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ABSTRACT

A simple model has been developed to study the wind-
driven equatorial ocean circulation. It is a time dependent,
primitive equation, beta plane model that is two-dimensional
in the horizontal. The vertical structure consists of two
layers above the thermocline with the same constant density.
The ocean below the thermocline is taken to be of a higher
constant density and to be approximately at rest. The sur-
face layer is of constant depth and is acted upon directly by
the wind. The depth of the lower active layer is dynamically
determined. This is the simplest vertical structure which
allows an undercurrent.

The linear response of the model has been investigated
thoroughly by analytic methods, as well as numerically. The
nonlinear response has been studied numerically with the aid
of some simple analytic arguments. The numerical scheme em-~
ploys a variable mesh spacing, is fourth order in space and
energy conserving (except for boundary effects). Small-scale

noise is suppressed by a special treatment of the gravity wave
terms.

The linear responses to uniform southerly and easterly
wind stress and the nonlinear responses to uniform wind stress-
es from the south, the east, the west, and the southeast have
been studied numerically. The linear results are in agreement
with analytic theory. 1In all cases, the surface flow is estab-
lished within twenty days, a timescale determined by friction.
There is also a timescale for the establishment of large-scale
pressure gradients and mass transports. Linear theory shows
that this "setup time" varies linearly with the time it takes
for planetary waves to cross the ocean in the zonal direction.
The nonlinear setup time can be either longer or shorter than
the corresponding linear time, depending on the case, but in
all cases would be six months or more for the world's oceans.
Since this is at least as long as the timescale of the monsoon-
al wind systems, steady state theories should be applied to



equatorial oceans with caution.

Flows become nonlinear within two weeks. A substantial
amount of the energy put in at the surface by the wind stress
is advected downwards by the strong vertical motions that arise
near the equator. In the presence of meridional motions, ex-
changes of relative and planetary vorticity are dynamically
significant.

The nonlinear response to an easterly wind includes
an eastward equatorial undercurrent in qualitative agreement
with observations in many respects. In the linear response,
the vertically integrated mass transport is westward at the
equator. The flow that returns the undercurrent transport to
the west takes place in the lower layer within 5° of the equa-
tor. The response to a west wind has eastward currents in
both layers at the equator with a maximum at the surface.
Both zonal wind cases exhibit variations in the zonal direc-
tion. It is argued that such variations are required by the
dynamics in the absence of large frictiocnal forces.

The zonal mean state in response to a southerly wind
has a narrow eastward jet at about 3°N and a broad area of
westward flow at the equator. This state is barotropically
unstable and after about 100 days westward propagating waves
appear. With a southeast wind there is an eastward jet at
4°N and the mean position of the undercurrent shifts south of
the equator. The undercurrent meanders with longitude but is
steady in time. In this and the south wind case, the waves
appear first at the western side of the basin and then spread
eastward across the basin. There are no meanders in the zonal
wind responses, suggesting that observed undercurrent meanders
are instabilities of the equatorial current system as a whole
and not of the undercurrent itself.

Thesis Supervisor: Jule G. Charney
Title: Sloan Professor of Meteorclogy
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1. Introduction

Since the vertical component of the Coriolis force van-
ishes at the equator, the geostrophic balances which dominate
the dynamics of the extra-equatorial oceans must break down.
The most striking physical manifestation of this singularly is
the Equatorial Undercurrent, a narrow (half width of 1°), fast
(speeds up to 170 cm/ sec), eastward flowing subsurface current
in the thermocline of all the world's oceans. (While it is a
permanent feature in the Atlantic and Pacific at most longi-
tudes, it has been observed only intermittently in the Indian
Ocean.) Many of the characteristics of the undercurrent are
highly variable: e.g., the downstream velocities and trans-
ports may vary by a factor of two or mcre at different longi-
tudes or at different times. Available observational data
allows many of these variations to be related systematically to
variations in the winds over the equatorial ocean. However,
the evidence is, in general, too spotty to allow such correla-
tions to be conclusive. Philander (1973b) presents a thorough
review of the measurements of the undercurrent made up to 1973.
An important series of measurements of the undercurrents in the
Atlantic was made during the GATE exeriment in the summer of
1974. (Preliminary results are available in Diing et.al.,
1975). The most important finding was a meandering of the
undercurrent core betwean 1°S and 1°N at all observed longi-
tudes between July 26 and August 19. The period of these

meanders was about 18 days.

A second important consaquence of the vanishing of the



Coriolis term is that equatorial motions have time scales
which are very much shorter than those of midlatitude motions:
the baroclinic time scale is weeks at the equator, as agéinst
years at mid-latitudes. The most impressive instance of this
short time scale is the reversal in direction of the Somali
Current within a month of the onset of the :tiouthwest Monsoon
(e.g., Leetmaa 1873). 1In general, time dependent oceanic
motions with time scales longer than a few days have received
relatively little attention. Equatorial regions are rewarding
areas for the study of such time variations because of the
rapidity of the ocean's response to atmospheric forcings. Thé
Indian Ocean is particularly favorable because, while <he wind
systenis over the Atlantic and Pacific Oceans have mon#oonal
components, the monsoon regime is predominant over the Indian
Ocean. The windé there reverse direction completﬂiy twice a
vear and the currents are known to vary greatly. ¥evertheless
there have been few theoretical studies of time deper~ :nt
phenomena in equatorial oceans. Cox (1970) and Lighth_.1

(1969) investigated the setup of the Somali Current in reuvonse
to the onset of the Southwest Monsocen. OCn the basis of a
numerical simulation, Cox concluded that the Scmali Current
began to flow northward in response to the local winds along
the African coast. Lighthill's analytic model suggested that
the propagation of signals from the interior of “he ocean

could be the causal mechanism. Gill {(1972) applied a Light-

hill-like model to the undercurrsnt in the western Pacific.

He associated the undercurrent with the second baroclinic mode
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Kelvin wave which prppaéates in from the western boundary. It
is not clear how such a model explains the presence of the un-
dercurrent as a more permanent feature.

In contrast to the situation for time varying equaﬁorial
currents, numerous theoretical models for the steady state
undercurrent appear in the iiterature.. These have recenﬁly
been reviewed by both Gill (1972) and Philander (1973b). For
this reason we shall forego a detailed review here; rather, we
shall discuss them only to the extent needed to establish a
theoretical context for the present work. On the basis of his
observations in the Pacific, Knauss (1966) estimated that +he
only negligible terms in the momentum equation were those
giving the time rate of change of momentum and the horizcntal
component of the Coriolis force due to vertical motion. (He
did not consider horizontal eddy diffusion processes.) The
upshot is that a great variety of processes are available to he
used as explanations for the undercurrent. Since there is a
certain amount of freedém in the choice of eddy coefficients,
all of these can be expected to give agreement with at least
some of the observed scales. In what follows, we seek to iso-
late those processes which are most significant.

We shall immediately restrict ourselves to those models
which idealize the thermocline as a discontinuity between a

{shallow upper homogeneous layer and a deeper lower homogeneous
layer of greater density. The lower layer is assumed toc be so
deep that its horizontal pressure forces and velocities vanish.

As shown by Charney (1955) the upper layer of such a model is
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equivalent to a single layer homcgeneous occean with:the force

of gravity reduced by a factor Ap/p, the relative density
difference between the two layers. Models with thermohaline
cémponentS*(Robinson 1960, Philander 1972, 1973a) are required
to explain certain effects at depth; for example, the double
celled structure often observed in the Pacific (see Philander
1973b) .. Homogeneous models appear to be sufficient for ex-
plaining observed features above the thermocline.

The- most basic physical notion about the undercurrent
is the idea of flow down a pressure gradient (Charney 1960).
The prevailing easterly winds pile up water at the western side
of the .ocean basin, thus establishing an eastward pressure
. gradient. .Stommel (1960) exploited this idea to obtain an
eastward flewing subsurface current in a linear model with
vertical friction. He assumed free slip boundary condition at
the botitom and that the vertically integrated transoort van-
ishes at the equator. 1In a similar model without the latter
two assumptions, Charney (1960) and Philander (1%71) found that
the current at the equator did not reverse with depth. 1In any
case, one would wish any theory to account for the substantial
eastward transports observed at the equator. 1In the linear
theory of Gill (1971), the pressure gradicent force is balanced
by the horizontal mixing of momentum. By using an unrealisti-
cally iarge value for the coefficient of horizontal addy vis-
cosity (108 cm2 sec“l), Gill obtains the observed latitudinal
scale for the undercurrent, but the transport is tooc low by a

factor of at least four.
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Nonlinear theories have ignored the downstream inertial
terms. The (suspect) assumption is made that the zonal and
meridional velocities have the same scale. Then, since the
meridional length scale {an equatorial boundary layer scale)
is so much shorter than the zonal one (the length of the ba-
sin), it follows that in the momentum equation the dcwnstream
inertial term is negligible relative to the cross-stream
inertial term. Attention is then directed to the meridional
circulation. For an -easterly wind, the Ekman drift in the
surface layers will be poleward. Continuity then requires:-a
compensatory equatorward mass flux at depth, producing an up-
welling region at the equator to complete the fluid circuit.
'Fofonoff and Montgomery (1955) considered the subsurface flow
in the light of the barotropic vorticity equation. If it is
assumed that a parcel approximately conserves the vertical
component of its absolute vorticity, it must change- itz rela-
tive vorticity to make up for the loss of planetary vorticity
as it moves equatorward. This results in an eastward flow at
the equator. It may also be shown that the meridional circu-
lation near the eguator enhances the eastward transport at the
equator regardless of whether tne wind is easterly or westerly.
(See Robinson (196€) for an analytic demonstration; Gill (1972)
gives a more physical argument.)

' The mcdels of Charney (1960), Charney and Spiegel

(1271), Robinson (1966), and McKee (1973) all incorporate the
nonlinear effects due to the circulation in the meridional

plane. The first three include momentum mixing in only the
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wvertical direction. McKee's model is an extensior of Gill's

(1971) model into the non-linear regime; horizontal -eddy.
viscosity is the important frictional force here. ' A more.
realistic value for the zcnal velocity is obtained, ccmpared
to the linear model,but an unreasonably large value for -the
eddy coefficient is again used (108 dmz sec”l) to: obtain fhe
observed undercurrent width. The models ©f Charney (1960} and
Charney and Spiegel (1971) (the first calculates the flow .
only at the equator by assuming it is an axis of symmetry; the
secondwpapér extends the first model to a meridional plane)

give the observed undercurrent velocity and width using a
value for. the vertical eddy viscosity coeifficient (15 cm? sec1)
in agreement with existing observational evidence (see Section
2.2). This model also gives good agreement with the observéd
vertical profile of the undercurrent. Vertical viscosity must
be of some importance at depth in order to obtain a non-con -
stant profile. below the boundary layer. Most importantly, a
mechanism for the vertical exchange of momentum is needed to
introduce the wind stress into the water. There is no similar
logical necessity for introducing a significant amount of
horizontal mixing. Further, there is no evidence that modeling
such mixing gives better agreement with observations.

Previous work thus shows that it is necessary to consi-
der vertical eddyv viscesity and inertial effects but not
lateral eddy viscosity in order to model the undercurrent

effectively. As noted above, all of these models neglect any

variation in the zonal direction (except that the.zonal
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pressure gradient is taken as constant). This makes it impos-
sible to ask a number of interesting questions; for example,
one cannot investigate the undercurrent meanders observed
during GATE. More generally, the issue of the relation of the
undercurrent to the entire equatorial current system cannot be
explored without considering the whole ocean basin.. Since
there is a substantial eastward transport at the equator, there
must be compensating westward flow elsewhere in the ocean
basin. Further, many time varying effects are.inseparable from
zonal variations. For example, the length of time .it takes
for the sea surface to set up from rest ir response to a wind
stress is determined by the speed of waves which propagate in
from the boundaries of the basin.

In order to investigate questions of this sort, our
model will be time dependent and two dimensiocnal in the
horizontal. Since the phencmena of interest are confined to
an area near the equator, the basin need not have a great
latitudinal extent; 15°S to 15°N has proven to be sufficient.
The model equations are solved numerically because it is
imperative that they be fully nonlinear. A stretched coor-
dinate system is used so as to give greater resolution near
the equator where smaller scales of motion demand higher reso-
lution.

In order to make it practical to perform many numerical
integrations, the vertical structure is drastically simplified.
It consists of two layers above the thermocline wi£h the same

constant density. The ocean below the thermocline is taken to
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be of a higher constant density and to be approximately at

rest. The upper of the two active layers is a constant depth
surface layer which is acted upon directly by the wind stress.
The lower active layer is not directly affected by the wind.
Its depth is variable, with the variations being dynamically
detérmined. The two layers communicated via the verticai
velocity at their interfacé as well as being frictionally

coupled. This is the simplest vertical structure which will

give an undercurrent.

Of course, this simplification prevents the simulation
of the detailed vertical structure of the undercurrent. It is
not our intention to do such numerical simulations. Previous
work (especially Charney and Spiegel 1971) provides a bridge
for relating the results of our simple model to the real werld.
Our philosophy is to treat the numerical experiments reported
here in the manner of laboratory experiments. %We do not seck
to simulate the real world; we seek merely to preserve encugh
analogy to the real world for the results to give insight into
natural phenomena.

There are a large number of phenomena which may be
investigated with such a model. In the present study we impose
very simple wind stress patterns and study the evolution from
a state of rest and eventual steady state configuration of the
model ocean. To aid in the interxpretation of the numerical
experiments, some analytic models are developed. These oprovide
a descriptive vocabulary as well as checks on the numerical

results.
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2. Formulation of the Physical Model

In this section the equations for the simplest vertical
structure which will give an undercurrent are derived, and in
the following section the values of the parameters to be used

in the numerical experiments are chosen.

2.1 Model Equations

Since we are concerned with the inertial ané viscous
dynamics of a wind-driven ocean, thermohaline effects will be
ignored. We divide the ocean vertically into N stable material
layers which are assumed to be non-mixing (Fig. 2.1)! For

any quantity g the average over the jth layer is defined as:

g%%r'(‘%b

Az 0 -
& y hy= 20

—3 L
% 4) = h(x
FODT g 25 (xg)

Then the equations of motion become, in standard notation,
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The horizontal component of the Coriclis force due to the ver-
tical motion has been omitted; it may be shown negligible a
posteriori (sufficient conditions are given by a scaling argu-
ment). The vertical component due to horizontal motion is
also ignored; the pressure is then given hydrostatically.

Assuming a constant surface pressure and a flat bottom (as is
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sufficient for our nurposes)'we may write:

3//0.3 2 /OMIH(LS)L\ | | ) . (2.2}

The viscosity in the model is considered to be due to turbulent
eddy processes, with different horizontal and vertical struc-
ture but isotrepic in the horizontal. Following Kamenkovich

(1967) and Kirwan (1969) the operator F which gives the

HI
horizontal eddy viscous terms is written in a vector invariant
form. Details may be found in Appendix A. The horizontal
stress term at the surface, To is taken to match the wind stress;

otherwise Tj is the frictional stress at the interface between

layers. It is modelled in the form:

= K (a*- “““)

(vvuz)z—z-' a heuristic argument suggests that
- 23

K ~ vV/H*, where H* is a characteristic layer depth.

Since Tj

The usual finite-difference assumptions that the layers
may be treated as homogeneous are made:

\VER¢ uu*‘) = 7-(h, -ﬂ:i) : :[}H—Zg): iIr (@) (2.2)

We now identify the bottom layer witnh the water mass below the
thermocline and regard it as being sufficiently deep so that
its velocity vanishes. Equatorial regions are a favorable
environment for this approximation: the thermocline is shallow
(150 - 200 m), the wind stress projects about twenty times more
strongly on the first baroclinic mode than it does on the baro-

tropic mode (Lighthill, 1969), and, unlike midlatitudes
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(Veronis and. Stommel, 1956), the baroclinic siQnals are only
about -one erder of magnitude slower than the bafotropic.
Observational evidence also tends to support the validity. of
this .approximation (see Philander, 1973 for a summary).
- Since- the velocities in the lowest layer vanish, the
1pre$sure gradient must vanish there as welll. This allows~~hN
to be eliminated in (2.2). For a single layer the eqguations

become:

-~

7€ * (gv)g + ?ng = “S‘VL\ +Z:,"KQ +)/,'_,E,a:(>

T ’
T v o ey

where . le:JfL>
1= 90z

In (2.4) the'wind stress appears as a body force. This
is a commonly used modelling procedure in oceancgraphy; for
many purposes it can be rigorously justified (e.gf Charney
1955). For some purposes, such as modelliing the undercurrent,
a difficulty is created by introduciﬁg the wind stress §s ar
body force averaged over the uppermost layer. Consider -a cﬁrl—

free.wind stress vector introduced in this manner. It may be

1 in order to deduce that V-Py = 0 from the lowest layer

momentum equatloﬁ_((z .1) for j = N), we must neglect the stress
term 1 = Ku that appears there. This term is quite
small.N- lIf it were not neglected and h,. is eliminated, it
would- appear in the momentum equation £or each layer. We feel
that our modelling of the stress due to turbulent mixing is too

crude to justify complicating the equations by retaining this
small term.
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“balanced by the gradient of the height field, allowing ‘the
velocities to be ideﬁtically zero (as is consistent with. the
Sverdup relation). Note that such a solution is. a:solution to
the full non-linear equations. Similar no-motion solutions
can easily be found for a multi-layer model whether or not the
bottgm-layer is constrained to Ee motionless: :ithe layer depths
may always adjust to reduce the pressure gradient to zero in
each subsurface layer. .o
For example, consider a constant easterly wind stress
(of magnitude 1 per unit mass) applied to a model ocean with

one active layer. The steady state solution to (2.4) is

72
wzo ; h= [ht‘fx?/j’]z (2.5)

The wind stress is balanced by the zonal pressure gradient.< In
reality this pressure gradient is sufficient to drive the
equatorial undercurrent because the fluid at depth feels the
pressure force but not the wind stress (Charney 1960; Gill
1971). Obviously the layered models miss this effect.

We wish to emphasize that such models are not wrong in
some simple sense. In fact, the profile of the thermocline
depth specified by (2.5) is very close to what is observed at
the egquator (cf. Gill 1972, Fig. 3). The difficuty is that
the feature of interest is missed by the layered models because
 they cénsider only the depth averaged currents withiﬁ each.
layer. A correct treatment of the wind stress would intrqduce
it as a boundary condition e.g. v.u_ =1 at the surface.

v~z wind
This guarantees.- that with a non-zero wind stress there is no
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solution where the velpcities vanish at all depths. The

vertically averaged velocitics may vanish. For the example
discussed above, this could come about at the equator if the
surface flow driven westward by the wind stress were just
compensated by the flow at depth driven eastward by the pres-
sure force. (In reality, inertial effects give a net eastward’
transport at the equator.) This is precisely the mechanism

for generating an undercurrent referred to above. To capture
this essential mechanism we modify the model with a single
active layer. This upper layer is divided into two parts: a
surface layer of constant depth n and a lowasr layer of variable

depth h (Fig. 2. 2). There is no density difference between

these two layers and transfer of mass and momentum between the
two is permitted. The wind stress is felt directly only by the
surface laver. This is the simplest vertical structure which
will give a steady state undercurrent.

Denoting the average of a quantity g over the upper
=1

layer by ES and over the lower by g~ define:

then

where z% is the height of the interface between the two active
layers (Fig. 2.2). This says that the suction into (or pump-
ing out of) the surface layer is the vertical velocity at the

interface less the change in the interface height. Making
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assumptions (2.3) aboutc tne averages of nonlinear terms we
obtain:

98, (VT + W {T% Ula,)) + PRxG® =
JE 7

-9'vh + (G=3*)+Y, F, (0%

~

Lo+ K
v
ai.

S+ (TG W (L) -0 + PRxT*=
h

U

b

+ V'C}/\,Q_L>+ W‘: I®)

(KB is a bottom friction parameter usually taken equal to K).

Tc avoid spurious sources or sinks of energy g(zn) must

be given by:

Y(2,) =2 (8% g

o~

which is consistent with the notion that u varies more rapidly

within the boundary laver. The energy equation for this sys-

tem is then:

Qz(kE$+kEi+l = ”dﬂ\ Q’*.g —KCQ“.:L)"
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KEy = HMB’# Keg = ﬁ,ﬁ%g AA

pe= [[tq(nAyun R~ [naa/llan

Next, Egs. (2.6) are non-dimensionalized. Since a
variety of phenomena with diffe;ent scales will occur within
the model basin there is no single consistent scaling. The
non-dimensionalization used is given in Table 1, together with
the dimensionless parameters it introduces and the numerical
values used in the mcdel runs.

One final consideration brings the equations into their
final form. In order to facilitate the introducticen of varia-
ble mesh spacing, general orthogonal coordinates are introduced.
Let the coordinates in physical space be (x*, y*) and the grid
coordinates in the "computational space" be (x, y). That is,

there will be equally spaced intervals (Ax, Ay) in (x, y).

Défine:
. Xt . ay?
m= 5%, ‘my“ Qj (2_7)
L L Iy S Jmy '
- mx}l = W‘\XVV‘Y Q \/ W\yx: iMxtM), _0:1“)?

then with some obvious changes in notation and with:
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w= (uv)
U v 2
(4-v) = “m;'% * w3y
o u, Ay
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and fnd as the non-dimensional Coriolis parameter, the equa-

tions are:
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We consider three possible sets of boundary conditions

for this set of equations:

ua=v =20 at all lateral boundaries (2-7C;>

u=v=20 at meridional boundaries;
.9b
v = %% =0 at zonal boundaries (2 1 )
. u=20 at meridional boundaries
- (2.9¢)
v=20 at zonal boundaries

We generally use (2.9a). Eq. (2.9%b) is based on the
notion tHat the northern and southern boundaries are artificial;
(2.9¢c) is consistent with taking the horizontal eddy viscosity
to be zero. In all cases, there is no special boundary treat-
ment of the layer depth; the boundarykis computed from the last
of Egs. (2.8).

Written in this way the equations allow treatment of a
variety of geometriés. It would be straightforward tc treat
spherical coordinates or a basin whose boundaries are not
perpendicular to the equator. In the present investigation,
however, we restrict ourselves to a rectangular basin on an
equatorial beta plane (e.g., Veronis 1963a, b). Since the
meridional extent of the basin wiil generally be 15° of lati-
tude on either side of the equator, the beta plane is an

excellent approximation. As noted in Appendix A, with this
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coordinate system we may approximate the horizontal viscosity
Fy by the usual horizontal Laplacian of the velocity compo-
nents. The coordinate stretching is independent cf the

perpendicular direction: 1i.e.,

X2y

J

- ¥ o —
{;&1* >/ ) ;)7 dx = O
In this case, m,Xy = myx = 0 which simplifies the equations

considerably.

2.2 Choice of Parameter Values

The values for the model parameters given in Table 1 are
intended to be a "standard" set for all the model runs.
Deviation from these values will be noted where apprppriate.
The standard value for the wind stress (.47 gm cm™ 1 sec'z) is
approximately the mean value over the equatorial oceans. The
relative density step Ap/p between the active layer and the
layer of no ﬁotion below it is taken as .002. This is a
representative value for the density step across the thermo-
cline in equatorial waters.

Vertical eddy viscosity is to be the principal dissi-
pative mechanism in the model. The argument which follows
(2.3) related the coefficient of interfacial friction X to the

vertical eddy viscosity v, by

K= v /H

where H* is a characteristic vertical distance between fluid

elements in the active layer. H* is taken to be 100 m. -- one
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Table 1 Non-dimensionalization (primes on dimensional quanc
tities)
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half the depth of the &zctive layer.

The same value of H* is used to determine the bottom
friction parameter KB' This is at once the most reasonable
and the simplest choice. It remains to choose the coefficient
of vertical eddy viscosity Vo In the interest of simplicity,
we take our standard value to be independent of depth; hence
KB = K. Robinson (1966) used a value of 104 cmz/sec, which he
found by identifying the Ekman depth with the extra-equatorial
mixed layer depth. This identification is surely incorrect
and the value much too large. Knauss (1966) calculated a

value of 5 cm2

sec™1 by fitting a parabola to the velocity
profile of the undercurrent observed in the Pacific. Williams
and Gibson (1974) applied universal similarity and local
isotropy assumptions tc measurements of small scale temper-
ature fluctuation at 150°W and a depth of 100 m. They found
values of v, of 25 cm sec™l at the equator and 12 .cm sec~l at
1°N. Charney (1960) and Charney and Spiegel (1971) focund that
their models best fit the observed undercurrent for a value of
the eddy viscosity in the range 14-17 cm? sec”l. These models
give eastward flow at the surface in the face of an east wind
but this may, in fact, be a realistic feature. Not only nas
such a situation been observed (at 150°W by Taft, et. al.,
1974), but our calculations indicate that the addition of a
northward component to the wind stress {(as is generally pres-
ent in the real oceans) gives eastward surface flow at the
equator in conformity with more typical observations. In the

light of all of this evidence, we use 15 cm? sec-l as a
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standard value for Vs feeling some confidence ifi {at least)
the order - of magnitude of the choice.

It is-essential to postulate some vertical mixing in
order to.-have a physical mechanism by which the“wind:drivés
the oc¢ean circulation. There is no similar necessity for -
including a horizontal mixing cf momentum. Further, .there is
‘very little basis for assigning a numerical value to the
‘coefficient of horizontal eddy viscosity. (Even the . form that
we ‘use for the functional is justified primarily by simplicity
and tradition.) For these reasons we wish to use a value of
the horizontal eddy coefficient that is small enough to .have
no significant effect on the equatorial dynamics. Two con-
siderations prevent us from simply taking this coefficient to
be zero, the first numerical and the second physical.

It is well known that numerical calculations of geophys-
ical -flows often exhibit spurious short wavelength computa-
tional modes (e.g., two grid point waves or "checkerboard"
patterns; see, for example, Messinger, 1972). These not only

" destroyithe accuracy of the calculation but may contribute to
so-cdalled nonlinear computational instabilities. Some mecha-
nism is required to suppress their growth: either a smoothing
operation of some kind which redistributes their energy to
longer wavelength components, or a dissipative operator which
acts tc damp them. Energy corserving difference schemes (e.g.,
Arakawa, 1966), as well as the special treatment of the gravi-
ty -wave terms used in our model {see Section B.5) are examples

of smoothing devices, albeit implicit ones. Our "momentum
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waves" (Section B.5) are a more éxplicit smoothing device. .-
Dissipative mechanisms have a physical basis: a horizontal
eddy viscosity is a parameterization of processes at scales
too small to be resolved by the grid point computation. As a
matter of taste, we prefer toc rely on the well studied,
physically motivated, viscous damping rather than computation-
al devices whose effects are less well known. For :this form
of viscosity the amount of damping of the shortest waves the
grid will resolve depends on a Reynolds number based on the
physical distance between grid points. For an unequally spaced
grid the largest grid spacing will determine the wviscosity
needed. For the grid that is used sole reliance on such a
mechanism demands a viscosity large enough to have a signifi-
cant effect on the flow near the equator, the region of
primary interest in this work. However, the local grid spacing
there allows a viscosity an order of magnitude smaller.. It
was determined by experimentation that the value in Table 1l is
large enough to dominate the effects of "computational viscos-
ity" near the equator where the grid is closely spaced though
the latter may be the more important mechanism where the grid
is coarse.

A more stringent lower bound on the value of v, arises

H
from a physical consideration. As will be shown .in Section
3.3, no-slip boundary conditions cannot be applied to all
velocity components in the absence of. lateral friction. (Only

the normal transport may be specified this case.) We there-

fore expect sidewall boundary layers whose thickness will
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depend on {a power of) the coefficient of lateral eddy viscéos-
ity. If A is the Ekman number based on this coefficient,: -
then there will be Al/3 layers at the meridional walls and :
A1/4‘layers at the latitudinal walls to reduce the Vertically
integiated mass transports to zero. Interior to these lavers
there will be al/2 layers to reduce the wall velocities in
each vertical layer to zero. (See Section 3.3; also Pedlosky,
'1968.) For the values of vy in Table 1 this implies thick-
nesses of 30, 14, and 3 km for the three types of layers.

Resoclving such small scales would be extremely costly
in computer time. Fortunately, it is not necessary to do so
in order to calculate the interior flow correctly because the
internal dynamics of the sidewall boundary layers have a
negligible effect on the interior flow. Rather, it is overall
properties of these boundary layers which are important for
the interior. The boundary layers have the role of reducing
certain interior velocity components (or integrated mass
fluxes) to zero. The interior flow cannot be correct unless
this is done, but the details of how it is done within the
boundary layer have little influence on the interior socluticn.
An analogous example is the replacement of an Ekman layer with
a boundary condition on the mass flux. (Also see Orzsag and
Israeli, 1974.)

‘As a further example, consider the Al/z layers. The
wider layers reduce the vertically integrated mass flux to zero
at the walls but they do not make the velocity zero at all

1/2

depths. = In our model the A layer provides the necessary



upwelling (or downwelling} to bring the velocity within each
of the two active vertical layers to zero at the walls. The
grid spacing is too coarée to resolve any structure within the
very narrow Al/2 layer, but the necessary vertical mass
exchange takes place in the model calculation. (Virtually all
of it occurs at the grid point on the boundary.) We performed
a number of numerical computations in which the grid spacings
near the boundaries were varied. These experiments verified
that increasing the resolution beyond a certain point (i.e.,
the grid configuration given in Table 2) changed the interior
solution by less than 3%, although it did make a significant
difference in the magnitude of the currents near the sidewall
boundaries. Further experiments showed that the value of Vg
given in Table 1 (5.86 x 10° cm? sec™l) is sufficiently large

so that horizontal eddy viscosity rather than the "computational
viscosity" of Section B.5, is the principal viscous mechanism
entering into the momentum balance at the walls.

The size of the basin plays a role in determining the
flow. Since our interest is in equatorial regions it would be
wasteful of computer time tc extend the basin too far toward
the poles. On the other hand, the northern and southern walls
of the basin should be sufficiently far from the equator so
that their presence has negligible influence on the dynamics
in the region of interest. The possibility of separating the
effects of zonal walls from the equatorial dynamics depends on
these dynamics being locally determined; i.e., "trapped" to the

equator. That this is the case is borne out by our subsequent
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analytic investigatione (Chapter 3); it is also evident from
the flow field pictures cbtained from the numerlca1§calculatlons
(ChapterAS). We performed two numerlcal experlments which dif-
fered ohly‘in that the zonal walls were 15° and 20° from the
equator} respectively. (A uniform easterly wind was used; all
other parameters were as given in Table 1.) The ﬁlowAia the
vicinity of the equator (8°S to 8°N) was the same in both
cases. We have therefore taken the meridional extent of the
basin to be from 15°S to 15°N. The 2zonal width of toe basin
(28 6°'of longltude) is smaller than that of the world's oceans,
but is large enough to have a broad interior region where the
dynamics may‘be clearly separated from the dynamics of the
merldlonal boundary layers.

‘“;;(' There are two possible choices for the mean depth of the
whole‘actlve layer- the observed depth of the thermocllne or
the equlvalent depth of the first baroclinic mode (cf., nght-
hill 1969) Both give approximately the same value: 150 to

' 200 m. We choose the higher value because it reduces the
chance that the layer depth will go to zero at some»point. If
thl happened, the numerical model would be unable to con .aue
the calculation.

i
5

The presence of the surface layer introduces another

- - -

parameter, the layer depth n. The numerical value we attach

to n w1ll determine how the vertically integrated transport is
lelded between the two active layers. For example, if n=25m
and H, the total depth of the layer, is 200m, then u® is the

average zonal velocity in the top 25 m and ul is the average
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zonal velocity in the mext 175 m. - Their depth-weighted sum
25 uS + 175 ul is the zonal transport. The choice of the
surface layer depth has twc effects on the model physics, as
may be seen by considering its effect on the transport equa-
tions. First, the bottom drag is proportional to the lower
layer velocity, whose value will depend on the value of 1.
This is true even in a linear model (cf. Section 3.1). The
second effect is nonlinear, and comes about because we make
the modelling assumptions (2.3) that the velocities are
independent of depth within each layer. This means that the
way we chcose to divide up the average velocity affects the
size of the nonlinear terms.

Because the choice of the surface layer depth does
affect the model physics, we seek a physical bases for deter-
mining its value. Unfortunately, the available obser&ational
evidence from the world's cceans is not sufficient to help us
choose this parameter. We make the choice on theoretical
grounds. Consider a shallow homogeneous ocean driven by an
imposed wind stress. The ocean is specified to be shallow sc
that the horizontal component of the Coriolis force may be
ignored everywhere. Extra-equatorially, the wind stress is
felt in an Ekman layer of depth DE = [2vv/f]1/2. Below this
boundary layer (and away from the bottom) the dynamics are
inviscid and geostrophic. The influence of the wind stress is
indirect: it is transmitted via the boundary layer pumping of
the Ekman layer. (See, for example, Charney 1955, Pedlosky

1968, or Robinson 1970 for a detailed account.) As the
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equator. is approached, the Ekman depth DE iucreases, becoming
infinite at the eqguator in the absence of additional dynamical
balances. : We are, however, interested in modelling a para-
meter range when the wind stress is sufficiently strong and
the value of the vertical viscosity sufficiently small .so that
inertial effects become important in the vicinity of the .equa-
tor. A measure of these effects in the boundary layer is a
Rossby .number. based on the boundary layer velocity, the local
Coriolis parameter and a length scale set by the distance from
the. equator. For a wind stress per unit mass of magnitude T

the velocity scale in the Ekman layer is given by

o/

lfLL-? T/ = 2‘[2)&/@]

-Then

CRe= Uy = [’Z"/wvfa”'\/gfyl

"Ore'

. ~ 75
Y= R [?Z/ZVYBBI (2.10)

Now the inertial terms will enter into the boundary layer mo-
mentum balance (alcng with the Coriolis and vertical friction
terms) when the Rossby number is order one. As the equator is
‘approached, the Rossby number increases. We expect that equa-
torward of some latitude Y. the inertial effects will prevent
the boundary laver from deepening any further. -In fact, if the
velocities increase toward the equator, we may expect that the

boundary layer will get shallower. These expectations are
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borne out by the numerical calculation of Charney and

Spiegel (1971). 1If we assume that the boundary layer stops
deepening when Ro = .5 and use the values in Table 1 (i.e.,

T = .5 cm? sec'z, v, = 15 cm2 sec"l), we obtain Yc = 2°, The
Ekman depth D is approximately 25 m at this latitude. (Note
that neither of these is very sensitive to the precise value
of Ro'forRO = 0 (1)). These values agree well with Charney
and Spiegel's calculation for the same parameter values (see
their Fig. 1). On the basis of this argument we choose the
value n = 25 m so that our surface layer will contain the
boundary layer to be expected from a continuous model.

It remains to make a few remarks about the grid spacing
we employ. Because our spacial differencing scheﬁe is fourth
order, it requires fewer points than a second order scheme to
obtain a given accuracy. The position of the points in the

grid we generally employ is given in Table 2, In . .the latitu-

+

dinal direction the narrowest spacing occurs near the equator,
where the grid interval is 30 km. The widest grid spacing

(140 km) occurs at about 9° north and south. The grid spacing
narrows to 33 km at the zonal boundaries. The intent is to put
more points where the features of greatest interest (and/or of
smallest scale) occur and not waste points elsewhere: more

than one-third of the points lie between 2.5°S and 2.5°N. 1In
the lohgitudinal direction the narrowest spacings (33 km) occur
at the eastern and western walls where the houndary layers
occur; the widest spacing (176 km) occurs at the center of the

basin,
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2 Positions of the Points in the Standard Grid

Values are given in degrées of latitude or longitude (1° = 111 km)

(i)
O.Qb
6.58

22.07

28.65

(ii)
15.00
~6.68
-0.56

3.05
13.38

Longitude

0.30
8.00

23.37

Latitude

~14.70
-5.57
-0.28
3.76
13.94

0.61
9.52
24.50

-14.36
~-4.59
0.00
4.59

14.36

0.96
11,09
25.44

~13.94
-3.75
0.28
5.57

14.70

1.36
12.70

26.20

-13.38
-3.05
0.56
6.68
15,00

‘1.85
14.32

26.80

—lZ.él
-2.46
0.86
7.89

2.45
15.95

27.29

-11.60
-1.97
1.19

9.16

'3.21
17.56

27.69

-10.42
-1.55
1.55

10.42

4.15
19.13
28.04

-9.16
-1.19

1.97
11.60

5.28
20.65

28.35

_7-89
~-0.86
2.46

12.61

8V
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3. Linear Analytic Solutions

3.1 Formulation of the Mathematical Problem

We now consider Egs. (2.6) on an equatorial beta plane
with no—sliprboundary conditions (2.9a). Let>§i = the mean

depth of the lower active layer and H = Hl¥ n. To facilitate

analytic treatment we scale the variables as follows:

(yy=Liyy; y=He j = T¢ ) T= 477,
(s @y = W w) ; ve= WA/ bRl 4l

We take the length and time scales as the baroclinic

equatorial ones (e.g., Matsuno, 1966; Blandford, 1966):

L'"‘ (C//3>l/1j T“ (C@)—'/’.: (/31-)—1‘(»146\@
c= (¢, 8= 20/R

These lengths and time scales are internal scales, picked out
by the dynamics of the fluid motions. We assume that the wind
stress is a smooth function at these scales and that the dimen-
sions of the basin are large compared with L. (For the values
-1
in Table 1, L = 296 km, T = 42.6 hours and ¢ = 1.92 sec .)
~ ——
Velocities are related to the wind stress by Z(f‘ lo/(HAL).

Drcpping the primes the scaled equations are:

W™ = O(‘7’Q§S



W A <
w, + 6§ (WD BT ] ey R s vhe 24
+ AT~ (O (-
e €1CU DY W WUy YRt Vh= (34)
2(1-x+eh) i
%,,4 \V4 >, us . ¥ L
AVTUT L8 (U™ >[1—~x+cl4 \—oveh

hy «+ (U=OT U a7« €7 Chut) =0

where the following non-dimensional numbers have keen intro-
duced:

Rossby number £ = Z/{/(/?’LQ

Horizontal Ekman number A = VH /(/6 L3>

Interfacial Ekman number }/I = K/(,@Lg&ﬂ-&]) (32)

Bottom Ekman number Y = KB/(A LQ)

Non-dimensional boundary layer depth o« = 7?/[7

The three numbers Yyr Y and a are logically ’independent
parameters as the model is formulated. However, since they are
211 related to vertical friction, there is a physical basis for
ordering them relative to one another. First, we expect that
K and KB are approximately equal so that Yy = G(a_ly) . From
the arguments of Section 2.2 we expect n to be on the order of
the Ekman depth, nE, at the edge of the equatorial boundary

laver y = L. Now

. ™ . / S 2. r W ut s 5/2
e = (20 /P). = (s = L2ki/ap)]
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where H* is a charateristic layer depth (cf (2.2) f£f). As be-

fore we take, H* = H/2, so

£z 7 /0= O(%/7)= O(¥")
so that

XI = O (3%')
and we may write

o= a¥? oy Lyt (3.3)

where a and b& are order one constants., (If we take a = b = 1

»~

then this scaling is comparable to that of Philander (1971),
except that our velocity scale is Yl/z times his--but see (3.7)
below.)

Since it is the linear dynamics of the model which are
to be investigated analytically, we linearize (3.1l) -by assum-

ing € = 0.

The equations become

Q{i + ny US s vh= AV Th- (- (URyt) (S.Lf)
B ~ Y \

W+ yReutevhe AT - Zr Ut 2l (gty) (39)

hy+ =0Ty s d Vg =0 (3.6)

o d

Define (Z'—' (I-x)gi»«o{gs 5 L(_=o<({<_(-g’“> (37)

~
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then L(i =

’tsi:[
R

and W e (1)K

The quantity T is the (scaled) vertically integrated )
mass transport. In order to elucidate the physical meaning of
U consider the following relations derivable from (3.7):

S—

Uu = %14‘-,@ ; %5: (’éik)(ig (3'8)

pt
We now interpret U as a boundary la;er correction to the in-
terior velocity gl. The first of Egs. (3.8) says that the
vertically integrated velocity 1is the sum of the interior
velocity and the boundary layer velocity; the second equation
says that the velocity in the surface layer is composed of a
component independent of depth and a correction for the surface
boundary layer. Extra-equatorially gl is the geostrophic inte-
rior velocity while § is the Ekman layer transport. Henceforth
we will refer to U as the boundary layer velocity.

By taking appropriate combinations or (3.4) and (3.5)

one obtains

b ~ ~ TIPSR B
(@, + yﬁxu+Eg¢r T+ AVE T8 (3.9
(Zc + \/KX(;(«LVL\. = T+ "\‘f’Q-B’((;L*'Q) (3.102)

Vel = (3./00b)

{
1)
§<
N
i
A~
(5
2
<

We are interested in parameter ranges for which vertical

friction is more important than horizontal friction: A << v,
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Y We also assume that Yty < 0(1l). For the values of the

1°

parameters given in Table 1.

- .
A= 125 -, A= 10" Y= st e 107!

and this is the case. Horizontal friction will be neglected in
the interior of the basin,; including the equatorl. . Boundary
conditions and sidewall boundary layers will be discussed in
Section 3.3, where it will be shown that A must be non-zero to
allow the governing equations to satisfy the no-slip conditions
(2.9%9a). It will also be shown that with A = 0 the appropriate
boundary conditions are only that the normal component of g

vanish at the walls.

3.2 Solution of the Steady State Interior Problem

AN

We now consider the system which results from assuming

that all time derivatives are identically zero. It is conven-
ient to work from Egs. (3.9) and (3.10). We neglect horizontal
friction and impose the condition that the normal component of
the mass transport vanish at the boundaries. Eq. (3.9) is

colved for the components of the boundary layer velocity:

1 Strictly, this neglect is justified in the eguation
for & {3.9) if A << y%; with the values given above Y$ is an
crder of magnitude larger than A Similar neglect in the
equations fog u requires A << yY% whercas with the values we
are using vy5 is only slightly larger than A. Nevertheless,
the qualitatiIve results of this analytic treatment should be
in agreement with the linear numerical computations.
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X = XEQ} \/Q_K“l g}lzcj‘)“ezéx\k X‘ (EII.-:—\]\?)} (3.!2‘&)
L%y ] J-y T2 T ¥, (yare)] (320
E=Y*Y ot ¥, =72Y¥= 0

The steady state form of the continuity equation allows

with

us to introduce a mass transport stream function ¥ with

a~--% , v= % (3.13)

The boundary condition now becomes ¥ = 0 at the boundaries. A

vorticity équation in ¥ may then be derived from (3.10):
2 ) max)]_, ~
¥y v ¢ [af-c,; = Y(%-Gy) ()

Extra-equatorially (y > O(E)) it is clear what to expect,
To highest order the boundary layer velocity g, is directed 90°
to the right of the wind stress with magnitude |I|/Y~ It is
the "Ekman layer" transport. To highest order we may set the
right hand side of (3.14) to zero, reducing it to the Stommel

(1948) model for the mass transport stream function. As i

0

well known, this equation admits bcundarv layers at the zonal
boundaries and at the western side of the basin, but not at the
eastern side. The appropriate boundary condition for the inte-
rior pfoblem is ¥ = 0 at x = XE, the eastern poundary. The
solution is

f y K cor “/ﬂ ‘ a”"’x:xs)’&z K 00%)
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(K is a constant determined by the condition that the integral
of h over the basin be zero.)

For |yl < 0E) ﬁy becomes 0(E"%) so that the right hand
side of the vorticity equation (3.14) becomes 0(l1). Hence,
there is a region at the equator in which the circulation con-
trolled by the interfacial friction, which itself has no net
transport, induces a mean circulation via bottom friction.
Note that if the bottom friction parameter, Y, is zero, the
flow in the interior of the basin (including the equator) is
completely described by (3.12) and (3.15). In order to inves-
tigate this bottom frictional circulation, we proceed more
formally.

First, make use of the relations (3.3) to write:

¥,= ce®  Y-Jd£ ¢ A= O

To simplify the exposition, we will take ¢ = d = 1. Now 1re-

scale y: v = Er. Then, using (3.12) when y < 0(E) we may write

~ -l ~ (0o A~ ¢y
G (x,8)=E Q_(”(x,sv tu"(x Y+ .

((/Lzo‘) ~(¢)> (H‘ g {j (){ ‘é} + L.K)(X %}
—-f’c‘“‘(w\*-""’}
Now write

1)) ) . \
%, Y+l O DL ETYx, S’>+El(‘f"<x,) =1 (3 :S’) o

) -—. IO

with  I1° (X ) = - e , (x, €)= 7 etz.

J
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(1)

and where V¥ is the solution to (3.5). At the equator wil)

determines the part of the transport which is due to non-local

H‘(l)

conditions; and H(z) depend only on the local winds. The

equations for these equatorial boundary layer transports are

7T$C|; . -ﬂ('\ b(fso\) ( §> CB /é>
—( ) N () - X
“ 2 _n.m.‘y - V; a_) 2_ (v) (\]

We will pursue the solution only for the higher order stream
function H(l). {Since the equations have the same form, the
méthematical prcblem is the same for each.) It may be shown
that, as with (3.14), the equaticn for n(l) admits a boundary

layer only: at the western side. The boundary conditions for

(3.16) are then

o) 7 D)
n- 5 O as ST oo aund 'IT =0 4t X=Xg

It is convenient to change variables by defining ¢ = XE - X;
(3.16) may then be writter

o= T= ~G9 (3./7)

with —77“)20 «t T=o

this is a diffusion-like equation with ¢ the time-like variable,
To solQe it, the Laplace Transform in the ¢ directioﬁ is first
taken, the resulting ordinary differential equation in g is solved
subject to the boundary conditions at infinity, and then the

inverse transform taken. After some manipulation, the result
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is

Ve

T "’(x, ﬁ} =3 f Ap IM’ Gayn [a ©=, Sw) K- $- vﬂ (3.18)

In particular, if the winds at the equator are independent of X

7 00 v i~ te i A
7 - -;: g - (oc erte (9_0.43.) [bk )('g“'l})*bt )(“S’—V]de
or

—— (1) !

=z L:r&@‘g"'/;) [(Z"”(‘Sw} Y —)))]o()) (3.19

At the equator
. ca)
Clc%kr,o)“ “EE' ITe 4 . :
(D Lo h r- 7‘”[&” Y vﬂdv}

oo ~v‘/l¢a- 7
..q r"‘C)‘) ___03 { :L ha_)A A __T:.D___M P P}

N

— ) —

A9 = ET%%yeey § LT 4 (ot eche G (3.20)

For small o, asymptotic analysis gives

~Ll§

.- ,\13
w '~ £ (4=0): 20
Also

—~ (1)

-
Vi%en = Ty = (’W ) f ve [& “fy ] GOV [

L ,\u, B V4o y
=z ZJ‘—G)/W;) . fe T+o+ oAy
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— )] T -1
VO = - Ty 67 e D, [ae ] (3.21)

We are now in a position to describe the non-zero trans-
port circulation induced by bottom friction {(at least for an x
independent wind stress). The mecst important conclusion to be
drawn from the above formulas is that for a zonal wind stress
the net transport at the equator is in the direction of the .
wind. This is, of course, contrary to what i1s observed for
the undercurrents. It says that we must look to other (i.e.
nonlinear) effects tc explain the undercurrent. For any wind
stress pattern the flow will be predominantly zonal (u (1) =
O(Ealg(l))), since flow along the eguator is favored. For a
meridional wind it may be shown from (3.17) and (3.19) that the
transport will be in the direction of the wind driﬁt current in
both hemispheres. The fluid circuit will be closed by a weak
interior trancsport directed opposite to the wind and a downwind
flow in the western boundary layer. For any wind stress pattern
the diffusion-like nature of (3.17) means that the region of
frictionally induced transport will broaden from east to west,
This description will be compared with the steady state linear
numerical results in Chapter 5.

To summarize, we have found that the steady state inte-
rior circulation consists of two parts. The first part, des-
cribed by (3.12) and {3.14) has a Svexdrup balance everywhere

for the transport and essentially a wind drift solution for the
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boundary layer. The sé;ohd part, described by (3.18) is~impor;
tant in a region extending about 300 km on either side of the
equator. (Note that although = 1 corresponds to only y = 30

- km,- variables fall off slowly--like c—l in. some cases.) There
is a net: transport at the equator in the direction of the zonal
wind;~’Return’flow'also takes place within this frictional .
region. - These results may be compared with those of Philander
(1971) for a homogeneous ocean continuous in the vertical. - For
that model, the frictional layer deepens toward the equator and
extends throughout the ocean at the equator. The boundary la-
yer in which this happens is embedded in a more diffuse bound-
b ary léYer in which bottom friction is important. There is a
net transport in the direction of the zonal wind in the first
of these layers, which is returned in the broader layer. It
appears that our modelling assumption, which fixes the boundary

layer depth, has the effect of combining these two layers.

3 3 Sidewall Boundary Layers

It is clear from (3.4)-(3.6) or (3.9) and (3.10) that

some lateral friction is necessary to reduce the tangential
velocitieé to zero at the walls. From thé latter set it may
also be seen that the normal velocities may be nonzero in tﬁe
absence of lateral friction. Consider for example, (3.9),
(5.10) with all friction terms set to zero. Egs. (3.10) are
siﬁply the inviscid shallow water eguations whiphipermit us to
iﬁéésé&fhe value of the normal component of thé ﬁransport,

T -+ f at the boundary. (This is well-known;.the solution for
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;h;g form of (3.10) given in the next chapter may be:taken as

a constructive proof.) Eq. (3.9) with A = 0 contains no
horizontal‘gerivatives, so it is nét possible to‘impgse,aqy%
boundary conditions at tﬁe side walls. Restoring,;hgfveryical
friction couples the equations but éoes not increase the number
of hqrizoqtal_dgrivatives in the seﬁ of equations (3.9), 43,10%
;g.may then be possible to impose a different bounaa;y gogdi—
tion on some combination of W and 4 but the number gfeside Wall
boundary conditions is unchanged. In any case, the most natu-
ral condition to impose is thaE the transport normai to the
boundary should vanish at the sidewalls, since we do not wish
to consider mass sources or sinks at the boundaries. ' Since in
the inviscid solution the normal velocities in the two layers
need not be zero, one may anticipate that vertical exchanges of
mass (upwelling or downwelling) between the friction layer and
the léyer below may be required to make the velocities in each
layéf vanish at the boundaries.

These results are similar to those of previous investi-
gators who have considered a homogeneous model with a vertical
fricticnal layer (e.g., Pedlosky, 1968; Robinsom, 1970). The
éupposition that the fluid is‘homogeneous and hydroséatic means
that the pressure gradient is independent of depth. Sincé’the
normal‘velqcity in the interior will generally be different
from that in the friétional.layef it. is not possible for the

pressure érédient to adjust the velocity to zero at all depthé.
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" We now consider the sidewall boundary layers required
to close the steady state circulation described in the previous
section, beginning with the upwelling 1ayérs needed to bring
the individual velocity component to zero at the walls. Let
@B = (ﬁB, GB) be the boundary layer velocity in such a layer
and let ¢B = ﬁB + iGB. The relevant equation is derivable from

the steady state homogeneous form of (3.9). To highest order

in E this is
(E+cy) O - Al%‘ *%*]Cpa =0 (3.22)
with the boundary condition that at the walls
d)e: '(&*LV)E"QSO
where 4, ¥V are given by (3.12). At the eastern and western
boundaries the 32/8y2 term may be neglected; this is true even

at the equator provided A << E3 (cf Eq. (3.12)). At the

western wall, for example the solution is approximately

By & - (x0y) exp L~ [(Ery)/A] ]

. 2
At the northern wall y = yN, the term ez/ax in (3.22) is negli-

gible and

%
B = ~ b Oy gy exp L= LERepD /AT Gy

The soluticn at the eastern side is similar to that at the west;
that at the southern boundary is similar to that at the north,

There are no east-west or north-south asymmetries among these
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layers. ‘From the equations above we may readily determine the

boundary layer scales 3 :

52 (Q.A/‘j>I/L¢or SE and % (A/E)yzfov 20
| / 7

Dimensionally &~ 10 km, 4 km and 1 km for y = 0°, 3°.and 15°,
respectively.

The boundary layers required to satisfy the boundary
conditions on the vertically integrated mass transports are
familiar in the oceanographic literature and we will treat them
ohly briefly here. (Sec, for example, Pedlosky 1968 or Recbin-
son 1970 for a more complete description). The boundary layer
correction for the interior solution ¥ given by (3.15) must
satisfy the homogeneous form of the vorticity equation (3.14)

with A # 0; i.e.
9 - i
S ywh-Avtt=0 (%.23)

with the boundary conditions that ¥ + WB = 0 and its normal
derivative o/on (¥ -+ ?B) =0 at the walls. The first of these
- conditions requires corrections to ¥ at the western, northern
and southern boundaries. 1In the western boundary layer the
term representing the advection of planetary vorticity mnmay

be balanced either by bottom friction (Stommel, 1948) or hori-
zontal eddy friction (Munk, 1950). The former will be true if

A << Y3 and the latter if y << Al/3. If neither of these ine-
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gualities hold neither kind of friction will be negligible. -
The bottem frictional layer has thickness and the horizontal
frictional layer thickness A1/3. At the zonal boundaries there
will be either a bottom frictional yl/z layer or a.horizontal

1/2

frictional Al'/4 layer depending on which of y or A is the
larger. It is not possible to satisfy the normal derivative
condition on Y¥p with bottom friction alone; Al/4 layers at

all the walls may be required to accomplish this. (Such a
layer is needed at the eastern side; the tangential trénsports

in it are only order Al/z. See Pedlosky 1968).

Finally, the equatorial boundary layer transport n(l)
"given by (3.18) requires a corner layer correction at the
western side. This correction must also satisfy (3.23). TFor
the corrections ¥y it was possible to neglect the .derivatives
in the tangential direction; in this case the meridional deriv-
ative will be negligible only if A << yEz & E4.

With the exception of the inviscid western boundary
layer that forms in order to make the normal component of the
vertically integrated transport zero at the walls we will not
consider time dependent boundary layers in this work. These
layers could be calculated byrtaking Ehé LaplaéevTransform‘of

the time dependent version of (3.22) and the time dependent

potential vorticity equation (instead of (3.23)).

3.4 Solution of the Time Dependent Interior Problem

We consider here the initial value problem with gs = gl =

h=0at t=20. A is taken to be zero and we impose the condi-
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tion that the normal component of the vertically integrated

mass transport vanish at the walls.

We again work with the equations in the form (3.9),
(3.10), beginning with the first of these. To the highest
~order this is an equation in u alcne since~§'< 0(E™2) for all
time. Eg. (3.9) is now readily solved. First, rewrite it in

the form

"2- / - A ~ (5 ~LY)
l,;:cj“ YHEJ(@+e¥) = TP T
which is first order in time with only a parametric dependence

on x and y. The solution is

~ ~ 33 P12 .
G+iV= S; [2‘ (Y, s)+ L C (X,y,SB]exP[(Eﬂy)(-t—s)]a’s (3.24)
It is sufficient for our purposes to consider a wind stress
which is a step function in time turned on at t = 0. In this

&4-(;\7; (Ea.* yg)*i-{ ( \/'ZLY?&-E 2\(x)) r('_ (__\/ 2(x)+52¢y))}
x{i* CxP[*‘(EH‘/)t]E (325)

The timescale for the buildup of this component of the
current system is clearly -1 - 20 days for the values in Table
1. For times long compared to this the solution approaches the
Ekman wind drift solution extra-equatorially. At the equator
it -is a current in the direction of the wind whose magnitude

is limited by friction (cf. (3.12)).
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For short times (t<<O(E—l)) and points sufficiently near the

equator (|yl<<0(t~1

)) (3.25) simplifies to U=tt1; i.e. the so-
lution is in the direction of the wind and grows linearly with
time. Right at the equator the solution valid for all time is

Et

simply 8=tE 1[1-e"F%] so that the & at the equator is always

in the direction of the wind with magnitude approaching
E_llz|.

Egs. (3.10) with the bottom friction term neglected are
just the inviscid shallow water equations. The term Y(g-ﬁ) in
(3.10a) is less than O(E) for all time and so it might seem
that such neglect is justified. This is indeed the case away
from the equator (|y|>>E), but it is clear from the steady
state solution (Egqg. (3.15)ff ) that the bottom friction term
will eventually become a non-negligible part of the vorticity
balance at the equator. The inviscid equations will hold for
all time away from the equator and for some initial time
period even at the equator. Since it is the small time linear
behavior that provides the most insight into the non-linear
case and since the inviscid equations are easier to treat ana-
lytically, we will confine our analysis to these equatiomns.
{Actually, the term Yg may be treated as a forcing term in ad-
dition to the wind stress and readily included in the analysis
to be described below. The term “Y§ is the one which causes
serious complications.)

The method of solution for (3.10) in a bounded equatorial
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ocean is of great interest in its own right as well as being
rather involved. We have therefore found it advisable.to de-
vote the entire next chapter to these inviscid shallow water
equations. :For the reader who is not concérned‘with the, meth-

odology .or the details of the results we provide here a brief

-summary of:the principal results of that analysis as they apply

to an x-independent wind stress turnea on at t=0.and steady
thereafter. A more detailed account of the response for the
special cases I=(-1'0) and I=(0,l) will be given -in .Sections
S5.2-and 5.4, respectively.

. There are four types of waves that are free solutions
the inviscid form of (3.10): inertia-gravity waves, Rossby
waves, the mixed mode or Yanai wave and the Kelvin wave (see
Fig.-4.1):; ,All of these are essentially standing waves in the
north-south direction. <Inertia—gravity waves play only a minor

role in the adjustment problems of interest to us. The Rossby

. waves: have westward group velocity for long wavelengtﬁs and

(slow) -eastward group velocity for short wave-lengths. The

smaller the meridional index n, the more eguatorially.confined

. the Rossby:wave and the faster its group velocity. Hence dis-

turbances propagate more quickly at the eguator. The Kelvin
wave and mixed mode have -eastward group velocity at all wave-
lengths; fox.small wavelengths the mixed mode behaves like a

Rossby:wave, R

The solution to the forced problem in an unbounded equa-
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torial ocean-is obtained as an eigenmode expansion. There is
a one-to-correspondence between these eigenmodes and the free
wave solutions to the unforced problem. The respomnse to an
x-independent zonal wind stress consists of inertia-gravity
waves needed tc satisfy the initial conditions, a steady v
component, and secularly growing u and h components. The sec-
ularly growing part of the solution tends to be equatorially
confined; extra-equatorially v tends to the wind drift solu-
tion. The response to an x-independent meridional wind stress
consists of inertia-gravity waves and steady u and h fields.
There is no steady v component. Extra-equatorially u tends to
the wind drift solution; at the equator the sea surface sets
up so that its slope balances the wind stress.

To complete our description we must consider the effects
of meridional boundaries. (The zonal boundaries are taken
sufficiently far from the equator so as to have negligible ef-
fect on the flow there.) We take account of the boundaries by
adding to the unbounded forced response those free wave solu-
tions of (3.10) which will make the total solution satisfy the
boundary conditions. A mode, incident on a western boundary ex-
cites a response which is as equatorially confined as it, it-
self, is. Most of this response remains near the boundary
forminé a strong boundary current. Unlike the mid-latitude
situation, a mixed mode or Kelvin wave will be part of the

response. The latter propagates away from the boundary quick-
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ly; the former remeins near the western side, though it shows
some effects extending into the basin. A mode incident on an
eastern boundary excites a response which is less equatorially
confined than itself. The more equatorially confined parts of
the response propagate away from the boundary the most rapidly.
Extra~equatorially, this response asymptctes to a coastal Kel-

vin wave. -
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4. Time Dependent Forced Shallow Water Equations in an
Equatorial Basin

4.1 Introduction

In Section 3.4 it was shown that finding. the time de-
pendent vertically integrated. transport of the linear model
amounted to solving the inviscid shallow water eguations on én
equatorial beta plane. The linear shallow water theory is of
great interest in its own right. For example, it has been
used for an unbounded ocean (0'Brien and Hurlbut, 1974) to ex-
plain the equatorial jet which forms when the southwest monsoon
begins to blow over the Indian chan (Wyrtki, 1973). The ef-
fects of boundaries must be taken into account to obtain a
complete description of the ocean's response. Once the solu-
tion to this problem has been obtained, the linear baroclinic
response of an ocean with arbitrary stratification may be con-
structed as a synthesis of the response of individual vertical
modes (e.g., Lighthill, 1969). Asséciated with each mode
there is a different equivalent depth (see below) which enters
the scaling, but the scaled mathematical problem is the same
for each baroclinic mode. {The barotropic response has a gqual-
itatively different behavior because it is not equatorially
confined. It is more like the mid-latitude case (See Lindzen,
1967.)

The equations are the inviscid form of (3.10) and (3.11).

We rewrite them here in the form
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" The scaling for these equations is as given in Section

3.1. " F and G are the wind stress components (%) ana T(y).
The equations have been generalized to include a heat (or buoy-
ancy) source Q.
In the parlance of tidal theory, these are the equations
‘for the vertical mode of equivalent depth H* = (Ap/p)H. For
' the numbers we are using (Table 1) H* = .4 m. The guantity
which effects the length ‘and time scales is ¢ = (g'ﬁ)l/2 =
(gH*)l/z; this is the same whether defined in terms of "reduced
gravity" or "equivalent depth". 1In tidal theory, F and G are
the projections of the momentum forcing terms (e.g., wind
stress) onto this baroclinic mode; Q is the projection of a
mass or buoyancy source. We note that for an ocean with such
a small equivalent depth, the beta plane is an excellent approx-
imation to the spherical geometry in the sense that the solu-
tions to the unforced version of (4.1) are close to the eigen-
functions on a sphere (Lindzen, 1967, Longquet-Higgins, 1968).
Since the solution of the entire problem is rather com-
plicated, it would be well to outline our method of attack. In
the next section the frese wave solutions cfi (4.1) are reviewed.
"These provide a useful vocabulary as well as themselves enter-

ing into the solution of the forced problem. The following
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section considers the forced response in an unbounded basin.
Useful solutions are obtained by. taking a forcing that is a
step function in time (i.e., the forcing is turned on at t=0;
the response is initially zero). The zonal. spatial structure
is simplified by considering only two cases:, an x-independent
forcing and one which is a step function in x. (With §uch.sol-
utions in hand, the response to a delta function (ip time .and/
or space) may be found simply by differentiating; the response
to an arbitrary function may be found by a convolution.) 1In
the final section of this chapter we present a method for cal-
culating the effects of the boundaries on the unbounded solu-
tions.

4.2 Free Wave Solutions

The free solutions (F=G=Q=0) to (4.1) for an infinite

ocean with the boundary conditions
u, v, h > 0 as |y| » »
may be writtten (Matsuno; 1966; Blandford, 1966).
(u, v, h) = expi(kx - wn'j(k)t),gn'j(k,y) (Lﬁg)

As a rule, n indexes the meridional structure (it is
analogous to the meridional wave number) and j, the wave type
(inertia-gravity or Rossby). The subscript pairs (n, j) range
over the set ) ,

‘1= {¢-1,1, (0,1, (0,2} U {n,)[n>0, 3=1,2,3] 43

Fof n>0, the W, j(k)'s satisfy the dispersion relation
0
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o ]
Gy K g mmen o (4)

For a given n and k there are three real roots to this equa-
tion, indexed by Jj=1,2, or 3. For definiteness we distinguish

among these by their values as k + 0

CL),,J;_—% (2}14-1.3’/7’) COp ™7 “(2“4-1)%, Loy~ -K/(2n+1)
Then j=1 and j=2 label inertia-gravity waves with phase
speeds to the east and west, respectively, while j=3 labels the
;Rgssby waves. When n=0 the root w=-k cf (4.4) must be rejected
because the corresponding u and h functicns become unbounded at
infinity. The acceptable n=0 mode is referred to as the mixed

mode or Yanai wave. The dispersion relation (4.4) simplifies

to
-1
w = —wo,j=k , (‘I‘.S)

For definiteness take Wy 0; then Wy < 0. We have la-
belled the equatorial Kelvin wave by n=-1l. Its dispersion re-

lation is simply

W ek (4.¢)

-1

(We drop the redundant second subscript.) The dispérsion rela-
tions (4.4), (4.5), (4.6) are displayed in Fig. 4.1 for w>0;
since @(—k) = -w{k), the values for negative w may be obtained
by reflecting the graph through the origin.

Tﬁéfvector functions ¢, 4 (k,y) specify the meridional

structure of tn, v, and h for each wave. First define three
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vector functions of y only:
E:(y) (\/%(YB, o, “A%\CVVJ\/)
Brep=(o, %, o ) 47)
B eyy = (- (/dy, o, v o))

where wn is the nth (normalized) Hermite function. (The Her-

]

1)

mite functions are described in Appendix E.l.) For n>0
- - " . 2 g x j)"*g ‘i/
?n,s(k"/)” N z’w.,d(k)fp KE - c(wi-kD ) 48
For the Kelvin wave, n=-1,

P = Pz 2Ky, o, &) @&90)

Finally, the N's are normalization factors defined in Appendix
E (E6).¥

ﬁaving'established our notation, we wish to describe
some of the characteristics of these solutions with the aid of
Fig. 4.1. The higher frequency branches in Fig. 4.1 are the
dispersion curves for j=1 and 2; i.e., the inertia-gravity
waves. The lower frequency curves for n>0 are Rossby waves.
The nomenclature is carried over from the mid-latitude case:
for the first set, the restoring forces are primarily inertial-
gravitational while for the latter, they are primarily the gra-
dient of planetary vorticity. The difference in frequencies
and phase speeds between the two classes of waves is much less
than for mid-latitude baroclinic waves; an equatqrial ocean re-
sponds much faster than a mid-latitude one. The Rossby waves

all have a westward phase velocity. The dotted line 2 kw=-1
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Inertia- Gravity

n=-|
Kelvin

> K

2

Fig. 4.1 Dispersion relation for waves on an equatorial beta plane.
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divides those waves with eastward group velocity from those
with westward group velocity. For the Rossby modes v and h are
in approximate geostrophic balance for large k, while as k=0,

u and h approach geostrophic balance. (Recall that differenti-
ation by x multiplies by ik and that for the Rossby modes, w=0
as k»». Then the large k limit follows immediately from the
definitions (4.7) and (4.8). The small k limit may be obtained
by judicious use of (E3).) It will prove useful to define a

special multiple of the Rossby modes for k=0 (cf., (E7)):

E;: = P - )P (4. 9)

~3

gn has v and h in geostrophic balance and v=0.

The Yanai wave or mixed mode (n=0) behaves like a Rossby
wave for small wavelength waves with westward phase speed; it
behaves like a gravity wave for k>0. The equatorial Kelvin
wave has behavior analogous to coastal Kelvin wavés with the
equator acting like a boundary: the meridional velocity is
zero and the zonal velocity is geostrophically balanced by the
cross-stream pressure gradient; the downstream momentum balance
is like that for a gravity wave. Both the Kelvin wave and the
mixed mode have eastward group velocity for all wavelengths.

From the symmetries of the Hermite functions and the re-
lations (E4), it follows that the eigenfunétionsﬂindexed by

even n have u and h components which are anti-symmetric and v

components which are symmetric about the equator; thcese indexed
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by odd n ﬁé?é the opposite symmetries. It also follows that
the smaller n is the more egquatorially cenfined the mode is.
'Note that all of the modes haveﬁ,bn+l and y__; coupled in thoir
H and h.field, excépt for n=0 and n=-1. Finally, we note that
for ;‘éiven zonal wave number the larger n is the sméiler the
Qroup'velooity. As we sﬁall see, all of the propérties men-
tioned 1n this paragraph have important consequences for the
response of a meridional boundary to an incoming mode.

4.3 Forced Response in an Unbounded Basin

The shallow water eguations (4.1) may be written in the

compéotlform

.
: .,LQ%T:
x

Superscript T indicates transpose and Q is an operator depend-

£: where u = (u,v,h) and F = (F,G,Q)(#JCA

1ng only on the spacial variables x and Y. Fourier transform

u and F from (x,y,t) space to (k,y,t) space by applying the

operator y( D qxi{x to each component. Then

T (K -

Q,%:_( }‘j)t)—{‘ﬂ(‘{)‘é)%‘(ij)t) = fT(K,ﬂ;ﬂ
where 4? sy
&] Y (N
7
L2 (K = ,y, Jo 2
~ WK By o

It now follows immediately that the free wave solutions (4.2)ff.

to (4.1) yield the vector eigenfunctions of Q (k,y); i.e.,

»

114

_% (k,\/) ?::&(K/ 4) = (Lon (K S,ﬁn:j &y (41D
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where the eigenvalues i%®n,j are given by the free wave disper-
sion relation (4.4) - (4.6). 1In Appendix F it is shown that
these eigenfunctions are orthogonal and complete. This means

that any vector forcing may be expanded in the ¢n j's

if its
components may be expanded in Hermite functions. As a éeneral
rule, a function may be represented as a convergent series of
Hermite functions if it is square integrable in the interval
(-, +»). Questions of convergence make for some nice mathema-
tical problems, but in view of our purpose such questioﬁs may
be circumvented. We are concerned with ocean basins in equa-
torial regions of limited latitudinal extent. The fo;m ofﬂthe
forcing function (or the response) beyond the limiés éf the
basin should make no difference to the basin response so fhe
forcing may always be taken to go to zero sufficiently fap;dly
as |y|+w. For example, any physically reasonable,forciﬁg‘may
be multiplied by exp(—byz), b<<1l to guarantee convergence with-
out changing its value near the equator. The projeﬁtion of
this forcing onto the modes with n small will be unchanged
(since these modes have small amplitude'away from the equator).
The fact that modes with n large might be affected by this al-
teration is an indication of the fact that these infinite beta
plane modes are not the eigenfunctions for a bounded basin.
(The correct modes involve the pérabolic cylinder func-

tions which give v=0 at the zonal walls.) Those modes which

have their turning latitudes equatorward of the latitudes
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bounding the basin will be essentially unaffected by the walls.
For an ocean bounded at #*15° with a baroclinic radius of defor-
mation of 300 km this means those modes with n<l12. Higher
modes must be corrected by considering the effects of walls at
a finite distance from the equator. Such changes will make
little difference near the equator where the amplitudes of
these modes is small. Furthermore, we feel that it is gener-
~ally‘§referable not to calculate the extra equatorial flow by
correcting the infinite beta plane modes, but rather to use a
more local approximation (e.g., a "mid-latitude" beta plane,
cf., L¥ndzen, 1967). 1In summary, since our problem is to cal-
-culate the equatorial response we needn't concern ourselves
much with questions of convergence or the influence of north-
ern and southern boundaries. The chief exception to this
statement is the possibility of fast moving bhoundary trapped
modes which may turn the corners at the bounding meridians and
propagate int9 the equatorial region (e.g., coastal Kelvin
"waves; see Moore, 1968).

The completeness of the eigenfunctions means that for

any (physically interesting) forcing function we may write

o . 2 b (KOG . (K - (#az2
.E(K,‘ﬁ)'(‘:) hher M L 1) ( )
where I is the set of permissible subscripts, (4.3). Formu-
las for computing the bn j's are given in Appendix E.2. Once

the bn jfs——;he projections of the forcing onto the eigenfunc-
14

tions~-~are obtained, on2 proceeds in the manner usual for
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eigenfunction expansions: ) ‘ :

Let Z—C‘“s(gﬂgé“r(g” - (403)

8)

ang L bm& Pov all (n,3)eT

an equation familiar from the linear oscillator problem. If

the initial conditions are that u=0 at t=0 and the forcing is

) <\<) —-N"t thewn

- Cwont
G,y (KE) = Bui (K. f “’t e l
{ (o~ Tl )

at a single frequency ¢ so that bh : (\< )= B

As with the linear osc1llator, the first term has.the
same time behavior as the forcing, while the second is the free
wave response needed to satisfy the initial conditions.

Clearly, the closer the forcing frequency is to the natural

frequency the larger the response. At resonance ¢ = W, 5 and
14
a, j = tBn j(k)--secular growth. For a steady forcing o=0 so
r 4
that

iyt ‘
@, ()= b, (K [1 s I (4 14)

< w“;)

In a formal sense the problem of finding the ocean's
response to an arbitrary forcing is now solved--one need only
invert each Fourier transform an,j (k,t)gn’j (k,y). This is,
in general, extremely difficult: such expressicns have a very
complicated dependence on k. Some simplifications are clearly

in order. To begin with, we consider only the case where F is
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steady and the initial conditious are u=v=h=0 so that (4.14)
applies. This amounts to seeking the response to a step func-
tion in time; the response to other time structures may bé
found by a convolution.

One p0551ble strategy is to restrlct oneself ‘to long—
wave forclngs (nghthlll 1969; Cane, 1974) With the long-
wave approximation, the inertia-gravity mode mn;.'s’are in-
dependent of k while the Rossby modes are nondispersivee |
(@n’3=—k(2n+l)_l); the necessary inverse transforms are not

’difficult to calculate.l Here we employ a different strategy.
We solve the, problem for a step function in x.

First .we find the response to an x-independent forcing
F =.F(y) everywhere, and then modify it to account for the~_
forcing "turning off" for x<X. The first part is simpler. than
the long wave approximation but qualitatively similar. . The .
step function case is directiy applicable to some physically,
1nte;est1ng situations (e.g., the Somali jet), as well as al-
low1ng the response to an arbltrary zonal structure to be cal-

culated by convolutions.

The response to an x-independent forcing F(y) is a sum

co ©0
+ , where
Ut 2 et 2 Y 2
. h=0 ‘ n=l !
1We exploit the one-to-one correspondence between the
eigenfunctions ¢ j and the free waves expi(kx—wjt) ¢n 3 as
'

well as between the eigenvalues and free wave frequenc1es to
carry over the free wave nomenclature.
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-3/, "ty
% e = {0@.\ (2n+1) z%l'n (QL‘H'})/“é +- ;
3u (2 VH—D.‘(i‘ Cos (2M+1),/"'C)J ﬁ“

+ [dn (2n+2Y (cos (2"‘*1)’/"'(?- 0Or3, (QmiS/‘SM (2 mi)/lf] E: (4.15)

L) .
Ung = t¥ [R L e

)

,D-L
U = t‘?-nL (4.17)

The dn's, etc. are defined in Appendix E.2 and the subscripts
G, R, and K denote inertia-gravity, Rossby and Xelvin modes,
respectively. To see how the secularly growing terms arise,
consider (4.14) for the nth Rossby mode. After making the long
wave approximation mn'3 N -k/(2n + 1), the Fourier synthesis of

(4.14) yields

% Xt -/ (2net) . H:t/a“ﬂ)
t w! i - (X' 0( }
Q"JS ()f)t) == (2n+1) { £oobh'5(x >dl jv_,é:""(x >&(¥!z = (2 V\*‘i)gxb”r: a) X

For an x-independent forcing this is just

Qo (1) = (20141) bm{@w/(zma) -x 1= bast (4.18)
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This shows that the secularly growing part of the solution may
be viewed as the sum of a locally forced part which goes like
~x, and a propagating part (required by the initial conditions)
which goes like x + t (2n + l)-l.

We now wish to describe the response in words. Suppose
first that the forcing consists solely of an east-west wind

stress (i.e., F = F{y); G = Q = 0). The response consists of

secularly growing u and h fields, plus a steady v component:
(u, v, h) = (t U(y), V(y), t H(y)) (4.19)

In addition, there is a series of inertia-gravity waves which
are required to satisfy the initial condition v = 0. The steady
v field asymptotes to the wind drift value -F(y)/y as y + « and
the Coriolis balance becomes dominant. At the equator the
Cofiolis éerm is absent andlthe wind stress causes a steady
acceleration in the direction of the wind: u = t F(0). As a
general rule, the time growing part of the response will be
equatorially confined. From a mathematical point of view the
solution is best explained in terms of the dispersion diagram
(Fig. 4.1) and Eg. (4.14). The forcing function has zero
frequency and zonal wavenumber so it lies at the origin of the
dispersion diagram. This is a point of resonance for the Rossby
and Kelvin waves resulting in a secularly growing solution. The
steady part v = V(y) is the forced response of the inertia-

gravity modes at k = 0 {(not on resonance), while the oscillating
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Fig. 4.2 Response to F=1, G=Q=0 in an unbounded basin.
See Equation (4.19).
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part is made up of inertia gravity waves with k = 0. Figure
4.2 shows the functions uU(y), H(y), V(y) of (4.19) for the case
F = 1. (This solution waé first obtained by Yoshida, 1958.)
This solutionehas the éymmetry associated with n odd: u and h
are symmetﬁic about the equator and v anti-symmetric. U and H
are equatorially confined wﬁile V asymptotes to -1/y.

The fesponse to a purely meridional wind stress (G = G(y),
F=20Q - 0) is very different, consisting of steady u and h
components and a series of inertia-gravity waves of zero zonal
wavenumber wﬁich are required to satisfy u=h = 0 at t = 0.
There is no steady (or other non?oscillating) v component.
Extra;equatorially, the steady part of the solution U*(y), H*(y)

approaches the wind drift:
as |y| » =, U*(y) > G(y)/y, H¥(y) » 0 .

At the equator the Coriolis term vanishes and the wind stress is
balanced by Fhe "sea-surface setup" -- that is, by dH*/dy.
Mathemétically speaking, the response comes from the inertia-
gravify modes at the points on the axes k = 0 of Figure 4.1.
While the forcing is again at k = 0, w = 0, there is no resonant
response in the Rosshy and Kelvin modes because these modes have
no meridional component at k = 0. Figure 4.3 shows U*(y) and
H*(y) for the case G = 1. This solution has the symmetry
associated with n even. U* = 0 at the equator and asymptotes

to 1/y as y > «; these constraints determine its general shape.
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Fig. 4.3 Response to F=0, G=1, Q=0 in an unbounded basin,

S8
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Finally, we remark Lhat the response to only a heating
fﬁnctlon forcing (F =G = 0 Q = Q(y)) has the same general
components as the case of a zonal wind stress; that is, a form
like (4.19) plus inertia-gravity waves. of course, on a less
superficial level of descrlptlon, it 1s-very dlfferent. For
example, the response to Q = 1 is 51mp1y u=v =0 and h f;
no gravity waves are excited. (Such e large-scale heating sets
up no gradients and hence creates no motions.)

With the x—independent solution in hand, we may proceed
' to’ the step function response. Let the forcing be given by
F(x, vy} = F(y) s(x - X}, where § is the Heaviside step function
{(S(x) = 0 for x < 0; S(x) =1 for x > 0). Without loss of
generality we may take X = 0. If the solution for the x;
independent case is applied for x > 0 with u = v = h = 0, then
the forced response is accounted for, except that the jumps in
u, v.and h at x = 0 are not consistent with the original
equations. Call this part of the solution U(l). The problem
‘lS thus changed to one of adding free solutions which make the
total solution satisfy the appropriate jump conditions. For our
method of ‘solution it is sufficient to note that the jumps in u
and h must be zero. If we find free solutions which "match" the

(1) _ g n

values of u and at x = 0, the total solution must have

. a v component which satisfies the correct jump condition. These

(2)

free solutions consist of a part U

Q # 0, and a part 9(32 needed if G # 0. The solution is a sum

, which is needed if F or
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P O<4X<LE ’ (4.27)

Here, gK’ gn,G and gn,R

Bessel function of crder n and the terms are non-zero only for

are given by (4.15) - (4.17j), Jn is the

the fanges of x and t shown.
We now wish to show how ﬁhe solution shown in (4.20) -

(4.27) is obtained. Consider first the non-gravity wave pért of
‘U(Z)

~

. As remarked above (see 4.18) each Rossby and Kelvin mode
(1)

piece of the solution U may be viewed as consisting of a
locélly forced part varying like Cnx and a propagating part,
which goes like t - Cnx. Only the latter violate the jump
conditions. But since each such propagating part is a free
solution of (4.1), the jump conditions can be matched by
considering how these modes propagate through x = 0. The nth
Rossby mode ‘may be thought of as a synthesis of Rossby waves
with amplitude §(k), where § is the Dirac delta function. It
has a group velocity of magnitude 1/(2n + 1) to the west. Each
* .such mode continues to propagate westward beyond x = 0, so we
must add these propagating solutions for x< ¢ (4.22). The
Kelvin mode propagates eastward with group velocity 1. At
time t the propagating mode arriving at a point x must have
originated at a point Xy = X = to If x, < 0, there was no

forcing at X, and no such mode was generated. Hence, for points
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X < t, we must subtract off the propagating part of the Kelvin
mode which was included in the response to the x-independent
forcing, (4.24).

The inertia-gravity wéve parts of the forced response
were all waves with zero wavenumber; the nth such mode propagates
vto the east with group velocity (2 (2n + 1))-1. Since the
forcing extended conly as far to the west as x = 0 at tiﬁert,
the nth inertia-gravity mode will be present only for x <
t/(2 (Zn + 1)), (4.21). The same result holds for the inertia-
g;avity waves forced when the north-south wind stréss G is non-
zexo, (4.24).

It remains to calculate the free solutions needed to
correct for the jump in u and h which results from the steady
part of the response to G. Our technique for doing this is less
intuitive than what was done above; it is as readily deécribéd
for an arbitrary time dependence for u and h as for thg‘special
case where these are independent of time. Suppose then tﬁat the
u and h components arising from the x~independeﬁt problem are a

sum of terms, each of which has the form

(u, o, h)_ = a*(t) BY + bx(t) B} o (4.28)

n
1

at x = 0. Let us begin with the special case where .

a*(t) = ae *WE, pr(g) = pe Ot | (4.29)
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The free wave solutions needed to satisfy the jump conditions

at x = 0 must have the same time Jdependence -- they must have
frequency w. To be free solutions with meridional index n,

- their zonal wavenumber K must satisfy the dispersion relation
(4.4). There are two possible values of K, K = K; (w) or K; (w),

where
+ | A _ .
K, (o) = 2o ® 2{50"+ Yo (imﬂ} (4.30)

Note that Kt may be complex, in which case the modes are trapped
at x = 0. If Ki are real, then one mode has group velocity to
the west and the other group velocity to the east (see Fig. 4).
(We ignore the special case K' = K~ when the group velocity is
zero.) This is which depends on whether we are in the inertia-
gravity wave frequency range or the Rossby wave frequency range.
For the Rossby waves (w small) the propagating modé associated
with K  is the one with eastward group velocity.

Let us call the K corresponding to eastward group
velocity (or eastward trapping) Kn,e (w) and the westward
propagating {(or trapped) one Kn w(m). The corresponding free

r

waves U  and U _ have the respective forms

4 7

I;VL,,,Q () = eyp L(Kh,{aC"}}(—w‘C) M‘e(c«))
~ (4.31)

é,én,w' (wy= expe ( K,,{:;’) Y- wt) ;Lp",vf ()
with :

(w) = UJE()O + Km%f’: (y) —¢ (‘0:7-\(;,&},\2“(73

Ine
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(cf., (4.8)). . I1f such waves are generated at x = 0, the one
labelled with an e will exist only to the east and the one
labelled with a w only to the west of x = 0. -The condition that
u and h have no jump at x = 0 will be satisfied if amplitudes

Ae and Aw can be calculated for the modes (4.31) to_cancel the
jump caused by the original u and h (i.e., those specified by

(4.29)). That is, Ae{m) and Aw(w) must- -be found to satisfy

AP bl s AR K B FALGoB K, B

for all y. This is equivalent to the pair of equations

a=w (A +A); b=A K + A K (4.32)
e W e "n,e W “n,w
which has a solution. (We again ignore the point of zero group
velocity where Kn,e(w) = Kn,w(w)')

We now have in hand a solution for the response tc a
step function forcing in the special case (4.29) when the forcing
is at a single frequency w. This may be used to sclve the.
general case, (4.28). First transform from the time domain to

the frequency domain:

cwt

& () = So&*(ﬂe At b(w)= Sjb*(t)e"‘“&t

Then
® X ~ -t
ATl DX Yo I e B [ Y2 s
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sh&&iné a* and b* as a synthesis of waves. (Note that a(ip) is
juét the Laplace transform of a*{t) with p = -iw, the transform
variable.) Egs. (4.30) and (4.32) are‘then solved as before,
except that a and b aré now functions of w. The final steb is
to synthesizé the waves by integrating the expressions
Ae(w) gn’e(w) and Aw(w) Qn,w(w) over all w. That is, the
transform is inverted to return to the time domain from the w
domainui

For some time dependences this transform may be impos-
sibly difficult to invert, but we need only concern ourselves
with the steady part of the response to a north-south wind
stress. In this case, (4.28) takes the form given by (4.15),

(ul 0, l’)Bn = 3»\ (2"”‘1—5‘1’&_"(‘1\)

Since this is steady in time, we expect the waves needed to

synthesize the jump correction to have low frequencies. By~

assuming
w? << (2n + 17t (4.33)
we may write
Kn,e ()= ~o'sy (20w + O (wo?) (4.34)

me_ (W) = - (o) o + O (0?)



If we retain only the highest order terms, the transforms are
readily inverted and Egs. (4.25), (4.26) and (4.27) are obtained.
(To get (4.26) we also retain the term (2n + 1l)w in the approx-
imation to Kn,e when it appears in the exponent in (4.31).

2

< 0w ):

Then the solution is a uniform approximation for x
cf., Lighthill, 1969.) The expressions (4.25) obtained for the
"long wave" westward propagating modes are exact; they are just
the free Rossby modes which lie at the origin of the dispersicn
curve with steady u and h components and v identically zero.
The mixed mode solution (4.27) is also exact, because the
approximate relation (4.34) for Kn,e is exact fof n = 0. From
Laplace transform theory the small w approximation made for the
n > 1 eastward propagating modes is known to be an asymptotic
solution for large t. It is an excellent approximation to the
exact solution. (The exact solution is a series of terms of

n/2

the form (x/z) Jn (2v/xz) where z = t - (2n + 1) x and Jn is

the nth Bessel function. See Cane and Sarachik, 1975 for a
further discussion.) A

The distance these modes propagate; i.e., the limit
x <t {8 (2n + 1)} in (4.26) was found by calculating the

maximum eastward group velocity for the Rossby waves using the

approximate dispersion relation,

- k
W = v

2n + 1 + k2
which is valid for small w, i.e., when (4.33) holds.
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All of the eastward propagating modes. are essentially.
trapped to the discontinuity at x = 0. Due to the.form of the
argument -of the Bessel functions which appear in- (4.26) and
(4.27), the region where the§ have substantial amplitude grows
thinner as-time increases. 1In synthesizing these forms most.of
the amplitude was in the waves which lie at the lower left hand
.portion of the dispersion diagram (i.e., w << 1, =k >> 1).-
These waves have very low group velocity so the "disturbance"
moves away. from x = 0 very slowly. This is true for. the mixed
mode as. well, although its leading edge propagates away . quite

quickly. .

4.4‘ Foroed‘Response in a Bounéed Basin

As indicated in the 1ntroductson to this chapter, the
forced response of the equator1a1 ocean in a bounded ba51n w1ll
be calculated by first finding the motions that would be forced
in an uhbounaed ocean. This was done in the precedlng sectlon.
We now turn to ‘the task of finding the free solutions of (4 l)
needed to reduce the normal velocities to zero at the walls.
That is, we seek the boundary response to the motions forced in
an unbounded basin (e.g., the reflections of waves at the walls).
As!dlscussed in Section 4.2, only the effects of merldlonal
.boundaries will be considered in this section. We assume the

latitudes of the zonal boundarles are suff1c1ently high so that

they have negllglble effect on the equatorlal region. The basin

£
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is taken to be rectangular with boundaries at x = 0, x = XE
and y = £ =,

The problem of finding the free modes needed to satisfy
the boundary conditions is similar to the problem of finding
the free modes needed to satisfy the jump conditions at a°
discontinuity that was treated in the preceeding section. There
were two constraints operative in that case: the jump ih u and
the jump in h both had to be reduced to zero for all time and
all y. Here there are also two constraints. First, u = 0 at
the boundary for all time and all y. Second, the free modes
which are needed to satisfy this condition must also be ones
which propagate energy away from the boundary into the interior
of the basin. For example, the free modes generated by the
béundary response at the weste;n side must have eastward group
.velocity. i

Our technique for calculating the boundary response is
similar to that employed in the step function case. We will
(expiain how to do it for the caseAwhen the motion incidené at
the boundary is at a single frequency w. The case of an
afbitrary time dependence is then calculated by traﬁsforming‘
from the time to the frequency domain, obtaining the response
for each frequency, and then transforming back into the time
domain.

Let us assume that the incident motion has a u component

at the boundary of the form
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-

- . -iwt
u = ay wJ+1 (y) e . (4.35)

where wJ+l is, as before, the J + 1th

Hermite function, so that
an arbitrary function in y is a sum of such terms. Moore (1974)
has shé&n how to calculate the boundary responsé to such a“form.
We review the method here. At a western boundary we seek a sum

of'eéstward propagating (or trapped) solutions of (4.1), i.e.,

the gn e of (4.31), which will cancel u at the boundary. That
4 .

is, we wish to calculate the amplitude factors ay , S° that the
’
sum
. o ,
G ‘f; E ¢ . + ¢ (4.36)
( I 3t 0)0) + n:LaI;h~n,¢: al;o > &"3;_, p

has a zero u component. Recall that the mixed mode and Kelvin
waves have eastward group velocity for all k and w. Since for
a given w there is only a single k which satisfies their
dispérsion relations they are unambigucusly specified as
functions of w. The additicnal subscript "e" is redundant. As

mentioned in Section 4.2, the u component of each¢ =~ with
~ 4

n > § may be written as a linear combination of y and y

n+l n-1'

i.e.,
| v : nita e ~ A
un,e. = [—2’— (w"'i{n,e)(fvwi * L—E} (w- k“-:ﬁ) sz}’l-a'..
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Since w # iKn,e' the coefficients are always non-zeroc for n > 0.
Also, it is clear that if J is even then only those modes with
n even have a u component with}the same symmetry as wJ+l‘
Similarly, if J is odd, only the odd n modes have the same
symmetry. Hence, only those modes with the same odd-even
parity as J need appear in the sum (4.36).

With these facts in mind, we may construct an algorithm

for calculating the coefficients a

J,n Only modes w;th n < J
and n = J mod 2 are needed. First, find az g to eliminate V41
in the sum (4.36). This leaves Yy _, with a non-zero coefficient.

Calculate aJ'J__2 to eliminate it. Continue in this way, choosing
aJ,n to eliminate wn+1 for n = J-2, J-4, ..., until n =1 or 2.
Which value one arrives at will depend on whether J was odd or
even. Let us assume J was odd, so n = 1. At this point, (4.36)
has only a non-zero coefficient for wo. We still have the
Kelvin mode (n = -1) available. Its u component has only the
singie Hermite function wo. Therefore, when its coeffigient‘is
chosen to eliminate Y, (4.36) will have its u component identi-
cally zero. If J had been odd, we would have gotten to N = 2
with only the coefficient of wl non-zero. The mixed mode (n=0)
can then be used tc eliminate wl and leave the u component of

(4.36) identically zero. This procedure is, precisely,

(1) Let Qspn=0 & n>3 or DS ot 2
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@ Ggp= - ajz [%]72(w+K:,e)}.i |

' n+2 Z’l[Km-as.!t:'_C‘J
(3) Hgn-~ al‘:“*z [m’-]' k..,u—w]

(4.37)

(4) al-)_,“‘: as-’i[Kg_'e"QJ]

A mode incident on a western boundary thus stimulates a
boundary response consisting of modes with the same symmetry and
equal or lower meridional index n. The crucial property that
allowed the procedure for calculating the aJ’n's to terminate is
that for all frequencies there is an eastward prépagating wave
whose u component consists of a single Hermite function. Tﬁere
is no similar simply structured wave propagating westward -- the
Kelvin wave and mixed mode have eastward group velocity at all
frequencies. Because of this, an eastern boundary cannot
respond to an arbitrary incident u component with a series of
modes with lower meridional index. Instead, the eastern boundary
response is an infinite series of modes with higher meridicnal
index. Formally, the eastern boundary response to the form

(4.35) is a sum

.00 i
N=41 :Y,n AW
The coefficient a is calculated according to the rules:

J,n
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M A,20 & nidT ov NFETmat 2

In
/ 1
Ay { [%3]/2 {Kpfz,w" 601} : (4.39)

(2) axnz’
[V’Hi 72. [‘l‘{m,rr’.w ]
(3 ax,m-a. b aj)y‘ i+ 2 Km')-,w"'w_{

We now have a procedure for calculating the boundary
response at the west or east for motions with an arbitrary
spacial structure but with time dependence being an oscillation
at a single frequency. As indicated above, these results méy
be extended to a motion with arbitrary time structure. To do
this, analyze this time dependence into its frequency spectrum,
calculate the boundary response as a function of frequency, and
then synthesize overall frequencies to obtain the time depen-
dence of this response.

We need only evaluate this final transform for the'case
wheirre the original forcing is a step function in x and t. This
includes the case where the forcing is independent of x, that
is, the step is outside the basin. It is not difficult to do
this if we make use of our previous results. 1In particular,
the transforms that must be evaluated are similar to those that
arose in finding the unbounded response to a ste§ function
forcing, if we again make the approximation (4.33f that w is
small. The complete solutions are rather lengthy and will not

be given here; see Cane (1974) and Cane and Sarachik (1975) for
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further details. Here we will only discuss some of the quali-
tative features ofithe boundary effects for the case of an x-
indepeq@ent forcing. Some supporting computational details .are
given in Appendix E.3. In Chapter 5, we will describe{the'
. complete basin response to the forcings F =1, G=Q =0 gndi
G= 1, F =9 = 0.

., We now consider the boundary corrections to the ynbounded
response to an x-independent wind stress, Egs. (4.15) - (4.17).
The inertia-gravity waves (4.15) ali have eastward group velo-
city and k = 0. At a westefn boundéry, the response to each _
such wave is a similar wave with equal amplitude but exactly out
of phase. .The effect is a cancellation of the original wave
which propagates away from the boundary with the group velocity
of the wave. This response is exactly like the step function
case, Egs. (4.21) and (4.24). These k = 0 inertia-gravity waves
_are garrying energy into an eastern boundary. The response must
be motions which carry this energy away from the boundary. The
largest fraction of this incoming energy goes into a long
(k = rmjl)wwestwardnpropagating wave with the same frequency.
This .fraction is approiimately 1 - Eﬁzi_f for the wave with
.meridional index n. The remaining energy goes into an infinite
series of boundary trapped mbdes with the same freguency anq,

. ,Mmeridional .index m>n and m ¥ n mod 2 (see Appendix E.3).

N ‘.“The~Kelvin mode pért of the unbounded solution (4.17)

which grows like t, may be cancelled at a western boundary by a
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‘free :Kelvin mode with the same amplitude and t, x structure -
Iike x - t. This is precisely like the step function response,
(4.23). ‘As was remarked in that connection, we may say that
the original response is the sum of a locally forced past that
goés like x and another eastward propagating part thét'goeé like
t - x. The western boundary has the efféct of cuttihg off the
 forcing to the west of x = 0. This results in the propagating
part of the original solution being absent for x < t, leaving
~dnly the locally forced pért. The secularly growing Rossby
modes (4.16) have qualitatively similar behavior at the eastern
boundary. These modes propagate energy westward; the effect of
the boundary is to cut off the source of these modes; it turns
the forcing into a step function forcing which is non-zero only

for x £ X The eastern boundary response to these modes ‘is

EQ
like the step function solution, (4.22), except that the origin

is shifted from x = 0 to x = X and the amplitudes have-opposite

E
sign.

The boundary response is of two different types. The
first is due to the effect of converting the forcing fnﬁctién
into a step function at the boundary, thus cutting off fhe :
Venergy source for motions which would otherwise propagaté into
the basin from beyond the boundaries. The k = 0 iﬁertia*éravity

waveS'énd Kelvinjmode"atvthe western boundary and the "long wave"

Rossby modes at the eastern boundary are examples of this type
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of response. The other type of response is a reflection: a

motiog_iﬂcidept“oﬁ the ﬁoundaryvéarries energy from the intér?or
toward the boundary. Since this energy cannot propagate through
the’boundary, the presenceaof the boundary excites motions which
reflect this eﬁergy back toward the interior. These motiongmmay

freely propagate into the interior or they may be trapped to the

boundary, thus allowing energy to accumulate there. The eastern

boundary response to inertia-gravity waves discussed above is an
example pf‘a reflection. In this case, the motions genérated at
the boundary consisted of both boundary trapped modes and prépa-
gating waves. |

The, reflection of Kelvin waves at an eastern boundary is
another example of this type. For an incoming wave with a
frequency w > 1 + /2/2 the reflection is a series of ineétié-
gravity waves with odd meri&ional index n. Some of these (i.e.,
those for'ﬁhich n is high enough to make the expresgion under
ﬁhe radicql sign in (4.30) negaﬁive) will be boundary trapped.
For 1 - v2/2 < w < 1 + ¥2/2 all the reflecting modes are
boundary traépeé“since theré are no westward propagating waves
at this frequency. At lower fréquencies the response will be in
Rossby waves; again, some of these will be boundary trapped. It
can be shown (ﬁoore, 1968) that the response to an incoming)
Kelvin wave asymptotes to a coastal Kelvin wave as y becomes

large. 1In our case, (4.17), the Kelvin waves present synthesize

to have a linear time dependence. The reflection consists of an
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infinife series of Rbssby modes with odd index ﬁ. fThése are
given by (E13).) They are similar to the free modes, 14.223,
‘thét arose in the step functipn case. Thehmode with index n
has a t, x-dependence like t + (2n + 1) (x - XE) énd propagates
away from the boundarynwith éroup velocity’(Zn +'l)—l. Since
the lower n moaes propagate faster, at a givenvﬁime t, this
response extends further into the basin near the eéﬁator and
becomes narrower with increasing y. As nofed above, this
respohse asymptotes to a coastal Kelvin wave with incfeasing Y.
‘Because of the beta effect, this coastal Kelvin wavé has a non-~-
zero component of group and phase velocity in the direction
normal to the coast so it can piopagate awaylfrom the coast,
albeit slowly (Moore, 1968).

The Rossby mode; (4.16), which is part of the unbounded
response to a zonal wind stress,’carfies energy inﬁb the
western boundary. The reflection, (Appendix E.3) must have an
equal energy flux to the east. It consists of modes with meri-
dional index lower than or equai to that of thé incoming mode.
Most of these modes are a synthesis of short wavelength ﬁossby
waves with low group velocity so that these modés stay near the
western boundary. Most of their energy is in the V.component,
which ig in geostrophic balance. Since their group velocity is
so low, their energy density must be high in‘order for their
energy flux to balance that of the incident motion. These

features are qualitatively similar to the mid-latitude case.
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This asympetry in the -character of the eastward and westward
propagating Rossby waves helps to explain why curggnts‘iqtensify
on the western side of the ocean (Pedlosky, 1965).. . In addition,
this reflection has features which are distinctly equatorial.
Specifically, each incoming wave reflects as a whole series of
waves, including the mixed mode or the Kelvin wave. The mixed
mode's behavior is similar to the Rossby modes. It shares the
Bessel function behavior of the Rossby modes which results in
the boundary current becoming thinner and more intense with
time. Most of its amplitude remains near the boundary, though
its leading edge propagates away with group velocity one. The
Kelvin mode has a very different behavior. Kelvin waves have
group velocity 1 at all frequencies. They carry energy away
from the western boundary quickly, so that less of the incoming
energy flux remains in the western boundary current than is the
case for mid-latitudes. |

The boundary response to the steady current which results
from a north-south wind stress will not be discussed here (see
Section 5.2). We only remark that it is qualitatively similar
to the step function response. The eastern boundary response
is a series of Rossby modes like those of (4.25) which have
v = 0 and u and h independent of x and t. The western boundary
response is a séries of boundary frapped modes like those of

(4.26); they result in an intense, narrow current along the
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western boundary. The amplitudes of these modes may be
computed by the algorithms (4.37) and (4.39).
The most prominent effects cf the boundaries were -

summarized in Section 3.4.
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5. MODEL RESPONSE TO SIMPLE WIND STRESS PATTERNS .

5.1 Introduction

In this chapter we consider the model respoaée to some
éimple wind stress patterns. The results presented'were
obtained from the numericai integration of the model described
inAChapter 2. The analytic results of Chapters 3 and 4 wili be
used to elucidate the model's behavior. Using the parameter
values in Table l, a timestep of .95 hours, and the grid of
Table 2, it takes one hour of IBM 360/95 time to compute the
nonlinear response for 400 days. The linear response can be
calculated about 20 per cent faster.

The linear response is of some interest in its own right,
particularly in view of recent work on equatorial waves. We
are also interested in it here because of the light it sheds on
the more realistic nonlinear response. Consideration of
certain symmetries make the results presented below applicable
to other wind stress patterns. The linear response to a
uniform westerly wind may be obtained from that to the easterly
wind by reversing the sign of z2ll velocity components {(u, v, w)
and the layer depth, h. That is, the pattern of the response
is the same but the amplitude has opposite sign. A similar
Afule hélds for obtaining the linear response to a northerly
wind from tihﬂat to a southerly wind. The nonlinear response to
a uniform northerly wind may be obtained from the south wind

response by reflecting the latter solution about the equator
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and changing the sign of v. Formally, if u{y); v(y), hty) is
a solution for a uniform south wind, then u(-y), v(-y), h(y) is
a solution for a uniform north wind. There is no simple rela-
tion between the nonlinear responses to an east and west wind
stress. A helpful way to orient oneself through all of this is
to begin by considering what the wind drift part of the solution
is. _
Although the figures presented below are largely self-
. explanatory, a few preliminary comments may prove helpful.
Values of quantities are generally in the scaling given in
Table 1. Energy integrals are in units of 102 m3 sec“l az,
where a is the radius of the earth. Values of horizontal
velocities shown on the graphs are in units of 10_2 msec"l
(=1 cm sec—l). The values of the contour inferval or séaling
given below the graph reflect the original scaling of l‘mse;:"l
(see, e.g., Fig. 5.4). The values for verﬁically integrated

transports were originally scaled in units of 102 m2 sec“1

while the labels on the graph are in units of m2 sec_1 (e.g.,

i

Fig. 5.5). The graphs labelled "layer depth" are, strictly
speaking, the deviation of the layer depth from ité mean Vélue.
The values below the graph are in units of 100 m.;_while the
contoﬁr lines are lébelled in units of m. Recail tﬁat‘fér this

model,'hs, the deviation of the surface height from the mean,

R

is related to the deviation of the layer depth by hs = Ap/p

2 x 1073 h.
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* Most of the graphs are plotted in the “compUtatidnal“
(stretched) coordinates. This allows the graphs more area in
the regions of greatest interest. Note that the arrows (e.g.,
Fig. 5.4) are all the same length; the magnitude-of - the
velocity is given at the tail of the arrcw and its direétion‘is
the direction of the flow without regard to stretching. ‘That
is, an arrow oriented 45 degrees from the horizontal has equal
u and v components even though the stretching may be such that
moving 1 cm along the page in the x direction represents 5

times the physical distance of a 1 cm space in the y direction.

5.2 Linear Response to a Uniform South Wind

We are concerned here with the linearized equations

- -1 .. _ -
0 - 0 except Fr Ro finite and h = H1 mean

depth of the lower level everywhere except in the pressure

(i.e., (2.8) with R

gradient terms; cf., Section 3.1). The wind stress is taken as
a step function turned on at t = 0; the wind is uniform over
the basin from the south with a stress of .465 dynes/cmz.
Other parameters are given in Table 1; the grid is described
by Table 2. 1In chapters 3 and 4 the analytic tools were
aeveloped to solve for the model response to such a forcingT
We now make use of those results to interpret the numerical
computation, beginning with a review of the qualitative fea-
éuré§ éf tﬁe initial time dependent behavior.

The method of Chapter 3 was to divide the flow into a

vertically integrated transport ﬁ and a boundary layer velocity
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u. Extra-eguatorially U is the Ekman transport. Extra-
equatorially it quickly [p - (20 daysi]becomes,a wind drift so
that v = 0 and ﬁ‘is eastward in the northern hemispﬁere and
westward in the southern hemisphere. Within about 39\05 the
equator (cf., (3.25)) there is a bqundary_layer in which,%nter—
facial friction is important; at the equator 4 = 0 and Vv =
T(y) E-l {1 - e—Et}; this boundary layer effects the transition
between the flow at the equator and the extra-equatorial wind
drift solution.

The response of the transport has even symmetry about
the equator (that is, u and h are anti-symmetric and v is
symmetric about y = 0). The response exclusive of boundary
effects consists of: a steady forced component with v identi-
cally zero; and a time varying component composed of inertia-
gravity waves (including a mixed mode) with zonal wave number
k equal to zero (4.15). The steady component is depicted in
Fig. 4.3. It has u = T(y)/y for large y and u = 0 at the
equator so |u| has maxima near the equator. At the equator the
wind stress is balanced by the height gradient.

We now describe the boundary response to this flow field.
At the western side the boundary response to the steady current
is a synthesis of free Rossby modes with low frequency and high
wavenumber; i.e., the lower left hand corner of the dispersion
diagram, Fig. 4.1. This response is boundary trapped; that is,

it has such a low group velocity that it can't escape from the
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boundary region {except for the mixed mode; cf., Section 4.4).
It transports water from south to north, but only at’ the
western side-of the basin. The inertia-gravity waves (inclu-
ding the k = C mixed mode) initially generated all have east-
ward group velocity. Therefore, as discussed in Section 4.4,
the western boundary response to the nth such wave is a wave

of equal 'and opposite amplitude propagating away at group
‘velocity (4n + 2)—1. The effect is to just cancel the original
wave.

At the eastern side the response is more varied. There
are no propagating waves at the frequency of the mixed mode;
hence, the response to it is a series of boundary trapped modes.
When an inertia-gravity wave with its meridional structure
indexed by n > 0 impinges on the boundary the response is a
series of boundary trapped modes together with a propagating
inertia-gravity wave of index n with westward group velocity
and wave number k = -(2n + l)-%; a long wave. Most of the
energy goes into this propagating mode. When this reaches the
western side, most of its energy will go into a reflected
eastward propagating wave of index n and k = 0; that is, a
wave like the original gravity wave. Propagating modes with
lower meridional indexes will also be excited, but with much
smallef amplitude.

4 The part of the boundary response described sc far thus

consists of boundary trapped modes plus some gravity waves
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which bounce back and forth across the basin. We anticipate a
final state in which the wind.stress is balancgd by the tilt.of
the- sea surface in the interior (cf., (3.15)). Using the
scaling and notation of Chapter 3,

‘4\/:: ?CY) 6r ]n-: fZ‘Y)&(y = \/7:"”‘ o _ ('5‘1)
The last equality holds when the wind stress is constant; the
first as long as T(y) is a function of y only. .In-such a case,
the wind stress has no vorticity so the Sverdrup balance
requires that the transport in the interior vanish. It is
possible that the state described by (5.1) would never be
reached in the absence of friction. Nevertheless, one would
expect the inviscid motions to adjust toward it or oscillate
around it. Since the boundary trapped motions cannot effect
this adjustment, it must be done by the part of the solution
which has not yet been discussed; that is, the eastern boundary
response to the steady part of the unbounded solution. v,

Denote the incoming steady velocity and height fields

by UI(y) and HI(y) respectively. These satisfy

yul + HYI = W) T (5.2)

It follows from Section 4.4 that the eastern boundary response
to this, which we will denote with superscript-E, must consist

of wave packets which propagate energy westward and.synthesize

E

to a form which is independent of time and has U~ and -UI'at
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_-the eastern boundary x = XE. .The response solution may be .
found by the methods of Section 4.4 or one may simply recognize
from the results presented there that the answer must be of the

form

- =)

E- E .E, _ 2n
This is a sum of Rossby modes of zero frequency and zero zonal
wave number. They fall at the origin of the dispersion curve,
Fig. 4.1. Each mode has V = 0 and U and h in geostrophic

balance so - -that

vE = 0; yut + hyE = 0. (5.4)

A mode indexed by 2n has westward group velocity of magnitude

(4n + 1)~l; hence, for a given x and t
E E N 2n
(¥ x, ©, 0, 0% x, 0)) =57 c 2 (5.5
n=1

where N = N (x, t) is the largest integer such that
: t

X, = —_—

E-*Z7an+ 1) -
This simply says that the solution at a point (x, t) consists
only of those modes which propagate energy fast enough to have
reached x from the eastern boundary. Since the group velocity
dec;eaées,with increasing n, and since the modes with smaller n
are more equatorially confined, for a given distance from the

eastern ‘boundary the response is felt more quickly the closer
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one is to the equator. This is shown schematically in Fig. 5.1.

There is no effect for peoints with x < X_ - /5. Right at

E
the eastern wall all modes are present; adding (5.2) and: (5.4)

y (8 + uT)y + (nf + o), = )

Since UE + UI =0

I + hE)y =) or I + 0B = IT(Y) dy

which is the balance described by (5.1). For a point away from
the wall

" + oF, vE + vE, nl + 1B = (0, 0, [ ap

so that the last sum gives tﬁe deviation from a state of no
motion with the wind stress balanced by the tilt of the height
field. For a fixed x, N increases as time passes =-- more and
more modes arrive at the longitude x -- so the balanced state
is approached more closely.l

There may be some initial puzzlement when one first

considers the mass fluxes that go with the solution outlined

1We have obviously finessed the question of the conver-
gence of the series (5.5). See the remarks in Section 4.2.
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above. The adjuétment which is to be reached requires that
mass be moved from the scuthern to the northern hemisphere, yet
the modes which ‘apparently do the adjusting have no north-south
velocities associated with them. The mass flow may be
described as follows: When the inertia-gravity waves which are
initially excited are cleared away, there remains a steady fiow
toward the eastern wall north of the equator and away from the
eastern wall south of it. As the frqnt which marks the edge of
the eastern boundary respcnse (the dotted line of Fig. 5.1)
moves away from the wall it leaves behind a region where the
zonal velocity is reduced in magnitude. Hence; there is a
convergence of mass into this region north of the equator and a
divergence out of it south of the equator. If there were no
western boundary, this process would simply roll on toward
X = -, The presence of a western boundary makes it necessaxy
for the mass flowing westward in the southern hemisphere to be
carried northward across the eguator in a western boundary
current. It then flows eastward to pile up behind the front
advancing from the east (Fig. 5.1). Finally, we note that
there is some recirculation associated with the western boun-
dary current. This is required to give conservation of
potential vorticity in the boundary current.

We now turn to the numerical calculation of the linear

response to a uniform scuth wind. The wind stress is turned on
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suddenly at t = 0; as with the analytic model, it is a step
function in time.

Some of the gross characteristics of the evolution
are implicit in Fig. 5.2, which gives the kinetic énergies of
the surface and lower layers and the potential energy in the
basin. {These are defined after Eq. 2.6).) In sixteen days,
the‘suiface layer kinetic energy has attained 98 per cent of
its final value, a value which changes little after this time.
The lower layer kinetic energy rises to about its final value
in only eight days, reaches a peak at 32 days and then dimin-
ishes until about day 60, at which point it remains approxi-
mately constant. The potential energy continues to rise as the
sea surface tilts to balance the wind stress. Even after 400
days, it has not reached a final value. However, Fig. 5.3,
which gives the energies in the—region between 5.6° S and
5.6o N, shows that in the vicinity of the eguator, the poten-
tial energy has attained its approximate final value within
100 days and is within 1/e of this value within 60 days. All
‘of these time scales are consistent with analytic theory. The
-boundafy;Iéyer velocity U is expected to spin up with a time
scale of 20 days (Eq. (3.25) f£f.). Disregarding the bound-
aries, the transports are initially due to the generation of
gravitj*waves with‘freﬁuencies on the order of a few days. The
discussion above suggests that the height field and transports

(and hence, the PE and lower layer KE) in the equatorial region
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should be close to their final value when the first Rossby mode
which originated at the eastern boundary has réached the
western side. For the present model, this time is 96 days. 1In
extra-equatorial regions, adjustment is via the much slower
modes with a higher index n (for example, the mode n = 10,
which has its turning point at about 130, would take 400 days
to cross the basin). In summary, the wind stress is félt
directly by the upper layer which is quickly spun up to approx-
imately its final value. The lower layer is set in motion by
pressure gradient forces and by friction, but not, in this
linear case, by advection of momentum from the surface layer.
The lower layer KE never exceeds 1/5 of that of the upper layer.
As the height field sets up to balance the wind stress, the
potential energy continues to increase, ;pqugh it adjusts
quickly in the vicinity of the equator.

We now consider the flow fields in some detail. At all
times the model response exhibits the expected symmetries:
meridional velocities are symmetric about the equator; zonal
and vertical velocities and the height field are all anti-
symhetric about the equator. Figs. 5.4xa'and b -show the velo-
cities in thg two layers after eight days. Since this is
too short a time for the boundary effects to prcpagate far into
the basin, the interior flow is uniform in x.  The only substan-
tial interior meridional velocity in the surface layer occurs

in the region form 1.5° s to 1.5O N, with a maximum of
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.8m sec:”1 at the equator. This'is clearly a product of the*

“"frictionally induced«coqponént v; there is an opposite and.
(approximately)equalémefidional transport in the-lower.layer.
This rolt circulation is completed by a narrow region of strong
downwelling centered at 1.2o N and a corresponding .upwelling
region south of the equator. The zonal .component.of the
“interior flow is essentially given by the Ekman wind.drift --
to the right of the wind in the northern hemisphere and. to the
left of it . in the southern hemisphere. The magnitude of. this
component increases toward the equator until the effect of the
interfacial friction becomes significant, reducing it to zero
at the equator. Poleward of about 2.5° the lower " layer: zonal
flow is in the same direction as that in the upper layer, being
driven that way by both frictional énd pressure forces.
Equatorward of this point the lower layer flow is opposite to
that above. Thus, vertically integrated transport is every-
where eastward in the northern hemisphere and westward in the

- southern, with extrema at 3o (cf., Fig. 4.3). The interior-
surface height is consistent with this transport: it tilts
upward from' 3° s to 3° N and returns rapidly to zero poleward
of these latitudes.

'~ The boundary responses are already discernable by 8 days.

The .strongest meridional velocities in both layers occur at the
western .boundary. The maximum transport is at the ‘equator,

though- the subsurface extrema are at 3°. At the eastern side,
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the boundary effect is seen most clearly in h-andagl.'
At this time, the fastest moving symmetric -mode {n = 2) should
have its leading edge 2.5° from the eastern boundary. Orly
at the eastern side does the layer depth slope upward to the
north poleward of 3°.

At 16 days the pattern of the adjustment process may be
seen from the vertically integrated transport, Fig. 5.5. . The
meridional transport shows an intense, narrow, northward jet
along the western boundary. Adjacent to this is a broader,
weaker southward jet. This is due to the Bessel function
behavior of the boundary response described in Chapter 4. The
northward jet is stronger and narrower than it was at 8-days,
at which time the southward flow was not apparent. . The zonal
component shows a wavelike pattern with the wavelength increas-
ing and-the amplitude diminishing to the east (note that by
this time the leading edge of the mixed mode would have propa-
gated 24° of longitude from the western boundary). -This - .
pattern merges into the westward moving region of lower trans-
port near the eastern wall.

The evolution of the mcdel circulation proceeds as we
have outlined above. Significant meridional transports take
place only near the western boundary. These northward currents
continue to narrow, reaching a width of less than 1° in 30
days; thereafter, frictional forces prevent a further narrowing

(Lighthill, 1969). The zonal flow also shows the wavelike
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Bessel function pattern squeezing toward the western boundary.
The only other sizeable meridional velocities are equatorially
confined: by day 16, these fricticnally controiled currents are
within 1/e of their final values. The main adjustment proceeds
from east to west, leaving a region where the height slopes
upward to the north and the zonal velocities are reduced.
Indeed, in ‘some places the transports are opposite to the wind
drift velocity (e.g., they are westward north of the equator).
We note also that the boundary trapped modes generated along
the eastern wall turn the corner and proceed westward along the
northern and southern boundaries. As is the case for the
western boundary current, the layer depth tilts to geostrophi-
cally balance these boundary currents. Figs. 5.6 a, b and ¢
depict the velocity fields and layer depth contours at 40 days.
At this time, the leading edge of the eastern boundéry'response
is at x = 16°. )

Figs. 5.7 a, b and c afford a different view of the
adjustment process. They show north-south sections of the
layer depth at positions 3.2° from the eastern bouﬂdary, at the
center of the basin, and 3.2°vfrom the western boundary. These
figures clearly support the claim that the adjustment process
proceeds from east to west with the equatorial region reaching
its final configuration most rapidly. After 20 days, the n = 2
and n = 4 modes will have passed the point 3.2°% from the-

eastern boundary and the laver depth in the equatorial region
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(i.e., 5° s to 5° N) has already reached its final value. The
points at 12° N and 12° s d6 not adjust until day 100. At the
center of the basin (x = 14.30) the n = 4 mode passeﬁ‘at day 64
after which the equatorial region is spun up; the poipts at 12°
take about 300 days to reach their final state. The éomparable
times for x =.3.2° are 114 and over 400 days respectively. We
may say that the equatorial region spins up on the order of 100
days. Fig. 5.8-showed a similar picture for the zonal transport
at the center of the basin.

Figs. 5.9 and 5.10 show the currents,'the layer depths
and the contours of the zonally integrated transports at 398
days. The layer depth contours (Fig. 5.9c) reveal the extent
to which adjustment is complete. The contours are by and large
zonally oriented, sloping upward from a displacement below the
mean depth of 22 m at the southern edge of the basin to one
22 m above it at the north. Oniy a small region at £he north-
west and southwest corners deviate from this pattern. The
sufface currents show zonal wind drift currents together with
the meridional current in the equatorial friction'layer. In
‘Tmost of fhé basin the lower layer‘curréhté ére jﬁS&iﬁhose
needed to reduce the vertically integrated transports to zero.
The 2zonal component of these currents is in geostrophic balance
with h. "The exceptions to this descriptibn can be seen in
Fig. 5.10, which depicts the vertically integrated transports.

There is a substantial northward transport at the western
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boundary: (though its maximqm value, 33.5 m2 Sec-l, is less

than 1/3 of ‘the maximum df'118 m? sec:"l attained at day 30).
Part of ‘this -- a'constantlf‘diminishing part -- is required to
move fluid from south to ﬁorth to cohplete the overall adjust-
ment to a final steady state.: The remainder is needed to:-
complete the circulation induced by bottom friction in an-
“equatorial boundary layef,(eq: (3.17) ££f.). Away from the
-boundary this circulation is primarily zonal with' the net- -
transport across the equator (cf., (3.21)). As predicted,: the
boundary layer broadens from east to west. Superimposed: on -
this steady-state pattern of zohel transport, one may see-the
wavelike'pattern associated with the western bounder& current.
Note hbw similar the currents at 398 days are to those at 40°
‘days (Fig. 5.6). The currents, even in the lower layer, are
largely given by the friction component u and the frictional-
spin up time-is on the order of 20 days. There is a marked
difference in the layer depths (Figs. 5.6c and 5.9c) which
adjust -on the transport setup time scale, 0 (3 months) at the

equator.

- - . . [
- PR ;

5.3 Nonlinear Response to a’UniformASouth Wind
In this section we will treat the nonlinear (Egs. 2.?)
respgnsebtq alwind which is everywhere from the south. Except
Afor the nonllnearlty, this case is governed by parameters
”1dent1cal to those of the linear response discussed in the

- - 0\

prev1ous section.
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. An overview of the spin up process..is given by Figs.

5.11 and- 5.12, which depict the energies integrated oyer the.
_entire basin and the equatorial region, respectively. As in
the linear, case, the surface layer kinetic energy quickly .
(order 8 days),rises.to within 1/e of its final value as the.
wind stress transfers energy to the ocean. Thereafter, the.
increase in surface energy is slowed, but the increase in lower
layer kinetic energy and potential energy continue until about
.day 150, reaching peaks of 5.8 x 10"3 and 3.3 x 1073, respec-
‘tively.  Recall that in the linear. case (Fig. 5.2) KE; was ,
always lgss than 10:3, while PE took 400 days to reach a value

3 3

of .3 x 10 °. The final mean value for KE_ of 3.8 x:10.° is

only. slightly smaller than the linear case value of 4.4 x 1073.

These differences suggest the importance of vertical pdvec;ﬁgn
" as a mechanism for transferring momentum to the lowexr layer.,
After such a transfer has been made, the lower layer;currents
may transport significant amounts. of mass. This allows for a
faster buildup of potential energy than is,.possible wﬁen.mass
redistribution is accomplished primarily via the thin surface
boundary layer, as is the case in the linear model. A compar-
ison of Figs. 5.11 and 5.12 shows that about half of the kinetic
enéfgy but only about 10 ber cent of the potential'eﬁergy is in
the region within 5.6° of the equator (about 173 of the basig).
Beginning ét about day 100 anrosciilafion with a be&iod

of 29 days may be observed in the surface kinetic*enérgy. At
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about day 160 an oscillation with a period of 29 days may be
observed in the surface kinetic energy. At about 150 days, an
oscillation in the potential energy sets in approkimately in
phase with this. The lower layer kinetic energy starts to
decrease, eventually leveling off to oscillate about_a steady
value,.the oscillations being out of phase with those in the
other quantities. This suggests an instability which draws its
energy primarily from the kinetic energy of the flow in the
lower layef. Fig. 5.13 shows a plot of phase lines of the
lower layer zonal velocity at the equator -- the abscissa is
distance along the equator, the ordinate is time. Beginning
near Fhe‘western side at about day 100 and appearing later at
the eastern side, a very regular progression of phasé from east
fo west may be observed (similar plots of the other variables

' giVe‘esseﬁtially the same picture). These waves have a period
-pf529 days'and a phase speed of 32.5 km/day, giving a wave-
length of 950 km.

- .In order to understand the phenomenology of this spin up
we turn to a ccnsideration of the evolution of the currents

and the lafer depth. In the early stages some insight may be
gained by a comparison with the linear case. Many of the
features of the flow pattern can be understood by considering
the kimematic effects of the vertical and meridional advections

on the linear response.
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Fig. 5.14 shows the layer depth in the equatorial
‘region at 8 days. With the exception of some boundary regions,
~ this fiéldris very nearly anti-symmetric about the equator.
There is little to distinguiéh the interior from the linear
 response. The circulation pattern in both layers is

similar to the linear response at this point, but some distin-
guﬁshing asymmetries are already present. The principal
‘differences may be summarized as follows.

' In the surface layer the maximum meridional velocity
N>occurs at approximately 1° N,/rather than on the equator as is
‘the case for the lineér response. This may be attributed to
_the self-advection of northward momentum by the surface

currents near the equator. As in the linear case, the meri-
dional- velocity goes to zero at about 3°N and 3° s.” A similar
advective effect is observable in the zonal component of the
%surféce>cuprent. The maximum westward flow still occurs at
11.2? S, but its magnitude is less (.41 m secm1 compared to
,¢5§ m sec_l). Westward momentum has been advected northward so
that the surface flow is westward to 1.2° N. The ééstward
 momentum in the surface layer north of the equagbf has also
been advected northward -- but not beyond 3°N, where the
meridional velocity goes to zero. The effect is to compress

the eastward flow into a narrower, more intense jet. The

eastward flow at 2.5° N is at speeds of .9 ms"l, compared to
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the linear maximum of .59 m:s"l at 1.2° N. At this time,
vertical velocities are everywhere negligible in the interior;
flow in the lowér layer is small every%here. The trend is thus
toward the development of an eastward jet, now centered at
2.5° N with a broader, slower westward fl?w at the equator.
Th?s‘pattern is evident in the 2zonal tranéporﬁ, Fig. 5.15.

‘ By 16 days, the degree of asymmetry is marked. The
eastward jet is no{fcentered at 3° N, Wheré the surfaée flow
reaches speeds of 1 m sec™! (Fig. 5.16a). This jet is quite
narrow; its velocity falls to less than .2 m sec_% within 1°.
There is a considerable horizontal convergence into the jet,
resulting in a substantial downwelling (w = 1.5 x:lo-"4 ms_l)
at 3° N. Elsewhere in the interior the verticai velocity is
~negligible. This downwelling advects eastward momentum into
the lower layer so that the flow there is also eastwéid (Fig.
5.16b). The fesult is a large vertically integrated transport
to the east -- a factor of 5 larger than in the linear case
(cf., figsf 5.17 and 5.5). Returning to the surface flow,
south cf about 2° S the currents are essentially the wind drift,
as in the linear case. From about 2° S to about 2° N, the
interior flow is everywhere to the northwest. In the linear
case, this was the region where the flow was given by the
wind drift, plus interfacial friction solution (3.25). The
nonlinear case shows a maximum meridional component north of

the equator and a non-zero component to the west everywhere.
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As. above, these effects may be understood by considering the
.effect of northward advection on the linear solution. The
current shears are smaller here than in the linear case, ‘and
the region of substantial northward flow is broader, while the
maximum northward velocity is lower by a factor of two. In the
lower layer, the flcw is greater than .05 m sec"1 6nly near the
lateral boundaries and between 2° 5 and 4° N.

Figure 5.18 shows the fields at 40 days. The patterns
are substantially similar to those at 16 days. We note that
the interior flow is approximately steady and independent of
longitude. The primary exception to this is the layer depth
which shows a more uniform tilt to the north at the eastern
side, similar to the linear case. It also shows a suggestion
of a wavelike structure at about 4° N. The part of the inte-
rior field which is independent of x and t may be described in
terms of four regions:

{1) South of about 2.5° s the response is essentially
linear, like that discussed in the previous section. The domi-
nant feature is the surface wind drift current to.the left of
the wind. ‘ o S

(2) From 2.5° S to about 2.5° N the surface flow turns
from n9rthwestward to northeastward to due east. Vertical

velocities are everywhere upward and small (0 (3 x 10 ° ms~ 1

)),
with most of the upwelling south of the equator. The zonal

. component of flow in the lower layer is tc the west south of
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1% s and to the east north of that, with a magnitude comparable
to the upper layer zonal component near the equator. The méeri-
dional component is southward everywhere.

(3) From 2.5° N to 5° N there is an eastward zonal jet
in both ‘layers: ' at 3° N the upper layer flow is as high as
1.2 m’sec_l;'fhe lower layer flow is over .4 m—sec—l.“ By this
point, the meridional component of flow is negligible in both
layers. There is strong convergence into the jet with large
downwelling at its core (w = 3 x 10-4 ms-l).

(4) North of about 5° N the model response again becomes
wind drift dominated and essentially linear.

This description is in close agreement with the x-
‘independent, steady state calculation of Charney and Spiegel’
(1971) . (See their Figs. 11 and 12.). The only nctablé
disagreements are that their surface velocity in the jet is '
smaller (less than 1 m sec-l), their downwelling region is
broader, and their upwelling region narrower than ours. We now
seek a simple model (independent of x and t) to elucidate the
physics of this flow.

Regions (1) and (4) are explicable in terms of the
linear dynamics of the last section. WNow consider the surface
flow in region (2). A parcel in the vicinity of the equator
will acquire a northward velocity compohent ‘(frictional forces
give it a component in the direction of the wind). As it moves

northward, it acquires cyclonic planetary vorticity. Since it
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{(approximately) conserves its total vorticity, it must acquire
anti-cyclonic relative vorticity. The effect is to turn the
parcel clockwise toward the east. As long as the parcel moves
nortbyggd, it is able to acquire energy from the wind stress.

At some latitude the parcel's northward momentum is being |
Yconyerted‘into eastward momentum more rapidly than it is rgplen—
ishéd by the wind. Eventually,‘the parcel will be travelling
due eagt,wstill carrying the approximately zero total vorticity

it had near the equator. To the north of this, the flow is in

the wind drift regime where the vorticity of surface parcels is

P 4

;‘approximately the local planetary vorticity. The transition
ﬁetw?eg the two flow regimes demands a shear layer in which the
gg;facé‘efstwgrd velocity is reduced to the north, thusyad@ing
enqugh positive vorticity to Fhe flow to match it to.the 0
tp;anetgry yorticity. This is accomplished by the dowg&eiling
iﬁ thé.jet which transports the eastward momentum downwards.

We formulate the folléwing simple model to obtain some
guantitative descriptions to accompany this qualitative
description. ‘

- _ .In region (2) the surface flow is governed by the fol-

lowing approximate equations

du

3t - Syv = 0 (5.6)
gl + Byu = T/%7 (5.7)
dt / *
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where

3

= Voay

&IQ:
ot

so that the first equation expresses the conservation of
vorticity. In addition to taking 3/3t = 3/3x = 0 a'nﬁmber'of

. other simplifications have been'made, the least defensible of
which is £he neglect of interfacial frictio;. This was done to
make the equations analytically tractablé -- its inclusion
would change the numerical values slightly, but not the
character of the solution. The pressure gradient term is small
compared to the retained term. The vertical velociéy is émall
throughout this region and the vertical advection térm is about
1/2 the retained meridional advection term in the uppef layer.
Its principal effect can be capturgd by multiplying the solution
for v obtained below, (5.8), by (2/3)!‘E =~ ,8. An energy équation
may be formed from (5.6) and (5.7), ;

(u2 + v2) = v .

Q-elQa
o

1
2

~3| A

By making use of the definition dy/dt = v, this may be inte-

grated to yield

uz + v2 = 2 = y + Const.

From (5.6)
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We now simplify things further by assuming that u = v =u =0

at the equator (actual values are v° = .6 ms L, v = -.2 ms”

s . -7 -1 . .
and uy = 10 S 7) and so obtain

. 2 ' 2 4
~ By~ 2 ., ,_8y
WP 5 v 2 77 R . ) o (§.8)

The pésiﬁioﬁ of the jet is at a latitude Yy Where v = 0:

L 1/3
y. =2 % > 340 km = 3° .
Alhﬁhis latitude
2 1/3
By 2 -
uJ‘= —fg- = 2 iléﬁl_ 2 1.2 m sec 1 .

These values are in excellent agreement with the numerical
calculation. -We may also obtain a scale for the other velocity

" component by considering the latitude Ym where v is a maximum:

o iy oo ,
Von = Y._&%;] = 2% m esyie 20

. ~ =Y ey B % v
Ve = v (V) = REAEVEY. ‘2‘2]" |

% 9 wm osec”! ‘ (5.9)



This agrees quite well with the maximum in the numericalh
célculation, but the position is further to the north (about
2.5° N). If we had made the initial velocity at the equator
non-zero, the effect would be to increase Vm and to move YJ and
Ym slightly to the north. We also note that the jet must, in
fact, form before the meridional velocity is identically zero in
order to permit the downwelling required to maintain the zonal
momentum balance. Turning to the jet itself, the requirement
that the vorticity of the flow be brought up to the local

planetary vorticity in order to match onto the linear regime

gives a scale for the width Y of the shear zone.

= o2 = 1
B (YJ + Y) N UJ/y =Y .35 Yy 1.17.

This is the right order but slightly too wide (the model
results show Y = .8°). The principal neglected term is the
downwelling term (the model's analogue to the vortex stretching
term) which would tend to méke the jet wider. One feature of
Ehis descriptién which agrees well with the numerical calcu-
lation and that of Charney and Spiegel (loc. cit.) is that4the>
zonal veloéity of the%jet falls off more,fapidly to the north
than to the south. |

The fluid which descends in the jet arrives in the lower
layer with considerable eastward momentum and negative relative
vorticity. The meridional velocity component in region (2) is

southward in order to satisfy the continuity equation
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(hv )Y = vy | | | fS.lO)

and the- (approximate) condition that vl = v® = 0 at the southern

edge of the region. Parcels will approximately conserve their
total vorticity because vertical exchanges are small‘-and beeause
both f and variations in the layer depth are small (so that- the
variation of potential vorticity is given by the variation of
vorticity). As a parcel travels southward, its planetary
VOrticity decreases so its relative vorticity must become less
negative and may even become positive.

" Let us now trace a parcel southward after it leaves the
region of the jet. Its initial conditions (i.e., u > 0 and
uy > 0) mean that it starts out with an eastward velocity
"which becomes progressively more westward as it travels south.
Note that a parcel which makes it to the eastern side before
turning east slows its westward flows and "uses" its vorticity
to enhance its meridional flow. There is a region of large
" southward transport at the eastern side centered at about 1.8°
N. As the parcels flow *oward the west-southwest the westward
component of flow increases, but at a decreasing rate. This
latter effect is due to the increase of relative vorticity
(i.e.,,uy) goes to zero. In our calculation this occurs at
about .3° N. Note that north of this point the flow impinging
on the western boundary turns clockwise to the north (its

relative vorticity ¢ < 0) while south of it the flow turns
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counterclockwise to the scuth (3> 0). This flow continues
south along the boundary until it ﬁeets a northward current,
.which, since it comes from the south, must have negative
relative vorticity. ,K Both currents then tgrn eastward (this
junction is at 1.50 S at 40 days and at 3° s at 80 days. R
. Parcels which travel this far gouth in the in;erior,must also
begin to, flow eastward as their relative vorticity increases.
We note that there is an eastward flow with currents larger
than .1 m.sec»l in the region from 1° S to about BORS. At the
eastern side of this region some of the water turns north and
some south, consistent with the idea that the flow contained
parcels with both positive and negative relative vorticity..
The upwelling in this area is not large. The vertical .
~exchanges in this model are characterized by a weak upwell}ng
almost everywhere, with narrow regions of strong downwelling

at the western side in the vicinity of the equator. and in, the
jet at 39‘N (especially at its easterﬁ end) ,.

Before continuing the. discussion of the evolution.of the
model calculation we wish to make two remarks about.the fore-
going discussion. It is pleasing to be able to obtain an
explanation of the motion which is independent of the value of

the frictional parameters since these are so uncertain. The

rneg;ect of frictipn,in (5.6) and (5.7) is justified'iﬁ the ,
verticgl_friction_coefficient.K/q in (2.6) is small compared
to the advective operator va/ay._»The latter.may be estimated

from (5.9):
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while with the values in Table 1 the friction coefficient is

6 x 1077 sec™t. The excellent agreement of our analysis with
the numerical results is probably due to the neglect of fric-
tion being compensated by underestimating the actual initial

velocity in obtaining (5.8).

Our second remark serves as a preface to the further
evolution of the flow. It concerns the implications of the
foregoing analysis for the susceptibility of the flow to shear
instatility -- the distinguishing characteristic being that the
growing perturbation draws its energy from the kinetic energy
"of the mean flow). For non-divergent inviscid flow a necessary
condition for instability is that the vorticity -— f - uy, in
our case -- have an extremum. Though our situation is more
complicated, this simple criterion still serves as a useful
‘guide (see discussion below). This condition is usually not
met by gecphysical flows because the gradient of planetary
vorticity, B, is large enough to ensure that the)graaient of
total vorticity, B - uYY’ is monotonic. The flow in region (2)
described'above was characterized by the conservation of total
vorticity, thereby neutralizing the stabilizing effect of beta.

Recall that the key ingredients that create this situation are

a non-zero meridional velocity, to permit exchanges of relative
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and planetary vorticity, and the absence of a wind stress curl
to alter the total vorticity. A number of considerations
permitted our description to be greatly simplified. In parti-
cular, the fact that throughout the region vertiqal velocities
are not large and the layer depth does not .vary grgatly allowed
us to consider the vorticity ?alances within each layer
separately. The fact that the flow was approximately x-
independent reduced the relative vorticity to the meridional
shear cf the zonal flow.

Since the vorticity gradient is constant, the flow is
marginally unstable; an additional process which produced a
region of stronger (or weaker) shear will cause this necessary
(but not sufficient) condition for instability to be met. The
model calculation does exhibit numerous extrema in the profile
of £ - uy. For example, after 30 days of model time at a
longitude 9.5° from the western boundary, the upper laver has a
maxima at 0.3° N and 1.5° N and minima at 0,9O N and 2.5° N;
the lower layer has maxima at 0.6° s and‘0.9O N and minima at
0.3° N and 1.5° N. -

We fesume the discussion of the evolution of the flow
with Fig. 5.19, which shows h at 119 days. The waviness. .
suggested in the earlier figures at 4° x (Fig. 5.18) is now
clearlf evident. Note that it now extends further to the east
and that there is a wavy pattern developing at 4° s as well.

Recall that the energy graphs (figs. 5.11 and 5.12) show some
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evidence of an instability by this time. At 160 days the lower
layer kinetic energy reaches a peak and the instability is
readily apparent. Fig. 5.20 shows the flow at this time. The
overall pattern in the velocity fields is similar to. that
described above for day 40, but there is an additional wavelike
disturbaﬁce,/especially evident in the lower layer velocities,
Fig. 5.20b. This is no longer confined to the western side,
but is present in equal amplitude across the width of the basin.
By aboutyday 200, the flow settles into a repeated pattern with
wavelike disﬁurbances propagating {(in the phase sense) across
the basin‘from east to west (see Fig. 5.13). Figs. 5.21 show
the fields in the entire basin during this final period of the
flow's evolution. The surface velocities exhibit a marked x-

. independent pattern, though superimposed on this there is a
wavelike pattern of approximately 1/3 the amplitude of the
(zonally averaged) mean flow. In the lower layer flow (Fig.
5;21b); thé x-independent pattern is barely discernible; the
amplitude of the instability is approximately equal to that of
the mean flow. The variations in the layer depth {(Fig. 5.21c)
are dominated by this instability from 7° s to 7° N. Poleward
of these latitudes it exhibits a general south to north tilt
similar to the linear case (cf.,iFig. 5.7). The maximum
apmplifﬁéeéuﬁf the wave occur at 5° N and 4° s. 'Figs. 5.22a, b
show the zonal and meridional transport. The wave-pattern is

particularly clear in the v component because the X-independent
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part of the meridional transport is approximately zero (cf.
(5.10)). The amplitude maxima of v occurs at approximately
1.6° s and_2.6o N. The maxima of the wavy part of“ﬁ‘at approx-

C

imately 2.40 S, 1.2 N, and 3.6° N. These positions vary

slightly with longitude. The approximate phase relations are:

u® and ul are out of phase, while v°

and vl are in phase. The
v. components lead u® by 1i/4 wavelength; u® and h are in phase.
As mentioned above, the frequency is 29 days and the wavelength
is. 950 km.

It is of interest to compare our results with the results
for the stability of eqﬁatorial currents given by Philander

(1975) .. On the basis of the vertically averaged zonal velocity

we. can, crudely fit the model currents to a sech2 profile, viz.

" ch2
U = UO sguh y/L + Ul '

by taking U, = -7 ms—l, U, = +.4 ms-l and L =~ 100 — 200 km.
o fhen
gH Uo :
R, = = = § R = «w—s = =1 to -4 .
. } U 2 o] BLZ

o]

From Fig. 3 of Philander (loc. cit.) the wavelength of the
fastesg growing wave for these parameter values is approxima-
tely22wL -- between 600 and 1,200 km in our case. This is

coﬂsisteht with the model results.
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Fig. 5.23 shows meridional sections of the 1ayef‘depth
h at various longitudes. These should be’compared with the
'Similar>figures for the linear case (Figqg. 5.7)l In‘the’lérge
there is a tilt upward from south to norﬁh‘at all;longithdés,
with this feature being barely evident at the western- side
(Fig. 5.23c) and‘becoming increasingly pronounced as one moves
eastﬁard.' The adjustment is more like the linear case at the
eastern end. At all longitudes there is a tendency for h to:
adjust toward a final state poleward of about 70, while oscil-
lating about a mean state equatorward of those latitudes. The
extra-equatorial'adjustment occurs more rapidly at the eastern
side (Fig. 5.23a) than in the center of the basin (Fig. 5.23b)
as in the linear case. Even after 400 days the flow at the *
western side appears to be very different from the expected
final state. The oscillationg in the equatorial region are
clearly a result of the instability. The mean profile shows’
that at all longitudes the general tilt to the north ;s ihter-
rupted to allow for troughs (and the associated ridges) are a
result of the tendency of h to be in geostrophic balance with
the strong zonal currents in ﬁhe lower layér:} Thése features
are more pronounced at the western side than they are at thg
eastern side. Fig. 5.24 shows a meridional section of the
zonal éransports at the centef of the basin, comparakle to

Fig. 5.8 for the linear case. The transports are more than an

order of magnitude larger than those in the linear case. As



176

LA D N O N B B
3.00e-01 —
2.00e-01 —
1.00E-01 |~
0.0 ‘ ol -]
N y .
- / Y .
-1.00E-01 4 —
, g ]
"/ -+t
-2.00E-0] — -
-3.00E-01 -
S OO U T S N WA R T WA O S Y B 0 BN G U N S O N A A AN AR A
: * 10, =3 0.0 5. 10 Yo
T«' 09 47 DAYS T+ 198.94 DAYS e 298.42 DAYS
oT» 397 89 DAYS ’
. LAYER DEPTH FOR X~ 254 Y--ISOTO 150 ,T- G9.47 10 397 89 DAYS
~ NoE3  N4CH3 30X4451R DELT-.S E-1.E-8,88+B!- 00! VIND-.5 SOUTH EVERYWHERE 08/05/¢1 0

Fig. 3.233 Meridional sections of h to day 398 at x=25.4°,
Nonlinear. South wind,



P

177

30N T T T T T T T T T T T T T [ T T FF [T T ET [T T 11
2.00c-01 —
1.00€-01 —

00— —
~1.00E-01 - —
-2.00E-01 > -

TN N T O A A T I O I N SR B A IR L I I
16. . 5. 0. v
T . 99.47 DAYS «T- 198.94 DAYS ife  298.42 DAYS
oT« 397 .89 DAYS R
LAYER DEPTH . FOR X- 143 Y--]5010 |50 ,7- Q3 47 10 397.89 PAYS
NE3 N4CH3 30X445TR DELT- S E<} £-8.88-Bi-.001 ¥]ND- 5. SOUTH EVERTWMERE. 08/05/¢1 .C

Fig. 5.23b Meridional sections of h to day 398 at x=14.3°, 5

Nonlinear South wind.



178

LY U St U N A 0 R I B O T O I

2 00E-01

]

1 00e-01

0.0

(T T T T T T T T T T T T TTTT

-3 OCE-OI

-2.00E-01

-3.00E-0!

NEEEEEEEE NN

p
-
P
-
-
b
—

) 0. Y 0.0 3 07 ye
1o 09 47 DAYS T+ 1G8.94 DAYS T 208.42:AYS -

oT- 397 €9 DAYS :

LAVER DEPTH FOR X 32 Y-1SO10 1S0,T- 9947 0 397 €3 DAYS

NE3' N4CH3 30X44STR DELF- 5 E-1.E-8.B8+Bl- 001 VIND-.5 SOUTH EVERYVLERE 08/05/21

Fig. 5.23c Meridional sections of h to day 398 at x=3 2
Nonlirear. South wind.



* 179

—
—
—

AN N A N N A T I O I O S N N O Y O

7.50€-01
5.00E-01

2.50€-01

A .

TT TTT T TTIT T[T 7T T [TTT

NN EEEEE RSN EENENENEN

-2.YE-01

=5.00e-01

~7.50€-01

prd b b s

. RN R A SN A B B N AT A A A AN AN O B AN AN B A IR IR B
1.00E 00 710, ~s, 00 3 10

-T= 99 47 DAYS - T- 138 94 DAYS 7= 298.42 DAYS
oT= 397 89 DAYS

U TRANSPCRT FOR: X+ ]43 Y--]5.0 70 150 ,7- 99.47 T0 397 89 DAYS
NE3' N4CH3 30x445TR DELT-.S E-1 .E-8,B8-Bl-.001 VIND- 5 SOUTH EVERYWHERE 08/05/21.

-
+

Fig. 5.24 Meridional sections of u to day 39§ at x=14,3°,
Nonlinear. South wind.



180

with the layer depths, there is an adjustment toward a Einal

state extra-equatorially and an oscillation about a mean in the

} e ¢u'

vicinity of the equator.

5.4 Linear Response to;an East Wind

,, In this section we aré concerned with the linear, response
-of the model to a wind of constant magnitude whiqh is every-
where from the east. (See qution 5.2 for a precise specifica-
tion of parameters; the sole difference here is that the wind
. stress of .465vdynes cm-? is from the east rather than the
south.) We begin by applying thé analytic results of chapters
3 and 4 apply to this case.

‘The solution for the poundary layer velocity § defined
by (3.8) is given by (3.25).‘ It evolves to a steady state on
the frictional timescale of 20 days. Extra-equatorially, g
approaches the Ekman wind drift solution; flow is poleward in
both hemispheres. Consequently, there is a strong upwelling at‘
the equator. The flow at the equator is westward, in the direc-
tion of .the wind ( u = ng) E"l (1-e"Et), ¥ = 0). There is a
boundaryu}ayer extending about 300 km from the equator in which
interfacia;hfriction is importanﬁ. Within this layer the flow
turns from being zonal to being meridional. The non-zero u
component requires sidewall boundary layers of width O(Al/z)
where A is the horizontal Ekman number. An upwelling region at

the eastern end of the equator and a downwelling layer at the
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1

western end are nqeded to complete the flu;d circuit. Down-

¢

the northern and southern

-

‘we1;ing';ayer$ will also be required at,
boundaries of the basin to bring ¥ to zero. (See Section 3.3).
The time dependent solution for the vertically integrated
transports and the layer depth h may be found by the methods of
‘Chapter 4. It will have @ and h symmetric and V ahtisymmetric
about the equator. 1In the absence of boundaries, this'parf’of

" the model response would consist of inertia-gra¥ity waves to-

~ . e

gether with functions of the form (4.19), vis.,
(G, v, h) = (U(y)t; V(y), H(y)t) T T (5.11)

These functions are depicted in Fig. 4.2 For thée wind stress
F=1, which is just the negative of the present éése‘(also'sée
'(4.15) = (4.17) and (E16)). Note that U and H are equatorially
confined, while V goes to zero at the equator and approaches
-F/y as y increases. Most of the energy put in bthhé wind'goes
into (5.11); relatively little goes into the inertialgravify
waves. B

The bouhdary effects on the inertia-gravity waves are
similar to those for the south wind case discussed in Section
5.2. Briefly, these waves are reflected at the meridional
boundaries but they lose a part of their initial energy to
boundary-trapped modes with each reflection at the eastern
side. It is clear that the adjustment to a final state will be
" accomplished by the boundary effects on the secularly growing

part of (5.11). As with the south wind we anticipate that the

final state will be one in which there is no motion and the sea
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surface tilts up uniformly from east to west to balance the
wind stress;  this is consistent with the Sverdrup relation

«(3.15). If we choose a veloeity scale so‘that F=-1,. then this
state is .-

. 8=¥=0; h=-(xx/2) . (5.12)

T DL s ’ RO

There are some cruc;al dlfferences from the south w1nd case
’whlch make the spin up process far more complex w1th an easter-
ly w1nd stress. First, the unbounded response (5.11) is not
steady. More 1mportantly, ﬁhis response ie composed oé“Sbth'
Rossby modes and a Kelvin mode, S0 that not all propagatlng
‘ ‘ﬁodes have group velocity in the same dlrectlon.

Denote the Kelvin mode of (5.11) by K 0 and the Rossby
modes collectively by Ro. U and H being equatorially confined
implies that the amplitude of the Rossby modes falls off rapid-
ly with n [cf. (4.16) and (E16)]. The eastern boundary response
to Ry is a sum of Rossby modes which we will denote collectively
‘byﬁRl.Lthese modes have the form (4.22)]. The nth,such'mode

~»propa§ates away from the boundary with group velocity (2n+1) -1
so that -the response extends farthest from the boundary at low
latitudee. Rl is an infinite set of modes; if all modes were
present et’a point x, then RO+R1+V(y) would have zero velocity

 components. and h=-(x-xp), except that the Kelvin mode component
required for such a state is missing. - That is, the eastern
boundary reflection of Ro.tends to adjust toward zero velocities

"and ‘a height sloping upward to the west independent of time.

Note that it tends to make the height too low everywhere:
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h = ~(X‘XE) instead of (5.12). " This part of the response is
analogous to the-process that affected the adjustment in the
south wind case.. Here it is not sufficient to bring the ocean

to a steady state.

Rl are not the only Rossby modes generated at the eastern
boupdarxfnxThg Kelvip que K0 ?;Aﬁgflecﬁgg as a serie§ of Rossby
queé #i:mphese have a‘lineag #ime“depéhdgncg (seé Eq. (E13$).
At the gastern-boundary they asymptote ektra—equatorialiyvtq‘a
coastal kelyin mode which will turn the corners at thé;northérn

and southern boundaries of the basin.

. . L
rog e . f

¥

At the western side, the response to K0 is a Kélvin mode
Kl (4.23) propagating eastward with unit group velocity such
that

S » :
\ Ko +K1 = d,1X¢1 =TT X~-1

thus eliminating the secularly growing Ky- In'response to R,
there is a k] = - /% (t-x)¢d  (E17), so that mot all such
5 a-""l ‘

growth has been eliminated. ' In addition, the reflection Ro,is

composed of boundary trapped Rossby modes (EX5); these have
only a minor role in the spin up 'of the basin. ~

At time t = XE modes Kl and Ki arrive at the:'eastern

boundary, thus altering the form of the reflection of ' the Kelvin

mode there. Kl changes the secularly growing:set of modes Ri

into a set Ry, each of which has constant amplitude in- time.

and space. The reflection of Ki is a secularly growing set Ré
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but with smaller amplitude than Ri. This reflection thus tends

to bring the basin closer to a steady state.
At t = 3xE the leading edge (or wave front) of Ri and
Riy(the n = 1 Rossby mode) has crossed the basin from east to
west. The presence of R1 at the western side alters the time
~dependent Kelvin mode reflection Ki~to a steady (in space and

. ..time). Kelvin mode K,. The reflection of Ri creates another

,time‘growipg Kelvin mode K), but with smaller amplitude than
Kj-

At. t = 4xE the leading edge of R2 and Ré reaches the
western. boundary, while K, and Ké juét reach the éastern bound-
ary. Again, the reflections of the unprimed terms have con-
stant amplitude, while the primed terms' reflections are non-
steady. At this time there are no R's or K's with their
leading edge in the interior of the basin. In this sense, the
situation is similar to conditions at t = 0 and a cycle has
been completed; there is a periodicity with period 4xE. It is

cNot yet clear how many such cycles it takes before (5.11) is
_approached, arbitrarily closely. This information is most
readily obtained from the numerical simulation.

. -. Before turning to those results however, we wish to re-
mark further on some of the features of the preceding descrip-
tion. Both the eastern and western boundaries participate ac-
tively in the adjustment process, because the fact tha£ the

forcing excites. the Kelvin mode makes it impossible for the
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adjustment to proceed solely from the east. The-final state
is not approached‘monotohically; for example, the gradient of
the layer depth tends to "overshoot" its final value. 1In
appearance, this is reminiscentr of the response of a ‘tilted
pan of water,- though the mechanism responsible here is not’
" gravity’ waves. ' As before, thé-more equatorially confined-modes
travel ‘the most rapidly, but here it does not follow immediate-
ly that the equatorial region adjﬁsts‘morevrapidly ‘(though'-this
does turn out to be the case). The Kelvin wave has neglibible
amplitude extra-equatorially, influencing that region only via
the coastal Kelvin modes generated when it is reflected-at- the
eastern end of the equator. Hence, all the extra-equatorial
adjustment proceeds from east to west. ‘ “ Ca s =
Figs. 5.25 and 5.26 show the energies for the basin- as
- a whole and for the equatorial region, respectively. ~“The--~
upper’ layer kinetic energy reaches its maximum value in the’
frictional spin up time (20 days). Since there is ho vertiéal
advection of momentum, the lower laver kindtic energy rémains
much smaller than that of the upper layer. This was also true
of the previous linear case, Fig. 5.2. ‘"The mostfétfikin§}15
feature of these plots is the damped oscillations which appear
in all fields, though they are most clearly seen in the poten-
tial energy curves. This oscillation has an 80 day period;- the
initial peak is at day 42 and the first minimum at day 82.'

N
»

The crest to trough difference from day 200 to 240 has 30
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percent of the amplitude of that from day 42 to day 82.

These oscillations in the energies are obViouSly related
to the reflections from the basin walls described"gb;ve., The
fundamental time period that emerged in that anély;ig is the

- time it takes for a Kelvin wave to cross the basin, t = x

E
with the scaling of Chapter 3. For the model paramefers used

here, this time is 19.2 days. It was remarked earlier that
L»the adjustment pattern repeated after 4 such time pegiods; this
- agrees well with the observed 80 day period. The potential
energy is a minimum at t = 80, 160,...days. At these times,
‘ithe leading edges of the last Kelvin mode generated hag just
- reached the eastern boundary, while that of the last Rossby
-mbdes has just reached the west. The PE maxima occur at t = 40,
: lZO,...gayE. At 40 days the leading edge of the first Rossby
- modes generéted at the eastern side (Rl and Ri) are two-thirds
. of the Qay across the basin while the second set of such modes
f(ﬁz and Ré) are one-third of the way across.
LT Figs:’5.27 and 5.28 show profiles of the layer.depth at
the equator at various times. If the height were set up to
Sy balance the w1nd stress (5.12), the layer depth proflle would
be a straight line 21.8 m below it at the eastern side (the
dotted line in Fig. 5.27). During the course of the adjustment
the profile ‘tends to be below this final value everywhére. The

profile at 8 days (Fig. 5.27) shows a flat center section in

which the boundary influences have not been felt; here h is
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decreasing in accordance,%ith the unbounded solution (5.11).
At~thi§~time, the Kelvin mode generated at the western boundary
(K1 + Ki) has propagated 12° intoc the basin. This is evident
in the sloping region at the western side of‘the basin. Near
the wall there is also evidence of the effect of the boundary
trapped modes. At the eastern side there is another sloping
piece to the profile extending 4° into the basin. This is due
to the Rossby modes generated at the boundary (Rl + Ri); the

. fastest of these, the one with meridional index n = 1, would

- have propagated 4° at this time. | A“

~ At 14 days the two boundary influences would méet at a
point three-quarters of the wayﬂacross the basin. Up?until

.this time, the magnitude of the zonal transport at this pdiﬁt
has increased according to (5.11). Hereafter the sldpe of the
height field at all longitudes on the equator will be up toward
the west, thus reducing the zonal acceleration. In fact, it is
evident from Fig. 5.27 that by 24 days this gradient ié general-
ly sufficient to balance the wind stress so.that the¢.magnitude
of the westward transport will no longer increase. The slopes

. .at the eastern side become steeper. than what. is required to

balance the wind stress so that the transport here becomes east-

ward and the layer deepens. All 6f these comments about the
transport are confirmed by Fig. 5.29. This region»of eastward
flow is behind the front formed by the Rossby modes (R2 + Ré)

which are the reflection of the first Kelvin mode (Kl + Ki) to
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cross the basin. The region propagates out from the eastern
boundary beginning at day 20.

The profiles at day 40 (Fig. 5.27) and day 80§indicate
~why the former time is a potential energy maxima and. the latter
a minima. Fig. 5.28 shows that the later minima are very close
to the final state. Fig. 5.30, which shows the zondl transports
at the equator, indicates that the equatorial region takes
approximately 250 days to spin up to something like its final
» steady state. This time scale agrees with the energy diagram,

. fig:.5.26. Fig. 5.30 also shows that it takes on the order of
(200 da&s before the zonal transports are uniformly westward.
Note that the adjustment appears to occur at the eastern side
Iat an earlier time.

Figs. 5.3la, b, and ¢ show north-south sections of the
.layer depth at longitudes near the eastern boundary, at the
X center of the basin, and near the western boundary, respectively.
At each longitude the steady state profile would be a horizon-
tal line. At all longitudes this is approximated more rapidly
at latitudes close to the equator. Near the eastern wall h =
- 16.5 m at all latitudes after 300 days. At the center of the
basin the expected final value h = 0 is approximated only with-
in about 7° of the eguator even after 400 days. There is still
a strong tilt at the northern and southern walls to geostrophi-
cally balance the boundary jets present there (Fig. 5.35). The

profile at 3.2° of longitude (Fig. 5.31lc) is even further from
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its steady state value (h = +716.5 m at all latitudes), though
it doula be arqued tﬁdt thiéiis‘app:oximated within 6°:of the
‘eéuafof. : ‘ |
" The preceding discussion has touched on most of the
elémen%s of the spin‘up process. A more integrated view is
presented in Figs. 5.32 to 5.35 which show the moéel‘variables
at 16, 40, -200 and 400 days, respectively. In the upper layer,
~the wind driving is mucﬁ greater than the pressure forces and
the curfents behave 1like §. The velocities at the equator are
fvggnga;d;‘ﬁhey turn to be poléward within 4° of the équator.
. By. 16 days, the transpbits associated with these currents have
decreased fhe layer dépth at the eastern end of the equator and
.raised'it at the western end. Near both sides the gradient is
steep enough so that the lower layer flow there is counter to
;the wind direction. :Almost everywhere else, interfacial fric-
tion has dragged the currents iﬂ the same direction as those in
the upper layer. The exceptions are the meridional flow near
the equator and the eastern boundary. At the zonal boundaries
there is a narrow flow in the direction of the wind. It may be
shdwﬁ (Moofe 1968) that these coastal Kelvin modes are the n=0
infinite equatorial beta plane modes which were rejected be-
cause u and h became unboﬁnded at infinity (cf., Section 4.2).
At 40 days (Fig. 5.33) the layer dépth changes are
largely confined to the boundaries, an area with 7° of the

~ equator, and the eastern side. The Kelvin modes along the
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eas;ern boundary have propagated to the zonal poundaries apg
turned the corner. Eor example, the flow along the nprthgrp
ﬁoundqr; is noﬁ opposite to the wind at the eastern side. The
coastal flow further to the west haé now turned the cdrng;aand
is headed toward the equator along the western boundary. 1In
order to accomplish this it first built up the sea surface
height in the corner so the turn coﬁld be made geostrophiqally.
Further south the boundary flow remains poleward. At the east-
ern side some of the slowly propagating Rossby modes generated
from t = 0 have moved away from the boundary. This is clear
from the extra-equatorial flow pattern. Behind (i.e., to the
east of) this region of equatorward flow in the lower layer
(Fig. 5.33b) there is a region of poieward flow due to the re-
flection of the Kelvin modes which arrived at the eastern side
‘at day 20. Fig. 5.33d4 shows the transports at day 40._ The
largest meridional transports are those associated with the
western bouhdary currents near the equator. These are now
‘lgrger than the zonal transports anfwhere in the basin. There
is an area of easpward transport at the eastern side of the
equator. This isAneeded to increase the laygr depth there
(Fig. 5.27). The lower layer flow is eastward at all longitudes
on the equator. This "undercurrent" is very narrow, with a
half-width of less than 50 km at the center of the basin. The
scale is determined frictionally. The undercurrent comes about

because the transport in the upper layer, which is due to the
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balance between the wind stress and the interfacial‘frictién

term, is everywhere more westward than the‘ﬁéitibally inte-’

grated'transport‘required at this stage of the evolution. The
“‘direct cause of the eastward flow at depth is the pressure °
gradient force {Charney 1960). As we have mentioned before,
an>important signature of the observed undercufrent ﬁot“fepro—
duced by a linear model is that the vertically integfatea ’
transport at the equator be large and eastward. The maximum

ul is less than .1 m sec t

at day 40.

Fig. 5.34 shows the layer depth and transﬁofts ét>206

: days. The former is close to its final value near the equator
and near the zonal boundaries. Transports'at the equator are
in the direction of the wind at almost all longitudes.

By 400 days (Fig. 5.35) the model ocean is close to its
final state everywhere in the basin with the exception of the
northwest and southwest corners. The upper layer is biﬁen )
primarily by the wind-drift-frictional solution (3.12) with
the lower flow having an egqual and opposite mass flux so that
the vertically integrated tfansport is zero. There is signifi-
éant downwelliﬁg at the northerh and southern boundaries, ﬁhe
western end of the equator, as well as the region near the

S

equator (-~ *1°) where v® is decreasing rapidlylin magnitude.

There is significant upwelling along the equator; with the

3

maximum vertical velocity (1.5 x 10 °m sec_l) in the entire

basin occurring at its eastern end. There are no exceptionally
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fast-boundary currents. The "undercurrent" maximum velocity is

1

only- .2;m sec - and its half-width is only .5°. Both of these

. humpers are determined primarily by the vertical eddy viscosity.

The principal feature omitted by this description is the

net transport.evident in Fig. 5.35d. Such a circulation was

- predicted in Section 3.3. Recall that this net transport is in-

duced by the friction at the bottom of the lower active layer;
without this bottom friétion the transport would be.zero every-
where. As,predicted, this circulation occurs in an. equatorial
boundarylayer which thickens from east to west. The transports
are predominately zonal and increase toward the west. Transport
at the equator is in the direction of the wind; there is a re-

turn transport at higher latitudes with a meridional "leakage"

~of fluid toward the equator. The fluid circuit is closed by a

western boundary current. The layer depth deviation. associated

- with this circulation is present in Fig. 5.35c, but is more

-

readily seen in Fig. 5.31.

v -

5.5 Nonlinear Response to a Uniform East Wind.

| In‘this éection we consider the nonlinear response to
a~uﬁif6fm~e$§t’wind. Except for the nonlinearity the goﬁerﬁing
parémeters are identical to those in‘the previous section.
Among the simplé wind stress patterns this is the case which
ié mosfiéiosély'related td the observed undefcurrént; the wind
stress mimics the component of the wind which is Predominant

in the Aéianéic and Pacific Oceans.
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The energy plots (Figs. 5.36, 5.37) exhibit striking:
differences from those for the linear response to the sare’
forcing (Figs. 5.25, 5.26). As with the south wind chses the
inclusion of vertical momentum advections results in much
greater kinetic energy in the lower layer. -And, as with the
south wind cases, the surface layer kinetic ‘energy is less’in
the nonlinear case~--here by a factor of 4. The uﬁper layer
kinetic enérgy reaches a peak after three days, after
which it falls off rapidly until day 40. ‘During this initial
40 day period the potential énergy and lower layér kinetic
energy both rise to a peak. As we shall see, the flow tﬁat
evolves has surface currents directed opposite to the ‘wind
stress. The loss of surface layer energy to the lower active
" layer via vertical advections is not fully compensated' by the
"~ transfer of energy from the winds to the ocean. - -~ ~--

There is a stron§ contrast between the linear and non-
linear responses in the oscillations in the energy curves.
(These oscillations may be used as an index of the tendency to
"overshoot" the final adjusted state as the flgw efolves.)
Consider, fof example, the potential enérgf in the e&uatofial
region, Figs. 5.26, 5.37. The linear response shows three
marked peaks and troughs. After the third of these {(day 240)
the pctential eﬁérgy is approximately cénstanfg This(fihal
value is close to the value at the troughs. The ﬂonlinear

response also shows a peak at day 40 and a trough at day 80.
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The peak value is roughly 10% higher than that of the linear
case, but the amplitude of the oscillation is less than 60% of
i_the linear one. The curve rises to a second peak a% day 140
) and remains close to this peak value thereafter. fhg,a@dition
) of nonlinear effects has damped the tendegcy to.oSbillate
- about a final steady state. Furthermore, the nonlinear steady
state is one with potential energy close to the méximum(value
the system attains in the course of its evolution, while the
linear steady state is close to a minimum. |
» @p can gain some undersﬁanding of how these differences
arise by considering sections of layer depth h and zonal trans-
" port u at the equator. Figs. 5.38 and 5.27 show h at the equa-
- tor for the first 40 days in the nonlinear and linear cases re-
spectively.y At 8 days the two sections are very similar; the
41 differences are only that the slope at the eastern side is
J;greatér"iﬁ the linear case and there is an additiongl narrow
gxdpé‘grid pbint wide) boundary layer at the western wail in
:Aﬁhe~ngﬁ1inear case. Through day 40 there is little difference
in the %WO’CéSeS, except at the eastern side. Recall that over
~ the fiigﬁiéz“days, the linear¥:és§6nsé-built up a steeper height
gradient. than was needed to balance the wind stress. After
that the reflection of the first Kelvin mode to arrivg from the
western side'caused the layer-depth to decrease (Fig. 5.27).

The nonlinear case is similar for the first 20 days, but the

eastern boundary response to the first signals arriving from
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the western side is quite different. The slope of h remains

~ ¥ P N - rs

sfeep.throughoﬁtlthesbasin Qiéh'a strong boundary ia§er forming
at the eastern wall. Within this narrow (1.5° wide) layer the
transports impinging on the eastern wall are turned édﬁthe
north and south. We might say that the nonlinear dyﬁamics
respond to the incoming currents at the equator by fqrmi;g an
inertial boundary layer whereas the linear response is a re-
flection. The Rossby modes which comprisé the reflecfion of
the Kelvin mode in the linear theory all propagate too slowly
" to the west to escape from the boundary in the facefbf the fast
eastward current that exists at the equator. Therefdre, they are
trapped at the eastern wall on the equator and a bo&ndaf; iayer
forms. Fig. 5.39 shows that the layer depth profile eyident at
day 40 persists thereafter, with its minimum becomiﬁé ﬁo;é'pro~
nounced éith time. After 160 days it varies little.’

Now consider the contrast between the linear 2Fié. 5.28,
5.29) and nonlinear (Figs. 5.40, 5.41) transports at>the equa-
tor. After one month has eiépsed the transéérté{in the nonlinear

case are almost an order of magnitude Larger.’,By,lﬁkdays‘the

Tt ot ~4 N N . ¢ < h B ] Pl

*

nonlinear fzanséoffé;are eve£ywhé£e/eaétwara, a feature which
persists thereafter. The linear transports eventually become
westward everywhere, but they take on ghe grQer of 200 days to
do so ét all longitudes. XThe differences may Be attributed to
the inclusion of relative vorticity in the nonlinear vorticity

balance (cf., Fofonoff & Mongomery 1955, Charney 1960; also,
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Chapter 1). The lower layer meridional velocities are equator-
- ward near the equator. As a fluid parcel approaches the equator
it compensates the change in its planetary vorticity by acquir-
. ing relative vorticity. The result is eastward flow at the
--equator, regardless of which hemisphere the parcel oiiginated
"in. The transport is reduced to zero at the walls bylbouﬁéary
<1ay§rs*at both the eastern and western sides. Inertial:effects
‘épbéreﬁtly‘broaden the western boundary layer felétiveAto the
"linear‘casev(compare Fig. 5.41 with Fig. 5.30). Thedlinear
response has no transport boundary layer at the eastérn side.
-iAs a finai point about Figs. 5.40 and 5.41 we note that from
- day 60 onward the transport in»the interior increases down-
‘stream while at day 40 it decreases from west to east. The
' latter behavior is more in accord with observations in the
‘_Atlantic anvaacific. (See the discussion in Chapter'G.)
L Thus far we have considered the solution at the equator
;{only. Figs. 5.42a, b, ¢ show profiles of h across the basin.
vagﬂall longitudes the greétést'difference from the corres-
ponding linear sections (Figs.'5.31la, b, c¢) is the deep trough
.within §:6;J6f thé‘equator;‘ This trough is symmetric aboutr
the equator; h slopes downward from 5.6°N to 1.2°N to geostro-~
phically balance the westward current in the lower layer at
those i;tffuées;'vFroﬁ 1.2° t070°'it slopes upwafd.ﬁo éeostro-
phically balance the undercurrent. By 160 days this trough is

close to its final shape. This time scale for adjustment agrees
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with that given by the energies (Fig. 5.37) and the vertically
integrated transport at the equator (Fig. 5.41)." Within this
equatorial region there is some tendency for the adjustmént to
" occur soonest at the eastern side, particularly poleward of
about 3°. Poleward of 5.6° the adjustment clearly proceéds
from east to west and is more rapid the nearer to the equator
one is. The time scales for this extfa—equatorial process are
comparable to those for the linear case (Figs. 5.31a, b, c),
\although h shows some influence from nonlinear effects at all
l‘latitudes.
Figs. 5.43 and 5.44 show sections of the zonal transport

-at the central longitude of the basin. Except for the regions
‘near the equator and the northern and southern walls{very little
- happens in the first 40 days. By day 80 the transport has
. reached its final value within 2° of the equator. Tﬁe adjusted
' region extends to 5.6° by day 160, and continues to ekpaﬂd
meridionally as time goes on. A

- ﬁigs. 45a, b, c show the flow at 16 days. Comparison

with the” linear case shows striking differences. The surface

s~ .
X «

... layer currents near the equator are weaker and mofe'zonaliy

oriented in the nonlinear case. This is a result of the fact
that parcels north of the equator tend to turn clockwiée as
they move north and lose relative vorticity to make up for the
gain in planetary vorticity. (The flow south of the equator

shows similar behavior.) In the non-linear case the lower
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Fig. 5.45b ul vectors at 16 days.

Nonlinear.

East wind.

; 3 I T F]Fll![ilT[i“ﬁlleTf]Thl | I T {
. 7 -7 -7 -7 -7 -7 Lt *—t -—ra - - 2 ~ .
| 7 . v -~ v -1*
» B el 1 el -l el el e e et 2 6 ' 2 [} _
- [ O N
o 7 N o o0y O 0o O s O—s Oy N, ! ;~ 2 0
10— ¢ i d I =
S N, o = T e P o z Jz 1‘ }: —
- } NN L e :)‘ i > s " v 4
oy v 4y i
S — S—e b a—s 2+ * R e 5 ' 13 o Ty
L ‘ L | e L I s A o AP LIPS LI [ /n 4’! xls -
— »;(u PO T e L el o= LI LT 2 '/,)‘ -
2. . L1 . L] ? L] H ] 0 4 2 4
i S U U U AR S SR N G G L
22 2%y 2% e 2w 10—s 1%t 1%—p 10y iy 1ley e~y (e 1l o
00— 1% 12—+ 12—p 2% 21— 2%+ 21— 2 t+—d 4 206 29 24 12— —
A 2 2 2t 23 21— 1 15— (e 1 - 1?1t 1 AN
[~ z[ or .)‘ ’f I NN ~2 S N :(1 '\ —f
- \u s 2 S S S S g ey Yy % S \g' —;
' r— '2’ B TR T S T R A e T N LT '\u “n 119 -"
= . ‘ . LU S 1 )
- | . “—e ~— >~ ey )\. 2\‘ *leyp H s L] 19 11 —
. > I: I) T 1— 1 i 2 1 1 «*° ‘\ \s ‘0 ’T j
~ —~ o
- I I el 3 N \’ N o—s ! ‘x ! Tz :1
S : 1~e t~—s I—e ~ [y O~ L [} . 1
_ 1 L o o 0o o o—e o~ d ] . 12
C 1 Tt o h oy o1 o
(] 1 -t o1 o1 f—l -} -0 L] Lo ] [} [ T L _j
T NY et et et el el et — - e N * sf . t
. Lo oo baa o dregelpree e e o1 L
0.0 , 5 0 25 X—
U LAYER |
DAY . 15.92 (T- 200 00 MOCEL STEP  400) X= 00710 286 Y--1SOT0 iS50
NE2  N4ACH3 -30X445TR DELT-"S E-) E-8.BB-Bl- 001 VIND- S EAST EVERYWERE . 07723719



233

N T =T T T]TTT

TTTTT

Lot g N
- 5. 10. 15 0 25.
LAYER DEPTH LOV--3.14£-01 HICH- 2.03E-01 Cl- 5.« | E-O2

DAY . 1592 (T« 200 CO MODEL STEP  4C0) X~ 00 70 286 Y=-IS5016 i590
NCE2 * N4CH3 30X445TR DELT- .5 E-] £-8,86-B1- 001 VIND- 5 EAST EERYWHERE - 07/23/1¢

0.0

Fig., 5.45¢ h contours at 16 days. Nonlimesr.  East wind.



. 234

layer already shows a strong eastward flow (speeds at the
equatorwabove".3m‘sec-1) within 1.2° of the equator. Aihe flow
1t8 thé'weéf centered at 13°Afends to balance the eastward trans-
‘pogi of the undercurrent and~is much stronger than in the linear
’éase; .The layer depth h (Fig. 5.45c) already tends to bow up
fat”thé‘equatof in order to ééostrophically balance the under-
»curfenf, )
'By'day 40 the effects of*upwelliﬂg, vertical friction and
ithe'pressure gradient have reduced the surface lafer*zonal ve-
“locity  (Fig: 5.46a) tq near zero at the equator, except at the
sidéwail boundaries. Vertical advection of eastward momentum
wfroﬁ the lower active iéyer is the most important factor in

» )

'bri§ging about this weak surface flow. The maximum undercurrent

1 and occurs near the eastern

l&e#éciiy ié now above .8m sec”
5boéndary (Fig. 5.46b), The boundary layer at the eastern terminus
:ofvphe ;ndercurrent shows strong poleward flow in both active -
}layers, with lower layer flow being approximately geoétrophic
' (Figs. 5.46b,c,). This poleward flow turns eastward about 2° from
the equator. The western boundary transports are weaker than
. those at the eastern side: flow in the surface layef is poiewéfd,‘
while that in the lower layer is equatorward, feeding the under-
current. The only large meridional transports are at the meri-
dional boundaries (Fig. 5.46d).
Figs. 5.47a,b,c,d show the fields after 398 days. At

this time the steady state solution is closely approximated
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everywhere in the basin with the exception of the northwest

and seuthwest corners. Poleward of 5° the surface'layer flow
is the Qind drift solution gi&en byﬁthellinéar theory, (3.12).
The gub§yrface flow combines with this to give app;oximately
zero wvertically integrated transport, consistent wiih (3.15).
Man§,@f!£he prominent features near the equator in the in-
terior are in good agreement with the y-z plane calculation

of Ch;rney and Spiegel (1971). (See their Figs. lb and 2b.)
Specifically, in baoth our calculation and theirs the halfwidth
of the 'undercurrent is about 1° and ‘the velocity at the equator
averaged at all dépths bélow‘25m (i.é. éﬁe mean undercurrent
velocity) is about .80m secfl. Both have eastwgrd flow at the
surface; as noted above this is primarily due toithe strong
upweLlinéiat‘the equator. Eastward fléw at the éurfaée with
easterly winds has been observed in the Pacific by,Taft, et. al.
(1974). Both calculatiocns show the stfongesﬁ‘westward sub-
sﬁrfaée flow (on the order of. .10m séc-lL between 2° and 3°.
%~.The principal features of the flow may be ‘explained
qualitatively by considering the vorticity balance, as in
Fofonoff and Montgomery -(1955). '(Alsé géé?éharnéy,u1960 and
Charney and Spiegel, 1971). The easterly wind produces a
poleward Ekman drift in the surface layers. This requires up-
welling at the eqﬁator and therefore an eﬁuétor&ara'fiow at

depth. Parcels moving toward the equator lose planetary

vorticity. If we assume that total vorticity is approximately
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conserved these parcels mus? acquire relative vorticity as they
approach the equator resulting in an eastward flow there. - A
calculation similar to thatrleadiﬁg to (5.8) shows that-a -
parcel originating at a latitude Yo with approximately zero
relative “vorticity and zero zonal velocity has an eastward ve-
locity of approximately Byg/Z at the equator.. For .undercurrent
velocities of .75 to 1.00 m sec‘% Yo is between 2.5° .and '3°;
this is‘consistent with our célculation. A similar line of
reasoning may be used to determine the position of the westward
currents. Fluid parcels in the undercurrent that reach the

eastern side are turned poleward in narrow boundary currents.

As they travel away from the equator they gain planetary vorti-

A

city. 1In ordér to approximately conserve their vorticity they
“‘must- Yose relative vorticity so that their poleward velocity must
" de¢rease (since in these currents relative vorticity,;Z»Vx). In

particular, ‘if the vorticity of such a parcel is Byo it cannot

progress 'poleward beyond latitude Yq and we conclude that this

" -wilk 'be. the ‘latitude of the currents required to complete fluid

circuits which include:the undercurrent. ~
' 7 - The-argument in the preceding paragraph doeévnot give
the complete story. It not only ignores the effects of both
upwelling and friction, which must become important near the
equator, but it provides no independent way of determining the

latitude Yoo Poleward of Yo the advection of planetary vorticity

in the lower layer is balanced by the vortex stretching term fw;
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Yo is the point where‘nohlinear terms enter the vorticity ba-
lance. - In Section 2.2 we established (see {2.10) ff.) :that the
linear dynamics of ‘the Ekman layer break dawn- at a latitude
yc32° when inertial terms become important in the Ekman layer.
The 1atitude-yo,must be the same order as Ye since the :layers
are coupled by vertical motions. These considerations-allow

us to find an inertial scaling for Egs. (3.1), valid when the

5 21
Ekman layer Rossby number cE>Y /2, where ERTEY /2 (see (3.2)
for the definitions of € and y. For the parameter values in

© Table 1, eEZ .2 and y < 10_2.) The arguments of Section 2,2

give the following rescalings in Egs. (3.1}:

25 o s th o
Y= & \/” , A= Ee §oL Zr—g ¥ /a(" S 15.13)

- (Unlike the linear scaling (3.3) it is necessary to take account
of the inertial dependence in. the determination of 7 and hence

of a.) We assume that the scale in the x direction is long
enough so that zonal variations may be neglected-except in- the
pressure gradient term. (It is this term-which drives the under-
current. See Chapter 1.) It then follows from_ (5.13) that the

remaining variables may be written (cf., Philander.1971, p. 239):

-/,

Yo = ' ’ ,
(us) VS) LLL); E;f 5)/ 1(053 \/S) b(‘ )

o (A | -4/s | |
vi= & vVt weEg w0 . 5.14)
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] . &Aﬂ) 3ls
ib}: f (4z0) AX + X E P
Dropping primes and taking a' = 1 for simplicity the ‘steady

state-version of (3.1) is

vg,usy 4+ %‘_ (as__u_i)__ >/Vs /\(K) 85 [PX ""U.S(/L ] (5.15a)
W~ : 2/
VPG Z Ve g gy = Eewy (5.15b)

-

\/L(,Lfé "’(us uty - yv" 7% _y' E Curus “Pr) (5.15¢)

I ’1 S o e . A
tj.u + FV = = ¥E, UV - (5.15d)
2
v; + V‘: = YUk (5.15¢)

(The highest-order x-dependent terms are exhibited on the right

hand sides -of these equations; they will be considered below.)
-We- have now obtained scales for all variables in the

equatorial ‘region that are determined in terms of the governing

parameters. In dimensional terms the meridional scale for the
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equatorial circulation is 1.5°. The scale for the surface

2.1/5

velocities and the subsurface zonal velocity is [T§/4va :

this is about .5m sec '. (We have again taken KZ2v /H). |

The meridional sections of the layer depth that we cal-
culate closely resemble a similar section presented by Charney\
and Spiegel. (Compare their Fig. 15 with our Fig. 5.42.)

These profiles agree qualitatively with the bowing of\isofherms
which is usually observed beneath the undercurrent (e.g., Knauss
1966). Eq. (5.15d) requires that the pressure gradient be in
geostrophic balance with the lower layer zonal velocity. This
accounts for the meridional profile of the pressure gradient.
For example, at the center of the basin at .3°N the term fu

and g'hy balance to within 10%. At 3°N thé baiance is within
15%.

There are a number of differences between our calcula-
tion and that of Charney and Spiegél. These are lafgeiy attrib-
utable to the different simplifications in the model geometries.
Our model has no way of producing the downwelling region which
they find beneath the undercurrent maximum. (See their Fig. 2).
They argue that longitudinal variations may be neglected be-
cause the inertially determined cross stream scale § = u/B is
so much smaller than the downstréam scale Lx' {Therg is no in-
trinsic longitudinal scale; Lx-is taken as the length of the
basin). A related afgument leads to the conclusion that the

zonal pressure gradient exactly balances the wind stress.
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divided by the layer depth. In our model longitudinal varia-

tions are permitted and the zonal pressure gradient is free to
seek its own value. The most stringent condition for neglect-
ing the zonal dependences arises from (5.15c) and (5.15e); viz,

that

' .-1/2 3/5 | ' ,
L, > ¥ /e (5.16)

This is about 1300 km for our parameter value$.~ The condition
based on a simple comparison of length scales (i.e.,I;x > 82/5)
is inappropriate because the subsurface velocity components
have different scales. Charney and Spiegel's (197i) calcula-
tions failed to converge when the viscosity was reduced to

the point where the right hand side of (5.16) was pn the order
of 2000 km. This suggests that in such a parameter range it is
necessary to include the effect of the zonal gradiepts in
limiting the growth of zonal momentum. ‘ .

In our model there will be some zonal variation in the
interior regardless of the zonal léngﬁh'SCéle'Lx beéause the
layer depth varies across the bésin. This comés abput because
the layer deptﬁ is a multiple of the pressure~aﬁd'zonal varia-
tion of the pressure must be allowed in order to drive the
undgrcurrent. The effects of the layer depth variétion enter

g/s relative to the retained terms and hence

(5.15) at order ¢
do not substantially influence the dynamics. The more important

zonal variations are due to the terms on the right hand sides
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of (5.15c) and (5.15e). For example, because the undeicurrent
velocity increases downstream the vertically inéegrated trans- .
pert inéreases downstream despite the decrease'in the depth

of the layér.

Since the undercurrent transport increases downstream
thé boundary current at the eastern end of the equator will be
stronger than that at the west. It also follows that the ver-
tically integrated meridional transport v will be equatorward
(and not zero). At a latitude where inert£a1 terms are negli-

gible the vertically integrated zonal momentum equation is

approximately (with the scaling of Chapter 3)

X
-y = ~h,+ 7T

(x)

Since T < 0 and-yv > 0 it follows that

\/\X: (1+ T, a>o (5.17)

so that the pressure gradient overbalances the wind stress.

All of the features described in the preceding paragraph are
present in our numerical computation. From Fig.'5.47c it is
evident that a > 0 from about 5°S to about 5°N. At the equator
(Fig. 5.39) a = .3. N

* ., The preceding paragraph shows that P, < 0 if ul > 0.

X
Similarly, px < 0 if ui > 0. That ui is nonzero follows from
-the form taken by (5.15a) and 5.15c) at the equator. Subtract

the latter from the former to cobtain

C) —'/ 5:/5_ .
-27 = ¥ (utug +pd 519
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1 peaks

Slnce geostrophy (5 15d) holds up to the equator and u
~sharply at the equator, it follows that the undercurrent velo—
city must increase downstream. Con51der1ng only "the left hand

-

sides (5.15a) says that the vertical advection term balances

i

the wind stress while (5.15c) demands rhat the same term balance

the zonal pressure gradient (-T(X)). Since the surface stress

and the pressure gradient are of oppoeite‘sign thi; is not
possible. So other terms must enter- 1nto the balance. ‘In our
model the advection of zonal momentum comes in before the
vertical friction term for'LX less than Y-¥ 52(5 - 104km with
our parameters. Charney and Spiegel (l97l) failed éd obtain
convergence for small values of V! perhaps because there was
no term available to balance the left hand side of (5.15c).

As we remarked earlier, the observational evidence is
that the undercurrent transport decreases downstream. In order
to reproduce this feature it appears to be necessary to include
some physical mechanism which allows the pressure gradient force
to be uncoupled from the vertical extent of the undercurrent.
One such possibility is the equatorial effect of the thermo-
haline circulation (éhilander, 1973a). It -appears that a
successful model of the undercurrent must be "fully three
dimensional. Perhaps the most significant result’of our
undercurrent simulation concerns what did not happenz - there

was no evidence at all of any hydrodynamic instabilities and

the current system remained stable throughout the course of
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its evolution. This is consistent with Philander's (1975)

' stébilit& analysis.

5.6 Nonlinear Response to a Uniform West Wind

In this section we consider thé nonlinear response to
a uniform westerly wind stress df .465 dyn cm-z. The only
difference between this case and that of the previous section
is in the wind direction. Because of east-west asymmetries
in the ocean dynamics due to the beta effect the responses
in the two nonlinear cCases are quite different. The linear
résponse to an east wind (Section 5.4) is easily interpreted
as a west wind response: simply change the sign of all variables
(h into ?h, u® into -u®, etc.). The pattern of the response
is unchanged.

The energy graphs for this case (Figs. 5.48, 5.49) are
much more similar to the linear east wind energy graphs (Figs.
5.25, 5.26) than they are to fhe nonlinear ones (Figs. 5.36,
5.37). We will focus our attention on the curves for eqﬁatorial
region (5.6°S to 5.6°N). The potential energy curve for the
present. case is almost identical tc that for the linear casé:
the amplitudes are approximately the same and the oscillations
have the same periods with an initial peak at about day 40.

In Section 5.4 these oscillations were explained in terms of
the reflections of Rossby and Kelvin waves at the meridional

boundaries. The same phenomena appear to be present in this

nonlinear case. The kinetic energy curves behave ‘differently.
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The surface layer has less, and the lower layer more kinetic

eﬁergy than in tﬁe linear cése; The former is ébout the same

as the east wind nonlinear case but the latter is less by

almost a factor of 5. After about 80 days the kinetic energy

curves show little oscillation compared with the linear.case.
Fig. 5.50 shows sections of the layer depth across the

equator for the first 40 days. As was true of the east wind

nonlinear response (Fig.5.38), these sections are very similar

to the linear zonal wind response (Fig.5.27) except near the

boundaries. 1In partiqular the effects of the Kelvin mode

moving in from the western bouhdary are evident. Fig, 5.51

shows that by day 80 h at the equator is close to its final

value; closer than the previoué zonal wind cases (Figs, 5.26, 5.28,

5.39) at the same time. The slope of h in the final profile

is nearer to the linear result than was the east wind h pro-

file. The boundary layer at the western side is 2.5° wide while

that at the east is only one grid point (0.3°) wide.

Fig, 5.52 shows that at tﬁe equator u becomes close to
its final interior value within 8 days. There is some oscilla-
‘tion abou£ fhis final value of about 75 mzsec“l until about
day 160 (Fig, 5.53). The nonlinear east wind case (Figs 5.40
5.41) takes about 24 days to reach a valuevof 75 mzsec-l and
about.40 days -to approximate its final value of 125 mzsec-l.
Figs, 5.55 and 5.56 show the early and late evoiution, re-

spectively, of meridional sections of the zonal transport u.
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They should be compared with the similar figures for the

east wind case, Figs. 5.43 and 5.44. In the west w}nd case,
the eastward transport at the equator is quickly established.
Westward currents will be required in the steady state to
return to the west the water that has travelled to fhe-eastern
side at the equator. These currents, centered at 2°S ?nd 2°N,
take longer to become established. This is reagonable, since
in the early stages there ié a net transport of water from
west to east in order to establish a pressure gr;djent opposite
to the wind. For the same reason the westward floﬁing currents
are set up before the eastward flowing undercurrent when the
wind is from the east.

Figs. 54a,b,c show meridional sections of h. at various
longitudes. As with éll previous cases adjustment’"propagates"
from east to west and occurs sooner near the equaﬁor than extra-
equatorially.

Figs, 5.57a, b, ¢ show the flow fields at 16 ‘days. Sur-
face flow at the equator is in the direction of the wind and
is limited by the interfacial friction between the two active
layers. Extra-equatorially the surface- currents are wind
drift currents, resulting in convergence at the equator. The
downwelling at the equator due to this convergence transports -
eastward momentum downwards so that the lower layer ralso has
eastward currents at the equator. Unlike the east wind case;

in this case the surface flow is faster than the flow at depth.
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The meridional components of the lower layer velocities near

the equator‘are'pbléward so that-the verticallj infegrated
meridional transport is small. Contours of the layer depth

h at 16 days reveal a pattern that is familiar from the other
zonal wind cases. Most of the variation from the @nitial state
occurs near the equator and along the eastern and zonal bound-
aries. Since the more eéuatorially confined Rossby ‘waves
propagate most rapidly the sloping region at the eastern side

is broadest near the equator. At that side the poieward
travelling coastal Kelvin waves have already reached éhe north-
ern and southern walls and turned the corners there. The

layer depths at the western ends of the zonal“wallsihave de-
creased in orderlto geostrophicélly balance‘the”eastward
currents along these boundaries. The coastal Kelvin. waves have
westward group velécity; they have turned the corners- at the
western end of the zonal boundaries. At the equator h bows up
in order to geostrophically balance the zonal curreﬁt in the
lower layer. This is similar to the east wind pattérn (Fig. 5.47c).
At the western end of the equétqr the currents are poleward in
both layers in order to supply water to the eastwaré jet along
the equator. At the eastern end the surface layer flow is still
equatorial (in the wind drift direction) but the currents in the
lower laver are poleward so that the vértically integréted trans-

port at the eastern side is poleward.
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The circulation at 40 days is not very different than
it was at 16 days. The gradients of h are generally‘greater,
especially at the eastern end of the equator {(cf., Fig. 5.50).
The major difference firom the earlier time is that the lower
layer currents now have a westward component poleward of 1°
from the equator. The vertically integrated transport at those
latitudes is now westward (Fig. 5.58).

By day 398 (Figs, 5.59a, b, ¢, d) a steady state is
closely approximated everywhere in the model basin with the
exception of the northwest and southwest corners. The surface
Jayer currents are very much as they were at day 16; they are
largely determined by the wind drift interfacial friction
solution (3.12), except that inertial effects become important
within a few degrees of the equator (cf,, Section 5.5). In the
lower layer there is an eastward jet at the equaﬁo:'with a half
width of 1°. The water transported eastward at thé equator in
both layers is returned to the west in lower layer currents
extending from about 1° to about 4° on both sides pf the
equator. There is very strong downwelling at the eastern end
of the equator in order to transport the upper layer water intc
the lower layer so that it may return to the west. Both the
eugatorial jet and the westward countercurrents broaden and
strengthen from east to west so that the zonal transports at
the equator decrzase downstream. (The exception to this is a

feature of the western boundary layer. The zonal currents in
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Fig. 5.59d y vectors at 398 days. Nonlinear. West wind.
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both layers reach a maximﬁm at 2.5;Afrom the western wall.
There is a secondary max1mum 7° from the wall; east of. thlS point
the amplitude of the currents decreases monotonlbally )

The arguments centered on Eq. (5.18) may be applled to the
west wind case to deduce that the lower layer velocitf;will de-
crease from west to east and that the factor a in (5. 17) will
be pos;tlve, i.e., the zonal pressure gradient w1ll be more nega-
tive than is required to balance the wind stress. ‘A final note-
worthy -feature of the flow generated in response to a west wind

is, the absence of any instability during the course of its evo-

lution. . : | S

5.7 Nonlinear Response to a Uniform Southeast Wind

In this case the initial state is taken te be tﬁe steady
state circulation which came about in response to a uanorm
easterly wind. This state was described 1n Sectlon‘S 5.7 (To be
precise the initial state is taken as the state whieh gesulted
after 384 days; equatorwaré of 105ﬂit'ie indistinguishable from
the one at day 398 depicted in Fig.5.42)‘At‘t;0 a:edufherly wind
“component is added to the prevai;ing easterly comgoneﬂt so that
each wind component is .465 dynes cm™%. This case is’ intended to
be a very crude analogue of the southeast monsoon that occurs
in the Atlantic in the late Spring. The linear response to a
southeast wind is simply a superpositionzef the linear feponses

to a southwind and to an east wind. The nonlinear response is

not related to the responses to a south and an east wind in such
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a simple way, though resemblances are to be expected.
""Figs.5.60 and 5.61 show the energies. They suggest that
even after 400 days the model ocean has not reached a truly
steady state, even in the equatorial region. (Other médel out-
put indicates that the increase in PE and KEl at these later .
éimes is due to a strengthening of the current at 4.5;N. See
Fig. 5.65.) After day 80 the potential and upper layer kinetic
eéergy do not vary greatly. The.lower'layer kinetic eﬁergy
tékes about twice as lond to become approximately cénstant. In
the equatorial region only the upper layer kinetic energy is
substantially different from its value at t = 0. |

Fig. 5.62 is a plot of contours of u1

at the equator with
time as the ordinate. This plot is similar to Fig, 5.13, which
showed a regular progression of phase for the wave-like instabil-
ity that arose in that south wind case. In the present case, in
tﬁé time period from about day 25 to about day 175 there is

séme apparent phase propagation to the west. However, none of the
linés-oé constant amplitude cross the baéin, and after day 175
all such east tc west movement ceases. The pattern of evolution
resemsiés”the-way in which the mixed mode in the linear soﬁth
wind case (Section 5.2) contracts toward the western boundary
with time (due to its Bessel function behavior; cf, (4.27)). We
Will‘feiurﬁ:to this point after considering the early evolution
of the flow.

The two most prominent developments in the first 40 days
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(Figs.5.63 and 5.64) are the southward shift of the undercurrent
and the development of an eastward current at between 3°N and
5°N. .The éouthward shifting of the undercurrent is aiready
evidenﬁ at 8 days when the maximum zonal transporé is at 0.3°S.
. At this time the surface winds. near the‘equator aré westward.
This'upwind shifting of the undercurrent in the presencé of
”meridional;winds has been found in earlier theoretical investiga-
tion (Robinson, 1966; Charney and Spiegel, 1971) and has been
observed in the world's oceans (e.g., Taft and Knaués, 1967).
An eastward flowing current centered at 3°N was the most promi-
nent- feature of the early response to a south wind, Section 5.3.
N \ihe surface flow at 16 days (Fig.5.63a) strongly resem-
pleg'that for the south wind case at 16 days (Figy.5.16a). In the
pres;nﬁgcaSe the eastward jet is a bit further northward (3.8°N
insteaéiof‘35N) and is weaker; thé region of northward flow also
starts further north (0.6°S instead of 2°S). The easﬁ wind in-
fluéﬁbé sShows most clearly in the poleward wind drift currents
;outﬁio% 1°s. The lower layer currents (Fig.5.63b) show effects
from both the south wind (cfyFig. 5.16b) and the east wind (cf.,
Fig,5.47b displaced south). ~ The region,of eastward flow centered
at'about .5°S is broader than is the case with either of the
simpler wind systems. The flow at about 4° shows eastward
currenis induced by the.southerly wind component appearing at
the western side of the basin while the eastern side still shows

the westward flow which returns the transport of the undercurrent
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to the west. Comparison of Fig, 5.63c with Fig. 5.47d shows how
the transports have been altered after 16 days.

Fig., 5.64a shows that at day 40 the eastward jet in the
surface layer, now at 4°N, is about twice as fast as it was at
day_lG. The othef major change in the surface flow!oVér this
time period is the waviness from about 0° to l°S. ‘Noté'the
area of eastward flow in the eastern side cf the basin. The
lower layer flow (Fig. 5.64b) shows greater changes. The east-
ward‘currents at 4°N are stronger and have greater longitudinal
extent, so that the flow from 0° to 5°N resembles the south wind
case (Fig.5.18b) more closely. The layer deptﬁ.still resembles
its state at t = 0 (Fig. 5.47c) far more than the south wind re-
sponse (Fig. 5.18c). ‘

The most important feature to appear in the lower layer
is the wavey pattern which causes the undercurrentlté_meander
about its mean latitude of about 0.6°S. These meander persist
thereafter; they are clearly evident at 398 days (Figs. 5.65,
5.66) though their form is somewhat different. A caféful look
at day 16 (Fig. 5.63b or 5.63c) shows that the aninesé is alj
ready present at the western side of the;ba§in7 .Th§ disturbance
propagates from west to east in the sense that it appears earlier
at the western side. Fig., 5.62 showed that any phase propagation
is westward, but to speak of phase propagation is mislgading.

That figure indicates that the meander pattern migrates westward

over the first 175 days and then remains stationary. (This is
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borne out by the more defined model results). The result might

be described as a standing wave of zero frequency. The structure
of these meanders is most clearly revealed by the contours of

the zonal and meridional transports at day 398 shown in Figs,
5.66a and b. They have their largest amplitude between 0° and
2°S; with the amplitude decreasiﬁg from west to east..'The wave-
length of the meanders is about 650 km and shows a slight in-
crease from west to east. We offer the interpretation that

these meanders are due to a mode generated at the western bound-
ary in response to the south wind. Such a mode is the nonlinear
analogue of the mixed mode that is generated when theminitial

state is a resting one. It plays the role of a barotropic in-

£

stability in the sense of acting to reduce the horizontal shear

of the zonal currents.

In addition to these meanders the other prominent features
of the flow in the equatcrial region at day 398 is the eastward
jet in both layers centered at 4°N and the undercurient with a
mean position at ‘about 0.7°S. Elsewhere between .+5° the léwer
layer currents are generally westward. Fig.5.67 showé meridion--
al sections of the zonal transport at thencentxa; Jdongitude of
the basin. Note that the eguatorial flow quickly reaches-its
final value and that unlike the southwind case (Fig.5.24) there
is no oscillation in time. Except that the jet is slightly
further north and its total transport less than in the south

wind case, the mean flow between the equator and about 5°N
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is very similar in the two cases. The arguments presented in
Section 5.3 to explain the dynamics of the flow in that case
will serve here as well. Scuth of the equator the two cases
are quite different due to the presence of the undercurrent at
about 1°S and an additional region of westward transport to the
;outh of it. -

The flow pattern between 3°S and 3°N that we find at
day 398 resembles the similar calculation made by Charney and
Spiegel (1971). (See their Figs. 9 and 10; they only show
the region from 3°S to 3°N.) Specifically, the zonal component
of surface flow is westward everywhere, the undercurrent is
found at about 0.5°S, and zonal flow at depth is westward
else@hére. Both the underéurrent maximum and the westward
maximum in their calculation are smaller than ours. Of course,
they cannot have the meanders since there is no zopal variation
in their model. Flow in the meridional plane is similar in the
‘two calculations, with the division between northward and south-
ward surface flow occurring at the latitude of the undercurrent.

Fig. 5.65c shows contours of the layer depth at 398 days.
The trough at 5°N is less pronounced than in the south wind‘
case~(Fig.5.2ic); on the whole the topography stiil has strong
resemblances to the initial state; that is, the east wind re-
sponse (Fig..5.47c). Figs. 5.68a, b, c¢ show the evolution
of meridional sections of h at various longitudes; they should
be compared with the corresponding sections for the south and

east wind cases, Figs.5.23 and 5.42, respectively. The final



0.0

295

LI N A N O A N B B

- T ]

| 25 00— A -
n } - .

- o —

= ! -
7.506-01 [— -
5 00E-01 — .
2.50&-015— : -—:

-5 00E-01 |- —

n / -
TR0 ) v by b S 11

<10 5. 0.0 5. 10, Y-

1. 0.0 DAYS® -T- Q93 47 DAYS iT- 138 94 DAYS

el &38 42 DAYS «T= 397 83 DAYS

U TRANSPORT FOR X- 143 Y--15070 150 .7+ 00 JO 337 89 DAYS.

NoE4 N4CH3 30X445TR RESTART NCE2 AT G700 ¥ITH YIND = (- 5, .5) EVERYWHERE 08/05721 1€

Fig. 5.67 Meridional sections of u to day 398 at x=14 .3°.
Nonlinear. Southeast wind.



296

(LI LA T N O N D O O A B et
2.006-01 [~
— .
1001 |~ -4
N s, _
0.0 /_,/ Z
-1.006-01 |— // __
-2.00E-01 |- : -]
- —
Praen / e
-3.00E-01 t— y —
- / N
-4.006-01 [ / -
-5.006-01 &7 -
Caer g by v v by v r b v e b v b
510 S 0.0 5 10 Yo
Je 0.0 DAYS T 03 47 DAYS 1T« JG8 94 DAYS -
oT- 208 42 DAYS «T- 397 83 DAYS
LAYER DERTH FOR X~ 54 Y--15070 150 .7« 00 710 397 83 DAYS.
NOE4 NACH3 30X44STR RESTART NCE2 AT 9700 VITH YIND = (- 5, .5) EVERYWIERE 08705721 |

Fig. 5.68a Meridional sections of h to day 398 at x=25.4°.
Nonlinear, Southeast wind.
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meridional sections (especially at the center of the basin,
Fig, 5.68b) clearly resemble the south wind sections more close-
ly. The equatorial region adjusts more quickly than higher
latitudes, reaching a final state within 200 days. Also, ad-
justment appears to occur most rapidly at the eastern side and
proceed weétward, though the evidence is less conclusive here
than in the previous cases.

; -Our final remarks about this case concern its possible
applicability to the undercurrent meanders observed in the
Atlantic during GATE (Dliing et. al. 1975). We dén‘t wish to
claim that the results presented here bear sufficient resemblance
to the observations to be coffered as an explanation, although
together with those for the south wind they do leave open the
possibility that a calculation with a more realistic wind
stress distribution might do so. However, we wish to point
out that a limited sampling of the model output, comparable in
scope to the observations reported in Diing et. al., might lead
one to misinterpret the initial stages of the evolution of the
model circulation. Specifically, data like that shown in Fig.
5.62 might be interpréted as a westward propagating waves at
the equator. For example, the variations at x = 8° over the
first two months of the simulation could be interpreted as

waves with periods of 19 days for the ut

component and 11 days
for the v° component. Though we do feel that in view of the

available data the most plausible explanation for the under-
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current meanders is that they are a manifestation of an insta-
bility, the possibility that they are part of the adjustment

to changes inm the winds remains open. The argument of Duing
‘et. al. (1975) that the winds were steady during GATE does not
speak to the point that variations which occurred prior to GATE
could be responsiblie. If such effects were felt via a reflec-
tion from, say, the coast of Brazil, the responsible wind shifts
could‘have occurred four months or more earlier than the ob-

served meanders.

>
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6 Summary and Conclusions . - : : .

.- Purpose. The purpose of this work was .to study .the
response of a bounded equatorial ocean to an .imposed wind
stress. It .is an extension of previous investigations (espe-
cially Charney and Spiegel 1971) to inciude zonal variation .
of the oceanic currents as well as time dependence.. The in-
tent is to experiment with a laboratory-like model to gain
some insight into equatorial dynamics. We did not attempt .
to achieve a close mimicry of the real ocean. The linear
dynamics were explored rather thoroughly by analytic methods
and verified against numerical calculations. The fully non-
linear response was calculated numerically. Simple analytic
models were invoked to explain some of the phenomena observed
in the computations.

The Physical Model. The physical model was formulated

in Chapter 2. The model is time dependent and treats fully
variations in both the zonal and meridional directions. The
ocean basin is rectangular, with a zonal extent of 28.6° of-
longitude and meridional extent from 15°S to 15°N. This size
is sufficient to allow the equatorial dynamics to be indepen-
dent of the effects of the zonal boundaries and to allow an
interior circulation distinct from the effects of the meri-
dional boundaries. The vertical structure consists of two
layers above the thermocline with the same constant density

(Fig. 2.2). The ocean below the thermoccline is taken to be
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of a higher constant density and to be approximately at rest.
The uppér of the two active layers is a constant depth sur-
face layér which is acted upon directly by the wind stress.
The lower active layer is not directly affected by the wind.
Its depth is variable, with the variations being dynamically
determined. The two layers communicate via the vertical
velocity at their interface, as well as frictionally. Ex-
tra—equatorially, this structure is equivalent to a surface
Ekman layer and an interior in which the currents are in
géGStrophid balance with the pressure. The pressure is pro-
portiénél to the layer depth because of the assumption of
hydrosﬁaticity. To justify the assumption of a surface
boundary layer near the equator, it is argued that inertial
effects will prevent the surface Ekman layer from deepening
without limit as the equator is approached from higher lati-
tudes. The wind driving is sufficiently strong (.5 dynes
cﬁnz) and the vertical and horizontal eddy viscosities suf-

Sem?sec™1

ficiently'smali (15 cmzsec-l and 6x10 ’ respedtively)
so that inertial effects are important in both layers in the
vicinity of the equator.

Thehlayer configuration described above dllows for
the vertical inhomogeneity that results from the wind stress
being felt directly by the ocean at the surface but only in-
directly below (e.g., via boundary layer pumping). If the

wind stress has no curl, - the more usual layered model with
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each layeg having a different densitly (e.g:, Charney 1955)
~admits a steady state solution in which each interface

~tilts in such a way that there is no motion in any of the

>

layers. The present model has the simplest vertical struc-

ture that permits a steady state undercurrent.

-

EEE

Numerical Methods. The methods used in the numeri-
cél solution of the modg; are explained in Appendix B. . A
variable sizgrgrid mesh is employed to allow increased |
resoluﬁion at the sidewalls and the equator. 4The ﬁinﬁpev
diffe£ence scheme is second order in time and fogpth order
iq space. A form which conserves first aqd’second‘momeg§§
(e.é., gnergy) for a large qlass of finite differenqg ap-
proximations is derived. A new treatment of gravity wave
‘terms is developed which prevents the coqtamiﬁat;pn of the
calcﬁlatioq by two-grid point noise. As a.resulg,‘the.
fieids of horizontal divergence (yertical ve%ocity) axe
quite émopth. An analogue of this technique is developedA
to égqvide additional smoothing of small-scale, noise with-
ogt dgwping the larger scales apprgciéblyzgr lqwgriqg(therr
order of‘accuracy of the overall scheme. This permits long-
time'intggrations to be carr}ed out witpout introducing any

1

explicit viscous dissipation.

Steady State Analytic Results. The presentation of
the analytic results begins in Chapter 3. It is shown that

‘the linear model is equivalent to one in which only the ver-
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tically integrated transports and the surface boundary layer
transports are calculated. These boundary layer transports
‘may be identified as the Ekman transports extra-equatorially;
at the equator they are in the direction of the wind stress.
The'liﬁeér steady state solution for the vertically integrat-
ed transport is shown to be the same as that of the Stommel
(1948) -model. If the bottom friction parameter (i.e., the
stress'at the bottom of the lower active layer) is nonzero,
there is additional vertically integrated transport in a
frictional boundary layer centered on the equator. This
- layer’ thickens from east to west. The interior transports
"are predominantly zonal; a boundary current is required at
the western side to close the fluid circuit. For a wind
-stress which is independent of longitude at the equator and
- whose meridional variation is negligible on the boundary.
layer scale (0(30 km) for a vertical .eddy viscosity of 15
cmzsecfl) we have the following results. A meridional wind
stress praoduces a zonal transport which is zero at the equa-
. tor and inm the direction of the wind drift (e.g., to the
‘right of the wind in the northern hemisphere) off the equa-
tor. This interior circulation is connected by a weak meri-
dional flow across the equator directed opposite to the wind.
A zonal wind stress produces a net transpcrt in the direction
of the:wind at the equator. This result shows that the lin-

-ear model cannot prcduce a vertically integrated transport in
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the .same ‘direction as that for the observed undercurrent. A
qualitative comparison is made with the linear mogdel, of Phil-
ander (1971) for a homogeneous ocean continuous in the ver-
tical. ST .

Time Dependent Analytic Methods and Results. The

time dependent solution for the surface boundary layer velo-
city is readily obtained. This component of the model,:'which
is just the Ekman layer transport away.from the egquator,,

1

spins up (i.e., reaches a value within e = of its. steady

state value) on the frictional timescale of XI-}, where*yI
is a vertical Ekman number (Eq. 3.2) based on the . coefficient
of friction between the twe active model layers. This;time

is about 20 days for a vertical eddy viscosity of: 15 cm%~

sec?l;’ There is a second time-scale, referred to as: the, set-
up time. This is essentially the time it takes for the sea
surface to ‘set up in response to the wind stress.. It involves
‘the evolutiobn in time of the vertically integrated mass. °
transports and the. layer .depth. For: times less than one-
half 'vear, frictional effects are negligible .in this.procéss.
Calculating this evolution is equivalent to finding the for-
ced ‘response of the inviscid.shallow water equations in a
‘bounded equatorial basin.: .. T

The "solution of this latter problem-is the content of

Chapter 4 and constitutes the major analytic centribution of

this thesis. - Our ‘soluticn makes it:possible to calculate
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the response to an arbitrary wind stress (and heat source).
The method is similar tc finding the Green's function for
the shallow water equations on an equatorial beta plane with
meridional boundaries. Meridional structure is expressed as
an eigeﬁfunction expansion and then the response.of an un-
bounded ocean to a step function in time and the zonal direc-
tion is calculated. Boundary effects (e.g., reflections)-
are taken account of by finding the free modes which must be
added to the unbounded response to satisfy the boundary con-
ditions. Some general characteristics of the solution may
be stated. Forcings with time scales much longer than two
days tend to excite planetary (Rossby and Kelvin) modes ra-
ther than inertia-gravity waves. ' Consider now a wind stress
which is- a step function in time. The unbounded response to
a zonal wind stress which is smooth in y will generally have
. zonal currents and layer depths which are equatorially con-

. fined ‘and grow linearly in time. Extra-equatorially, the

- response consists primarily of a steady meridional current
which .approaches the wind .drift current as the latitude in-

. creases. -The non-inertia-gravity wave part of the unbounded
response: to an x-independent meridional wind stress consists
of a steady zonal current and layer depth variation. At the
equator, the pressure force due to the sea surface setup bal-
ances the wind stress; far from the equator, it.:is balanced

. by the wvertical component -cf-.the Coriolis force .due to the
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zonal velocity.

The more equatorially confined ‘a wave:is, the “larger
its group velocity. Consequently, equatorial regions will
evolve more rapidly than extra-equatorial ones. ' The response
to an incident motion at the eastern boundary is less equa-
torially confined than the original motion. It asymptotes
to a coastally-confined motion (e.g., a coastal Kelvin wave)
at large latitudes. A western boundary response will have
the same latitudinal extent as the incident motion with its
amplitude tending to be greater near the equator. Most of
the response is boundary trapped resulting in a strong wést-
-ern boundary current; this is similar to midlatitude oceans.
However, part of the equatorial response is in the form of
equatorial Kelvin waves which carry energy away from the *
boundary rapidly.

Results of Numerical Experiments. The numerical- ex-

periments are described in Chapter 5. These consisted of the
linear and nonlinear responses to a uniform easterly wind and
- to -a uniform southerly wind, and the nonlinear response ‘to a

uniform westerly wind. 1In all these cases the wind was turn-
ed on at t=0 and was steady’ thereafter. In the final experi-
‘ment the nonlinear -steady state response fo an eaSterly'wind

was taken as theinitial state. The wind was then changed to
be from the southeast in a crude imitation of the monsoon

over the Atlantic. The linear cases were also -studied analyt-
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ically by using the results of the preceding chaptersr
There was close agreement between thg numericallgpd analytic
results. The results of these experiments may be summarized
under Fhe,following headipgs:‘
" ;(a) Spin up Times. All cases showed a fr?ctio?ai‘
§pin up time--the time for the transfer of wind engrgy,tg
thg upper layer to reach its final value--of abgut\twenty
days. In all cases the setug time (the time fo; the large-
) scale‘pressure gradients to become established) is.shortest
at th? equator and on the o;der of one year at a latitude of
,10°.“‘T?9 equatorial t}me yaries greatly from case to case:
iF)is about 100 days’for the linear south wind casg,:250
‘~d§y§ gpr the linear east wind and nonlinear west,wipd, 140
days for the nonlinear east wind case. The nonlinear south
. wind case reaches an energy maximum at 150 days,éfter Which
“inﬁtabilitiesvbecome prominent: an oscillating §tate with a
‘steady ﬁean is reached afterA250 days. The soptheagt'wind
qa;e;égta%ns its final state in approximately 200 days. Note
thatﬂtherinqlusion of nonlinear effects may either lengtheh
or shorten the setup time, depending on the case. All
‘oﬁ}these times will vary (lipearly) with the longitudinal
extent of the basin. The setup times for the world's equa-
torial océans are thus comparable to the time-scale of the
éq??r‘yigd stress variations associated ﬁith thgfmonsqops.

. This implies that steady state models are not entirely appro-
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priate for studies of the equatorial ocean circulation.

(b) Early Nonlinearity. Using a (local) Rossby num-
ber as a measure, the currants in the surface layer near'

(or on) the equator are nonlinear within three or %oﬁr éays.
Within two weeks, nonlinear distortions of the flow field in
both layers are evident. Vertical velocities’are‘large3ﬁear
the equator so that vertical advections become importaﬁE
within the frictional time of twenty days. While nonlinear-
ity destroys the linear symmetry properties associated with
meridional winds, these are preserved for zonal winds.

(c) Adjustment to a Final Staté. The south wind 1in-
ear case adjusts monotonically to a steady'Statef 'Tﬁe‘ad-
justed state "propagates" in from the éasfefﬁ bouhdary‘while
all the required transfer of mass between hemispheres'dcéurs
" in the western boundary current. The east wind linear case
does not’ adjust mononically: the sea surface slbpe""ovérf
‘'shoots" its final value. Both eastward propagéting Kelvin
waves generated at the western boundary and;wéstw3rd propa—
gating Rossby waves geheratéd‘at the eastern boundary:parti—
cipate actively in the spin up process. Extra-equatorially,
however, the adjusted state is again attained at the eastern
side first. The enhergy in the model ocean behaves liké-a
‘damped oscillation, taking three 80-day éycles to closely ap-
proach a steady state. The nonlinear adjustments to zonal

winds have many qualitative similarities to the linear case,
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.especially when the wind is from the west. For an easterly
yind( the nonlinear terms restrain the tendency: to overshoot
the. final steady state; the energy oscillations are effec-
tively damped after ong and a half cycles. The  nonlinear
. cases have much more kinetic energy in the lower layer, a
difference due primarily to vertical advection of momentum.
Extra-equatorially, the evolution is approximately linear.
The nonlinear response toc a south wind is also very
much like its linear counterpart far from the equator. Near
the equator it is entirely different. A current system with
strong horizontal shears develops within two weeks, its most
prominent feature being an eastward jet present in both lay-
ers at 2°N .to 3°N (its position shifts to the north in time).
Flow south of this is westward until about 1°S, yhere the
lower layer flow kecomes eastward. An instability which
draws its energy primarily from. the lower layer kinetic ener-
gy .develops after about 100 days. It appears first near the
western side of the basin and extends across the basin by
150 days. The southeast wind case also develops a jet-lik;
"countercurrent" at about 4°N. 1In this case, a wavelike form
is.appgrent across the length of the basin within one month
after the southerly wind component is added (see next para-
graph). This form appears near the western side first; it
prppagate§ (in the phase sense) slowly westward, reaching a

steady (not oscillatory) state after 200 days.




g

311

(d) Stability. The zonal wind cases showed no evi-
dence of instability (e.g., meanders of the undercurrent)
whatsoever. .This result is consistent with-the stability
analeis of Philander (1975). As aiready noted, ‘the cur-
rent system associated with a south wind is barotropically
unstable. The instability has a regular wavelike form in
the zonal direction with a wavelength of 950 km, a perioa
of twenty-nine days and a westward phase speed of 32.5 km/
day (38 cm/sec). The interpretation of the wavelike pat-
tern which arises in the southeast wind case is less
straightforward. The linear response to a southerly wind
includes a wavelike mixed mode reflection from -the western
boundary extending far into the basin. A modified form of
this mode is present in the nonlinear response tg both the
south and southeast winds. 1In the latter case, this mode
-first narrows its wavelength as it squeezes toward the
western boundary (this is very much like the Bessel func-
tion behavior of the liﬁear case, Section 5.2). It then
reaches a steady state in which the wavelength of this
feature varies from about 500 km near the western boundary
to about 900 km in the eastern Ealf of the basin. It ap-
pears that the mode initially generated at the western side
is able to maintain its amplitude across the basin rather
than only at the western side by abscrbing energy from ;he

mean flow (see below).
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o (e)'Steady State Circulation Patterns. Except for
tHe equatorial boundary layer due to bottom friction the
linear cases have no vertically integrated mass transport.
The upper layer flow is driven by the wind and limited by
friction equatorially and Coriolis forces extra-equatori-
ally. © The lower layer flow provides the compensating mass
flux in the opposite direction. In the east wind case, the

meridional scale of the undercurrent is determined by the

-interfacial friction. For the most part, the fluid circuit

which contains the undercurrent closes in the (x,z) plane:

fluid upwells out of the undercurrent at the eastern side,

‘ travels westward in the surface layer and returns to the’

undercurrent in a weSterﬁ downwelling layer.

* For the nonlinear response toc an east wind the half-
width of the undercurrent (100 km) is inertially determined.
In the vicinity of the equator there is a net equatorward
mass flux in the interior of the basin. As a consequencé,
the vertically integrated transport increases downstream,
the préssure force due to the sea surface tilt overbalances
the wind stress (by about one-third), and the poleWara'
transports at the eastern end of the basin are larger than
the equatorward transports at the western end. It was ar-
gued that some zonal variation in the interior was' required.
A scaling argument suggests that if inertial effects domi-

nate and zonal variations are negligible, then at the equa-
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tial wavelike zonal wvariations. Much of the flow pattern
looks like a superposition of the south .and east wind cases.
The flow is essentially linear poleward of 5°. From just
north of the equator to 5°N, the surface layer currents are
predominantly northward; at 3.5 there is strong eastward
flow in the surface layer 660 ms_l); the flow in the lower
layer is weakly to the east. . This case, together with the
south wind case, suggests that some of the transport of the
North Equatorial Countercurrent may be attributable to the
meridional winds rather than. to the wind stress curl. The
lower layer flow further south is like the south wind case,
except for the undercurrent. The undercurrent meanders as
it crosses the basin; the wavelength of the meanders in-
. creasing from west to east, as. described above. ':Its lati-
tude varies from about 0.3°S to about 0.9°S; its mean posi-
tion has been displaced upwind.

(f) Western Boundary Currents. ZTinear inviscid
theory predicts that the western boundary current will be .
~initially stronger for a south wind, ‘but that the current
will increase at a faster rate in the west wind case. This
qualitative statement carries over tothe monlinear re- -
sponses. These also exhibit a large eddy at their northern
edge, similar to the “great whorl" observed in the Somali

Current.
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Further Theoretical and Observational Implicatioms.

The result summarized in.the last paragraph suggésts that,
with the onset of the Southwest Monsoon, ‘it is ‘the meridion-
al wind along the coast of Africa .that is initially.respon-
sible for .the reversal of the Somali Current (M. Cox 1970).
However, propagation from the interior of the Indian Ocean
"{the mechanism proposed by Lighthill 1969) is probably re-
sponsible ‘for the maintenance of the current. The same
conclusion has been reached by a number of recent studies
-{M. Cox, private communication). To go beyond this guali-
tative statement will require'a much more elaborate inves-
tigation. - One would need to consider how the current equi-
‘libfates as a function of nonlinear and (lateral and verti-
cal) frictional effects, as well as of the longitudinal ex-
tent of the coastal winds. A much finer mesh than was em-
ployed in.this work is required to adequately resolve the
details of the coastal currents (this is prédictable from
the scale . analysis in Chapter 4 and was confirmed. by numer-
ical- experiment with a finer-grid model. This experiment
also.confirmed that the other features of the flow fields
described.in this work were adequately resolved.). The"
@resolﬁtionArequired will be determiped by the value of la-
teral viscosity used. Also, it has been suggested that the
boundary conditions employed (no slip or free slip) strongly

affect the results (M. Cox, private communication). We. hope
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tor the.zonal surface stress and pressure .gradient at depth
would both be balanced by vertical advection:of zonal mo-
mentum. -Since the pressure and stress terms- are of oppae-
site sign and the vertical advection term is negative.every-
where above the core of.-the undercurrent, this is not pos-
sible and édditional terms must become important. For .-.
reasonable values of the coefficients of eddy viscosity-and
realistic basin sizes, zonal variations will enter befone
additional friction terms. .- . x SR 5

.The transport needed to 'return the mass flux of Yhe
undercurrent to the west all takes place within.5° of 'the
equator. .Upwelling at the equator is strong enough:to make
the surface layer currents eastward in the interior: of *the
basin.: The maximum undercurrent speed 1is 1 msec-;;;theil
surface maximum is .3 msec L.

.- - The response to a west wind has -many-parallels with
the east .wind case. 1In the vicinity of the equator. there
is a net poleward mass flux in the interior of the basin.
As -a consequence, the transport at the eguator decreases-
downstream, the sea surface slope overbalances the wind'-
stress {though only slightly} and the. equatorward»trans- -
porté in the western boundary currents are larger than the
poleward transports at the eastern end. The east to.west
return transport takes place within 5° of the equator; as

with the east wind, it is primarily in the lower layer.
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Currents in both layers are-eastward at the equator. The
maximum speeds are .8 msec_l‘in the surface layer and .5

msec l

“in the lower layer. Both zonal wind cases become
+dinear poleward of 5°. » P e -

" The nonlinear response to a socuth wind behaves 1ih-
-early south of about 2.5°S and north of 5°N. -In between,
the-flow is unstable, as described above--it does mnot reach
-& steady state. The zonal mean in this region closely re-
sembles the flow calculated by Charney' and Spiegel (1971,
"Pigs. .1l and 12). It may be characterized as follows.
Theres-is upwelling south of about 3°N, particularly south
of: the equator. The surface flow is northwestward at the
southern edge of this region and turns clockwise, becoming
: due. east in.a jet-like flow at 3°N. There is a strong
shear zone north of 3°N. There is a stfong downwelling in
:.the jet. As one moves south, the lower layer flow turns
‘clockwise: from due east at the jet; westward flow is strong-
esta just north of the equator. Further south, the flow
again.becomes eastward. A simple argument based on conser-
-vation.of. vorticity and energy is offered to explain this

. flow pattern.. The latitude of the jet scales like Tl/s‘and
- the velocity in the jet like'Tz/a'wnere T is the magnitude
of. the wind stress (Eq. 5.8 ff.).

. - As-noted in the previous subsection, the southeast

wind. case does reach a steady state, but one with substan-
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to study some of these issues in the near future.

The model resulits have a number -0of other-applica~
tions .to the Indian Ocean. As pointed out by Charney:and
Spiegel (1971), the jet produced by the south wind ‘has been
observed in the Indian Ocean (Taft and.Knauss 1967). The
model .calculation suggests that the current system is un-
stable. . This instability may account for the absence of
,steady currents.at the equator in the Indian Ocean during
the Southwest Monsoon (Taft and Knauss 1967). The modelk
calculation shows that eastward winds at the equator result
in eastward flow at all depths above the thermockine;, while
mgridiqnal winds (north cr -south) produce westward flow.
(These are nonlinear effects). The data collected by R.:
Knox at Gan in .1973 and 1974 (private communication) shows
such a correlation between.the winds and the currents.

The undercurrent simulation resembles the real uhder-
current in many important respects, as well as sharing many
features with the homogeneous ocean model.of Charhey and
Spiegel (1971) (e.g., both models tend to form a .cusp in the
zonal velocity at the equator). Permitting zonal wariations
and not .constraining the pressure force .to balance-the zonal
~wind stress, made for some important differences. The pres-
sure gradient was larger in our model, making it more in

/
line with observational evidence (Montgomery and Palmen 1940;
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see Charney 1960, p. 305).  The terms un and Vuy)are of .
comparable magnitude. Previous theoretical studies of the
undercurrent in homogeneous oceans have neglected the form-
er, term by arguing that the .zonal length scale is much.
greater than the meridional one. This argument. also re-
quires that u and v be scaled by the same magnitude. How-
ever, in the undercurrent u »» v, causing this argument to
break down. (Observational accounts of the momentum balance
-in the undercurrent (Knauss 1966; Taft, et al., 1974) has
also neglected downstream advections, but this is due pri-
marily to. a lack of data.)

..~ ., .The model results show an increase in transport down-
stream while observations, while not conclusive, show that
‘the. undercurrent transports are less in the eastern half of
the ocean than the western half for both the Pacific and.
the Atlantic. This suggests that a homogeneous model is
inadequate to describe this feature. Philander (1973) simu-
lated .it by including the effects of the thermohaline cir-
culation in his model. Observaticnal evidence does not en-
able one to determine with certainty if the loss of fluid
from the undercurrent occurs in the meridional plane or the
vertical plane (via downwelling at the base of the under-
current) .

Our model results agree with the finding of Phil-

ander's (1975) stability study, that the undercurrent it-
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self is stable but that the entire equatofial current-coun-
tercurrent system may be unstable--in particular, becausée

of the large shears between the westward flow near the equa=-
tor and the eastward flow in the North Equatorial Counter-
current. The southeast wind case had an undercurrent which
meandered in space but was steady in time. 1In the course

of reaching this steady state, the undercurrent exhibited
time variations not unlike the GATE data (cf., Section-5.7).
For example, the undercurrent velocity 8° from the western
wall appears to oscillate with a nineteen~day period. It

is thus possible that the meanders observed during GATE "
could be due to changes in the winds. We offer the general
observational caution that, because of the relatively rapid
propagaticn at the equator of fronts due to boundary reffec~
tions, one should be careful in interpreting observations

as waves. Moreover, our calculations have shown that non-
linear effects 'quickly become important at the equator,

limiting the range of applicability of linear wave concepts.
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Appendix A Eddy Viscosity

We follow Kamenkovich (1967) and Kirwan (1969) in de-
riving a vector invariant form for the eddy viscosity for an

anisotropic media. Let:

Ry Cude b

! JU; ;7(/('.
=3 o~ = -
Do‘3 2\ 9% " Qx()

where Riﬁ is the Reynolds stress, ui is the turbulent fluc-

tuation, and u; the mean velocity and brackets denote averaging.
We assume a linear relation between the Reynolds stress tensor

and the strain tensor:

Rei = Kigee Dee , (AD

In general K is a fourth order tensor with 81 components,
Making use of the symmetry of Rij and Dp1 and of incompressi-
bility and contracting Rij reduces the number to 29; these 29
must satisfy 6 relations determined by (Al). Assuming isotro-
py in the surface defined by, say, the first two coordinates
and using incompressibility reduces Kijkl to a form which
depends on three independent coefficients Vi, the horizontal
eddy viscosity, vv, the vertical eddy coefficient, and v_, a
third coefficient for which there is no observational data. We
will later take it to be zero. The requirement that the vis-

cous terms always be dissipative yields the inequalities:
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Using the notation in the main body of the paper (cf.

especially Eq. 2.7), we have:

L.y | )
Rux® 20, Lm 5x+ vim, |+ (-2 52
R

v J
= 2.)) [M’l\, Q\/ U !/Vlyx] + (\/H~)j2> _Q_W

‘ _ € _9_\{' N .L.. 2‘& |
RXY = Ryx =Y, Lim ox My 9)/ U\W]x\/ mex]
Ju . L IWT
\Qxe:Rax: )y [iﬁkmx 97‘]
v . Qw*
R)Q:Q%Y = )) D% 9)’
'\22:1 = 1y %\g

The viscous forces which appear in the momentum equa-

tions are the divergences of the Reynolds stresses. They are:

) 2R o J4 )
F = 22 t F,, — Sz <)')v.§_'2;> + FHO(

FCY) - 7Py . FC‘A ~ 2 CVVQ_Y - FHCY)

F(X) = ---Ls_?_5 +_L’;_)_,
H
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e L2 |
F;‘(‘/) . DY R),Y m JX R)(x ‘fmxy (Izyy QX¥> 9myx (2)’)( (Ag)

The model uses formulas (A2) and (A3) with ¥ = ~V-u

) . 0z
and v, = 0 to compute Fy- Note that for Cartesian coordinates:

FO= LVur Wy ved = 7w

E«lﬂ = ]JH vl\/ + (VH“ VQ_) % % = T
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Appendix B Numerical Methods

Since no numerical method gives a perfect simulation,
the scheme should be chosen with the particular problem in
mind. In the present case, the chief requirements are: (i)
to be able to run for long time periods (drder of yearsj) with-
out numericalinétabilityin order that the ocean may reach a
steady state; <(ii) to accuratgly simulate responses overbshort
time periods (weeks or months) to varying winds; (iii) to |
resolve small scale features at the lateral boundaries and the
equator without introducing excessive computational or viscous
smoothing. Generally speaking, it is difficult to satisfy (i)

on the one hand and (ii) and (iii) on the other.

B.l Variable Grid

Many of the phenomena of interest in the equatorial
ocean have spacial scales which are orders of magnitude less
than the scale of the ocean basin. In order to be able to
resolve these features we introduce a grid which is "stretched"
so that there are more points per unit per length at the
lateral boundaries and the equator. At the same time, we
resexve the option of not resolving boundary layers when we
are not interested in their structure énd there is reason to
believe that this will not increase the error in the interior.
Following a suggestion of M. Israeli (private communication)

we stretch with a function Qf the form:
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<

X = b L x*s %a;?(

on the interval [xo, xN]. Here x, is the location of the ith

intérnal or boundary layer, Bi is its thickness and o, is a

X/;"‘) + @]93 () (BD

weighting factor. As before, x* is the physical space coordi-
nate and x is the grid coordinate; the points x; are chosen to
give equal intervals Ax = g(xg) - g(xg_l). |

The function £ (x) should be antisymmetric, non-decreas-
ing and rapidly approach its asymptotic value f(»); f is taken
as ‘arctangent in the present implementation. These properties
guarantee that x is a mcnotonic function of x*, that many grid
points will lie near X and that internal layers will be sym-
metrically resolved. <“The formula (Bl) while more complicated
than those propocsed by’Kélnay de Rivas (1972), is more flexi-
ble; the parameters may be adjusted to an arbitrary physical

situation.

B.2 Time Differencing

The leap frog scheme is not uvsed because it is unstable
witﬁ ény damping term. While explicit dissipation can be
handled by lagging the dissipation terms in time, correctly
set boqndary conditions will intrbduce some damping and hence
a‘g;pw instability. Compehsating for this requires extraordi-
narily complicated methods {(cf. Xreiss and Oliger, 1973;

Oliger, 1974). Instead, we choocse methods that are not desta-

bilized by dissipative terms. The Adams-Bashforth scheme
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(Lilly 1965), which is-ailso second order, has the opposite
problem. It is slightly unstable for pure advection and we
wish to make modelArun with a diséipation which is too small,
as experience has shown, to stabilize the computation. We
elect to use the N~cycle scheme of Lorenz (1971) with N = 4.
This scheme has good stability properties for the parameter
range of interest to us (see Appendix D) and is second order
in time (fourth order for linear equations). It has the addi-
tional virtue of being particulérly easy to apply on. a computer
~--in fact, it is more readily described algorithmically than
by an equation., For the equation du/dt = f(u,t), where u and
f may be vectors, the scheme may be described as follows:

Let the timestep be 8t and let At = N&t. An auxiliary
storage vector z the same size as u is required. The timesteps
are counted by an index n which is initially zero and the
vector u is set to its initial value. The steps of the scheme

are

(1) Let K=y wod N
(1) Let G,= -K/AAt, b, =at/(N-K
(iii) Let 2" = ,b" la, 2 Rlu .t") | (B2)
(iv) Let (" = [+ 2% i ‘
W)Imt'h;'h+l
For a linear system of equations du/dt = Au, with A a

constant matrix, the effect of this algorithm after N repeti-

tions of these steps is to approximate u(to + At) by
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p M-
2 Au e/

K=o

-- that is, by the first N + 1 terms of the Taylor series. :
Also, at any intermediate point (K less than N) the linear®

term is correct; i.e.,

W

U ErkE) = W (e Aultd ke O(8R)

Fér non-linear systemslﬁhe first of these propertieé‘is
not maintained for N greater than 2; in addition to thé Taylor
séries‘tefms there are terms depeﬁding on second ofﬁhigher
 deri§a£i§es of f&u). For N = 4 the scheme is second order (cf.,
Lorenz 1971, Eq. 18).

In earlier runs, before some of the devices described
in the next sections were introduced, it was necessary tobﬁse
the Euler;backward or Matsuno scheme (Lilly 1965) thch streng-

-1y damps high frequency waves. This scheme is given by
gl
Wr = W+ atr(u
W= un 4+ gt fu)

It is first order in time and reguires two computations of f

per timestep.

B.3 Spatial Differencing: Finite Difference Approximations

The superiority of fourth order finite difference
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schemes as compared with second order schemes is now firmly
established (see the review by Orszag and Israeli (1974), the
monograph by Kreiss and Oliger (1972)). For a given accuracy
fourth—~order schemes reguire sufficiently :fewer points to -
offset their additional computational complexity. For example,
to attain 5 percent accuracy in the solution of a linear-wave
eguation the fourth order scheme we use reguires about ten
points per wave while a centered second order scheme requires
twenty. The computational labor is nowhere near twice as
greaf.

Recall that the stretchea coordinates were intrdd&ééd

via metric factors and that grid points are at equally spaced
intervals in the "computational space" coordinate (Egs. f2.7),
(2.8) and (Bl); i.e.,

PRI

-—::—s*- ' L o= ) <L

axs = O Ixand Xp= {AX §= o)1, N

)

Therefore "it is sufficient to find a finite difference approx-

imation Dxf to 3f/3x when f is given at equally spaced points

1{-\( = ‘CCX'Q {200, .., N |

J -

Define the operators

D,, (A‘ﬂ)% = i‘EX ['?341“?5.,] -

@8
o — k‘l‘—ﬁ b l
D.D )T = axy B{w” 2%+ ¥y ] |
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The' fourth order centered difference approximation is used Dx:

DX'FS = [ “;tDQ Gx)- 3D, (ZAxﬂf;j

NEN A%"‘(\cs) o (BS}“B
w7 =o v X r Jwxs)

Loy 372, N2
This formula obviously ¢annot be used at the points on

and immédiately adjacent to the boundaries. There we use

™

A o ;
DL = Zai-ufe sk~ 754281 (R5H)
= 2%, #Ax“?""‘cxo) + O

1

D¥ = a1 2h-3F +¢, -1 (R5<)

T = %5 -~ __L.Axﬂ@(m + Odx?
X 12 ‘

Similar formulas are used at the other end points

j‘\== N - liand i = N. These boundary approximations are third
order. The fourth order finite difference formulas that we
tried at the boundaries proved to be computationally unstable.
Kreiss and Oliger (1973, Chapter 18) note that fourth order
schemes are more likely than lqwer order schemes to be desta-
bilized pg the boundary éonditions, especially in two dimeﬁ—
sionalﬁgeometries. They also indicate that one can often .
sagrifice_an order of accuracy at the boundary without affect-

ing the overall convergence estimates. Experiments indicate
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that this is the case with cux model. It is certainly plausi-
bie that these boundary approximaticns will not affect the
accuracy of the interior solution when (as is our situation)
the flow is either externally driven or the result of insta-
bilities generated away from the boundaries.

The horizontal eddy viscésity terms and the treatment
of gravity waves we use (Section B.5) both require that
second derivatives be computed. For these we use the approx-

imations:

Dx,uci = { % D D.‘ (ax) -4 D, D (zm(}ﬂggs G\%&J

4 A YAV )
= L= 75 AXT RO 3= 2., N2

i

0 .
Dxxl:c = 12. Ax* {gg'?o_ /Olf'$)* ',Lf¥l~§é¥3+“'§:?§
SZE et (B

J

x
i )

)

/—IL-ZX"‘ {11 - 2(5‘?‘ * é% + Lf&f\s “;:‘f.{ R @éc}

= I - L ae P
Qx:. 24 .

B.4 Spatial Differencing: Conservation Form

A number of inVestigatorsf(Orszag and Israeli 1974,
Kreiss and Oliger 1972, 1973) have claimed that the greaterx
accuracy of higher order finite difference schemes make it

possible to avoid the so-called non-linear or aliasing insta-
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bility while dispensing with the need for cemi-conservative
schemes (e.g., Arakawa 1966). The latter have the disadvan-
tages of being computationally complex without being more
accurate. ‘The argument is that the aliasing instabilitie’s
will only éppear in inadequately resolved simulations, leading
to the conclusion that simulations using energy-conéerving
schemes with the same resolution become unstable.

' Our experience, as well as that of others (E. Rivaé,
privaté communication; also see Crowley 1968) suggests that,
in faét, calculations with energy-conserving schemes will
continue to give good results in cases where non-conserving
schemes become unstable. This difference may well arise from
the kind‘of.modelling assumptions which are usually made in
simulating geophysical phenomena. Consider first the con-

) trasting case of numerical simulation of some laboratory
situation. All the physics of the rcal situation is included
in the numerical model.

wBY "adequate resolution" one means that the grid
spacing is small enough to resolve all scales of motion which
are not strongly damped by (molecular) viscous forces; that is,
the ReYnolds number based on the grid scale is sufficiently
smail. In ﬁodelling geophysical phenomena, the physics of the
real world is often drastibally simplified (as is the case
with’oﬁr’model). The resort to eddy viscosities is an admis-
sion'tﬁat?all'df the phvsics has not been included--the effects
of smaller sdales of motion are being'parameteriied. It is

not economically feasible to adequately resolve all scales
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dowp to a size which w?}%’be damped by a small dissipation
term. .One‘is making the tacit assumption that the. computation
resolves all scales of interest--all scales which are impor-
tan;,to the phenomena under study. $he physics does not
dictate a need for greater resolution and one wishes,;o.aypid
expending the extra computer time requirgd by a fine grid '
merely to prevent the growth of spurious small-scale computa-
tional modes. As a practical matter then, it becomes more
efficient to solve the problem of aliasing instability by
using energy-conserving schemes, despite the extra computing
time per point that they require. -t

The advantages of energy—conserv%ng methods are more
marked when a variable grid size is employed. If the dissipa-
tion term is the usual constant eddy viscosity coefficient
- multiplied by the Laplacian of the velocity component, theq a
value of the coefficient sufficient to damp the shortest waves
where the mesh is fine may be insufficient where it is coarse.
(Using a larger value would presumably introduce too much
damping where the mesh is fine.) It is then necessary to
resort to some means other than simple vigcosity to prevent
non linear instability. One.possibility ;s to employ a more
complicated form for the dissipation; for example, an eddy
coefficient which v;ries with the velocity shear.. We do nct
do this because large shears are associaped with the under-
current and such a form would introduce too much lateral
friction there if it were large enough . to control non linear

instabilities elsewhere.
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Instead, we prefer to stabilize the computation by using
a form for the finite differendevequations based 6n'conServa-
tion notions. We proceed from the following analysis of the
nature of nonlinear instabilities which derives from Kreiss
and Oliger (1372).

The phenomenon called nonlinear instability can be
demonstrated with a lineér’equation with non-constant coeffi-

cients. Consider the model advection equation

‘gf + amgx =0 (B7>

with cyclic boundary conditions g(l + x) = q(x),:ahd U(l + %) =
u(x)y. Clearly, g is bounded for all time. Let variables be

defined at the points

S
Xj= 3Ax =0 . ,N  ax=N (@Y

and approximate the spatial derivative in (B7) by the usual

second order centered difference D, (B4):

2 5. .
‘Qﬁgs = ‘*USD,,CA‘;OZ’-A i=0-, Nt (BT

Let x_j*='xN_j, XN+j = Xj.so that D, is defined everywhere.
'Nowﬁsuppose there is some point Xv such that

U U, = O 5 Uy L0 < U, - (Br0)

Then ' ' “

L. 4 = =L o = Upw Tv
5 By Ay 64 ) %@fvﬂ T":{‘;
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so that g at both points will grow equnentia}ly with a growth

‘rate |uu l/z/ZAx. On the other hand, if u is bounded away

ve1!

from zero, then it follows from (B9) that the weighted sum
?é; u;l_q§ doeSjnot change in time. (Use has been made of
the identity .

Mot = .

2 5D B 2 [Ber b 5o @10

j=o b=

The last equality holding because of the cyclic boundary
conditions.)
Now obtain the nonlinear case by letting g = u and

taking (B10) as initial conditions. Then from (B9) :

2 U, =2 u,,., = . 2Upy . -2y, = Uy Upssy
L SL v, TO —— = p vy el
J ) It o 2 6%
so that u,_, and u,,, will remain zero for all time while u,
and u\H_1 wil both grow in magnitude., 1If a situation approxi-

mately like (B10) should arise in the course of a numerical
integration "non-linear instability"” will result. As we héve
seen, the problem arises from the existence ¢f a stagnation
point in the flow field -a point where u = 0. It follows from
the original differential equation (B7) that g is. constant along
characteristics dx/dt = u(x). As time increases, more and

more characteristics will crowd into the neighborihood of the
point where u = 0 (and u, < 0) so that a steep gradient of g

will build up there. The finite difference approximation,
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unable to resolve this gradient, allcews g to flow into this
neighborhood but not out of it. The same problem will arise
with higher order schemes,

‘One way toc help the flow pass this stagnation point'-is

to add some dissipation to the right hand side of q; e.g.,’
2 g= ~ubg + ADD ¢
)t ARG X A N

As noted above, a value of A large enough to eliminate
the "non-linear" instability will damp the solution too much
elsewhere. Instead, we seek an approximation to the advective
term which will prevent this artificial accumulation in the
neighborhood cof a zero in the flow field., If ?gz qj cannot
grbwlin time such an accumulation will be impossible.

Tb bring the model problem closer to the problem at

hand, consider (B7) together with the shallow water equations
W we s \ — ) B .
he + (hudy= o (B12)

N ‘ — . ‘
Uy + Ul + hy = 0O (BL3)
again with cyclic boundary conditions. The following conser-

vation statements are trué for the system (B7), (B12), (B13):
g ‘:ﬂ‘ w
S hh g dx =0 PEETR
g "‘J
e — hndl O
R (&14)

N hL@" Lf-T )
[ g [dAx=e '

2t
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We-wish to find a finite difference approximation which pre-
serves. these relations at least for n = 1 and n = 2,
Now any centered difference approximation'dx to the

derivative may be written
K
dyf = 2wy D any, @15)

For any £ and g we have the relation

N
244x 2. [%Do(ﬂx)ﬁs t 9 Do(ﬂAx)ﬂ;] (B14)
A—C;&i ) n
= Z{[ Fheei=t Grovg ™ Fice 3&7.\ i [Xm—f el Swﬁ'n‘

J=e
= O
the last equality following from the cyclic boundary conditions.

From (Bl1), (B15), and (B16) we have the identities

N N\ ..
S— S — .—T

de% o 2 [3& A *’E‘\'s&qx giz0  (BI7)
=0 \=e ‘

We proceed to use these identities to obtain the finite
difference analogues of the conservation statements {Bl4) for

any centered difference approximation, Write the 6riginal

equations in the form

“ga‘g(h@'\)z “%{Chug)x +d'm>fx iﬁg(hzﬂx} ‘
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,D*‘
St h = ~(h u)

Q_ . __!_' - ' . - o7
Selhad = -3 { (hu), + (g + (AN
and then replace the derivatiyes by the finite difference

operator:

2 !
Qt(hiii) = T2 {Jx (hyus ?ﬁ”‘*;"‘sdx& g A Chyu,) 1

| %‘.(hjus')f % {Ax(hs uu) + h; wg Ay 4 U ehy (he )
) ‘ “'htdxb\

It is e&sy to see that these forms overcome the stégnation

I

“ely Chyty) (B18)

problem: even with conditions (B10) and, say, h a constant,
thé'points v - 1 and v + 2 remain coupled to pointé v and v + 1.
This finite difference form advects q thrcugh the neighborhood
of the point where u = 0.

By using (B17) one may readily verify that with the

equations in the form (218}
2 S N
’9—-?:‘2.!/‘5"‘ O ) 15._{': Z(g& — 0

N

S e LSS L. orq
S22z = 2 2,300 g0 _Eaé’—%h&o (819)
2 SEShure £ 51 - 4 2 Do G- o
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where all sums are from j = 0 £o\j = N - 1. Thus, Egs. (B18)
are in a form which will be free from non-linear instability
for any operator dx which satisfies the identities (B17). In
fact, the difference cperatorv Dx defined by (B5) does not
satisfy these identities because we have non—cyclic.boundary
conditioﬁs so that the final equalities in Eqs.(Bilf'ahd (B16)

do not hold. For any higher order schemetheseanalogueé of

B o [§5% 228 o

will leave extra terms at the boundaries. In such a case,
the finite difference forms on the right hand side of (B18)
are merely "élmost conservative". Experience indicates that
this is sufficient to prevent nonlinear instabilities. These
forms will still prevent a false accumulation at stagnation
points and since the deviation from conservationzis smalll the
. scheme can be made dissipative by introducing a‘vérydgpal;“

- A

amount Qf (viscous) dissipation. ‘
The generalization of these ideas to more dimensions is
straightforward. It is evident from the finite_difference
form of the full model equations, which are given in Appendix
C. The use of a streéched grid is a véry minor complication.

For example, if (B7) were réplaced by one with a metric factor

in the advective term, viz.,

2T B =0

then the apprepriate sums in (B19) would be the "area" weighted



344

ones; €.g., meqj instead of qu, s0 that the right hand

sides of these eguations would be as before.

B.5 Gravity Wave Terms3s

In practice, the use of.conservation forms did su;ceed
in elimipating ﬁhe explosive‘growth due to "nonlinéar"
instability. The analysis given above does admit the possibil-
ity of short wavelength computational (i.e., non-physical)
modes growing to noticeable size; this was obsepved to happen
in our computation. These modes did not grow so large as to
prevent the calculation from continuing, but their presence
ohviously meant that it was inaccurate. The use of conserva-
tion forms allcwed an inaccurate calculation to continue (cf.,
-the discussion at the beginning of the previous section).

fhe troublesome computational modes were traced to the
gfavity wave terms in the equations. Many numerical modelers
have experienced a similar problem, particularly in the form
of the so-called checkerboard instability (e.g., Mesinger 1972),
There is an irony in the numerical gravity waves being the
source of small-scale disturbances when in the physical system
they“are the mechanism that adjusts the flow to a mcre slowly
varying (e.g., geostrophic) balance by propagating such dis-
tﬁibahces rapidly away. Mesinger (1972) has pointed out that
the usual numerical treatment of gravity waves fails to éouple
the grid poigts properly. This accounts for the diéparity
between their physical and numérical roles. ?

Consider the simplest system of linear equations
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describing gravity wawves =

Put these equations in finite difference form by replacing x
derivatives with the second order centered difference operator

D, (B4) and‘calculating time derivatives with the Euler back-

ward scheﬁe (B3):
* W h ;\ * " n o
Uy ui-atgDhy 5 hi= hi-at D

e W L n+|=‘>f N »
Uj = W 4tﬁb°t‘3 ) %3 %J at D, ug

so that the equation

K

s W - at B, [ - atgbk =W *@t)(gH)DA (sz:B

J

relates values of h at successxve tlmesteps. Thls is analagous

R

to the wave equation

%‘ct = 3H L‘xx ) R "-“CBQZB

Suppose that h™ has the form of a two grld po¢nt wave:
h(x) cos (Tx/4x)  so . = Cos (¥ /6%) = C-lf) .

The rlght hand side of the continuous equaulon (B¢2) glves a
local smoothlng of order (Ax) 2. More ccrrectly, (822) allows
the wave to propagatc the height ex trema away with a speed

(gH)l/z. The flnlte difference equation (B21) becomes
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W - by = gHEt DIl = gHatr (W 2kl ]
2L\x)

- = @f)‘- ] 3 \J 2 _ :
=gH A Len pent s (= o

.so .that there is no smoothing at all. That is, the wave does

not propagate and the disturbance remains. Presumably, what-
- ever acted as the source of this disturbance will continue to
pump -energy .into it--in phase since it is not propagating--
and its amplitude will increase. The finite difference

approximation has suppressed the ability of these gravity

~. waves to adjust the flow. The approximation to the second

derivative in (B22) connects only every other point because it
- ‘has been made as two successive approximations to the first
derivative. - Any scheme which treats the equations in their
original form (B20) will have essentially the same shortcoming;
the particular scheme given here was chosen as thé most
straightforward illustration. For instance, the centered
fourth-order scheme (BSa) will introduce a weak coupling
between successive points--one which is an order of magnitude
weéker than it should ke, and, more importantly, has the wrong
sign,

‘¥o. remedy the difficulty, the finite difference scheme
must capture the "smoothing" effect of the second derivative
in the wave equation, (B22). For example, (B21l) could be used
with the Dg operator replaced by D+D_, an approximation to the

second derivative which uses three adjacent points, viz.
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or N
W™= hl-atHd W+ 3H G {00 D2 Y,

The latter equation shows explicitly how the original finite

ngQHM%Hmu%

difference equationr has been altered. We have, in effect,

added a smoothing operator éH(At)Z{D+D_ - Dg} to .the equation.

2

Since both D+D and D
- o

are second order approximations to-the
second derivative, their difference is 0(Ax2)=so that the
change from the original equation is the same order as the
exrror in that eguation. Both the original and modified' equa-
tions are formally the same order of accuracy 'in space and
hence, from that point of view, equally correct. ' The latter
is a better approximation because it alone preserves an impor-
tant property of the original physical system. oL

It is not difficult to generalize this schéme, Considerxr

the model equations

. U —
T8 = R ok xt ) - 314)(

(B232)
%&!f\ = J':L Cq),h, X) ‘f,‘)> - H“x L

where H is a constant--for example, the mean value of h, We
will time march with the N cycle scheme and appréximate first
and second derivatives by 6x.and Gxx’ respectively. Steps
(iii) and (iv) of the N-cycle scheme (B2) are replaced by
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1

2. % b, [&h% +$ SSL\ B WL%(SX,‘ )M]
b, M 2+ £ - oxu“+gn3H(,;g:>L\M:(

NJ
., =3
1

1l

(iv) anﬂ um N Zu:( . (BZLI'B
e ez |

where
‘b'xz O if n = 0 mod N
" bh_‘ otherwise

. The difference from the usual N cycle scheme is the
term;w;th the smoothing operator axx —Gi. If the operators
qx_an.GXX are both accurate to order m then both di and Sxx
are mth order approximations to dz/dx2 and their difference
is order m. Hence, the equations with the added term are for-
mally of the same order as before.

In order to get a clearer picture of the effect of the
‘smoothing ‘operatcr, consider a function of the form exp (2wix/
‘KAx), so that K = 2, 3, 4,.. corresponds to 2, 3, 4... grid
‘éoint waﬁes. For second order centered differences, Gx = Dy

84y = D,D_

(AX) {D D b .giXPCZWCX Zfsm"‘(ir%xp 27T %N

WAY “Kax

For fourth order centered differences (as are used in our

model)
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I

g)& DX ) SXX E DXX
- /¢ . il . ¢ 3
(a3 [ Dy~ D J exp (B Y= 2 si () ssic el |

For convenience define

Se0= asirk Sk = Lo st (D) (gesic )

so that Sz(k) and S4(k) are the smoothing factors for a k grid
point wave fof the second and fourth order schemes, respec-
tively. Both are always positive and are a maximum for k = 2.
To see their behavior for small k, we construct the following
table; for comparison purposes we also inciude 174'D;D_"
exp(2mix/kAx); i.e., the usual approximation to the second

el

derivative of the viscous term:

K= 2 3 4 5 6
S,(k) | 4.00 | 2.25 | 1.00 | 0.48 | 0.25

S, (k) 5.33-| 2.06 | 0.55 | 0.17. | 0.06
1/4D,D_ |. 1.00 | 0.75 | 0.50 | 0.34. | 0.25

s, (k) /S, (2) 1.00 |. 0.56 | 0.25 | 0.12 |.0,06
S,(k)/S,(2) |- 1.00 0.39 .10 .03 0.01

The damplng effect of the smoothing operators falls off
extremely rapidly with 1ncrea51ng wavelength——nuch faster than
the usual form of viscous dissipation. That of the higher
order operator falls off the most rapidly-wits effect on the

four grid pcint wave is an order of magnitude smaller than on
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the two grid point, For longer waves {larger k), S, falls off

4
like k~6 and S, like x~% while the second derivative approxi-
mation goes like k”z. These smoothing operators--particularly
the higher-order one that we use have the nice property of
effecting only the very sho;test scales, scales which are '
insufficieqtly resolved by the grid anyway.

. Thus far, we have employed smoothing operators in a way
which giyes an improved approximation to certain terms‘in the
eguapions and thereby retains an important property of the
grgvity waves in the physical system. However, the short wave
(selqc;ivity of these operators suggests another use. Siﬁce‘the
Sxx —Qitis the same order as the error in the spatial finite
differences, such a term may be added to any equaéion without
changing its formal order of accuracy. Also, applying it at
’thg_greviops timestep as in (B24) makes it an advective rather
thag a dissipative operator..

'In a multi-dimensional problem there are velocity shears
ac;osghthe direction of flow (e.g., the latitudinal shear in
the zonal velocity, Uy). Normally, very small-scale features
--—like two grid peint waves--should be damped by viscosity.
‘As previously notéd, however, with a variable grid size the
amount of viscous damping needed to suppress grid scale noise
where' the mesh is finest is insufficient where it is coarse.
Rather than adopt the uneconomical option of making the grid
size sméll‘eVerywhere, we prefer to add smoothing operators

in the cross stream direction. For example, step (iii) of the

N-cycle scheme (B24) would be changed to
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(1id) _, PR |
Z.=b, (.. + B*.,\%H (*Syy— 5;) L(“") (B25)

A éimilar,operator in the % direction wduld be added to the v
mé&entum. (See Appeﬁdix C for thé details of the full model
equations.) o
Unlike the previous procedure, this smoothing adds
unphysical "momeﬁtum waves" to the equations-;thoﬁgh only in a
wawahich leaves the order of accuracy of the equations unal-
tered. (évery numerical procedure alters the physics of the
original system somewhat. Usually it is difficult to describe
the changes explicitly.) Since the operator is so aneléngth
selective, only the shortest waves are affected. Moreover,
where the grid mesh is fine, the wviscous démping'is’adeéuate
to suppress small-scale noise so thaﬁ these added operaiéfs
have no effect in these regions--this was verified by’expéri—
ment. It is not necessary to do this, but as a mdétef of
taste we prefer to have the calculation contfolled by the
better understood dissipation mechanism in the regions of

primary interest.

3.6 Summary . - | L

The model equations are marched forward ip time using
the 4-cycle scheme of Lorenz [(Egs. B2). . The grid mesh is .
uniform in the computational space, but has variable size in
physical space to give increased resolution at the equatqr and
the sidewalls; the relation between the two coordinate systems

is given by (Bl) ff. The finite difference approximations to



352
spatial derivatives are fourth order in the interior and third

order at the boundaries, Egs.{(B5), (B6). The equafions are
differenced in an "almost conservative" form (B18) to prevent
"nonlinear" instability without irntroducing either excessive
viscous damping or a number of grid points larger than would
otherwise be reguired. 1In qfder to treat short waves in the
height field mecre correctly, an improved approximation for the
gravity wave terms is introduced (B24). A smoothing operator
- motivated by the gravity wave treatment is used to suppress
two grid point waves in the welocity fields (B25). This has
an effect only in areas of the grid where the spacing is too
cbérée for this suppresssion to be doane by the viséous damping.
The complete finite difference equations for a beta plane
éeometf} are given in Appendix C.

In addition to allowing all of the parameters listed in
Table,l to be varied, the computer program allows the user to
choose an f-plane, a beta plane or spherical geometry; to re-
solyé_o;lnot resolve boundary layers at the walls and the
equator; to locate the basin at any latitude and vary its
- size; to choose any of the boundary conditions (2.9a), (2.9b)
or {2.9¢c); to have one active layer (2.4) or two active lay-
ers (2.§); and to use the nonlinear equations or to linearize
about the basic state & = v = 0, h = H; to apply the gravity
wave correctlon (B24) to only: the height field, or to the

velocities in the downstream dlrectlon in addition, or to all

fields in both horizontal directions.
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Appendix C Finite Difference Fquations on Beta Plane

This appendix derives the finite difference version of
the model Egs. (2.8). We do this only for the beta plane
geometry described at the end of Section 2.1. The more general
'geometry complicates the eguations without adding anything
essential; moreover, all of the results presented in the body
.0of this work are for the beta plane case.

We begin by putting the equations in a conservation form

like (B18). For this purpose rewrite the model Egs. (2.8) in

the form

r%q

S«J'“Q_ng

> X ?Myrg >

ifz)

1)

w = QJ?V'QS R. 77

QJ{V\)
“\(
fr—? |

T RACG - F (g0 Res (Clie)

\B)
N
i

20 TRV aw (86 R (CLae)

N
i)
Iy

SRV -w (e

. . 1 .
Here qS may be either u® or v° and ql either u  or v?@ Mthl—

ply (Clb, c¢) by n and use (Cla) tc rewrite w/2 qﬁ:

at@fzﬂ— RI-FwY Bv g F¢t 1k

:'P“’gv L?/Zu)*‘//(us V)f Z V(ﬂfug)b
v Rol2 PV v Y ¢ «Mst

\,

Lo 3 050 ¢y (1 V\ffs Wby, (c2)

il

2 (7%
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Equation (C2) is the desired analogue of (B1l8) for the upper
level. For the lower level, multiply (Cld,e) by h and add ql
X ((;lf) :

o .
ﬂ(hfi>= év(? 1(5‘)-— \Zr(g )'1" (221

: |
%00 =50 gthude h g gro (hao)]
— ,\g:?i.. 7 gs—t' h fo.

Selhg9)= %1 m-@w% Boh (4t og*™
v (501 - Fehe, (G8)

Eq. (C3) 'is the requifed form for the lower level. As long as
%% is calculated the same way in (C3) and (Cif) terms involving
it will exactly cancel in the energy equation--as £hey should.
However, if the finite difference formula for the lower level
divergence V*(hgl) is dififerent from that used for the pressure
gradient term, then the sum of the terms involving the conver-
sions between potential and kinetic energy will not sum to
zero identically. This is the case for our model equations
(cf., Eés.’CG, below) .

The basic finite difference operaﬁors are DX and Dxx as

given by (B5) and (P6) with similar operatcrs Dy and Dyy in
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y direction. It is ccnvenient Lo define the following ana-

logs ©of the differential operators:

Veu = DU ¢ DV

< x Y
o v | |
(4vdg = wmD g+ wD g ()
M
v = iy D g * T T

Also define smoothing operators
= il Sl ]
SX - IM;’ 'Dxx—b)t] ' - ‘M L)’)’ D

All variables are defined at grid points X;

|

ceor Ny, Yj = yg + jby, j = 0,‘..., Ny ‘and times t, = ndt.

Where necessary, we write q‘j:‘j fox q(xi, yj, tn) but we will
suppress subscripts and superscripts where no confusien can
arise. Specifying the finite difference equations requires
that we specify steps (iii) and (iv) of the N-cycle scheme

(B2) completely. We begin with the following definitions,

‘based on (2.8), (C2), and (C3).
w= Ry vu L

Rz ~R1V( wm At W
‘i—\o(%\/ 77 L\ + l’“"‘) 3(“’(!")*77},: v 0

iAx, 1= 0
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Fvsz A%{W’(?{gsvs) + 77((,4 Ve 1 + -- Ve
“EMLLS”“ %E,‘E; Dy]r\f ’ﬁy) B(\, v‘-) Z/EY#VS

u* W o

Fa= "5 VoCwthud) « hegs Pl 56 - Fu
) +'EAI/IV1*‘GI:’W§ D;;l’\ + Blus-ut)- ngﬁl + ‘")EH Wl"‘i

Rez ~R1V-Guwvd « hgswyve e ¥ R- Fvs
,“?MW-—W:-Q*D r B (VR VT -ByvaLE, TVt
o= mRo () - w0 S ST (o)

(b(l)‘ will be defined below),

Steps (iii) and (iv) of the N-cycle scheme are

(1ii)
?‘"us: b )-Ke 2“" = + !om) CB)S )(u ]
2h= b la, 20 F . ws b2 G V)]

221 = On [ahzkl N Ed.' * (b:—) )t +b:a)g >(“ ]
2:1_: 3 th [QAEV\Z‘_ * vz, v !O»ia> S + b“)c )(Vi)m]

n -\ .
Zh = b,\ [Qh Z*s’,} + l;h _i P (0/7@\)\
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(iv)
7u®""= GusY'+ 2
v = (v 2
(haY "= u)+ 20,
(hv™ = (s 20
W= W 2 C(CTb)
The b(k)'s are defined by (cf., Egq, B24 ff):

O )? hEémaAN ov K>S ,
- —_
” bh—\?\' Ro H o Therwise . (Cg>

H is the mean depth of two levels (H = n + Hy), the a_'s and
bn's are the N-cycle coefficients given in (B2), and s is an
input parameter which allows the smoothing to be applied

(k)

selectively. Usually, s = 3 so that all the b 's are non-

zero.
The finite difference equations for the one lajer syétem

are readily obtained from (C6) and (C7) by ignoriﬂg the upper

layer equations, taking w = B.= 0 and adding T (x) ané r (9)

to Fu and Fvl' respectively. The two layer l%near quations

1

are obtained. by linearizing the expressions in (C6) about the

basic state u, = u; = 0 and h = H, = constant. This amounts

to taking RO = 0 (excert that F;le remains finite) and h = Hy
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when it appears multiplying another term--i.e., everywhere in
the pressure gradient terms (hVh becomes H,Vh). The one layer

equations are linearized in the same manner.
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Appendix D Computationsal Stability (Linear Analysis)

D.1 Time Differencing

We write our system of equations in the form

..Q_. -, { 0
S d= Ay - (DD
>‘D

Let M = iA, -

A be At, the timestep, times the jth eigen-

value of A. The imaginary part, Aikar%ses from the advective
part of the operator A and Ag from the dissipative part; we
assume the system is not growing in time so Ag > 0. The eigen-
values with the largest values of Ay OF AD will set the stabi-
lity criterion. Usually the largest magnitude of both Ay OF
Ap are associated with the same eigenfunction: the two grid
point wave. Computational stability requires that all modes
have a growth rate 63 such that ‘Gj! < 1.

For the Matsuno (Euler backward) time differencing

scheme, the growth rate G of a mode with eigenvalue ) is

G= 1+ +>* (D2)

For computational stability:

(a) |\F )\A:O then 3\0 < 1
(b) H'\‘ >\D:° 'Hnen l)\A\éii .

As is well known, for a pufely advective problem (AD:= 0)
the Matsuno scheme is always damping. This may be seen immedi-
ately by comparing (D2) with the Taylor series for the value of
G given by the original equation, i.e., G = exp(i).

For the N-cycle scheme
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N .
G= = /| (D)

n=o
Computational stability requires, that, for the 4-cycle scheme

IF Aa= 0 then M £ 2.7
® 18 Ng=o then D)< V3 = 2.2

For a purely advective problem we may obtain an esti-

~mate of the damping by noting that if }AAi << 1, then

G = et QM)NH/ (N+1))

For N even

| G = coshnr i [Sina- (~0 '\M'/(NﬂB)]

and .
2 Nfz.
’ (w 2 2. N 2 (1) N+9
>t = | - (- s = haEA
I 1 ( I.) [IV*‘D' A M.)‘A 1- CN“‘DQ
Hence the scheme is damping if N is a multiple of 4.
Ca é / —
For N = 4 |Gl 1- \a/51
' ™ — lo /
For N = 8 |Glx 1 AL
7 8
while for N =6 | & % 1+ Va/7l

For N = 4, the exact .value is
A 3
[el"= 1= No/72+ /20"
~ | Ll B
|Gl = 1= Aejmy = |- FN, /5]
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D.2 Space Differencing

It remains to calculate the values of AA and AD appro-
priate to our finite difference equations. The prototypical

advective term cu and dissipative term vu,. are approximated

X
by cDxu and VD, u respectively. The maximum eigenvalues of D,
. . . 2
and DXx will have the respective forms g, /A X ,f%{1/Q@X) .
For the 4th order centered schemes we use uy = 1.37 and
Uy = 5.33. For an advective velocity ¢ = 2m/sec (i.e., the

gravity wave phase speed) and At in units of (252)”l and Ax in

degrees (=110 km)

R Wy S
5 2 -1 . ’ '
For Yy = E* 5.86 x 10” cm sec” (i.e., E* = 1 corresponds to
an Ekman number of 10798)
PR
)\H: )/"_‘“/ul x A_td?m, = /.'.77"/011‘5 A_‘(__‘,
(AXJM) . - LAX)L

The vertical friction term gives a further dissipative

contribution. 1In non-dimensional terms this is approximated by

N T RBRat/y = /670t f.?;///‘(

where the give value of B corresponds to v, = 15 cm2 sec™! and

n is the boundary layer thickness in units of 100 m. - - °
'For the 4-cycle scheme with At = 4§t we obtain the
following restrictions on the timestep (remembering that the

equations are 2-dimensional)
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-
a2 Lz ay] 2 o,
v\ — -‘ )
3.83EY" [awr "(Aly)*] 2 5ty

éSEC)%C/Eg* = é“tv

For P'=FE*= 1, AX=A\/‘=’~=3 angd H=.25

3ty .63 Jt,< 180 ; 8¢, 4170

It is clear that the timestep is restricted by the advective

. terms; specifically, by the gravity wave terms. Since the
system realizes current velocities of the order of 150 cm sec“l
treating the gravity wave terms implicitly would allow the
timestep to be increased by 6nly a factor of threet or so. The
additional computations reguired by such a semi-implicit
method woula appear to nullify the time saved by uéing a

larger timestep.



APPENDIX E: COMPUTATIONAL FORMULAS FOR CHAPTER 4

E.1 Properties of the Hermite Functions

The Hermite functions Y, (y) which appear in (4.7) £f.

are defined by

M ;o '%‘~V72' Bl
LfiCy): o (2"n) e HL () (Eh)

where H, is the nth Hermite polynomial

noyr " -y*
Hot) = (ael g, (€7D
The Hermite functions vanish at infinity and are orthonormal;
i.e., ’
(Hm O Wn#EWmM
[ wotoph= {00 e

They satisfy the equation

(&[L/&(Yl - y") LK = - (ZVH-i) % . C v (E3)

The Bn may be rewritten in terms of the wn's only by using

% h.

\/LK\ - [%] %*1 K [%] (T.,/\
h %'%i

A4 dy = =[5 b+ 2]

(E4)
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E.2 The Projections of the Forcing Functions

That is, the calculation of ‘o"‘»i such that

Z bu; &, |
Let ,‘f“( (%> = (:('(‘(0/)) \'{((Y)/ J’k (y)> po«’ D‘-‘-d e L= b

and let + denote complex conjugate. Define a scalar product

by
(L(k, ~b 53; U Uy + Ve v,,+ln lquJy (E5)

We may now normalize ¢ by defining the N“’i which appears

b3

~

in (5.8):
2.
N (0= (206 (Wit K) F LK v (@i 7K (E6)
This leaves (,“,3 undefined for k=0 so define

~¢u’s(0,)') = éi"l” ?m(&y} (E7)

Now

{1 if n=wm 4%{321

O oTherwise

(G, 2..),
” and b .= (ﬁ( m\>v

h)A R ‘4)\) ) ~

Let ECK) y)-t) = . (F(K, y)’f}) C;(K,\/')f\J) @(K,yfé>

<2, .
= Z (% ke), 4ak8), g (k) B (y)
where the wn are the Hermite functions and

- [Foay g [Say 5o [a%a
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o, (kt)= j, LyFrOOh
_ “+L>/l):?m1 gn«t] ["?:I [‘R,-fgu—v]

e (k0= | (Fry@ Yy |
(Y J;wgmi] (O ]

-1 2 n+i
Vi, (k) = Le,- CZM@A»‘] [ In mm]
b, (Kt) = dy (K= ilﬁ‘f_ (Fr@)ely= 7H(% g
Then bm (K,ﬂ = [\/;:S {éumélh + Ke, +c(¢,’5‘5 “KY) 33 (E9)

E.3 Boundary Response Terms
This part of the Appendix goes with Section 4.4.
We are concerned here with ‘some aspects df the boundary response
to the unbounded solution, Egs. (4.15)~(4.17).
(a) TInertia gravity waves (4.15) at an eastern boundary. x=Xg
For example, let the incoming wave take the form (4.15)

with d,=0 (meridional wind stress only). Then,’

T2

) = (QVH'i.\; K», W-CCO) = "50 (Q.V’H-i.) -~ and the outgoing

propagating wave is

U, = BLSIREN [ l (Q.mx)-‘ﬁh %‘\ St [%JF: (E10)

h
L Zn+2 (2n+)
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with  Z, = (2n+l) ['t‘:+ (2n+1) (X—XE)]

-l
Lov Xe")c' < € [2(1?\-!1)" 9:_3{:1}

The modes generated with m>n are boundary trapped

[see (4.30)],

Km,w‘ = -+ (9—n+.’L§/—( [ZCM'M“ ‘?(?ﬂd‘)] (E11)

(b) Reflection of Kelvin mode (4.17) at an eastern boundary
X=XE:

143
Define the symbol &, by

o & m>n or mENMAZ
‘ .
D(n = % 1 F m=n
" ‘h. (E12)
n -2 Vn«r&? ,
Z ,{V)-'l n-3 med | °fb“'”“’f$€
Let the incoming Kelvin mode be ‘tot, ié., .  The
response {f\.(K,e may be found from the algorithm (4.39)
20
SUon (, 2n+dl —n "
u = &[ drb (gn)z " L;_V‘(VI‘H. p\ + ,2 E?—-_%)
~ke Tl (E13)

with Zn = + + (2V\+13<X"><4\ and S is the Heaviside
) ’ j 20 gn n ]
step function. Note that (J o, _‘L> =1 i 75 Zu(m—«) \ P {

and that \/= 27 E:”(:‘ L’i so that td—c‘fs: *’(é(Ke
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ot
tends toward A-l'ﬁ- /lr(o) yi*t) at the boundary. -

: T
(c) Reflection of a Rossby mode of the form Y‘.It EP— (4 16)
at a western boundary x=0.

The response is calculated by the algorithm (4.37).

The small w approximation {4.33) is made sc Kn,e_/’\"’ ={(2n+1) co

and Kn,w- % -~ to!'. The asymptotics of Section 4.4 apply.
et fz = ot P - _\gj_l_?f
23+1
Lot Gr3 = -1 [‘l.- STl " %}% (E14)
Qg = \rx’z%fi,df 04n< S
C‘x,'l = ar,i_

5 .

— - 2 '/j_ “
The response /(CLQ,W' = Z‘awg(t—scamnx){[%] 31(2@),‘2
n=1

)

2 \R¢: OB+ ago Stem (e 8,

(r e o el
tag, Ste {(‘%}S&/zﬁ‘%)i * ”25(2 31(2‘};%)‘% § (E15)

with Z= £ CAneDx
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The amplitude of the Kelvin mcde in response to all modes

of the form (4.1¢) is
> Z 5 el
—_— - - I o(“
A‘l a— é “3’)"‘ 2 < "‘—'—;‘ 1]

The amplitude of the nth Rossby mode in response to all

of Ehe modes of the form (4.16) is

[~ o) N
— 4 ‘P-s dl—” in v
Ay\: > 2%+4 " Anet N

Jne)

For the case F=(400):

3
o - P . VR Y (E16)
6{-, T " ) €y=o AI" 27 <y, Yr 7 2.3(T+1)
So
20 s .3 =
A= —7™ Z () R (E17)
-1 &7 TSy (234) s
n T I
A = e § K - _Z f'.(___‘_._%_:‘.,.——-« ‘% (E18
W [ (n+1) (2u+1) T(S+(23L) (EL8)

S:nrl
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APPENDIX F: ORTHOGONALITY AND COMPLETENESS OF THE EIGENFUNCTIONS

FOR THE SHALLOW WATER EQUATIONS

(a) Orthogonality
From the orthogonality of the Hermite functions wn,~it

follows that _
( D,009) ) Bus@)), = 0 & ngm

It remains to show that

n
A\u = Nn,j l\/n,z (?m,j ) ¢n)2\\/: O l‘? \\#1 -

From the definition of the scalar product (E5):

. ° o . ) .

(i) A)l = { + (0g) LWy For j'—#«(} Sthce Q)Oi,wot ga‘h;'Py
their product is -1 and

A‘.DLQ = 0 ?‘or S#’j

(ii) For n>0 A:"( = Lol [anJ. w; LQI]

K (o) * KLZQMU Kl(“’x*wj)z*z‘”z“ﬁ] ,.

(where we have written &% for U%%(K), etc.). Now &; and &y
satisfy the dispersion relation (4.4); let the third root be

w Making use of the relations (/US to, tlo, = O and

* .

w, wy W, = K we obtain
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n 4 ) 2 » 2 2K
= X K. 2 (KT 2
= [Qmif Loy w*]+ K| o

since Wy satisfies (4.4).

(b) Completeness
We wish to show that if all the components of the vector

have expansions of the form

F="(F G, Q)

a, (k) (y)

[V

o

3
u

<
then F has an expansion of the form Z_. buj ¢",j
4 ~~

It is sufficient to show that, for all n, (4, 6,1) ‘ﬂ,}

( 0, i, o) (ﬁ. and ( i) O,‘i) Lﬁ have such expansions.

(5.8) and (E4) it follows that for nzl, the ’

From (5.7),
have

vectors (1, o, 1) L,'zu) (.O) 4 o)(‘f:) ('17 L‘))'i\, ‘ﬁ‘_,_

3 4 £ T + ¢
expansions of the form hvs,i (A" . t lo,,‘,_qﬁ,,),,_ bﬂ.s n,3
A A P d



if the matrix

is non-singular.

this is true if

— {VHLI (45, +K) Lul"FKI
[ 9{'] '/L( Loy tK) Lyt
[ﬂ;—_f] e wyHk) Lotk

-
;.2
¢ 1— wL WL
{1 G, r
1 oy Lo}

—

["g],/’—(b,—k)
[ —g\-‘z VL( bo,y - k))

[*] ()
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After some manipulation it may be seen that

is non-singular, or if (wfw,,) (¢~ €0, (Wy-)#0. This is
equivalent to the statement that the three roots of the disper-
sion relation (4.4) are distinct, which may be readily demon-

strated by a reductio ad absurdum argument. By making use of

the fact that woﬁ_# lo,, , the remaining vectors needed, i.e.
J

%(1,0,1), ‘{1 (1,0,1) and ‘22(0,1,0), may be expanded in the

vectors ¢ ¢ ¢ ) . -
A+ Tot ) & 139.
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I was born in 1944 in Brooklvn, New York. After
avaduating from Midwood High School, I entered Harvard Col-
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-
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+
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-
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