimics the component of the wind which is predominant

in the Atlantic and Pacific Oceans.

I
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The energy plots (Figs. 5.36, 5.37) exhibit striking

differences from those for the linear response to the samie

forcing (Figs. 5.25, 5.26). As with the south wind cses the

inclusion of vertical momentum advections results in much

greater kinetic energy in the lower layer. -And, as w~ith the

south wind cases, the surface layer kinetic 'energy is less in

the nonlinear case,--here by a factor of 4. The upper layer

kinetic energy reaches a peak after three days, after -

which it falls off rapidly until day 40. During this initial

40 day period the potential energy and lower layer'kinetic

energy both rise to a peak. As we shall see, the flow that

evolves has surface currents directed opposite to the wihd'

stress. The loss of surface layer energy to the lower active

layer via vertical advections is not fully compensated'by the

transfer of energy from the winds to the ocean. -'

There is a strong contrast between the linear and non-

linear responses in the oscillations in the energy curves.

(These oscillations may be used as an index of the tendency to

"overshoot" the final adjusted state as the flow evolves.)

Consider, for example, the potential energy in the equatorial

region, Figs. 5.26, 5.37. The linear response shows three

marked peaks and troughs. After the third of these (day 240)

the potential energy is approximately constant. This final

value is close to the value at the troughs. The nonlinear

response also shows a peak at day 40 and a trough at day 80.
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The peak value is roughly 10% higher than that of the linear

case, but-the amplitude of the oscillation is less than 60% of

the linear one. The curve rises to a second peak at day 140

and remains close to this peak value thereafter. The addition

of nonlinear effects has damped the tendency to oscillate

about a final steady state. Furthermore, the nonlinear steady

state is one with potential energy close to the maximum value

the system attains in the course of its evolution, while the

linear steady state is close to a minimum.

We can gain some understanding of how these differences

arise by considering sections of layer depth h and zonal trans-

port u at the equator. Figs. 5.38 and 5.27 show h at the equa-

tor for the first 40 days in the nonlinear and linear cases re- 0

spectively. At 8 days the two sections are very similar; the

differences are only that the slope at the eastern side is

greaterin the linear case and there is an additional narrow 0

(ope grid point wide) boundary layer at the western wall in

-the-nonlinear case.- Through day 40 there is little difference

in the tWo'cases, except at the eastern side. Recall that over 0

-the first 20-days, the linear response built up a steeper height

gradient.than was needed to balance the wind stress. After

that the reflection of the first Kelvin mode to arrive from the S

western sIde caused the layer-depth to decrease (Fig. 5.27).

The nonlinear case is similar for the first 20 days, but the

eastern boundary response to the first signals arriving from S
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the western side is quite different. The slope of h remains

steep throughout the basin with a strong boundary layer forming

at the eastern wall. Within this narrow (1.50 wide) layer the

transports impinging on the eastern wall are turned to the

north and south. We might say that the nonlinear dynamics

respond to the incoming currents at the equator by forming an

inertial boundary layer whereas the linear response is a re-

flection. The Rossby modes which comprise the reflection of

the Kelvin mode in the linear theory all propagate too slowly

to the west to escape from the boundary in the face of the fast

eastward current that exists at the equator. Therefore, they are

trapped at the eastern wall on the equator and a boundary layer

forms. Fig. 5.39 shows that the layer depth profile evident at

day 40 persists thereafter, with its minimum becoming more pro-

nounced with time. After 160 days it varies little.,

Now consider the contrast between the linear (Fig. 5.28,

5.29) and nonlinear (Figs. 5.40, 5.41) transports at the equa-

tor. After one month has elapsed the transports in the nonlinear

case are almost an order of magnitude larger. ,By 16 days the

nonlinear transports are everywhere eastward, a feature which

persists thereafter. The linear transports eventually become

westward everywhere, but they take on the order of 200 days to

do so at all longitudes. The differences may be attributed to

the inclusion of relative vorticity in the nonlinear vorticity

balance (cf., Fofonoff & Mongomery 1955, Charney 1960; also,
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Chapter 1). The lower layer meridional velocities are equator-

ward near the equator. As a fluid parcel approaches the equator

it compensates the change in its planetary vorticity by acquir-

ing relative vorticity. The result is eastward flow at the S

equator, regardless of which hemisphere the parcel originated

in. The transport is reduced to zero at the walls by boundary

layers at both the eastern and western sides. Inertial effects )

apparently broaden the western boundary layer relative to the

linear case (compare Fig. 5.41 with Fig. 5.30). The linear

response has no transport boundary layer at the eastern side. 0

:As a final point about Figs. 5.40 and 5.41 we note that from

day 60 onward the transport in the interior increases down-

stream while at day 40 it decreases from west to east. The 0

latter behavior is more in accord with observations in the

Atlantic and Pacific. (See the discussion in Chapter 6.)

Thus far we have considered the solution at the equator

'only. Figs. 5.42a, b, c show profiles of h across the basin.

At -all longitudes the greatest difference from the corres-

ponding linbar sections (Figs. 5.31a, b, c) is the deep trough

within .56 6P.of the equator. This trough is symmetric about

the equator; h slopes downward from 5.60 N to 1.20N to geostro-

phically balance the westward current in the lower layer at

those latitudes. From 1.20 to 00 it slopes upward to geostro-

phically balance the undercurrent. By 160 days this trough is

close to its final shape. This time scale for adjustment agrees S
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with that given by the energies (Fig. 5.37) and the vertically

integrated transport at the equator (Fig. 5.41)., Within this

equatorial region there is some tendency for the adjustment to

occur soonest at the eastern side, particularly poleward of

about 30. Poleward of 5.60 the adjustment clearly proceeds

from east to west and is more rapid the nearer to the equator

one is. The time scales for this extra-equatorial process are

comparable to those for the linear case (Figs. 5.31a, b, c),

although h shows some influence from nonlinear effects at all

Slatitudes.

Figs. 5.43 and 5.44 show sections of the zonal transport

.,at the oentral longitude of the basin. Except for the regions

:near the equator and the northern and southern wallsIvery little

happens in the first 40 days. By day 80 the transport has

reached its final value within 20 of the equator. The adjusted

region extends to 5.60 by day 160, and continues to expand 0

meridionally as time goes on.

SFigs. 45a, b, c show the flow at 16 days. Comparison

with the linear case shows striking differences. The surface 0

-layer currents near the equator are weaker and more- zonally

oriented in the nonlinear case. This is a result of the fact

that parcels north of the equator tend to turn clockwise as

they move north and lose relative vorticity to make up for the

gain in planetary vorticity. (The flow south of the equator

shows similar behavior.) In the non-linear case the lower S
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layer already shows a strong eastward flow (speeds at the

equatortabove'.3m sec- 1) within 1.20 of the equator. The flow

to the west centered at ±30 tends to balance the eastward trans-

port of the undercurrent and is much stronger than in the linear

case. The layer depth h (Fig. 5.45c) already tends to bow up

at"the equator in order to geostrophically balance the under-

current.

By day 40 the effects of upwelling, vertical friction and

the pressure gradient have reduced the surface layer zonal ve-

locity (Fig. 5.46a) to near zero at the equator, except at the 0

sidewall boundaries. Vertical advection of eastward momentum

,.from the lower active layer is the most important factor in

bringing about this weak surface flow. The maximum undercurrent 0

velocity is now above .8m sec- 1 and occurs near the eastern

boundary (Fig. 5.46b), The boundary layer at the eastern terminus

'of the undercurrent shows strong poleward flow in both active 0

'layers, with lower layer flow being approximately geostrophic

(Figs. 5.46b,c,). This poleward flow turns eastward about 20 from

the equator. The western boundary transports are weaker than

those at the eastern side: flow in the surface layer is poleward,

while that in the lower layer is eguatorward, feeding the under-

current. The only large meridional transports are at the meri-

dional boundaries (Fig. 5.46d).

Figs. 5.47a,b,c,d show the fields after 398 days. At

this time the steady state solution is closely approximated S
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everywhere. in the basin with the exception of the northwest

and suthwest corners. Poleward of 50 the surface layer flow

is the wind drift solution given by the linear theory, (3.12).

The subswrface flow combines with this to give approximately

zero vertically integrated transport, consistent with (3.15).

Many:if the prominent features near the equator in the in-

terior are in good agreement with the y-z plane calculation

of Charney and Spiegel (1971). (See their Figs. lb and 2b.)

Specifically, in both our calculation and theirs the halfwidth

of the undercurrent is about 1i and'the velocity at the equator

averaged at all depths below 25m (i.e. the mean undercurrent

-1velocity.) is about .80m sec. . Both have eastward flow at the

surface; as noted above this is primarily due to-the strong

upwelling at the equator. Eastward flow at the surface with

easterly winds has been observed in the Pacific by Taft, et. al.

(1974). Both calculations show the strongest westward sub-

surface flow (on the order of .10m sec- 1. between 20 and 30,

The principal features of the flow-may be explained

qualitatively by considering the vorticity balance, as in

Fofonoff and Montgomery (1955). (Also see:Charey,t.1960 and

Charney and Spiegel, 1971). The easterly wind produces a

poleward Ekman drift in the surface layers. This requires up-

welling at the equator and therefore an equatorward flow at

depth. Parcels moving toward the equator lose planetary

vorticity. If we assume that total vorticity is approximately
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conserved these parcels must acquire relative vorticity as they

approach the equator resulting in an eastward flow there. A

calculation similar to that leading to (5.8) shows :hat-a :

pa~cel briginating at a latitude yo with approximately zero 0

relative vorticity and zero zonal velocity has an eastward ve-

locity of approximately ay /2 at the equator., For -undercurrent

velocities of .75 to 1.00 m sec y is between 2.50 and - '30

this is:consistent with our calculation. A similar line of

reasoning may be used to determine the position of the westward

currents. 'Fluid parcels in the undercurrent that reach the

eastern side are turned poleward in narrow boundary currents.

As they travel away from the equator they gain planetary vorti-

city. In order to approximately conserve their vorticity they 0

:must lose relative vorticity so that their poleward velocity must

decrease'(since in these currents relative vorticity'Z Vx ). In

particularf,if the vorticity of such a parcel is By0 it cannot

progress 'poleward beyond latitude yo and we conclude that this

-will 'be, the latitude of the currents required to complete fluid

circuits which include.the undercurrent.

The -argument in the preceding paragraph does not give

the complete story. It not only ignores the effects of both

upwelling and friction, which must become important near the

equator, but it provides no independent way of determining the

latitude y . Poleward of y the advection of planetary vorticity

in the lower layer is balanced by the vortex stretching term fw;
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.yo is the point where nonlinear terms enter the vorticity ba-

lance. In Section 2.2 we established (see (2.10) ff.) .that the

linear dynamics of "the Ekman layer break dQwn at a- latitude

yc.2o when inertial terms become important in -the Ekman layer.

The latitude- yo. must be the same order as yc since the layers

are coupled by vertical motions. These considerations-allow

us to find an inertial scaling for Eqs. (3.1), valid when the

Ekman layer Rossby number CE> /2, where cE=Ey 2(see (3.2)

for the definitions of e and y. For the parameter values in
-2

Table 1, eE .2 and y 102.) The arguments of Section 2.2

give the following rescalings in Eqs. (3.1)-:

) ., E & ~(5.13)

(Unlike the linear scaling (3.3) it is-necessary to take acoount

of the inettial dependence in the determination of q; and hence

of a.) We assume that the scale in the x direction is long

enough so that zonal variations may be neglected except in-the

pressure gradient term. (It is this term-which drives the under-

current. See Chapter 1.) It then follows from (5-.13)- that the

remaining variables may be written (cf.., Philander,1971, p. 239):

(V tA S S

- 'Eg Vt' V fF 1 ~-'(5.14)



246

Dropping primes and taking c' = 1 for simplicity the 'steady

state-version of (3.1) is

v -- 2-Ig [,- +U -= -,
V Y + tt V su~-yv - EE, ~ ':

V5 5 WE ~~Ls~v
4 - V I - \ U 0 V

(5.15a)

(5.15b)

(5.15c)

(5.15d)

7V4-t ~ (x)C = - -
Is. 3 -t-u~ p,)

(ul, t') V' 0z A

YDLV '

I&/,= 3/
-*g U~- (5. 15e)

(The highest-order x-dependent terms are exhibited on the right

hand sides -of these equations; they will be considered below.)

-We-have now obtained scales for all variables in the

equatorial.region that are determined in terms of the governing

parameters. In dimensional terms the meridional scale for the

\ S



equatorial circulation is 1.50. The scale for the surface

velocities and the subsurface zonal velocity is [T 4 /4 2 ]/5;
0 V

this is about. .5m.sec- 1 .  (We have again tiken KZ2v /RH).

The meridional sections of the layer depth that we cal-

culate closely resemble a similar section presented by Charney

and Spiegel. (Compare their Fig. 15 with our Fig. 5.42.)

These profiles agree qualitatively with the bowing of isotherms

which is usually observed beneath the undercurrent (e.g., Knauss

1966). Eq. (5.15d) requires that the pressure gradient be in

geostrophic balance with the lower layer zonal velocity. This

accounts for the meridional profile of the pressure gradient.

For example, at the center of the basin at .30N the term fu

and g'hy balance to within 10%. At 30N the balance is within

15%.

There are a number of differences between our calcula-

tion and that of Charney and Spiegel. These are largely attrib-

utable to the different simplifications in the model geometries.

Our model has no way of producing the downwelling region which

they find beneath the undercurrent maximum, (See their Fig. 2).

They argue that longitudinal variations may be neglected be-

cause the inertially determined cross stream scale 6 = u/8 is

so much smaller than the downstream scale Lx. (Therq is no in-

trinsic longitudinal scale; Lx is taken as the length of the

basin). A related argument leads to the conclusion that the

zonal pressure gradient exactly balances the wind stress
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divided by the layer depth. In our model longitudinal varia-

tions are permitted and the zonal.pressure gradient is free to

seek its own value. The most stringent condition for neglect-

ing the zonal dependences arises from (5.15c) and (5.15e); viz,

that

-1/2 3/5
L >y E (5.16)x E

This is about 1300 km for our parameter values. The condition

based on a simple comparison of length scales (i.e. Lx > c2/5

is inappropriate because the subsurface velocity components

have different scales. Charney and Spiegel's (1971) calcula-

tions failed to converge when the viscosity was reduced to

the point where the right hand side of (5.16) was on the order

of 2000 km. This suggests that in such a parameter range it is

necessary to include the effect of the zonal gradients in

limiting the growth of zonal momentum.

In our model there will be some zonal variation in the

interior regardless of the zonal length scale Lx because the

layer depth varies across the basin. This comes about because

the layer depth is a multiple of the pressure and zonal varia-

tion of the pressure must be allowed in order to drive the

undercurrent. The effects of the layer depth variation enter

8/5(5.15) at order 8/5 relative to the retained terms and henceE

do not substantially influence the dynamics. The more important

zonal variations are due to the terms on the right hand sides
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of (5.15c) and (5.15e). For example, because the undercurrent

velocity increases downstream the vertically integrated trans-

port increases downstream despite the decrease in the depth

of the layer.

Since the undercurrent transport increases downstream

the boundary current at the eastern end of the equator will be

stronger than that at the west. It also follows that the ver-

tically integrated meridional transport v will be equatorward

(and not zero). At a latitude where inertial terms are negli-

gible the vertically integrated zonal momentum equation is

approximately (with the scaling of Chapter 3)

Since T (x) < 6 and-y > 0 it follows that

(I+ ) k >o (5.17)

so that the pressure gradient overbalances the wind stress.

All of the features described in the preceding paragraph are

present in our numerical computation. From Fig. 5.47c it is

evident that a > 0 from about 50S to about 50 N. At the equator

(Fig. 5.39) a .3.

The preceding paragraph shows that p < 0 if u1 > 0.x x
1 1Similarly, pr < 0 if u > 0. That u is nonzero follows fromx x x

,the form taken by (5.15a) and 5.15c) at the equator. Subtract

the latter from the former to obtain

) "4 (5.18)
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Since geostrophy (5.15d) holds up to the equator and ul peaks

sharply at the equator, it follows that the undercurrent velo-

city must increase downstream. Considering only the left hand

sides (5.15a) says that the vertical advection term balances

the wind stress while (5.15c) demands that the same term balance

(x)
the zonal pressure gradient (--r ). Since the surface stress

and the pressure gradient are of opposite sign this is not

possible. So other terms must enter into the balance. In our

model the advection of zonal momentum comes in before the

vertical friction term for L less than y -2/5 10 4km with
x

our parameters. Charney and Spiegel (1971) failed to obtain

convergence for small values of v , perhaps because there was

no term available to balance the left hand side of (5.15c).

As we remarked earlier, the observational evidence is

that the undercurrent transport decreases downstream. In order

to reproduce this feature it appears to be necessary to include

some physical mechanism which allows the pressure gradient force

to be uncoupled from the vertical extent of the undercurrent.

One such possibility is the equatorial effect of the thermo-

haline circulation (Philander, 1973a). It appears that a

successful model of the undercurrent must be fully three

dimensional. Perhaps the most significant result'of our

undercurrent simulation concerns what did not happen; there

was no evidence at all of any hydrodynamic instabilities and

the current system remained stable throughout the course of
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its evolution. This is consistent with Philander's (1975)

stability analysis.

5.6 Nonlinear Response to a Uniform West Wind

In this section we consider the nonlinear response to

a uniform westerly wind stress of .465 dyn cm- 2 . The only

difference between this case and that of the previous section

is in the wind direction. Because of east-west asymmetries

in the ocean dynamics due to the beta effect the responses

in the two nonlinear cases are quite different. The linear

response to an east wind (Section 5.4) is easily interpreted

as a west wind response: simply change the sign of all variables

(h into -h, us into -us , etc.). The pattern of the response

is unchanged.

The energy graphs for this case (Figs. 5.48, 5.49) are

much more similar to the linear east wind energy graphs (Figs.

5.25, 5.26) than they are to the nonlinear ones (Figs. 5.36,

5.37). We will focus our attention on the curves for equatorial

region (5.60S to 5.60 N). The potential energy curve for the

present.case is almost identical to that for the linear case:

the amplitudes are approximately the same and the oscillations

have the same periods with an initial peak at about day 40.

In Section 5.4 these oscillations were explained in terms of

the reflections of Rossby and Kelvin waves at the meridional

boundaries. The same phenomena appear to be present in this

nonlinear case. The kinetic energy curves behave differently.



KE LAYERS *KE LAYERI

ENERCIES FOR X- 0 0 TO 28 6 Y--!5 0 TO 150 T* 0 0 TO
N2EIR N4CH3 3OX44STR DfLJ* 5 E-I E-8,88-81* 001 VIND*I 5,0) EVERYVERE

397 89 DAYS_
07/23/18

Energies from 150S to 150N. Nonlinear.

252

S 00E-03

4 00E-03

3 00E-03

2. OOE-03!.00E-03

1 OE-03

0.0

West wind.Fig. 5,48



1. 75E-03

1.50E-03

I 25F-03

I OfE-03

7 50C-04

S OOE-04

2 50-04

0.0

KE LAYERS *KE LAYERI

EII IES5 FC x- 0 0 TO 28.6 Y- -5 6 TO 5 6 .T- 0 0 TO
N2EIR N 4Ci3 30X44TR LTR*. E-.E -8,toBI* 00 1ii.5,0) EVERY sFE

5 49 Energies from 5.6 0 S to 5.6 0 N. Nonlinear. Wes

253

397 ,0 DAYS
27/!3/

t wind.vgb, 0 0fio



254

The surface layer has less, and the lower layer more kinetic

energy than in the linear case. The former is about the same

as the east wind nonlinear case but the latter is less by

almost a factor of 5. After about 80 days the kinetic energy

curves show little oscillation compared with the linear case.

Fig. 5.50 shows sections of the layer depth across the

equator for the first 40 days. As was true of the east wind

nonlinear response (Fig. 5.38), these sections are very similar

to the linear zonal wind response (Fig.5.27) except near the

boundaries. In particular the effects of the Kelvin mode

moving in from the western boundary are evident. Fig. 5.51

shows that by day 80 h at the equator is close to its final

value; closer than the previous zonal wind cases (Figs. 5.26, 5.28,

5.39) at the same time. The slope of h in the final profile

is nearer to the linear result than was the east wind h pro-

file. The boundary layer at the western side is 2.50 wide while

that at the east is only one grid point (0.30) wide.

Fig, 5.52 shows that at the equator u becomes close to

its final interior value within 8 days. There is some oscilla-

tion about this final value of about 75 m sec2 until about

day 160 (Fig.5.53). The nonlinear east wind case (Figs 5.40

2 -1
5.41) takes about 24 days to reach a value of 75 m2 sec and

2 -1
about 40 days to approximate its final value of 125 m sec .

Figs. 5.55 and 5.56 show the early and late evolution, re-

spectively, of meridional sections of the zonal transport u.



T- 7 96 DAYS -*T IS 92 DAYS T- 23 87 DAYS
oT- 31 83 DAYS -T- 39 79 DAYS
LAYER Cf-PTH FC Y- 0 0 X- 0 0 TO F28 6 .T- 7 % TO 9 79 DAYS
NEIR N4C3 30X44STR CEL- 5 E*-I E-8.B8-BI- 001 VIr-*I 5,0 EVEPNVEPE

Sections of h along the equator to day 40.
West wind.

Nonlinear.

255

4 00E-01

3 00E-01

2 OCf-01

I OOE -O0

00

-1 OOE-01

-2 00(E-01

Fig. 5.50

07/23/18 5



3.00 E-01

2 00E-01

I 00E-01

00

-I OOE-01

-2. OGE-01

"0.0 .

T* 79 58 DAYS
4*- 318 31 DAYS
LAYER.QEPTH
NEIR R4CH3 30X4

-T- ,159 16 DAYS
,T- 397 89 DAYS

FCR Y-. 0,0 O TO 28 6
45TR DELf .S5 EI.-8.88-Bl-.001

,TI 238.73 DAYS

.T- 79 58 TO 39789 DAYS
VIND-I 5,0) EVZRYWEIRE

Fig. 5.51 Sections of h along the equator to day 398.
West wind.

Nonlinear.

256

07/23/18



8 00E-01

6 OO(-01L!

4 00E-01 I

2 00E-01

00

0.0 5. 10. s15. 20.

T* .7 96 DAYS *T- 15 92 DAYS ,T- 23 87 DAYS
oT* 31 83*DAYS -T- 39 79.DAYS
U TRASPCT FOR Y- 00 X- 0 0 TO 286 ,1 7 96 TO 39.79 CAYS
N EIR'N40l 30x441SR DELT-.5 E*I E-8,BB-8I'- 001 V ,IIOi.5,0) EVERYWER

Fig. 5.52 Sections of u along the equator to day 40. Nonlinear.
West wind.

257

07/23/18



258

I. OOE 00

8 00E-O0

600E-01

4 00E-01

2.00E-01

0.0

T- 79 58 DAYS ,T* 15I 16 DAYS
oT* 318 31 DAYS T- 397 89 DAYS
U TRANSPORT FOR Y- 0.0 X- 0 0 0 TO 8.6
EIR N4CH3 30X44STR DELT-.5 E-I E-8,BB-BI- 001

,T- 238 73 DAYS

,T- 79 58 0 397 89 DAYS
VI-NDt 5,0) EVERYv'fRE

Fig. 5.53 Sections of u along the equator to day 398.
West wind.

07/25/1!

Nonlinear.



259

They should be compared with the similar figures for the

east wind case, Figs. 5.43 and 5.44. In the west wind case,

the eastward transport at the equator is quickly established.

Westward currents will be required in the steady state to

return to the west the water that has travelled to the eastern

side at the equator. These currents, centered at 20 S and 20N,

take longer to become established. This is reasonable, since

in the early stages there is a net transport of water from

west to east in order to establish a pressure gradient opposite

to the wind. For the same reason the westward flowing currents

are set up before the eastward flowing undercurrent when the

wind is from the east.

Figs. 54a,b,c show meridional sections of h at various

longitudes. As with all previous cases adjustment "propagates"

from east to west and occurs sooner near the equator than extra-

equatorially.

Figs. 5.57a, b, c show the flow fields. at 16 days. Sur-

face flow at the equator is in the direction of the wind and

is limited by the interfacial friction between the two active

layers. Extra-equatorially the surface-currents are wind

drift currents, resulting in convergence at the equator. The

downwelling at the equator due to this convergence transports

eastward momentum downwards so that the lower layer -also has

eastward currents at the equator. Unlike the east wind case,

in this case the surface flow is faster than the flow at depth.
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The meridional components of the lower layer velocities near

the equator are poleward so that-the vertically integrated

meridional transport is small. Contours of the layer depth

h at 16 days reveal a pattern that is familiar from the other

zonal wind cases. Most of the variation from the [initial state

occurs near the equator and along the eastern and zonal bound-

aries. Since the more equatorially confined Rossby waves

propagate most rapidly the sloping region at the eastern side

is broadest near the equator. At that side the poleward

travellihg coastal Kelvin waves have already reached the north-

ern and southern walls and turned the corners there. The

layer depths at the western ends of the zonal walls have de-

creased in order to geostrophically balance the eastward

currents along these boundaries. The coastal Kelvin waves have

westward group velocity; they have turned the corners-at the

western end of the zonal boundaries. At the equator h bows up

in order to geostrophically balance the zonal current in the

lower layer. This is similar to the east wind pattern (Fig,5.47c).

At the western end of the equator the currents are poleward in

both layers in order to supply water to the eastward jet along

the equator. At the eastern end the surface layer flow-is still

equatorial (in the wind drift direction) but the currents in the

lower layer are poleward so that the vertically integrated trans-

port at the eastern side is poleward.
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The circulation at 40 days is not very different than

it was at 16 days. The gradients of h are generally greater,

especially at the eastern end of the equator (cf., Fig. 5.50).

The major difference from the earlier time is that the lower

layer currents now have a westward component poleward of 18

from the equator. The vertically integrated transport at those

latitudes is now westward (Fig. 5.58).

By day 398 (Figs. 5.59a, b, c, d) a steady state is

closely approximated everywhere in the model basin with the

exception of the northwest and southwest corners. The surface

layer currents are very much as they were at day 16; they are

largely determined by the wind drift interfacial friction

solution (3.12), except that inertial effects become important

within a few degrees of the equator (cf. Section 5.5). In the

lower layer there is an eastward jet at the equator with a half

width of 10. The water transported eastward at the equator in

both layers is returned to the west in lower layer currents

extending from about 10 to about 40 on both sides pf the

equator. There is very strong downwelling at the eastern end

of the equator in order to transport the upper layer water into

the lower layer so that it may return to the west. Both the

euqatorial jet and the westward countercurrents broaden and

strengthen from east to west so that the zonal transports at

the equator decrease downstream. (The exception to this is a

feature of the western boundary layer. The zonal currents in
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both layers reach a maximum at 2.50 from the western wall.

There is a secondary maximum 70 from.the wall; east of.this point

the amplitude of the currents decreases mOnotonitally.)

The arguments centered on Eq, (5.18) may be applied to the

west wind case to deduce that the lower layer velocity-will de-

crease from west to east and that the factor a in (5.17) will

be positive; i.e., the zonal pressure gradient willbe more nega-

tive than is required to balance the wind stress. A final note-

worthy.feature of the flow generated in responsq to a west wind

is the absence of any instability during the course of its evo-

lution.

5.7 Nonlinear Response to a Uniform Southeast Wind

In this case the initial state is taken to be the steady

state circulation which came about in response to a uniform

easterly wind. This state was described in Section 5.5.;* (To be

precise the initial state is taken as the state whi h resulted

after 384 days; equatorward of 100 it is indistinguishable from

the one at day 398 depicted in Fig.5.47.) At t=O a southerly wind

component is added to the prevailing easterly component so that

-each wind component is .465 dynes cm- 2 . This case is'intended to

be a very crude analogue of the southeast monsoon that occurs

in the Atlantic in the late Spring. The linear response to a

southeast wind is simply a superposition of the linear reponses

to a southwind and to an east wind. The nonlinear response is

not related to the responses to a south and an east wind in such



276

a simple way, though resemblances are to be expected.

Figs.5.60 and 5.61 show the energies. They suggest that

even after 400 days the model ocean has not reached a truly

steady state, even in the equatorial region. (Other model out-

put indicates that the increase in PE and KE1 at these later

times is due to a strengthening of the current at 4.50 N. See

Fig.5.65.) After day 80 the potential and upper layer kinetic

energy do .not vary greatly. The. lower layer kinetic energy

takes about twice as long to become approximately constant. In

the equatorial region only the upper layer kinetic energy 'is

substantially different from its value at t = 0.

Fig. 5.62 is a plot of contours of ul at the equator with

time as the ordinate. This plot is similar to Fig,5.13, which

showed a regular progression of phase for the wave-like instabil-

i-ty that arose in that south wind case. In the present case, in

the time period from about day 25 to about day 175 there is

some apparent phase propagation to the west. However, none of the

li ns of constant amplitude cross the basin, and after day 175

all such east to west movement ceases. The pattern of evolution

resembies the way in which the mixed mode in the linear south

wind case (Section 5.2) contracts toward the western boundary

with time (due to its Bessel function behavior; cf. (4.27)). We

will return to this point after considering the early evolution

of the flow.

The two most prominent developments in the first 40 days
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(Figs.5.63 and 5.64) are the southward shift of the undercurrent

and the development of an eastward current at between 30N and

50 N. The southward shifting of the undercurrent is already

evident at 8 days when the maximum zonal transpore is at 0.30S.

.At this time the surface winds near the equator are westward.

This upwind shifting of the undercurrent in the presence of

meridional winds has been found in earlier theoretical investiga-

tion (Robinson, 1966; Charney and Spiegel, 1971) and has been

.observed in the world's oceans (e.g., Taft and Knauss, 1967).

An eastward flowing current centered at 30N was the most promi-

nent feature of the early response to a south wind, Section 5.3.

The surface flow at 16 days (Fig. 5.63a) strongly resem-

bles that for the south wind case at 16 days (Fig. 5.16a). In the

present~case the eastward jet is a bit further northward (3.80 N

instead of 30N) and is weaker; the region of northward flow also

starts further north (0.60S instead of 20S). The east wind in-

fluene'e Mshows most clearly in the poleward wind drift currents

south of 10 S. The lower layer currents (Fig. 5.63b) show effects

from both the south wind (cf.,Fig. 5.16b) and the east wind (cf.,

Fig. 5.47b displaced sou-th). The region of eastward flow centered

at about .50S is broader than is the case with either of the

simpler wind systems. The flow at about 40 shows eastward

currents induced by the southerly wind component appearing at

the western side of the basin while the eastern side still shows

the westward flow which returns the transport of the undercurrent
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to the west. Comparison of Fig. 5.63c with Fig.5.47d shows how

the transports have been altered after 16 days.

Fig.5.64a shows that at day 40 the eastward jet in the

surface layer, now at 40N, is about twice as fast as it was at

day 16. The other major change in the surface flow over this

time period is the waviness from about 00 to 11S. Note the

area of eastward flow in the eastern side of the basin. The

lower layer flow (Fig.5.64b) shows greater changes. The east-

ward currents at 40N are stronger and have greater longitudinal

extent, so that the flow from 00 to 50N resembles the.south wind

case (Fig.5.18b) more closely. The layer depth~still resembles

its state at t = 0 (Fig. 5.47c) far more than the south wind re-

sponse (Fig. 5.18c).

The most importantfeature to appear in the lower layer

is the wavey pattern which causes the undercurrent to meander

about its mean latitude of about 0.60 S. These meander persist

thereafter; they are clearly evident at 398 days (Figs. 5.65,

5.66) though their form is somewhat different. A careful look

at day 16 (Fig. 5.63b or 5.63c) shows that the waviness is al-

ready present at the western side of the basin. The disturbance

propagates from west to east in the sense that it appears earlier

at the western side. Fig. 5.62 showed that any phase propagation

is westward, but to speak of phase propagation is misleading.

That figure indicates that the meander pattern migrates westward

over the first 175 days and then remains stationary. (This is
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borne out by the more defined model results). The result might

be described as a standing wave of zero frequency. The structure

of these meanders is most clearly revealed by the contours of

the zonal and meridional transports at day 398 shown in Figs.

5.66a and b. They have their largest amplitude between 00 and

20S; with the amplitude decreasing from west to east. The wave-

length of the meanders is about 650 km and shows a slight in-

crease from west .to east. We offer the interpretation that

these meanders are due to a mode generated at the western bound-

ary in response to the south wind. Such a mode is the riQnlinear

analogue of the mixed mode that is generated when the..initial

state is a resting one. It plays the role of a barotropic in-

stability in the sense of acting to reduce the horizontal shear

of the zonal currents.

In addition to these meanders the other prominent features

of the flow in the equatorial region at day 398 is the eastward

jet in both layers centered at 41N and the undercurrent with a

mean position at about 0.70S. Elsewhere between .±50.the lower

layer currents are generally westward. Fig. 5.67 shows meridion--

al sections of the zonal transport at the-central loqngitude of

the basin. Note that the equatorial flow quickly reaches its

final value and that unlike the southwind case (Fig.5.24) there

is no oscillation in time. Except that the jet is slightly

further north and its total transport less than in the south

wind case, the mean flow between the equator and about 50N
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is very similar in the two cases. The arguments presented in

Section 5.3 to explain the dynamics of the flow in that case

will serve here as well. South of the equator the two cases

are quite different due to the presence of the undercurrent at

about lOS and an additional region of westward transport to the

south of it.

The flow pattern between 30S and 30 N that we find at

day 398 resembles the similar calculation made by Charney and

Spiegel (1971). (See their Figs. 9 and 10; they only show

the region from 30S to 30N.) Specifically, the zonal component

of surface flow is westward everywhere, the undercurrent is

found at about 0.50 S, and zonal flow at depth is westward

elseiThere. Both the undercurrent maximum and the westward

maximum in their calculation are smaller than ours. Of course,

they cannot have the meanders since there is no zonal variation

in their model. Flow in the meridional plane is similar in the

,two calculations, with the division between northward and south-

ward surface flow occurring at the latitude of the undercurrent.

Fig. 565c shows contours of the layer depth at 398 days.

The trough .at 50N is less pronounced than in the south wind

case (Fig. 5.21c); on the whole the topography still has strong

resemblances to the initial state; that is, the east wind re-

sponse (Fig..5.47c). Figs. 5.68a, b, c show the-evolution

of meridional sections of h at various longitudes; they should

be compared with the corresponding sections for the south and

east wind cases, Figs. 5.23 and 5.42, respectively. The final
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meridional sections (especially at the center of the basin,

Fig. 5.68b) clearly resemble the south wind sections more close-

ly. The equatorial region adjusts more quickly than higher

latitudes, reaching a final state within 200 days. Also,. ad-

justment appears to occur most rapidly at the eastern side and

proceed westward, though the evidence is less conclusive here

than in the previous cases.

Our final remarks about this case concern its possible

applicability to the undercurrent meanders observed in the

Atlantic during GATE (Diing et. al. 1975). We don't wish to

claim that the results presented here bear sufficient resemblance

to the observations to be offered as an explanation, although

together with those for the south wind they do leave open the

possibility that a calculation with a more realistic wind

stress distribution might do so. However, we wish to point

out that a limited sampling of the model output, comparable in

scope to the observations reported in Diing et. al., might lead

one to misinterpret the initial stages of the evo'lution of the

model circulation. Specifically, data like that'shown in Fig.

5.62 might be interpreted as a westward propagating waves at

the equator. For example, the variations at x = 80 over the

first two months of the simulation could be interpreted as

waves with periods of 19 days for the ul component and 11 days

for the vs component. Though we do feel that in view of the

available data the most plausible explanation for the under-
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current meanders is that they are a manifestation of an insta-

bility, the possibility that they are part of the adjustment

to changes irr the winds remains apen. The argument of Duing

et. al. (1975) that the winds were steady during GATE does not

speak to the point that variations which occurred prior to GATE

could be responsible. If such effects were felt via a reflec-

tion from, say, the coast of Brazil, the responsible wind shifts

cou'ld'have occurred four months or more earlier than the ob-

served meanders.
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6 Summary and Conclusions

Purpose. The purpose of this work was-to studythe

response of a bounded equatorial ocean to an.imposed wind

stress. .It.is an extension of previous investigations (espe-

cially Charney and Spiegel 1971-) to include zonal variation

of the oceanic currents as well as time dependence.. The in-

tent is to experiment with a laboratory-like model to gain

some insight into equatorial dynamics. We did not attempt

to achieve a close mimicry of the real ocean. The linear

dynamics were explored rather thoroughly by analytic methods

and verified against numerical calculations. The fully non-

linear response was calculated numerically. Simple analytic

models were invoked to explain some of the phenomena observed

in the computations.

The Physical Model. The physical model was formulated

in Chapter 2. The model is time dependent and treats fully

variations in both the zonal and meridional directions. The

ocean basin is rectangular, with a zonal extent of 28.60 of

longitude and meridional extent from 150 S to 15 0 N. This size

is sufficient to allow the equatorial dynamics to be indepen-

dent of the effects of the zonal boundaries and to allow an

interior circulation distinct from the effects of the meri-

dional boundaries. The vertical structure consists of two

layers above the thermocline with the same constant density

(Fig. 2.2). The ocean below the thermocline is taken to be
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of a higher constant density and to be approximately at rest.

The upper of the two active layers is a constant depth sur-

face layer which is acted upon directly by the wind stress.

The lower'active layer is not directly affected by the wind.

Its depth is variable, with the variations being dynamically

determined. The two layers communicate via the vertical

velocity at their interface, as well as frictionally. Ex-

tra-equatorially, this structure is equivalent to a surface

Ekman layer and an interior in which the currents are in

geostrophic balance with the pressure. The pressure is pro-

portional to the layer depth because of the assumption of

hydrostaticity. To justify the assumption of a surface

boundary layer near the equator, it is argued that inertial

effects will prevent the surface Ekman layer from deepening

without limit as the equator is approached from higher lati-

tudes'. The wind driving is sufficiently strong (.5 dynes

-2
cm ) and the vertical and horizontal eddy viscosities suf-

2 -1 5 2 -1ficiently'small (15 cm sec and 6x10 cm sec , respectively)

so that inertial effects are important in both layers in the

vicinity of the equator.

The layer configuration described above allows for

the vertical inhomogeneity that results from the wind stress

being felt -directly by the ocean at the surface but only in-

directly below (e.g., via boundary layer pumping). If the

wind stress has no curl, the more usual layered model with
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each layer having a different density (e.g., Charney 1955)

admits a steady state solution in which each interface

tilts in such a way that there is no motion in any of the

layers. The present model has the simplest vertical stryc-

ture that permits a steady state undercurrent.

Numerical Methods. The methods used in the numeri-

cal solution of the model are explained in Appendix B., A

variable size grid mesh is employed to allow increased

resolution at the sidewalls and the equator. The finite

difference scheme is second order in time and fourth order

in space. A form which conserves first and second moments

(e.g., energy) for a large class of finite difference apT

proximations is derived. A new treatment of gravity wave

terms is developed which prevents the contamination of the

calculation by two-grid point noise. As a result, the

fields of horizontal divergence (vertical velocity) are

quite smooth. An analogue of this technique is developed

to provide additional smoothing of small-scale noise with-

out damping the larger scales appreciably or lowerinc the,

order of accuracy of the overall scheme. This permits long-

time integrations to be carried out without introducing any

explicit viscous dissipation.

Steady State Analytic Results. The presentation of

the analytic results begins in Chapter 3. It is shown that

the linear model is equivalent to one in which only the ver-
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tically integrated transports and the surface boundary layer

tranrsports are calculated. These boundary layer transports

'may be identified as the Ekman transports extra-equatorially;

at the equator they are in the direction of the wind stress.

The linear steady state solution for the vertically integrat-

ed transport is shown to be the same as that of the Stommel

(1948) -model. If the bottom friction parameter (i.e., the

stress'at the bottom of the lower active layer) is nonzero,

there is additional vertically integrated transport in a

frictional boundary layer centered on the equator. This

.layer'thickens from east to west. The interior transports

°are predominantly zonal; a boundary current is required at

the'western side to close the fluid circuit. For a wind

stress which is independent of longitude at the equator and

whose .meridional variation is negligible on the boundary.

layer scale (0(30 km) for a vertical eddy viscosity of 15

2 -1cm sec ) we have the following results. A meridional wind

stress produces a zonal transport which is zero at the equa-

Stor and in the direction of the wind drift (e.g., to the

right of the wind in the northern hemisphere) off the equa-

.tor. This interior circulation is connected by a weak meri-

dional flow across the equator directed opposite to the wind.

A zonal wind stress produces a net transport in the direction

of the-wind at the equator. This result shows that the lin-

-ear.model cannot produce a vertically integrated transport in
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the same Edirection as that for the observed undercurrent. A

qualitative comparison is made with the linear modek.of. Phil-

ander (1971) for a homogeneous ocean continuous in the yer-

tical.

Time Dependent Analytic Methods and Results. The

time dependent solution for the surface boundary layer velo-

city is readily obtained. This component of the modelKwhich

is just the Ekman layer transport away.from the equator,,
-i

spins up (i.e., reaches a value within e-1 of its.steady

-1
state value) on the frictional timescale of Y , whereyi

is a vertical Ekman number (Eq. 3.2) based on the coefficient

of friction between the two active model layers. his,ime

is about 20 days for a vertical eddy viscosity- of; 15 cm2

-l
sec .- There is a second time-scale, referred to as thkeset-

up time. This is essentially the time it takes for the ~ea

surface to set up in response to the wind stress. It involves

the eVolution in time of the vertically integrated mass

transports and the layer -depth. For: times less than one-

half" year, frictional effects .are negligible .in this. process.

Calculating this evolution is equivalent to finding the for-

ced response of the inviscid.shallow water equations in a

bounded equatorial basin.

The'solution of this latter problem-is ,the content of

Chapter 4 and constitutes the major analytic contribution of

this thesis.; Ourlsolution makes itpossible to calculate
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the response to an arbitrary wind stress (and heat source).

The method is similar to finding the Green's function for

-the shallow water equations oin an equatorial beta plane with

meridional boundaries. Meridional structure is expressed as

an eigenfunction expansion and then the response of an un-

bounded ocean to a step function in time and the zonal direc-

tion is calculated. Boundary effects (e.g., reflections)-

are taken account of by finding the free modes which must be

added to the unbounded response to satisfy the boundary con-

ditions. Some general characteristics of the solution may

be stated. Forcings with time scales much longer than two

days tend to excite planetary (Rossby and Kelvin) modes ra-

ther than inertia-gravity waves. Consider now a wind stress

which is- a step function in time. The unbounded response to

a zonal wind stress which is smooth in y will generally have

zonal currents and layer depths which are equatorially con-

fined and grow linearly in time. Extra-equatorially, the

response consists primarily of a steady meridional current

which-approaches the wind drift current as the latitude in-

creases. The non-inertia-gravity wave part of the unbounded

response to an x-independent meridional wind stress consists

of a steady zonal current and layer depth variation. At the

equator, the pressure force due to the sea surface setup bal-

ances the wind stress; far from the equator, it:is balanced

by the, vertical component -of- the Coriolis force due to the
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zonal velocity.

The more equatorially confined a Wave is,.'the "larger

its group velocity. Consequently, equatorial regions will

evolve more rapidly than extra-equatorial ones. The response

to an incident motion at the eastern boundary is less eqda-

torially confined than the original motion. It asymptotbs

to a coastally-confined motion (e.g., a coastal Kelvin wave)

at large latitudes. A western boundary response kill have

the same latitudinal extent as the incident motion with its

amplitude tending to be greater near the equator. Most 6f

the response is boundary trapped resulting in a strong w6st-

-ern boundary current; this is similar to midlatitude oceans.

However, part of the equatorial response is in the form of

equatorial Kelvin waves which carry energy away from the

boundary rapidly.

Results of Numerical Experiments. The numerical-ex-

periments are described in Chapter 5. These consisted of the

linear and nonlinear responses to a uniform easterly wind and

to a uniform southerly wind, and the nonlinear response to a

uniform westerly wind. In all these cases the wind was turn-

ed on at t=0 and. was steady thereafter. In the final experi-

ment the nonlinear steady state response to an eaSterly wind

was taken as the. initial state. The wind was then changed to

be from the southeast in a crude imitation of the monsoon

over the Atlantic. The linear cases were also -studied analyt-
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ically by using the results of the preceding chapters.

There was close agreement between the numerical apd analytic

results. The results of these experiments may be summarized

under the following headings:

(a) Spin up Times. All cases showed a frictional

spin up time--the time for the transfer of wind energyto

the upper layer to reach its final value--of about twenty

days.. In all cases the setup time (the time for the large-

scale pressure gradients to become established) is shortest

at the equator and on the order of one year at a latitude of

100. The equatorial time varies greatly from case to case:

it is about 100 days for the linear south wind case, 250

days for the linear east wind and nonlinear west wind, 140

days for the nonlinear east wind case. The nonlinear south

wind case reaches an energy maximum at 150 days after which

instabilities become prominent: an oscillating state with a

steady mean is reached after 250 days. The southeast wind

case attains its final state in approximately 200 days. Note

that the inclusion of nonlinear effects may either lengthen

or shorten the setup time, depending on the case. All

of these times will vary (linearly) with the longitudinal

ext nt of the basin. The setup times for the world's equa-

torial oceans are thus comparable to the time-scale of the

major wind stress variations associated with the monsoons.

This implies that steady state models are not entirely appro-
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priate for studies of the equatorial ocean circulation.

(b) Early Nonlinearity. Using a (local) Rossby num-

ber as a measure, the currents in the surface layer near

(or on) the equator are nonlinear within'three or four aays.

Within two weeks, nonlinear distottions of the flow field in

both layers are evident. Vertical velocities are large'near

the equator so that vertical advections become importafn

within the frictional time of twenty days. While nonlinear-

ity destroys the linear symmetry properties associated with

meridional winds, these are preserved for zonal winds.

(c) Adjustment to a Final State. The south wind lin-

ear case adjusts monotonically to a steady state 'The ad-

justed state "propagates" in from the eastern boundary'while

all the required transfer of mass between hemispheres occurs

in the western boundary current. The east wind lihear'case

does not' adjust mononically: the sea surface slope 'rover-

shoots" its final value. Both eastward propagating Kelvin

waves generated at the western boundary and westward propa-

gating Rossby waves generated at the eastern boundary parti-

cipate actively in the spin up process. Extra-equatorially,

however, the adjusted state is again attained at the eastern

side first. The energy in the model bcean behaves like a

damped oscillation, taking three 80-day cycles to closely ap-

proach a steady state. The nonlinear adjustments to zonal

winds have many qualitative similarities to the linear case,
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,especially when the wind is from the.west. For an easterly

wind, the nonlinear terms restrain the tendency.- to overshoot

the.final steady state; the energy oscillations are effec-

tively damped after onp and a half cycles. The, nonlinear

cases have much more kinetic energy in the lower layer, a

difference due primarily to vertical advection of momentum.

Extra-equatorially, theevolution is approximately linear.

The nonlinear response to a south wind is also very

much like its linear counterpart far from the equator. Near

the equator it is entirely different. A current system with

strong horizontal shears develops within two weeks, its most

prominent feature being an eastward jet present in both lay-

ers at 20N to 30N (its position shifts to the north in time).

Flow south of this is westward until about 1S, where the

lower layer flow becomes eastward. An instability which

draws its energy primarily from the lower layer kinetic ener-

gy.develops after about 100 days. It appears first near the

western side of the basin and extends across the basin by

150 days. 'The southeast wind case also develops a jet-like

"countercurrent" at about 40N. In this case, a wavelike form

is apparent across the length of the basin within one month

after the southerly wind component is added (see next para-

graph). This form appears near the western side first; it

propagates (in the phase sense) slowly westward, reaching a

steady (not oscillatory) state after 200 days.
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(d) Stability. The zonal wind cases showed' no evi-

dence of instability (e.g., meanders of the undercurrent)

whatsoever. This result is consistent with-the stability

analysis of Philander (1975). As already noted, the cur-

rent system associated with a south wind is barotropically

unstable. The instability has a regular wavelike form in

the zonal direction with a wavelength of 950 km, a period

of twenty-nine days and a westward phase speed of 32.5 km/

day (38 cm/sec). The interpretation of the wavelike pat-

tern which arises in the southeast wind case is less

straightforward. The linear response to a southerly wind

includes a wavelike mixed mode reflection from -the western

boundary extending far into the basin. A modified form of

this mode is present in the nonlinear response to both the

south and southeast winds. In the latter case, this mode

first narrows its wavelength as it squeezes toward the

western boundary (this is very much like the Bessel func-

tion behavior of the linear case, Section 5.2). It then

reaches a steady state in which the wavelength of this

feature varies from about 500 km near the western boundary

to about 900 km in the eastern half of the basin. It ap-

pears that the mode initially generated at the western side

is able to maintain its amplitude across the basin rather

than only at the western side by absorbing energy from the

mean flow (see below).
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* (e) Steady State Circulation Patterns. Except for

the equatorial boundary layer due to bottom friction the

linear cases have no vertically integrated mass transport.

-The uppef layer flow is driven by the wind and limited by

friction equatorially and Coriolis forces extra-equatori-

ally. The lower layer flow provides the compensating mass

flux in the opposite direction. In the east wind case, the

meridional scale of the undercurrent is determined by the

interfacial friction. For the most part, the fluid circuit

which contains the undercurrent closes in the (x,z) plane:

fluid upwells out of the undercurrent at the eastern side,

- traVels westward in the surface layer and returns to the

undercbtrent in a western downwelling layer.

For the nonlinear response to an east wind the half-

width of 'the 'undercurrent (100 kmn) is inertially determined.

In the vicinity of the equator there is a net equatorward

mass flux in the interior of the basin. As a consequence,

the vertically integrated transport increases downstream,

the pressure force due to the sea surface tilt overbalances

the wind stress (by about one-third), and the poleward

transports at the eastern end of the basin are larger than

the: equatorward transports at the western end. It was ar-

gued that some zonal variation in the interior was required.

A scaling argument suggests that if inertial effects domi-

nate and zonal variations are negligible, then at the equa-
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tial wavelike zonal variations. Much of the flow pattern

looks like a superposition of the south and east wind cases.

The flow is essentially linear poleward of 5*. From just

north of the equator to 50N, the surface layer currents are

predominantly northward; at 3.5 there is strong eastward

flow in the surface layer 660 ms-1); the flow in the lower

layer is weakly to the east. -This case, together with the

south wind case, suggests that some of the transport of the

North Equatorial Countercurrent may be attributable to the

meridional winds rather than to the wind stress curl. The

lower layer flow further south is like the south wind case,

except for the undercurrent. The undercurrent meanders as

it crosses the basin; the wavelength of the meanders in-

creasing from west to east, as.described above. -Its lati-

tude varies from about 0.30 S to about 0.90S; its mean posi-

tion has been displaced upwind.

(f) Western Boundary Currents. Linear inviscid

theory predicts that the western boundary current will be,

initially stronger for a south wind, -but that the current

will increase at a faster rate in the west wind case. This

qualitative statement carries over to,-the nlonlinear re-

sponses. These also exhibit a large eddy at their northern

edge, similar to the "great whorl" observed in the Somali

Current.
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Further Theoretical and Observational Implicatiog.

The result summarized in.the last paragraph suggdsts that,

with'the onset of the Southwest Monsoon, it is the meridion-

al wind along the coast of Africa that is initially respon-

sible for .the reversal of the Somali Current (M. Cox 1970).

However, propagation from the interior of the Indian Ocean

,(the mechanism proposed by Lighthill 1969) is probably re-

sponsible-for the maintenance of the current. The same

conclusion has been reached by a number of recent studies

(M. Cox, private communication). To go beyond this quali-

tative statement will require a much more elaborate inves-

tigation. One would need to consider how the current equi-

librates as a function of nonlinear and (lateral and verti-

cal) frictional effects, as well as of the longitudinal ex-

tent of the coastal winds. A much finer mesh than was em-

ployed in.this work is required to adequately resolve the

details of the coastal currents (this is predictable from

the scale analysis in Chapter 4 and was confirmed by numer-

ical-experiment with a finer-grid model. This experiment

also.confirmed that the other features of the flow fields

described-in this work were adequately resolved.). The

.,resolution required will be determined by the value of la-

teral viscosity used. Also, it has been suggested that the

boundary Conditions employed (no slip or free slip) strongly

affect the results (M. Cox, private communication). Wehope
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tor the.zonal surface stress and pressure gradient at depth

would both be balanced by vertical advect-ion:of zonal mo-

mentum. Since the pressure and stress terms-are of oppo-

site sign and the vertical advection term is negative-every-

where above the core of-the undercurrent, this is not'pos-

sible. and additional terms must become important. For i-

reasonable values of the coefficients of eddy viscosity-and

realistic basin sizes, zonal variations will enter beforpe

additional friction terms. - , 4 . :

.The transport needed to'return the mass flux of the

undercurrent to the west all takes place within.50 of'the

equator. Upwelling at the equator is strong enoughito make

the surface layer currents eastward in the interiorof ,the

-1basin.t The maximum undercurrent speed is 1 msec ;the..-.

-i-surface maximum .is .3 msec

The response to a west wind has many parallels with

the east wind case. In the vicinity of the equator there

is a net poleward mass flux in the interior of the basih-.

As-a consequence, the transport at the equator decreases-

downstream, the sea surface slope overbalances the wind-

stress (though only slightly) and the-eq.atorward .trans-

ports in the western boundary currents are larger than the

poleward transports at the eastern end. The. east to.west

return transport takes place within 50 of the equator; as

with the east wind, it is primarily in the lower layer.
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Currents in both layers are-eastward at the equator. The

maximum speeds are .8 msec-l1 in the surface layer and .5

msec. -in the lower layer. Both zonal wind cases-become

-kLinear poleward of 5.

S. The nonlinear response to a south wind behaves'lih-

-early south of about 2.50S and north of 50N. In between,

the-flow is unstable, as described above--it does not reach

.a steady state. The zonal mean in this region closely re-

sembles the flow calculated by Charney and Spiegel (1971,

Figs:.,ll and 12). It may be characterized as follows.

Theretis'upwelling south of about 30 N, particularly south

of tx hequator. The surface flow is northwestward'at the

southern edge of this region and turns clockwise, becotming

due.east in.a jet-like flow at 30 N. There is a strong

shear zone north of 30 N. There is a strong downwelling in

..the jet. As one moves south,- the lower layer flow turns

clockwise- from due east at the jet; westward flow is strong-

est just ndrth of the equator.' Further south, the flow

again.becomes eastward. A simple argument based on conser-

-vationsofvorticity and energy is offered to explain this

flow pattern.. The latitude of the jet scales like T 'and

the ~vlocity in the jet like T2 / where T is the magnitude

of.the wind stress (Eq. 5.8 ff.).

. : As-noted in the-previous subsection, the southeast

wind case does reach a steady state, but one with substan-
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to study some of these issues in the near future.

The model results have a number-of other-applica-

tion to the Indian Ocean. As pointed out by Charney and

Spiegel (1971), the jet produced by the south wind thas been

observed in the Indian Ocean (Taft and-Knauss 1967). The

model.calculation suggests that the current system is'un-

stable.. This instability. may account for the absence of

steady currents.at the.equator in the Indian Ocean during

the Southwest Monsoon (Taft and Knauss 1967). The model

calculation shows that eastward winds at theequatorresult

in eastward flow at all depths above the thermocline, hile

meridional winds (north cr south) produce westward flow.

(These are nonlinear effects),. The data collected by'.R.

Knox .at Gan in 1973 and 1974 (private communication) shows

such a correlation between the winds and the currents.-,"

The undercurrent simulation resembles the real under-

current in many important respects, as well as sharing many

features with the homogeneous ocean model.of Charney and

Spiegel (1971) (e.g., both models tend to form a cusp in the

zonal velocity at the equator). Permitting zonal variations

and not constraining the pressure force :to balance-the zonal

wind stress, made for some important differences. The pres-

sure gradient was larger in our model, making it more in

line with observational evidence (Montgomery and Palmen 1940;
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see Charney 1960, p. 305)., The terms uu and vu are of.
x y

comparable magnitude. Previous theoretical studies of the

undercurrent in homogeneous oceans have neglected the form-

er, term by arguing that the zonal length scale is much

greater than the meridional one. This argument. also re-

quires that u and v be scaled by the same magnitude. How-

ever, in the undercurrent u >> v causing this argument to

break down. (Observational accounts of the momentum balance

in the undercurrent (Knauss 1966; Taft, et al.,19.74).has

also neglected downstream advections, but this is due pri-

marily to. a lack of data.)

, The model results show an increase in transport down-

stream while observations, while not conclusive, show that

the undercurrent transports are less in the eastern half of

the ocean than the western half for both the Pacific and.

the Atlantic. This suggests that a homogeneous model is

inadequate to describe this feature. Philander (1973) simu-

lated.it by including the effects of the thermohaline cir-

culation in his model. Observational evidence does not en-

able one to determine with certainty if the loss of fluid

from the undercurrent occurs in the meridional plane or the

vertical plane (via downwelling at the base of the under-

current).

Our model results agree with the finding of Phil-

ander's (1975) stability study, that the undercurrent it-
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self is stable but that the entire equatorial current-coun-

tercurrent system may be unstable--in particular, becaush

of the large shears between the westward flow near the equa-

tor and the eastward flow in the North Equatorial Counter-

current. The southeast wind case had an undercurrent which

meandered in space but was steady in time. In the course

of reaching this steady state, the undercurrent exhibited

time variations not unlike the GATE data (cf., Section-5.7).

For example, the undercurrent velocity 80 from the western

wall appears to oscillate with a nineteen-day period. It

is thus possible that the meanders observed during GATE

could be due to changes in the winds. We offer the general

observational caution that, because of the relativel rapid

propagation at the equator of fronts due to boundary reflec-

tions, one should be careful in interpreting observations

as waves. Moreover, our calculations have shown that non-

linear effects -quickly become important at the equator,

limiting the range of applicability of linear wave concepts.



320

REFERENCES

Arakawa, A,, 1966: Computational design for long-term numer-

ical integration of the equations of fluid motion: Two-

dimensional incompressible flow, Part I, J. Comput. Phys.

1, 119-143.

Blandford, R. 1966: Mixed Gravity-Possby waves in the ocean.

Dee Sea Res., 13, 941-960.

Cane, M., 1974: Forced motions in a baroclinic equatorial

ocean. GFD Notes, Woods Hole Oceanogr. Inst., Ref. No.

74-63,

Cane, M. and E. Sarachik; 1975: Forced response of an

equatorial baroclinic ocean (to appear).

Charney, J. G., 1955: The generation of ocean currents by

wind. J. Mar. Res., 14, 477-498.

Charney, J. G., 1960: Non-linear theory of a wind-driven

homogeneous layer near the equator. Deep Sea Res., 6,

303-310.

Charney, J. G. and S. Spiegel, 1971: Structure of wind driven

equatorial currents in homogeneous oceans. J. Phys.

Oceanogr., 1, 149-160.



321

Duing, W., P. Hisard, E. Katz, J. Krauss, J. Meincke,

K. Moroshkin, G. Philander, A..Rybnikov, and K. Voigt, 1975:

Meanders and long waves in the Equatorial Atlantic.

(Submitted to Nature.)

Fofonoff, N. P. and R. B. Montgomery, 1955: The equatorial

undercurrent in the light of the vorticity equation.

Tellus, 7, 518-521.

Gill, A. E., 1971: The equatorial current in a homogeneous

ocean. Deep Sea Res., 18, 421-431.

Gill, A. E., 1972: Models of Equatorial Currents. Proc.

Symp. on Numerical Models of Ocean Circulation, Nat. Acad.

Sci.

Israeli, M. and D. Gottlieb, 1974: On the stability of the N

cycle scheme of Lorenz. Mon. Wea. Rev., 102, 254-256.-

Kalnay de Rivas, E., 1972: On the use of nonuniform grids in

finite-difference equations. J. Comput. Phys., 10, 202-

210.

Kamekovich, V. M., 1967: On the coefficients of eddy diffusion

and eddy viscosity in large-scale oceanic and atmospheric

motions. Izv. Acad. Sci., USSR Atmos. Oceanic Phys. Eng.

Trans. 3, 1326-1333.



322

Kirwan, A. D., 1969: Formulation of constitutive equations

for large-scale turbulent mixing. J. Geo. Res., 74, 6953-

6959.

Knauss, J. A., 1966: Further measurements and observations on

the.Cromwell Current. J. Mar. Res., 24, 205-240.

Kreiss, H. 0. and J. Oliger, 1972: Comparison of accurate

methods for the integration of hyperbolic equations.

Tellus, 24, 199-215.

Kreiss, H. 0. and J. Oliger, 1973: Methods for the approxi-

mate solution of time dependent problems. Garp Publication

Series No. 10, W.M.O.

Leetmaa, A., 1973: The response of the Somali Current at

20S to the southwest monsoon of 1971. Deep Sea Res., 20,

397-400.

Lighthill, M. J., 1969: Dynamic response of the Indian

Ocean to onset of the southwest monsoon. Phil. Trans. Roy.

Soc., A 265, 45-92.

Lilly, D.,'1965: On the computational stability of numerical

solutions of time dependent non-linear geophysical fluid

dynamics problems, Mon. Wea. Rev. 93, 11-26.

Lindzen, R., 1967: Planetary waves on beta-planes. Mon.

Wea. Rev., 95, 441-451.



323

Longuet-Higgins M.S., 1968: ~~he eigenfunctions of Laplace's

Tidal Equation over a sphere. Phil. Trans. Roy. Soc., A

262, 511-607.

Matsuno, T., 1966: Quasi geostrophic motions in the equatorial

area. J. Met. Soc. Japan, 44, 25-43.

McKee, W. D., 1973: The wind--driven equatorial circulation in

a homogeneous ocean. Deep Sea Res., 20, -889-899.

Mesinger, F., 1972: A method for construction of second-order

accuracy difference schemes permitting no false two-grid

interval wave in the height field. Tellus, XXV, 444-457.

Montgomery, R. B. and Palmen, E., 1940: Contribution to the

question of the Equatorial Counter Current. J. Mar.-Res.,

3, 112-133.

Moore, D., 1968: Planetary-gravity waves in an equatorial

ocean. Ph.D. Thesis, Harvard University.

Moore, D., 1974: Free equatorial waves. GFD Notes, Woods

Hole Oceanogr. Inst., Ref. No. 74-63.

O'Brien, J. J. and H. E. Hurlbut, 1974: An equatorial jet in

the Indian Ocean, Theory. Science, 184, 1075-1077.

Orszag, S. and M. Israeli, 1974: Numerical simulation of vis-

cous incompressible flows, in Annual Review of Fluid

Mechanics, Vol. 6, Palo Alto, Annual Reviews.

Pedlosky, J., 1965: A note on the western intensification of

the oceanic circulation. J. Mar. Res., 23, 207--210.



324

Pedlosky, J., 1968: An overlooked aspect of the wind-driven

ocean circulation. J. Fluid Mech., 32, 809-821.

Philander, S. G. HI., 1971: The equatorial dynamics of a shallow

homogeneous ocean. Geophys. Fluid Dyn., 2, 219-245.

Philander, S. G. H., 1973a: The equatorial thermocline. 'Deep

Sea Res., 20, 69-86.

Philander,. S. G. H., 1973b: Equatorial undercurrent:

measurements and theories. Rev. Geophys., 11, 513-570.

Philander, S. G. H. 1975: Instabilities of equatorial currents.

(To appear.)

Robinson, A. R., 1960: The general thermal circulation in the

equatorial regions. Deep Sea Res., 6, 311-317.

Robinson, A. R., 1966: An investigation into the wind as the

cause of the Equatorial Undercurrent. J. Mar. Res., 24,

179-204.

Stommel, H., 1948: The westward intensification of wind-driven

currents. Trans. Amer. Geophys. Union, 29, 202-206.

Taft, B. A. and J. A. Knauss, 1967: The Equatorial Under-

current of the Indian Ocean as observed by the Lusiad

expedition. Bull. Scripps Inst. Oceanogr., 9.



325

Taft, B., B. Hickey, C. Wunsch and D. Baker, 1974: The

Cromwell Current at 1500W. Deep Sea Res., 21, 403-430.

Veronis, G., 1963b: On the approximations involved in trans-

forming the equations of motion from a spherical to the

s-Plane, part I. Barotropic systems, J.-Mar. Res., 21,

110-124.

Veronis, G., 1963b: On the approximations. involved in trans-

forming the equations of motion from a spherical to the

s-Plane, part II. Baroclinic systems, J. Mar. Res., 21,

199-204.

Veronis, G. and H. Stommel, 1956: The action of variable

wind stresses on a stratified ocean, J. Mar. Res., 15,

43-75.

Williams, R. and C. Gibson, 1974: Direct measurement of tur-

bulence in the Pacific Equatorial Undercurrent. J. Phys.

Oceanogr., 4, 104-108.

Wyrtki, K., 1973: An equatorial jet in the Indian Ocean,

Science, 181, 262-264.

Yoshida, K., 1959: A theory of the Cromwell current and of

the equatorial upwelling, J. Oceanogr. Soc. Japan, 15,

154-170.



326
Appendix A Eddy Viscosity

We follow Kamenkovich (1967) and Kirwan (1969) in de-

riving a vector invariant form for the eddy viscosity for an

anisotropic media. Let:

where Rij is the Reynolds stress, u! is the turbulent fluc-
1

tuation, and ui the mean velocity and brackets denote averaging.

We assume a linear relation between the Reynolds stress tensor

and the strain tensor:

In general K is a fourth order tensor with 81 components.

Making use of the symmetry of Rij and DK1 and of incompressi-

bility and contracting R.. reduces the number to 29; these 29

must satisfy 6 relations determined by (Al). Assuming isotro-

py in the surface defined by, say, the first two coordinates

and using incompressibility reduces Kijkl. to a form which

dependson three independent coefficients v , the horizontal

eddy viscosity, v , the vertical eddy coefficient, and v2, a

third coefficient for which there is no observational data. We

will later take it to be zero. The requirement that the vis-

cous terms always be dissipative yields the inequalities:
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3
_ : A

Using the notation in the main body of the paper (cf.

especially Eq. 2.7), we have:
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The viscous forces which appear in the momentum equa-

tions are the divergences of the Reynolds stresses. They are:
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The model uses formulas (A2) and (A3) with = -V*u
3z

and v 2 = 0 to compute FH. Note that for Cartesian coordinates:

H = v (H ) v vv
H H 2-
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Appendix B Numerical Methods

Since no numerical method gives a perfect simulation,

the scheme should be chosen with the particular problem in

mind. In the present case, the chief requirements.'are: (i)

to be able to run for long time periods (order of years) with-

out numerical instability in order that the ocean may reach a

steady state; (ii) to accurately simulate responses over short

time periods (weeks or months) to varying winds; (iii) to

resolve small scale features at the lateral boundaries and the

equator without introducing excessive computational or viscous

smoothing. Generally speaking, it is difficult to satisfy (i)

on the one hand and (ii) and (iii) on the other.

B.1 Variable Grid

Many of the phenomena of interest in the equatorial

ocean have spacial scales which are orders of magnitude less

than the scale of the ocean basin. In order to be able to

resolve these features we introduce a grid which is "stretched"

so that there are more points per unit per length at the

lateral boundaries and the equator. At the same time, we

reserve the option of not resolving boundary layers when we

are not interested in their structure and there is reason to

believe that this will not increase the error in the interior.

Following a suggestion of M. Israeli (private communication)

we stretch with a function of the form:



330

on the interval [xo, xN]. Here x is the location of the ith

internal or boundary layer, 8i is its thickness and a is a

weighting factor. As before, x* is the physical space coordi-

nate and x is the grid coordinate; the points xt are chosen to

give equal intervals Ax = g(xt) - y(xt ).
J3 3-

The function f(x) should be antisymmetric, non-decreas-

ing and rapidly approach its asymptotic value f(w); f is taken

as 'arctangent in the present implementation. These properties

guarantee that x is a monotonic function of x*, that many grid

points will lie near x. and that internal layers will be sym-

metrically resolved. -The formula (Bl) while more complicated

than those proposed by Kdlnay de Rivas (1972), is more flexi-

ble; the parameters may be adjusted to an arbitrary physical

situation.

B.2 Time Differencing

The leap frog scheme is not used because it is unstable

with any damping term. While explicit dissipation can be

handled by lagging the dissipation terms in time, correctly

set boundary conditions will introduce some damping and hence

a slow instability. Compensating for this requires extraordi-

narily complicated methods (cf., Kreiss and Oliger, 1973;

Oliger, 1974). Instead, we choose methods that are not desta-

bilized by dissipative terms. The Adams-Bashforth scheme
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(Lilly 1965), which is-also second order, has the opposite

problem. It is slightly unstable for pure advection and we

wish to make model run with a dissipation which is too small,

as experience has shown, to stabilize the computation. We

elect to use the N-cycle scheme of Lorenz (1971) with N = 4.

This scheme has good stability properties for the parameter

range of interest to us (see Appendix D) and is second order

in time (fourth order for linear equations). It has the addi-

tional virtue of being particularly easy to apply on a computer

--in fact, it is more readily described algorithmically than

by an equation, For the equation du/dt = f(u,t), where u and

f may be vectors, the scheme may be described as follows:

Let the timestep be 6t and let At = N6t. An auxiliary

storage vector z the same size as u is required. The timesteps

are counted by an index n which is initially zero and the

vector u is set to its initial value. The steps o,f the scheme

are

(i) Let ! MV , Wo

(ii) Let --J -l /At) 'A/N-k)

(iii) Let L= b; [a'"I

(iv) Let [ _ LCn 2"

(v) Let - +

For a linear system of equations du/dt = Au, with A a

constant matrix, the effect of this algorithm after N repeti-

tions of these steps is to approximate u(to + At) by
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-- thatp is,' by the fir3t N + 1 terns of the Taylor series.

Also, at any intermediate point (K less than N) the linear-

term is correct; i.e.,

For non-linear systems the first of these properties is

not maintained for N greater than 2; in addition to the Taylor

series terms there are terms depending on second or higher

derivatives of f(u). For N = 4 the scheme is second order (cf.,

Lorenz 1971, Eq. 18).

In earlier runs, before some of the devices described

in the next sections were introduced, it was necessary to use

the Euler backward or Matsuno scheme (Lilly 1965) which strong-

ly damps high frequency waves. This scheme is given by

It is first order in time and requires two computations of f

per timestep.

B.3 Spatial Differencing: Finite Difference Approximations

The superiority of fourth order finite difference



schemes as compared with second order schemes is now firmly

established (see the review by Orszag and Israeli (1974), the

monograph by Kreiss and Oliger (1972)). For a given accuracy

fourth-order schemes require sufficiently -fewer points to -

offset their additional computational complexity. For example,

to attain 5 percent accuracy in the solution of a linear-wave

equation the fourth order scheme we use requires about ten

points per wave while a centered second order scheme requires

twenty. The computational labor is nowhere near twice as

great.

Recall that the stretched coordinates were introduced

via metric factors and that grid points are at equally spaced

intervals in the "computational space" coordinate (Eqs, (2.7),

(2.8) and (Bl); i.e.,

Therefore -it is sufficient to .find a finite difference approx-

imation Dxf to Df/x when f is given at equally spaced points

Define the operators

D" 4"-

Y
333
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The fourth order centered difference approximation is used Dx

). 333

This formula obviously cannot be used at the points on

and immediately adjacent to the boundaries. There we use

_+ - X)

Similar formulas are used at the other end points

j = N - 1 and = N. These boundary approximations are third

order. The fourth order finite difference formulas that we

tried at the boundaries proved to be comiputationally unstable.

Kreiss and Oliger (1973, Chapter 18) note that fourth order

schemes are more likely than lower order schemes to be desta-

bilizqd by the boundary conditions, especially in two dimen-

sional geometries. They also indicate that one can often

sacrifice an order of accuracy at the boundary without affect-

ing the overall convergence estimates. Experiments indicate
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that this is the case iF our mddel. It is certainly plausi-

ble that these boundary approximations will not affect the

accuracy of the interior solution when (as is our situation)

the flow is either externally driven or the- result of insta-

bilities generated away from the boundaries.

The horizontal eddy viscosity terms and the treatment

of gravity waves we use (Section B.5) both require that

second derivatives be computed. For these we use the approx-

imations:

-. 7L- ,,~)(tj g(
Ix 2 s X N-1

12 (Ix +I

/7, aAx

x-rC'x).BC

-ZF _ _ ~XCrb~) )
/2f

B.4 Spatial Differencing: Conservation Form

A number of investigators (Orszag and Israeli 1974,

Kreiss and Oliger 1972, 1973) have claimed that the greater

accuracy of higher order finite difference schemes make it

possible to avoid the so-called non-linear or aliasing insta-

'C~k4)

(B6c)

xF
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bility while dispensing with the need for semi-cnservati've

schemes (e.g., Arakawa 1966). The latter have the disadvan-

tages of being computationally complex without being more

accu'rate. The argument is that the aliasing instabi'l-itiel

will only appear in inadequately resolved simulations, leading

to'the conclusion that simulations using energy-conserving

schemes with the same resolution become unstable.

Our experience, as well as that of others (E. Rivas,

private tommunication; also see Crowley 1968) suggests that,

in fact, calculations with energy-conserving schemes will

continue to give good results in cases where non-conserving

schemes become unstable. This difference may well arise from

the kind of modelling assumptions which are usually made in

simulating geophysical phenomena. Consider first the con-

trasting case of numerical simulation of some laboratory

situation. All the physics of the real situation is included

in the numerical model.

By "adequate resolution" one means that the grid

spacing is small enough to resolve all scales of motion which

are not strongly damped by (molecular) viscous forces; that is,

the Reynolds number based on the grid scale is sufficiently

small. In modelling geophysical phenomena, the physics of the

real world is often drastically simplified (as is the case

with our model). The resort to eddy viscosities is an admis-

sion that all of the physics has not been included--the effects

of smaller scales of motion are being parameterized. It is

not economically feasible to adequately resolve all scales
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down to a size which wlltbe damped by a small dissipation

term. One is making the tacit assumption that the.computation

resolves all scales of interest--all scales which are impor-

tant.to the phenomena under study. The physics does pot

dictate a need for greater resolution and one wishes to avoid

expending the extra computer time required by a fine grid

merely to prevent the growth of spurious small-scale computa-

tional modes. As a practical matter then, it becomes more

efficient to solve the problem of aliasing instability by

using energy-conserving schemes, despite the extra computing

time per point that they require.

The advantages of energy-conserving methods are more

marked when a variable grid size is employed. If the dissipa-

tion term is the usual constant eddy viscosity coefficient

multiplied by the LaplacLan of the velocity component, then a

value of the coefficient sufficient to damp the shortest waves

where the mesh is fine may be insufficient where it is coarse.

(Using a larger value would presumably introduce too much

damping where the mesh is fine.) It is then necessary to

resort to some means other than simple viscosity to prevent

non linear instability. One possibility is to employ a more

complicated form for the dissipation; for example, an eddy

coefficient which varies with the velocity sheay., We do not

do this because large shears are associated with the under-

current and such a form would introduce too much lateral

friction there if it were large enough .to control non linear

instabilities elsewhere.
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Instead, we prefer to stabilize the computation by using

a form'for the finite difference equations based on'conserva-

tion notions. We proceed from the following analysis of the

nature of nonlinear instabilities which derives from Kreiss

and Oliger (1972).

The phenomenon called nonlinear instability can be

demonstrated with a linear'equation with non-constant coeffi-

cients. Consider the model advection equation

4- 0 /7)

with cyclic boundary conditions q(l + x) = q(x), and U(l + x)=

u(x). Clearly, q is bounded for all time. Let variables be

defined at the points

and approximate the spatial derivative in (B7) by the usual

second order centered difference Do (B4):

Let X_ XNj, XN+ = X. so that D is defined everywhere.

Now suppose there is some point X such that

Then

2a* 1c va
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so that .q at both points will grow expo.nentially with a growth

rate lu u+ 1 /2/2Ax. On the other hand, if u is bounded away

from zero, then it follows from (B9) that the weighted sum
N-1 -1 2. u Cqj does not change in time. (Use has been made of

the identity

The last equality holding because of the cyclic boundary

conditions.)

Now obtain the nonlinear case by letting q - u and

taking (BI0) as initial conditions. Then from (B9):

so that uv_1 and uv+2 will remain zero for all time while u

and uV+1 wil both grow in magnitude. If a situation approxi-

mately like (B10) should arise in the course of a numerical

integration "non-linear instability" will result. As we have

seen, the problem arises from the existence ocf a stagnation

point in the flow field -a point where u = 0. It follows from

the original differential equation (B7) that q is: constant, along

characteristics dx/dt = u(x). As time increases, more and

more characteristics will crowd into the neighborhood of the

point where u =0 (and ux < 0) so that a steep gradient of q

will build up there. The finite difference approximation,
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unable to resolve this gradient, allows q to flow into this

neighborhood but not out of it. The same problem will arise

with higher order schemes.

One way to help the flow pass this stagnation points'is

to add some dissipation to the right hand side of q;-e.g.,

As noted above, a value of A large enough to eliminate

the "non-linear" instability will damp the solution too much

elsewhere. Instead, we seek an approximation to the advective

term which will prevent this artificial accumulation in the

N-1
neighborhood of a zero in the flow field. If E qj cannot

j=0

grow in time such an accumulation will be impossible.

To bring the model problem closer to the problem at

hand, consider (B7) together with the shallow water equations

h× - o (8I2)

L~t UUthVo (C3)
again with cyclic boundary conditions. The following conser-

vation statements are true for the system (B7), (B12), (B13):

¢ ['h - tx
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We wish to find a finite difference approximation which pre-

serves these relations at least for n = 1 and n = 2.

Now any centered difference approximation d to the
x

derivative may be written

K

For any f and g we have the relation

the last equality following from the cyclic boundary conditions.

From (Bl), (B15), and (B16) we have the identities

We proceed to use these identities to obtain the finite

difference analogues of the conservation statements {B14) for

any centered difference approximation, Write the original

equations in the form

nt -"g, f'.,& L~ ~
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and then replace the derivatives by the finite difference

operator:

-Cx( k Lij)

It is e&sy to see that these forms overcome the stagnation

problem: even with conditions (BlO) and, say, h a constant,

the points v - 1 and v + 2 remain coupled to points v and v + 1.

This finite difference form advects q through the neighborhood

of the point where u = 0.

By using (B17) one may readily verify that with the

equations in the form (B18)

jt Z'i j
~t.k 3 1/z

bz:1'(5 @7)63_d_ 2tj

a--
ac (~i fj~

k i~j
jd, h," ~jthjid- LAS +u;,

4- 012- 1 - --IL * d

CB 18)

(B I ?
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where all sums are from j = 0 to j = N - 1. Thus, Eqs. (Bl8)

are in a form which will be free from non-linear instability

for any operator d which satisfies the identities (B17). In
x

fact, the difference operator D defined by (B5) does not
x

satisfy these identities because we have non-cyclic boundary

conditions so that the final equalities in Eqs.(Bll) and (B16)

do not hold. For any higher order scheme these analogues of

will leave extra terms at the boundaries. In such a case,

the finite difference forms on the right hand side of (B18)

are merely "almost conservative". Experience indicates that

this is sufficient to prevent nonlinear instabilities. These

forms will still prevent a false accumulation at stagnation

points and since the deviation from conservation is small, the

scheme can be made dissipative by introducing a vezy small

amount of (viscous) dissipation. .

The generalization of these ideas to more dimensions is

straightforward. It is evident from the finite difference

form of the full model equations, which are given in Appendix

C. The use of a stretched grid is a very minor complication.

For example, if (B7) were replaced by one with a metric factor

in the advective term, viz.,

then the appropriate sums in (B19) would be the "area" weighted
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ones; e.g., Emxq j instead of Zqj, so that the right hand

sides of these equations would be as before.

B.5 Gravity Wave Terms

In practice, the use of conservation forms did succeed

in eliminating the explosive growth due to "nonlinear"

instability. The analysis given above does admit the possibil-

ity of short wavelength computational (i.e., non-physical)

modes growing to noticeable size; this was observed to happen

in our computation. These modes did not grow so large as to

prevent the calculation from continuing, but their presence

obviously meant that it was inaccurate. The use of conserva-

tion forms allowed an inaccurate calculation to continue (cf.,

the discussion at the beginning of the previous'section).

The troublesome computational modes were traced to the

gravity wave terms in the equations. Many numerical modelers

have experienced a similar problem, particularly in the form

of the so-called checkerboard instability (e.g., Mesinger 1972).

There is an irony in the numerical gravity waves being the

source of small-scale disturbances when in the physical system

they are the mechanism that adjusts the flow to a more slowly

varying (e.g., geostrophic) balance by propagating such dis-

turbances rapidly away. Mesinger (1972) has pointed out that

the usual numerical treatment of gravity waves fails to couple

the grid points properly. This accounts for the disparity

between their physical and numerical roles.

Consider the simplest system of linear equations
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describing gravity waves -

Put these equations in finite difference form by replacing x

derivatives with the second order centered difference operator

Do (B4) and calculating time derivatives with the Euler back-

ward scheme (B3):

so that the equation

relates values of h at successive timesteps. This is analagous

to the wave equation

Suppose that hn has the form of a two grid point wave:

:? = cos (7Tx/ax) -.

The right hand side of the continuous equation (B22) gives a

-2
local smoothing of order (Ax) .-2 More correctly, (B22) allows

the wave to propagate the height extrema away with a speed

(gH)1/ 2 . The finite difference equation (B21) becomes
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so.that there is no smoothing at all. That is, the wave does

not propagate and the disturbance remains. Presumably, what-

ever acted as the source of this disturbance will continue to

'pump energy .into it--in phase since it is not propagating--

and its amplitude will increase. The finite difference

approximation has suppressed the ability of these gravity

.waves to adjust the flow. The approximation to the second

derivative in (B22) connects only every other point because it

has .been made as two successive approximations to the first

-derivative. Any scheme which treats the equations in their

original form (B20) will have essentially the same shortcoming;

the particular scheme given here was chosen as the most

straightforward illustration. For instance, the centered

fourth-order scheme (B5a) will introduce a weak coupling

between successive points--one which is an order of magnitude

weaker than it should be, and, more importantly, has the wrong

sign.

To. remedy the difficulty, the finite difference scheme

must capture the "smoothing" effect of the second derivative

in the wave equation, (B22). For example, (B21) could be used

with the D2 operator replaced by DID , an approximation to the

second derivative which uses three adjacent points, viz.
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or A

The latter equation shows explicitly how the original finite

difference equation has been altered. We have, in effect,

added a smoothing operator gH(At)2 {DD_ - D2 } to.the equation,

Since both D+D_ and D2 are second order approximations to the+- O

second derivative, their difference is 0(Ax2) so that the

change from the original equation is the same order as the

error in that equation. Both the original and modified'equa-

tions are formally the same order of accuracy -in space and

hence, from that point of view, equally correct. The latter

is a better approximation because it alone preserves an impor-

tant property of the original physical system.

It is not difficult to generalize this scheme. Consider

the model equations

where H is a constant--for example, the mean value of h. We

will time march with the N cycle scheme and approximate first

and second derivatives by 6 x .and 6 , respectively. Steps
(iii) and(iv) of the N-cyce scheme (B2) are replaced bxx

(iii) and (iv) of the N-cycle scheme (B2) are replaced by
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(iii) L- 6

(iv) ( 2)

Where
A- O if nE 0 mod N

w_ otherwise

The difference from the usual N cycle scheme is the

2
termwith the smoothing operator 6xx x5. If the operatorsx

6 and are both accurate to order m then both 6 and 6. xx x xx

are mth order approximations to d2/dx 2 and their difference

is order m. Hence, the equations with the added term are for-

mally of the same order as before.

In order to get a clearer picture of the effect of the

smoothing *operator, consider a function of the form exp (2nix/

KAx), so that K = 2, 3, 4,.. corresponds to 2, 3, 4... grid

point waves. For second order centered differences, 6x = Do'

5xx = DD

For fourth order centered differences (as are used in our

model)
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(4- ' LT 11

For convenience define

so that S2 (k) and S4 (k) are the smoothing factors for a k grid

point wave for the second and fourth order schemes, respec-

tively. Both are always positive and are a maximum for k = 2.

To see their behavior for small k, we construct the following

table; for comparison purposes we also include 1/4 D+D_

exp(27rix/kAx); i.e., the usual approximation to the second

derivative of the viscous term:

k= 2 3 4 5 6

S 2 (k ) ,  4.00, 2.25 1.00 0.48 0.25

S4 (k) 5.33- 2.06 0.55 0.17. 0.06

1/4D+D_ i1.00 0.75 0.50 Q.34. 0.2,5

S2 (k)/S 2 (2) 1.00 0.56 0.25 0.12 0.06

S4(k)/S 4 (2) 1.00 0.39 0.10 i 0.03 0.01

The damping effect of the smoothing operators falls off

extremely rapidly with increasing wavelength--much faster than

the usual form of viscous dissipation. That of the higher

order operator falls off the most rapidly--its effect on the

four grid point wave is an order of magnitude smaller than on
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the two grid point, For longer waves (larger k), S4 falls off

like k-6 and S2 like k-4 while the second derivative approxi-

mation goes like k-2 . These smoothing operators--particularly

the higher-order one that we use have the nice property of

effecting only the very shortest scales, scales which are

insufficiently resolved by the grid anyway.

Thus far, we have employed smoothing operators in a way

which gives an improved approximation to certain terms in the

equations and thereby retains an important property of the

gravity waves in the physical system. However, the short wave

,selectivity of these operators suggests another use. Since the

6,xx -~ is the same order as the error in the spatial finite

differences, such a term may be added to any equation without

changing its formal order of accuracy. Also, applying it at

the previous timestep as in (B24) makes it an advective rather

than a dissipative operator..

In a multi-dimensional problem there are velocity shears

across the direction of flow (e.g., the latitudinal shear in

the zonal velocity, Uy). Normally, very small-scale features

--like two grid point waves--should be damped by viscosity.

As previously noted, however, with a variable grid size the

amount of viscous damping needed to suppress grid scale noise

where' the mesh is finest is insufficient where it is coarse.

Rather than adopt the uneconomical option of making the grid

size small everywhere, we prefer to add smoothing operators

in the cross stream direction. For example, step (iii) of the

N-cycle scheme (B24) would be changed to
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(iii) /

A similaroperator in the x direction would be added to the v

momentum. (See Appendix C for the details of the full model

equations.)

Unlike the previous procedure, this smoothing adds

unphysical "momentum waves" to the equations--though only in a

way which leaves the order of accuracy of the equations unal-

tered. (Every numerical procedure alters the physics of the

original system somewhat. Usually it is difficult to describe

the changes explicitly.) Since the operator is so wavelength

selective, only the shortest waves are affected. Moreover,

where the grid mesh is fine, the viscous damping is adeqdate

to suppress small-scale noise so that these added operators

have no effect in these regions--this was verified by experi-

ment. It is not necessary to do this, but as a matter of

taste we prefer to have the calculation controlled by the

better understood dissipation mechanism in the regions of

primary interest.

3.6 Summar

The model equations are marched forward in time using

the 4-cycle scheme of Lorenz. (Eqs. B2), The grid mesh is

uniform in the computational space, but has variable size in

physical space to give increased resolution at the equator and

the sidewalls; the relation between the two coordinate systems

is given by (Bl) ff. The finite difference approximations to
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spatial derivatives are fourth order in the interior and third

order at the boundaries, Eqs,.B5), (B6). The equations are

differenced in an "almost conservative" form (Bl8) to prevent

"nonlinear" instability without introducing either excessive

viscous'damping or a number of grid points larger than would

otherwise be required. In order to treat short waves in the

height field more correctly, an improved approximation for the

gravity wave terms is introduced (B24). A smoothing operator

motivated by the gravity wave treatment is used to suppress

two grid point waves in the velocity fields (B25). This has

an effect only in areas of the grid where the spacing is too

cboarse for this suppresssion to be done by the viscous damping.

The complete finite difference equations for a beta plane

geometry are given in Appendix C.

In addition to allowing all of the parameters listed in

Table 1 to be varied, the computer program allows the user to

choose an f-plane, a beta plane or spherical geometry; to re-

solve or not resolve boundary layers at the walls and the

equator; to locate the basin at any latitude and vary its

size; to choose any of the boundary conditions (2.9a), (2.9b)

or (2.9c);' to have one active 'layer (2.4) or two active lay-

ers (2.8); and to use the nonlinear equations or to linearize

about the basic state u = v = 0, h = H; to apply the gravity

wave cbrrection (B24) to only: the height field, or to the

velocities in the downstream direction in addition, or to all

fields .in both horizontal directions.
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Appendix C Finite Differqnce Equations on Beta Plane

This appendix derives the finite difference version of

the model Eqs. (2.8). We do this only for the beta plane

geometry described at the end of Section 2,1. The more general

geometry complicates the equations without adding anything

essential; moreover, all of the results presented in the body

of this work are for the beta plane case.

We begin by putting the equations in a conservation form

like (B18). For this purpose rewrite the model Eqs. (2.8) in

the form

5w_. aLS L _s IS-L OVS\Ar = :L

- R.(j v.')g- \(g- 4-

- w

(C1 ,

Here qs may be either us or vs and q either u or v.. Muti-

5
ply (Clb, c) by n and use (Cla) to rewrite w/2 q-.

- V . i/( v:~+ g V(lcsii~,
4-.

K tA ) f , "Id .S (

Sa,

dt?
2, 7=

-a~i"$~=



354

Equation (C2) is the desired analogue of (B18) for the upper

level. For the lower level, multiply (Cld,e) by h and add ql

x (Clf):

r. 5 [

+ 7-

Eq. (C3) is the required form for the lower level. As long as

-h is calculated the same way in (C3) and (Clf) terms involving
at
it will exactly cancel in the energy equation--as they should.

However, if the finite difference formula for the lower level

divergence V-(hu ! ) is different from that used for the pressure

gradient term, then the sum of the terms involving the conver-

sions between potential and kinetic energy will not sum to

zero identically. This is the case for our model equations

(cf., Eqs. C6, below).

The basic finite difference operators are D and D as
x xx

given by (B5) and (B6) with similar operators D and D iny yy
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y direction. It is ccnvenient to define the following ana-

logs of the differential operators:

- L J~ M

LA V

Oxix

.' '9- 1 -L-- t -L- ?M1
Also di so

Also define smoothing operators

§Ex - [OIx I;1
- WjLyyL2.

All variables are defined at grid points Xi = iAx, i= 0,

.., Nx Y = Ys + jAy, j = 0,..., Ny and times tn = nSt.

Where necessary, we write qn. for q(xi, yj, tn ) but we will

suppress subscripts and superscripts where no confusion can

arise. Specifying the finite difference equations requires

that we specify steps (iii) and (iv) of the N-cycle scheme

(B2) completely. We begin with the following definitions,

based on (2.8), (C2), and (C3).

~ ~~lI-~~~D ~ ji~L'- n(~_~t)+ E~~ A

7Ct v)Etrr

Cn/t 1 In,,-D: 7J
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. *t 91 V)

- i ,

Rv04 

+

a (4v'- v EL v

~tFk- ~C

(-h vi-

i ,u" t)'

-ZhLL4- kiVo iD>
--po; -- I .

(b() will be defined below)

Steps (iii) and (iv) of the N-cycle scheme-are

- -F, X (s

- -;J2 b, , . jS,,, .5; '
,,,\ ,,-,

• "h +- ' . v

F k *-f'Js - 31 Ctzl)v

V I ' + F 1i

FvS

p
fl-fs~1y

(iii)

(c )

1s
"SD

b i 4o th LrC~hLILS

~ C~i,~"VLvil~

vr. s7)V 5 v-

4,
~(LIS-L~I)- l~r. Lrle hEH ~$~Z

2 1,, ( ) vi

S(v.--. v' -Ba v -,g , -V•*1 -j z

~- w"3 d~ x i-

I

(C qC4\

~- R, ~b C k:fi")
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(iv)

(e~zV S)l+I

(h V' I

t i .,'

~yl1 {kt.

I w-P-
~V) +

(A.S

2VA1

( c 7b)
The b (k)'s are defined by (cf., Eq. B24 ff):

15 Wh
SVO=_mocm',, k>.S

otkerviitsc . (Cs)

H is the mean depth of two levels (H = n + HI), the an 's and

bn 's are the N-cycle coefficients given in (B2), and as is an

input parameter which allows the smoothing to be applied

selectively. Usually, s = 3 so that all the b (k) 's are non-

zero.

The finite difference equations for the one layer system

are readily obtained from (C6) and (C7) by ignoring the upper

layer equations, taking w = B,= 0 and adding T (x) and T (9)

to Ful and Fvl' respectively. The two layer linear equations

are obtainedby linearizing the expressions in (C6) about the

basic state us = ul = 0 and h = H 1 = constant. This amounts

-1to taking R E 0 (except that F R remains finite) and h = H,0 r o

+ -/

0o r
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when it appears multiplying another term--i.e., everywhere in

the pressure gradient terms (hVh becomes H1Vh). The one layer

equations are linearized in the same manner.



Appendix D Computationa Stability (Linear Analysis)

D.1 Time Differencing

We write our system of equations in the form

-P A CAI (DO
Let = iXA - XD be At, the timestep, times the jth eigen-

value of A. The imaginary part, X arises from the advective
A -

part of the operator A and j from the dissipative part; we

assume the system is not growing in time so X3 > 0. The eigen-D-

values with the largest values of >A or XD will set the stabi-

lity criterion. Usually the largest magnitude of both xA or

XD are associated with the same eigenfunction: the two grid

point wave. Computational stability requires that all modes

have a growth rate G j such that IGJI < 1.

For the Matsuno (Euler backward) time differencing

scheme, the growth rate G of a mode with eigenvalue X is

1+ k QDZ)
For computational stability:

(a) i XA0 C le 1

(b) I '0 = 0 t~leHj VXA--

As is well known, for a purely advective problem ( D = 0)

the Matsuno scheme is always damping. This may be seen immedi-

ately by comparing (D2) with the Taylor series for the value of

G given by the original equation, i.e., G = exp(X).

For the N-cycle scheme

359
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Computational stability requires, that, for the 4-cycle scheme

(a) 1: )A-O tkew\ ) b 2'7

(b) 1 X,-- , .

For a purely advective problem we may obtain an esti-

mate of the damping by noting that if IAl << 1i, then

4~~~l/Na

For N even

and

I Gi2 p2-i 2 4 N* "

i. -G-) (C-)t A SI),A

Hence the scheme is damping if N is a multiple of 4.

For N = 4

For N = 8

While for N = 6

1G0 " 1 -

IwI~ j. I0",9

GI ;W : 1 \A /7!

For N = 4,. the exact -value is.

I -- -
IGI 1l-

A-t

A- 1

G- e;xa-.

1 / !

/(ot)2-
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D.2 Space Differencing

It remains to calculate the values of XA and AD appro-

priate to our finite difference equations. The prototypical

advective term cu x and dissipative term vuxx are approximated

by cD u and VDxxu respectively. The maximum eigenvalues of DxX Xx

and D will have the respective forms , /X ,- / x~°.
xx

For the 4th order centered schemes we use p, = 1.37 and

=2 = 5.33. For an advective velocity c = 2m/sec (i.e., the

-P2gravity wave phase speed) and At in units of (2Q)-1 and Ax in

degrees (=110 km)

5 2 -1
For V= E* 5.86 x 10 cm sec (i.e., E* 1 corresponds to

an Ekman number of 10-8)

The vertical friction term gives a further dissipative

contribution. In non-dimensional terms this is approximated by

where the give value of B corresponds to v = 15 cm2 sec-1 and

n is the boundary layer thickness in units of 100m.

For the 4-cycle scheme with At = 46t we obtain the

following restrictions on the timestep (remembering that the

equations are 2-dimensional)
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It is clear that the timestep is restricted by the advective

terms; specifically, by the gravity wave terms. Since the
-1

system realizes current velocities of the order of 150 cm sec

treating the gravity wave terms implicitly would allow the

timestep to be increased by only a factor of three or so. The

additional computations required by such a semi-implicit

method would appear to nullify the time saved by using a

larger timestep.



363

APPENDIX E: COMPUTATIONAL FORMULAS FOR CHAPTER 4

E.1 Properties of the Hermite Functions

The Hermite functions On(y) which appear in (4.7) ff.

are defined by

(El)-1, (y

where Hn is the nth Hermite polynomial

Ha y)
The Hermite functions vanish at infinity and are orthonormal;

i.e.,

(E2)
% o

They satisfy the equation

- y) (f
The pn may be rewritten in terms of the I s only by using

- /. n

+ , " I ,, !'

(E4)

S(E3)

I/

L~ (y)- ~~* Vi i, e

Y*2* Cj K ~Y
Kzi

i~

- (;z 0 + YI
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E.2 The Projections of the Forcing Functions

That is, the calculation of bl such that

Let L4j (Li4 t(L Y),y) bk(Z4~ PT i6 O(=

and let + denote complex conjugate. Define a scalar product

by

(E5)

We may now normalize yn by defining the Ni which appears

in (5.8):

(E6)

This leaves undefined for k=O so define

LM,

%

)Vv= i~~jc

Now

( OA

and

Let

614 (~) 6,F\,

-4o

F K) y)-&) ) 4) ( K)~t) ~i(K~~t
where the *n are the Hermite functions and

F,1S~Fi~dy) , r (.Pg

(E7)

= I 'f , + 3~n

,- ~ed,
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Define

d, c,)- .i2 Y +,Q) (f )y

- (- )'2L% ~ !g 4i'- (Y1F.,<-lr,=~tu~t- Sg r K+  J 4"

+ r+Li~, - ~ ~

SVI-6)= - MII)1 L l [ '- ., (r-i - jI--

Then K, 1(KrC'. [ h eo- (E9)

E.3 Boundary Response Terms

This part of the Appendix goes with Section 4 4.

We are concerned here with ̂ some aspects of the boundary response

to the unbounded solution, Eqs. (4.15)-(4.17).

(a) Inertia gravity waves (4.15) at an eastern boundary. x=XE

For example, let the incoming wave take the form (4.15)

with dn=O (meridional wind stress only). Then,

K,, ,C..3 n- -' (W-+.1 and the outgoing

propagating wave is

4 - <t i6j 72 2MI.~sh ~jPU.cs2

(E8)

Cc' Ivti%

(El0)

IA. too
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with S= ( + i) It-t + (l+ (-X J

- L2-L -+ J-

The modes generated with m>n are boundary trapped

[see (4.30),],

-= -- 2 - - .
(Ell)

(b) Reflection of Kelvin mode (4.17) at an eastern boundary

x=XE:

Define the symbol Co( by

I p

1
0 M > Vt or VM y vi Mtoc 2

r -1

10- V - VY+7, 3:
v)-1. V - 3 wI+i L ] he ~

(E. 2)

Let the incoming Kelvin mode be td-i - . The

response K aay be found from the algorithm (4.39)

S (1L +i

(E13)

with = + 1 It and S is the Heaviside

step function. Note that O -th t(-)1 "1

and that 1 = Z i lh so that t-1i - M ,e

2L~SI

k rl ,

I Se
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tends toward / 1( 01C 1 at the boundary.

(c) Reflection of a Rossby mode of the form

at a western boundary x=0.

The response is calculated by the algorithm (4.37).

The small w approximation (4-33)

and l) J

is made so V,e
The asymptotics of Section 4.4 apply.

= ~3-r~t F: P+S
2 2K+ L

L et -S
Cs,

f, -

3"

23

ca.v~K

(E14)

aL

3.t -The response
c?. ir~ll~~-3

(E15)
+r a 5&'2 x

- - (2vn+i)x

9-
Ti7,

1(2 fX ) P Z\ 1

2v (2o. ),

Ir

- r _ -I--_I.
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The amplitude of the Kelvin mcde in response to all modes

of the form (4.16) is

The amplitude of the nth Rossby mode in response to all

of the modes of the form (4.16) is

A~ ~~ -"" _S

For the case =( :

d-, =7T
//I t

e - c { 2 T1 1

-'C~1

3

j/73*i) (E16)

A - T '

I

00

2~ s& - /f

L't~)/m+S - Q( c4C-~~z
y SI,

(m-i) (211)2

So

(E17)

(E18)

0o

;ZT+ 1
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APPENDIX F: ORTHOGONALITY AND COMPLETENESS OF THE EIGENFUNCTIONS

FOR THE SHALLOW WATER EQUATIONS

(a) Orthogonality

From the orthogonality of the Hermite functions n', it

follows that

It remains to show that

vi

Sii (~yjjj ~)~V c

From the definition of the scalar product (E5):

(i) A °  +--j = i + LUoI,1o Co j j 6l, L LVo,, o

their product is -1 and

Ao y-6

(ii) For n>0 4!'- 4-. O ki+, Lo ]

+ k (4)e+) + ~~Zi l i.+ kC(% -,jw)" 2c~ijI]

(where we have written 60L for LoH (), etc.). Now J0j and Vj

satisfy the dispersion relation (4.4); let the third root be

L . Making use of the relations 0LL 1  t,- = d and

COo tj ov =C K we obtain
3j t* =1

I$ JS~ r

SaiC
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n -'- [114+ -1 + 1-K+ +L3.

since £Oy satisfies (4.4).

(b) Completeness

We wish to show that if all the components of the vector

F G, J& have expansions of the form

n=0a

then F has an expansion of the form

It is sufficient to show that,

0 L)) 1,P and ( 1) 0),-) i.

for all n, (i, 6,i):

have such expansions.

From (5.7), (5.8) and (E4) it follows that for n>l, the

vectors (i , ) ( L D c)L (C -i) i t _-) );+P4:

expansions of the form

have

j- 4- j
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if the matrix

is non-singular. After some manipulation it may be seen that

this is true if

2I-

is non-singular, or if (1o -4 -pti-c C Ct - -24 3O O.This is

equivalent to the statement that the three roots of the disper-

sion relation (4.4) are distinct, which may be readily demon-

strated by a reductio ad absurdum argument. By making use of

the fact that -oo L02 , the remaining vectors needed, i.e.,

,C(1, 0, 1), 1 (1,0,1) and Y (0,,O0), may be expanded in the

vectors , ,
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