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ABSTRACT

A suite of empirical model experiments under the empirical model reduction framework are conducted to
advance the understanding of ENSO diversity, nonlinearity, seasonality, and the memory effect in the sim-
ulation and prediction of tropical Pacific sea surface temperature (SST) anomalies. The model training and
evaluation are carried out using 4000-yr preindustrial control simulation data from the coupled model GFDL
CM2.1. The results show that multivariate models with tropical Pacific subsurface information and multilevel
models with SST history information both improve the prediction skill dramatically. These two types of
models represent the ENSO memory effect based on either the recharge oscillator or the time-delayed os-
cillator viewpoint. Multilevel SST models are a bit more efficient, requiring fewer model coefficients. Non-
linearity is found necessary to reproduce the ENSO diversity feature for extreme events. The nonlinear
models reconstruct the skewed probability density function of SST anomalies and improve the prediction of
the skewed amplitude, though the role of nonlinearity may be slightly overestimated given the strong non-
linear ENSO inGFDLCM2.1. The models with periodic terms reproduce the SST seasonal phase locking but
do not improve the prediction appreciably. The models with multiple ingredients capture several ENSO
characteristics simultaneously and exhibit overall better prediction skill for more diverse target patterns. In
particular, they alleviate the spring/autumn prediction barrier and reduce the tendency for predicted values to
lag the target month value.

1. Introduction

In the modeling hierarchy ranging from simplified
conceptual models, empirical/statistical models, inter-
mediate coupled models, and hybrid coupled models to
the fully coupled general circulation models, empirical
models not only assist in investigating ENSO behavior
but are also skillful as prediction models. As data-based
methods, they were popular before the arrival of fully
coupled numerical model predictions and are still useful
in the new era of ‘‘big data.’’
Advancing ENSO modeling depends on the un-

derstanding of ENSObehavior as well as the behavior of
the models themselves. In this study, we carry out a

series of empirical model experiments to study the im-
portant ENSO characteristics of diversity, nonlinearity,
seasonality, and memory effect. We also address predic-
tion problems, including the well-known ‘‘spring barrier’’
and the less known ‘‘slippage’’: that is, the tendency for
predictions to incorporate too much persistence and
thus lag behind the actual target month observations
(Barnston et al. 2012).
We conduct the analysis using the empirical model

reduction (EMR) framework (Kravtsov et al. 2005;
Kondrashov et al. 2005; Kondrashov et al. 2015), which
allows model settings to include additional quadratic
terms, periodic terms, and multilevel predictors. The
operational prediction version of EMR [University of
California, Los Angeles, Theoretical Climate Dynamics
(UCLA-TCD) model] participates in the real-time
‘‘ENSO prediction plume’’ of the International Re-
search Institute for Climate and Society (IRI). Among
eight empirical models in the plume, the UCLA-TCD
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model is very competitive, as measured by a 9-yr (2002–
11) real-time prediction and a 30-yr (1981–2010) hind-
cast, exceeded by only a few dynamical models. It also
better copes with the spring barrier and target month
slippage (Barnston et al. 2012).
The first task of this study is to decompose EMR in

order to identify which ingredients contribute most to
its good simulation and prediction skill. To do so, we
construct a series of models with various settings, in-
cluding adding additional quadratic terms, periodic
terms, and multilevel and multivariate predictors. We
then evaluate them in control groups (e.g., with or
without nonlinearity, with or without seasonality, with
or without memory, and multivariate or multilevel ap-
proach). Through panel comparisons of each model’s
ability to reproduce ENSO characteristics and its pre-
dictive ability, we show that deficiencies of the baseline
settings are largely remedied in more complex models.
Not surprisingly, we find that even ourmost ‘‘advanced’’
model has limitations.
Along with the general evaluation, we hope to con-

tribute to the following aspects of ENSO or empirical
modeling research. The first is to better understand the
differences between two representations of the mem-
ory effect. The intrinsic predictability of ENSO largely
comes from memory stored in the subsurface ocean,
which may be described as a recharge oscillator (Cane
et al. 1986; Zebiak and Cane 1987; Jin 1997a,b) or as
a time-delayed oscillator (Suarez and Schopf 1988;
Battisti and Hirst 1989). The approach of adding sub-
surface information [e.g., the 208C isotherm depth
(Z20)] as an additional variable is a natural extension
in the linear inverse model (LIM) framework (e.g.,
Blumenthal 1991; Xue et al. 1994, 1997, 2000; Johnson
et al. 2000a; Thompson and Battisti 2001; Newman et al.
2011a,b), while the approach of EMR fitting multiple
levels in an SST time-delayedmodel is less common.We
construct models of each type to illustrate their relation
and make a comparison. Considering these two ap-
proaches together offers more choices to embed the
memory in the model setting.
A second aspect of our work is to evaluate model

performance on ENSO diversity (Capotondi et al.
2015). El Niños occur not only in the eastern Pacific but
also in the central Pacific (Larkin and Harrison 2005;
Ashok et al. 2007; Kao and Yu 2009; Kug et al. 2009;
Di Lorenzo et al. 2010; Lee and McPhaden 2010;
Karnauskas 2013; Vimont et al. 2014; Chen et al. 2015;
Takahashi and Dewitte 2015; Fedorov et al. 2015).
Most model evaluations use one-dimensional (1D)
measures [e.g., Niño-3.4 or the leading principal com-
ponent (PC1) of tropical Pacific SST anomalies
(SSTAs)], but a two-dimensional (2D) framework is

necessary to describe ENSO’s spatial variation. Takahashi
et al. (2011) showed various measures of ENSO di-
versity in the literature could be viewed as linear
combinations of tropical Pacific SSTA PC1 and PC2.
Following Takahashi et al. (2011) and Vimont et al.
(2014), we introduce ameasure using the PC1–PC2 pair
for overall ENSO diversity performance. Takahashi
et al. (2011) suggested that the curved shape in PC1–
PC2 space implies that the two flavors of El Niño may
not describe different phenomena, but rather the
nonlinear evolution of ENSO. The EMR framework
does not explicitly specify coefficients to characterize
ENSO flavors, so model performance on ENSO di-
versity is implicitly determined by model dynamics. We
conduct stochastically forced simulations of various
model combinations and find that nonlinearity is nec-
essary to reproduce the curved shape in PC1–PC2
space, supporting Takahashi et al.’s (2011) sugges-
tion that ENSO diversity may emerge from nonlinear
evolution.
ENSO nonlinearity is reflected in the El Niño–La

Niña (EN–LN) asymmetry (e.g., Hoerling et al. 1997;
Kang and Kug 2002; Larkin and Harrison 2002; An and
Jin 2004; Okumura and Deser 2010; Choi et al. 2013).
Given these nonlinear features of ENSO, one would
expect that including nonlinearity in the empirical
model will improve simulation and prediction. Here we
find that the nonlinear model does not apparently im-
prove simulation and prediction of Niño-3.4, but it does
improve the skewed amplitude and the transition pat-
terns from El Niño to La Niña.
We also investigate the spring barrier in ENSO pre-

diction. Prediction skill in Niño-3.4 (similar to SST PC1)
drops if initialized from the boreal spring but recovers
after spring in both dynamic and statistical ENSO
forecasts (Barnston et al. 2012; Barnston and Tippett
2013; Xue et al. 2013). There is also an ‘‘autumn barrier’’
in the prediction of warm water volume (similar to ei-
ther Z20 PC2 or SST PC2) (McPhaden 2003). One
would expect amodel with seasonal-varying dynamics to
improve ENSO prediction across the common spring
barrier. We find that the seasonal setting does not con-
tribute much to reducing the seasonal barrier until
combined with the memory effect.
Another goal of our work is to gain more knowledge

of the slippage problem in prediction. Recent studies
(e.g., Tippett et al. 2012; Barnston et al. 2012; Barnston
and Tippett 2013) found that both dynamic and sta-
tistical ENSO prediction models characteristically
produce a delay to the target month. It is as if the model
has too much persistence. The UCLA-TCD model is
among the models with little slippage, and here we in-
vestigate which model ingredients contribute most to
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reducing the slippage and find that the memory effect is
the most important factor.
Limited observational data often bring in large un-

certainties in model training and performance evalua-
tion. To construct robust models and reduce evaluation
uncertainty, we use a long record (4000 yr) of simulated
data and conduct ensemble experiments to estimate
uncertainty in training and verifying periods.

2. Data

This study uses monthly data from a 4000 year pre-
industrial simulation of the GFDL CM2.1, a coupled
GCM at 18 3 0.338–18 resolution (Delworth et al. 2006).
This simulation has been shown to have a reasonably
realistic ENSO (e.g., Wittenberg et al. 2006; Kug et al.
2010; Choi et al. 2013; Wittenberg et al. 2014), although
its amplitude is too large (Wittenberg 2009), and it may
be less predictable than the real ENSO (Karamperidou
et al. 2014).
To justify using a model simulation as a substitute for

observations, we present comparisons of several main
ENSO characteristics between the GFDL CM2.1 sim-
ulation and the observational dataset of HadISST, ver-
sion 1.1 (HadISST1.1), monthly (18 3 18) SSTs (Rayner
et al. 2003) from 1870 to the present. We also compared
with three other observational SST datasets: Centen-
nial In Situ Observation-Based Estimates version 2
(COBEv2) (Hirahara et al. 2014), Kaplan (Kaplan et al.
1998), and ERSST.v3b (Smith et al. 2008). Results
with these three are nearly identical to those with
HadISST1.1. For simplicity, the observations are re-
ferred to as OBS, and the simulation is referred to as
GCM here.
All data are preprocessed as follows. SST data are

restricted to the tropical Pacific domain (308S–308N,
1088E–728W). SSTA in OBS are calculated by
removing a monthly climatology based on the 1950–
2010 period, while SSTAs in GCM are calculated by
removing a monthly climatology based on the entire
4000-yr record. To remove the influence of the global
warming trend in OBS and model drift in GCM, linear
detrending is applied to the SSTA at each grid point.
Then a 3-month running average is applied to smooth
the temporal noise. In addition to SST, we also use
Z20 in the tropical Pacific (208S–208N, 1088E–728W),
as a proxy for thermocline depth to incorporate sub-
surface information. The processing of Z20 is similar
to SST.
SST and Z20 variability are then decomposed using

empirical orthogonal function (EOF) analysis.
Figures 1a–d show the leading two EOF patterns of
SSTA. In both OBS and GCM, the leading EOF

(EOF1) is the familiar El Niño pattern. The secondEOF
(EOF2), which adds flavor to the main El Niño pattern,
has a zonal dipole pattern with positive loading in the
western Pacific when the loading in the eastern Pacific is
negative. The first and second modes explain 50% and
8% of the total variance in OBS and 52% and 11% in
GCM. EOF patterns fromGCM are reasonably realistic
and are generally consistent with observations, although
slightly shifted west and narrower in the meridional di-
rection, as noted byWittenberg et al. (2006). Besides the
EOF patterns (Fig. 1), the results show good consistency
between observation and simulation in the sign of the
skewed distribution, seasonal standard deviation, and
lagged autocorrelation. The joint probability distribu-
tion of (PC1, PC2) is also reasonably consistent between
OBS and GCM (see Figs. 3a and 3b). Additional dis-
cussion is given in section 5.
These comparisons suggest that ENSO characteristics

in GFDL CM2.1 are reasonably realistic, so the un-
derstanding from the modeling study based on the
GFDL CM2.1 may be applicable to nature. But the
nonlinearity in the GFDL CM2.1 is much stronger than
in nature, so the nonlinear setting may not be as helpful
in modeling nature.

3. Modeling methods

a. Baseline model

Linear inverse models are widely used empirical
modeling techniques for ENSO, in which the full dy-
namics of the tropical Pacific SST variability from
seasonal-to-interannual time scales is approximated as a
linear system of ordinary differential equations (e.g.,
Penland 1989; Blumenthal 1991; Penland and Magorian
1993; Penland and Sardeshmukh 1995; Penland 1996;
Xue et al. 1994, 1997, 2000; Johnson et al. 2000a;
Thompson and Battisti 2001; Compo and Sardeshmukh
2010; Newman et al. 2011a,b). LIMs have been shown
successful in predicting ENSO (e.g., Penland and
Sardeshmukh 1995) and tropical Atlantic variability
(Penland and Matrosova 1998) as well as extratropical
variability (Alexander et al. 2008). In the LIM family,
features like seasonality and memory effect may be
implemented in many possible ways.
In the EMR framework, we construct linear and

nonlinear models, nonseasonal and seasonal models,
and models with and without memory effects. In this
study, a nonseasonal SST linear model without memory
effect is considered as the baseline model. By con-
struction, the baseline model lacks nonlinearity and
seasonality and assumes the next step SSTA only de-
pends on the current state of SSTA, ignoring memory
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effects from subsurface processes or from the past his-
tory of SSTA.

b. Model with nonlinearity

Nonlinear features of ENSO include the asymmetry
between El Niño and La Niña in amplitude (El Niño is
often stronger than La Niña), duration (La Niña is often
more persistent), transition (an extreme El Niño is more
often followed by a La Niña than vice versa), and tele-
connections (e.g., Hoerling et al. 1997; Kang and Kug
2002; Larkin and Harrison 2002; An and Jin 2004;
Okumura and Deser 2010; Choi et al. 2013).
There are many possible ways to construct a non-

linear model [e.g., multiple nonparametric regression

(Timmermann et al. 2001) or neural networks (Tangang
et al. 1998)]. In the polynomial modeling framework
of EMR, one straightforward way is to add quadratic
terms, which has been shown to successfully reproduce
the skewed probability density function (PDF) charac-
teristics of the observed ENSO (Kravtsov et al. 2005;
Kondrashov et al. 2005).
Taking this approach, the empiricalmodel is constructed

in a reduced phase space of K EOFs. For the main level,

dx
i
5 (xTA

i
x1b

i
x1 c

i
)dt1 dr

i
; i5 1, . . . ,K , (1)

where x 5 fxig is the K dimensional state vector (i.e.,
PCs). The quadratic terms on the right-hand side are

FIG. 1. Comparison of ENSO statistics in SST observations (1871–2013) and GFDLCM2.1. (a)–(d) EOF1 and EOF2 of tropical Pacific
SST anomalies. Shading is regression coefficient of tropical Pacific SST anomalies on PC1 and PC2. Contour is the percentage of explained
variance of PC1 and PC2. (e)–(h) ENSO asymmetry and nonlinearity represented in the PDFs of PC1 and PC2. The skewness averaged
among four observation datasets and GFDLCM2.1 segments (SKm) is shown. (i)–(l) ENSO seasonality is represented in STD varying as
to each calendarmonth. (m)–(p) ENSOmemory and seasonal break of persistence are represented in lagged Corrcoeff. OnlyHadISST1.1
results are shown in (a)–(d),(m)–(p). The four observation datasets in (e),(f),(i),(j) are color-coded: HadISST1.1 (black), COBEv2
(green), ERSST.v3b (blue), and Kaplan (red). The 4000-yr preindustrial run of GFDLCM2.1 is divided into 20 mutually exclusive 200-yr
segments for calculations in (g),(h),(k),(l). Each segment is in gray, and averaged result is in black. The x axis is the initial calendar month,
and y axis is the lag month.
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dropped for linear models. The model coefficients in
the matrices Ai, the vectors bi of matrix B, the com-
ponents ci of vector c and the components ri of the
residual r are determined by multiple polynomial re-
gression (MPR) (McCullagh andNelder 1989), which is
the generalized version of multiple linear regression
(MLR) (Wetherill 1986). The noise in the climate sys-
tem usually has spatial dependence, as addressed in
Penland and Sardeshmukh (1995). Therefore the noise
covariance matrix, implicitly embedding the spatial co-
herent information, is estimated along with other deter-
ministic coefficients and further used to generate spatially
coherent white noise for the stochastically forced simu-
lations. For the nonlinear EMR models, nonzero c ac-
counts for the mean nonlinear drift (Kondrashov et al.
2011). For consistency the c coefficients are retained in the
linear model as well, but their estimated values are neg-
ligible, as expected for a dataset of anomalies around a
zero time mean and without a trend.

c. Model with seasonality

Another notable feature of ENSO is seasonal phase
locking, the tendency of El Niño and La Niña to peak
toward the end of the calendar year, which is the result
of competing coupling feedbacks (Tziperman et al. 1995,
1997, 1998; Neelin et al. 2000; An and Wang 2001).
There are several possible ways to introduce seasonality
in a model. One way is to fit a varying linear propagator
for each calendar month (e.g., Blumenthal 1991; Xue
et al. 2000). Another is to treat seasonality as periodic
terms, as in EMR (Kravtsov et al. 2005; Kondrashov
et al. 2005), with consideration of the interaction be-
tween the annual cycle and variability as in Tziperman
et al. (1995).
Following the EMR framework, we include season-

ality by adding additional coefficients into themain level
of the model:

B5B
n
1B

s
sin(2pt/T)1B

c
cos(2pt/T) and (2)

c5 c
n
1 c

s
sin(2pt/T)1 c

c
cos(2pt/T) , (3)

where the matrix Bn and vector cn are the original
nonseasonal terms as in Eq. (1), matrices Bs and Bc and
vectors cs and cc are seasonal terms and for the period
T 5 12 months. All these coefficients are determined
simultaneously with the other coefficients in the main
level. Note that the seasonal dependence is allowed for
the linear part of themodel on themain level, but not for
the residual.

d. Model with memory effect

ENSO is often viewed as a recharge oscillator where
the systemmemory is stored in the subsurface ocean that

reemerges through the thermocline feedback in the
eastern Pacific SST variability (Cane et al. 1986; Zebiak
and Cane 1987; Jin 1997a,b). It could be also viewed as a
time-delayed oscillator where the subsurface ocean
memory is embedded in the SST history (Suarez and
Schopf 1988; Battisti and Hirst 1989).
These theories suggest two alternative approaches

that could be used to add memory to the models. A
natural extension directly based on the recharge oscil-
lator viewpoint is to extend the SST-only state vector
to a multivariate state vector by adding the leading PCs
of ocean heat content, 208C isotherm depth, or sea level
variation in the tropical Pacific (e.g., Blumenthal 1991;
Xue et al. 1994, 1997, 2000; Johnson et al. 2000a;
Thompson and Battisti 2001; Newman et al. 2011a,b). A
direct representation from the time-delayed oscillator
viewpoint is to use only SST PCs but fit a multiple time-
level model using previous time steps rather than
just the current time step. The multilevel fit could be
executed at once (Chapman et al. 2015; Lee et al.
2015) or conducted recursively (Kondrashov et al.
2005; Kravtsov et al. 2005).
In this study, we construct models in both multilevel

and multivariate settings to compare these two ap-
proaches. Following Kondrashov et al. (2005), we add
the memory effect via multiple levels but confine non-
linearity and seasonality to themain (first) level. Adding
an additional level, the temporal increment of the re-
sidual at the main level dr1 is further modeled as a linear
function of an extended state vector [x, r1][ [xT, (r1)T]T.
More levels are added in the same way, until the Lth
level’s residual rL11 becomes uncorrelated in timewith a
lag-0 correlation matrix that converges to a constant
matrix (details are given in appendix A of Kondrashov
et al. 2015):

dx
i
5 (xTA

i
x1 b1

i x1 c1i )dt1dr1i ,

dr1i 5 b2
i [x, r

1]dt1 dr2i ,

dr2i 5 b3
i [x, r

1, r2]dt1 dr3i , (4)

..

.

drLi 5 bL11
i [x, r1, r2, . . . , rL]dt1 drL11

i ,

where i 5 1, . . . , K and the bj
i and rji for level j are de-

termined recursively.
In addition to SST-only multilevel models, we also

construct multivariate models, in which the state
vector x is inK5m1 n dimensions with the leadingm
normalized SST PCs and the leading n normalized
Z20 PCs given equal weighting. Sensitivity tests show
that slight weighting changes do not change the
conclusion.
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e. Modeling experiments

In this modeling framework, there are many possible
model settings and coefficient choices:m SSTPCs, nZ20
PCs, j levels, linear or nonlinear, and nonseasonal or
seasonal. Since we cannot include all possible settings in
this study, we offer 12 typical model settings to con-
ceptually compare simulation and prediction perfor-
mance. The 12 models are specified in Table 1.
There is evidence that ENSO is a low-dimensional

system with only a few degrees of freedom (Tziperman
et al. 1994). Rather than simply increasing the size of the
state vector, here we assess how adding other in-
gredients may improve the skill. For the baseline model,
we choose a linear model (L) with three SST PCs [L(3)].
Models with a large state vector often encounter over-
fitting problems given insufficient data; thus, fewer co-
efficients is a desired property. Nonlinear models are
especially prone to the problem of an ill-conditioned
matrix and numerical instability (Kondrashov et al.
2005). To avoid this, all the empirical models here have
K # 13 PC predictors. Consequently, all the models
included in this study behave well and are numerically
stable without any constraint or regularization.
Besides the baseline model L(3), we include a linear

model L(8) with eight SST PCs for comparison. Non-
linear models (NL), all with quadratic terms, are deno-
ted as NL, S1NL, 2L1NL, and 2L1S1NL. Seasonal
models (S), all with periodic terms, are denoted as S,
2L1S, S1NL, and 2L1S1NL. Both the nonlinear and
seasonal models have three SST PCs, as for L(3).
Memory effects are represented either in multivariate

models (M) with 3 SST PCs and 5 or 10 Z20 PCs [M(8)
and M(13)] or in SST models with multiple time levels
(2L, 5L, 2L1NL, 2L1S, and 2L1S1NL). The sensi-
tivity test shows the qualitative conclusions still hold
when using a linearmodel withmore than three SST PCs
as the baseline model, although the quantitative im-
provement given by additional model complexity is less.
SST and Z20 PCs for all 4000 yr are obtained once,

and then the data are divided into two parts for model
training and evaluation as follows: 1)Model training and
evaluation for goodness of fit are carried out in the first
2000 yr using 10 nonoverlapping segments of 200 yr. The
model used for further simulation and prediction is ob-
tained by averaging the models from all 10 segments.
2) Evaluation of simulation performance is made by
conducting twenty 1000-yr stochastically forced simu-
lations and then comparing simulated statistics with the
GCM data statistics for the training period. 3) We carry
out 1–12-month-lead out-of-sample predictions in the
last 2000 yr using 10 segments of 200 yr. We carry out
20-member stochastic ensemble forecasts, and the pre-
dicted value for each initial condition is the ensemble
averaged result. An ensemble size of 20 is generally
enough to sample the model spread in this study.

4. Model goodness of fit

Although goodness of fit does not guarantee good out-
of-sample prediction skill (in section 6), it does indi-
cate in-sample theoretical skill. We measure the model
fit by applying the model on the training period and

TABLE 1. List of ENSO empirical models with different model settings: L(m) is a linear model in the form of Eq.(1) without quadratic
terms, constructed from a state vector of the leadingm PCs of tropical Pacific SSTA,m5 3 and 8 are presented; M(k) is the linear model
constructed from a multivariate state vector of the leading 3 PCs of tropical Pacific SSTA and the leading n PCs of tropical Pacific Z20
anomalies, k5 31 nwith n5 5 and 10 presented here; 2L and 5L are amultilevel linearmodels with 2 and 5 time levels and 3 SSTPCs; NL
denotes the nonlinear models with quadratic terms; 2L1NL is a combined model with quadratic nonlinearity in the main level and linear
terms in the one additional time level; S is the seasonal model with additional periodic terms; S1NL, 2L1S, and 2L1S1NL are combined
models including seasonality; and 2L1S1NL is the most comprehensive model of the 12 models studied here. Coef No. denotes the total
number of coefficients in the design matrix. Coefficients in the noise covariance matrix are not included. Condition No. denotes the
condition number of design matrix for each level. See the appendix of Kravtsov et al. (2005) for more details.

No. Label SST Z20 Level Nonlinear Seasonal Coef No. Condition No.

1 L(3) 3 — 1 12 1.11
2 L(8) 8 — 1 72 1.26
3 M(8) 3 5 1 72 5.88
4 M(13) 3 10 1 182 6.90
5 2L 3 — 2 30 1.11 and 6.81
6 5L 3 — 5 138 1.11, 6.81, 14.61, 16.13, and 16.31
7 NL 3 — 1 U 30 3.74
8 2L1NL 3 — 2 U 48 3.74 and 3.72
9 S 3 — 1 U 36 1.80
10 S1NL 3 — 1 U U 54 4.61
11 2L1S 3 — 2 U 54 1.80 and 8.25
12 2L1S1NL 3 — 2 U U 72 4.61 and 8.92
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examining the residual statistics, including residual
standard deviation (STD) and residual skewness. A
good model fit is characterized by small residual STD
and near-zero residual skewness.
Results for all the models in Table 1 are shown in

Fig. 2. The total number of coefficients is shown for each
model. This count does not include elements of the noise
covariance matrix. Although the constant c is kept in the
count, it is negligible for linear models. Error bars in-
dicate the spread of residual STD in 10 mutually ex-
clusive training segments. The L(3)model is the baseline
model with its residual STD as the benchmark. For PC1,
adding seasonality (S) or quadratic terms (NL) or the
combination of both (S1NL) does not reduce residual

STD much. Extending the SST state vector to eight PCs
[L(8)] reduces residual STD by 20%, while extending
the state vector to include Z20 PCs [M(8) and M(13)]
reduces residual STD by 30%. The other way to add
memory effect, by fittingmore time levels of the residual
(2L) and its variations (2L1NL, 2L1S, and 2L1S1NL)
all show reductions of approximately 50%. More levels
(5L) reduce residual STD by 60%. For PC2, adding
memory through Z20 or adding levels gives a better fit
than adding seasonality and nonlinearity. Adding 2
levels (2L) reduces residual STD by 35% for PC2, less
than the 50% reduction for PC1. Note that including
memory effect also reduces residual skewness to near
zero (Figs. 2c,d).

FIG. 2. Goodness of fit measures are shown for all models in Table 1. (a),(b) The residual STD of the two leading PCs of tropical Pacific
SSTA and (c),(d) the residual skewness. Models are displayed in three groups: models without memory effect, models with multivariate
(SST and Z20) memory, and models with multilevel memory. The total number of model coefficients is given across the bottom. Each
model carries its own color code. Error bars (one standard deviation) indicate the spread of the fit among ten 200-yr training segments.
Small residual STD and residual skewness close to zero indicate a good fit.
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Compared to the baseline model L(3), models adding
seasonality, nonlinearity, or extending the state vector
[i.e., L(8), M(8), and M(13)] require more coefficients
and do show a better fit. However, compared to the
multivariate modelM(13), the multilevel model (2L) fits
better with fewer coefficients. The comparison shows
that the multilevel approach successfully captures the
effects of ocean memory in terms of SST itself, a better-
observed quantity than subsurface variables.
These results show that the memory effect is the most

important addition to the baseline model. From the
physical perspective, a large fraction of the total vari-
ance of the tropical Pacific SST anomalies is associated
with the recharge oscillation, so representing this mem-
ory effect in a data-drivenmodel is essential. Nonlinearity
and seasonality do not help much unless combined with
the memory effect.

5. Results of ENSO simulation

We will first present ENSO characteristics in OBS and
GCMand then compare themwith themodeled statistics.

a. Nonlinearity

In both OBS and GCM, asymmetries about zero and
the curved shape of the two-dimensional PDF in PC1–
PC2 space indicate ENSO nonlinearity (Figs. 3a,b). The
other plots in Fig. 3 show that various linear models
[L(3), 2L, M(8), and S] are not able to reproduce this
curved shape but have an ellipsoid shape centered at
(0, 0).On the contrary, the various nonlinearmodels (NL,
2L1NL, S1NL, and 2L1S1NL) show a curved shape
in PC1–PC2 space in approximate agreement with the
data. The first three models (NL, 2L1NL, and S1NL)
show a small deficiency with a spike toward negative
PC1 and negative PC2, but agreement is improved in the
comprehensive model (2L1S1NL).
In both OBS and GCM (Fig. 1), the PC1 skewness

(0.39 and 0.35, respectively) is positive, meaning warm
states occur less often than cold states but with stronger
amplitude in El Niño than La Niña. PC2 skewness is
negative, and GCM has stronger nonlinearity than OBS
with a more strongly skewed PDF in PC2 (21.23
versus20.40). This is associated with the fact that GCM
has more extreme El Niño events. For all the models
trained using GCM data, the linear models show skew-
ness close to zero, while the four nonlinear models ap-
proximately match the skewness in GCM and resemble
its 1D PDF for PC1 and PC2 (not shown).

b. Diversity

Both OBS and GCM show ENSO diversity in PC1–
PC2 space, represented by the curved shape of the

two-dimensional PDF (Figs. 3a,b). Takahashi et al. (2011)
inspired us to distinguish various SSTA patterns using
the PC1–PC2 space. The central region in PC1–PC2
space (Fig. 3) is associated with neutral patterns with
small variability. The upper-right quadrant is the warm-
ing anomaly patterns occurring at the central Pacific. The
lower-right quadrant is the warming anomaly patterns
peaking at the eastern Pacific, and far end points are
where extreme El Niño events locate. The upper-left
quadrant is the cooling anomaly patterns occurring at the
eastern Pacific. The lower-left quadrant is the cooling
anomaly patterns peaking at the central Pacific, and far
end points are where extreme La Niña events locate. The
negative PC2 region is usually the transition patterns
from the extreme El Niño events to the following La
Niña events.
To reproduce the ENSO diversity, the model needs to

not only generate anomaly patterns with realistic am-
plitude but also the correct location of the variability.
Among the eight models in Fig. 3, the linear models do
generate SSTA patterns with large variabilities, but
their extreme El Niño events are not in the far eastern
Pacific (lower-right region), and their extreme La Niña
events are not toward the central Pacific (lower-left re-
gion). The ENSO patterns produced by the nonlinear
models more closely resemble the diversity character-
istics of the data.

c. Seasonality

Both OBS and GCM exhibit seasonal phase locking
in monthly STDs, with PC1 showing larger variability
in boreal winter and PC2 showing larger variability in
boreal summer (Fig. 1). The correlation coefficient
(Corrcoeff) between the monthly STD of GCM and that
from a stochastically forced simulation is used as a skill
measure for seasonality. Nonseasonal models produce
nearly constant monthly STDs and thus a Corrcoeff near
zero. Seasonal models have seasonal variations that are
similar to the training data, which is consistent with
Kondrashov et al. (2005). For the simplest seasonality-
only model, Corrcoeff is close to one, but adding non-
linearity or levels reduces this skill measure slightly.

d. Seasonal memory

In both OBS and GCM (Fig. 1), PC1 is not auto-
correlated across boreal spring but retains a substantial
correlation after spring almost until the next spring. PC2
autocorrelation (Fig. 4h) shows a similar break, but in
late autumn instead of spring.
The modeling comparison (Figs. 4b–g,i–n) shows that

both seasonality and memory effects are needed to
mimic the lagged autocorrelation. For models without
the memory effect [L(3), NL, and S], autocorrelation
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slowly decays as a function of lag. Models with the
memory effect [M(8) and 2L] better resemble the data.
Nonseasonal models [L(3), M(8), 2L, and NL] all show a
uniform autocorrelation across all calendar months.

Adding seasonality alone produces seasonally varying
lagged autocorrelations, but without the memory effect
it does not resemble the GCM autocorrelation decay
as a function of lag. Thus, themodel with seasonality and

FIG. 3. (a) The common logarithm of the 2D PDF for the two leading SSTA PCs in OBS. PCs are normalized to
have STD equal to one. The gridcell size is 0.2673 0.267. (b) As in (a), but for GCM, the training data. (c)–(j) As in
(a) but for eight models in Table 1, based on 1000-yr stochastically forced simulations in each case. Shown are the
linear models in (c),(e),(g),(i) and the nonlinear models in (d),(f),(h),(j). A good simulation of ENSO nonlinearity is
indicated by resemblance to the curved pattern and the PDF value distribution of the GCM data in (b).
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memory effect (2L1S) shows the best overall resem-
blance to the data.

6. Results of ENSO prediction

In this section, the evaluation aims to identify each
model ingredient’s contribution to prediction skill.

a. PC1 and PC2

Our principal measures of skill are the Corrcoeff and
root-mean-square error (RMSE) between target PC
time series and predicted PC time series at given lead
time t. PC1 represents main variability and thus is
more important than PC2, so a model with poor skill
for PC1 but good skill for PC2 is not viewed as a
good model.
Figure 5 shows the improvement of the 12-month

forecasts as measured using the Corrcoeff for different
model settings compared to persistence and the base-
line model L(3). For PC1 (Fig. 5c), the seasonal model
does not help much. The models with more SST PCs
[L(8)] and with nonlinearity show slight improvement.
Models with memory effect (both Z20 and levels)

improve the most. For PC2 (Fig. 5d), the 12-month
forecast Corrcoeff for persistence and L(3) are relatively
high; thus, improvement using other settings is not as
remarkable as for PC1. The models adding seasonality,
more SST PCs, or the memory effect do not help.
Models with nonlinearity show a better skill. Note that
even though seasonal models do not show much im-
provement compared to the baseline model L(3), the
model with both memory effect and seasonality (2L1S)
does show slightly better skill than the memory model
(2L) itself.
The RMSE results (not shown) are consistent with

Corrcoeff results, showing that the memory effect effi-
ciently reduces PC1 RMSE, and nonlinearity works best
to reduce the PC2 RMSE. Models with both memory
and nonlinearity have overall good performance on the
PC1–PC2 pair.
Among all the models, the skill difference for PC1 is

mainly between models with and without memory ef-
fect, rather than between linear and nonlinear models.
The seasonal linear model with memory (2L1S) and
the seasonal nonlinear model with memory (2L1S1NL)
give overall the same performance for PC1. For

FIG. 4. Lagged autocorrelation coefficients for each calendarmonth. (a),(h) The average of twenty 200-yr segments from theGCMdata.
(b)–(g),(i)–(n) Model results calculated by averaging over twenty 200-yr stochastically forced simulations. The 6 models shown are
described in Table 1. Every second calendar month is labeled on the x axis.
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different evaluation periods with fewer or more extreme
ENSO events, 2L1Smay have higher or lower skill than
2L1S1NL, although within the range of the error bar.
Linear and nonlinear models have generally the same
skill for PC1 once they include thememory effect, which
is consistent with Kondrashov et al. (2005). To see this,
note that in their Fig. 2c, 1-L is the same as the S1NL
model in this study, and 2-L is our 2L1S1NL model. In
their Fig. 6a, Linear is the 2L1S model in this study, and
Nonlinear is our 2L1S1NL model. The Corrcoeff dif-
ference between Linear and Nonlinear is approximately

0.05, much smaller than the difference between 1-L and
2-L (;0.2).

b. Spring barrier and autumn barrier

The spring barrier in PC1 and autumn barrier in PC2
we saw in the SSTA seasonal lagged autocorrelations
(Figs. 4a,h) are reflected in model predictions (Fig. 6).
All model settings inherit this barrier problem to dif-
fering degrees. The prediction skill of persistence is the
benchmark for comparison. Its skill for PC1 quickly
drops if initiated from spring, and its skill for PC2 drops

FIG. 5. Prediction performance: correlation coefficients for PC1 and PC2 of SSTA. For each model in Table 1, 20-member ensemble
forecasts are carried out for 2000 yr that are out of sample (i.e., distinct from the data used to construct the models). Correlations are
between the data and the ensemble average. (a),(b) Forecast correlations at leads of 0–12 months. Persistence (black line) is given as
a reference. (c),(d) Correlations of 12-month-lead forecasts. Error bars are created by dividing the forecasts into 10 nonoverlapping
segments of 200 yr each and showing the standard deviation. For PC1, models with or without memory effect are grouped separately, and
for PC2, linear and nonlinear models are grouped separately. The dashed line is the correlation coefficient for the benchmarkmodel L(3).
Colors for models in (a),(b) correspond to the colors in (c),(d).
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quickly if initiated from autumn. The 6-month-lead
forecast from each calendar month (Fig. 6) shows that
models with memory effect [M(8), M(13), 2L, 5L,
2L1NL, 2L1S, and 2L1S1NL] significantly reduce the
problem for PC1. For the PC2 autumn barrier, nonlinear
models (NL, 2L1NL, S1NL, and 2L1S1NL) have
better skill than other models. The seasonal model itself
does not showmuch ability until combined withmemory
effect and nonlinearity.
In Barnston et al. (2012), dynamical and statistical

models with various data assimilation and advanced
features all show some drop in skill around spring.

Following the same layout as the Fig. 5 in Barnston
et al. (2012), the influence of the spring barrier is shown
for each target calendar month (Fig. 7). The results
show adding more features to the base model reduces
the seasonal barrier, but even the most complex models
in this study still show signs of the seasonal barrier,
which is similar to results shown in Kondrashov et al.
(2005). Also note that while the spring barrier in PC1 is
the main problem in SST prediction, reducing the au-
tumn barrier in PC2 improves the transition between El
Niño and La Niña, thus increasing the total prediction
skill for SST.

FIG. 6. Prediction performance: seasonal variations and the boreal spring and autumn barriers. (a),(b) For all models in Table 1, the
correlation coefficient between the GCM target time series and 6-month predictions initialized at each calendar month. Persistence is
shown in black. Note that seasonal barrier exists for PC1 when initialized from boreal spring (e.g., March) and for PC2 when initialized
from boreal autumn (e.g., September). (c) PC1 6-month-lead prediction initialized in March. Models with or without a memory effect are
grouped separately. (d) PC2 6-month-lead prediction initialized in September. Linear and nonlinear models are grouped separately. See
Fig. 5 for additional descriptions.
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c. Target month slippage

Slippage denotes the tendency of forecasts to retain
initial conditions for too long (i.e., to overdo persis-
tence). Thus, for example, a forecast intended to verify
sixmonths aheadmay actually verify best at fourmonths
ahead: the prediction slipped by two months.
Following Barnston et al. (2012), we present the

slippage performance by showing the lagged correlation
coefficient between the target time series and the pre-
dicted time series (Fig. 8). Persistence is shown as a
reference, and large slippage is indicated by the re-
gion with high Corrcoeff (.0.8) pointing to the right
rather than being vertical. The comparison among all
models indicates that the memory effect [M(8), 2L, and
2L1S1NL] substantially corrects the tilt for PC1, while
memory and nonlinearity (NL, 2L, and 2L1S1NL)
slightly correct the tilt for PC2.
We then identify the degree of slippage using the lag

that gives the maximum Corrcoeff and plot this slippage
at each lead time (Fig. 9). Persistence, which is used as a
benchmark, necessarily slips t months for a t-month
prediction. For PC1, the slippage of each model slowly

increases as the lead time increases. For a 6-month
prediction, L(3) slips 5 months for PC1 and 6 months for
PC2. Models with the memory effect reduce the PC1
slippage to approximately 2 months. Nonlinear models
reduce the PC2 slippage to approximately 3 months.

d. ENSO diversity

Model ability to predict ENSO diversity is evaluated
in PC1–PC2 space (Fig. 10). We introduce a measureD2

defined as the Euclidean distance between the target
PC1–PC2 pair (x1, x2) and the predicted PC1–PC2 pair
[y1(t), y2(t)] at a t-month lead:

D
2
(t)5 f[x

1
2 y

1
(t)]2 1 [x

2
2 y

2
(t)]2g1/2 .

We show theD2 values at leads of 3, 6, and 12 months in
Fig. 10. The value in a given grid cell represents the
model skill for the target SSTA patterns that projected
to this given grid cell. The central points of PC1–PC2 are
associated with neutral patterns with small variability.
The lower-right corner is the patterns of strong El Niño
events, and the lower-left corner is the patterns of strong

FIG. 7. Prediction performance for PC1 and PC2 of each target calendar month, for six models in Table 1. Corrcoeff between 1–
12-month-lead predicted time series and the target time series according to each calendar month. The result shown is averaged among ten
200-yr prediction segments. Every second calendar month is labeled on the x axis. Good prediction skill is indicated by retaining large
Corrcoeff toward 12-month-lead prediction as well as having a small seasonal skill drop.
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La Niña events. GivenD2 measuring the absolute errors
rather than the errors normalized by the amplitude of
the variability, large errors are associated with large
variability.
Comparison of different models shows that persis-

tence loses skill quickly. Baseline model L(3) gives a
slight improvement over persistence. Models with
memory effect show better skill than L(3), with the
primary improvement occurring for strong La Niña
patterns (negative PC1). Nonlinear models account for

ENSO skewness and mainly improve the skill in the
negative PC2 region. The comprehensive model
(2L1S1NL) has the best skill overall and shows im-
provement for diverse target patterns. Note that at long
lead (12 month) prediction, the comprehensive model
settings do not show much improvement in predicting
the extreme El Niño events but somewhat improve the
skill for the transition patterns from extreme El Niño to
La Niña events (negative PC2 region) as well as the
extreme La Niña events (negative PC1 region). Many

FIG. 8. Prediction performance: slippage as measured by the correlation coefficients between 0–12-month-lead predictions and from
212- to 12-month-lagged target GCM data. (c)–(n) Results for six of the models in Table 1. (a),(b) Persistence, shown as a reference,
necessarily has a t-month lag to the target month for a t-month-lead prediction. Good prediction performance is indicated by large
correlation coefficients for the target month (i.e., along the vertical line at zero lag). Less slippage is indicated by reduced tilt with time of
the maximum correlation coefficient. See Fig. 5 for additional descriptions of prediction methodology.
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studies (e.g., Vecchi et al. 2006; Chen et al. 2015) have
shown that the amplitude of an extreme El Niño is
largely a result of anomaly growth driven by the state-
dependent noise, such as the westerly wind bursts, and is
thus less predictable. Our current 12 models do not
consider such state-dependent noise, which is proposed
for future study.

e. Summary

From the preceding results, some general conclusions
emerge. The memory effect contributes most to PC1
prediction, and nonlinearity contributes most to PC2
prediction. They both contribute to overcoming the

seasonal barriers and reducing target month slippage.
Adding seasonality does not help much for prediction
until combined with memory effect and nonlinearity.
Much room for improvement remains, especially for
extreme El Niño patterns.

7. Discussion

a. Nonlinearity

Nonlinear models are theoretically superior to linear
models in terms of mimicking ENSO behavior, in par-
ticular, reproducing the skewed 1D and 2D PDFs. Lin-
ear models do not produce the skewed amplitude of

FIG. 9. Prediction performance: slippage defined as the lag which has the maximum correlation coefficient. Good prediction perfor-
mance is indicated by fewer months of slippage. (a),(b) The slippage for 0–12-month-lead predictions for each model in Table 1.
Persistence, shown as a reference in black, necessarily has a slippage of t months for a t-month-lead prediction. (c),(d) Slippage for
6-month-lead predictions. See Fig. 5 for additional descriptions of prediction methodology.
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ENSO, while quadratic terms correct this deficiency.
Nonlinearity does not contribute much to prediction of
the slightly skewed PC1 but does matter for PC2. Thus,
its advantage may be overlooked if using PC1 (or Niño-
3.4) as the only metric, as seen in Kondrashov et al.
(2005). On the other hand, we may not be able to obtain
robust nonlinear coefficients if the training data lack
sufficient extreme events, in which case a linear model
may be the more practical choice.

For the low-dimension state vectors and long training
dataset used in this study, nonlinear models behave
well without imposing energy conservation constraints.
However, given a large state vector or insufficient
training data, numerical instability may make con-
straints necessary (appendix C of Kondrashov et al.
2015). Therefore, we examined the change in model
performance after applying the energy conserving con-
straint. The results (Fig. 11) show that the advantageous

FIG. 10. Prediction performance: ENSO diversity. Prediction skill is measured here by the Euclidean distanceD2 between the predicted
and GCM target PC1–PC2 pairs. The space is divided into grid cells, and D2 is averaged according to the target PC1–PC2 grid cell. The
gridcell size is 0.33 for PC1 and 0.3 for PC2. (a)–(c) Persistence is shown as a reference. Prediction results are shown for (left) 3-, (center)
6-, and (right) 12-month leads. Good predictions of ENSO diversity are indicated by small D2 in a greater number of grid cells and for
longer leads. See Fig. 5 for additional descriptions of prediction methodology.
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feature of nonlinear models to reproduce data skewness
almost disappears; thus, the energy conserving non-
linear model performance ends up close to that of the
linear model. The predictive skill for PC2 also slightly
decreases.
Nonlinear empirical models have many possible

variations in format and algorithm beyond the qua-
dratic terms. In addition to embedding nonlinearity
explicitly in the formulation, the skewed nonlinear ef-
fect could also be represented in state-dependent noise.
Studies suggest that atmospheric noise like westerly
wind bursts (WWBs) may play a role in developing
extreme El Niño events (Vecchi et al. 2006), butWWBs

are in turn modulated by SST variation (Gebbie et al.
2007). Chen et al. (2015) added SST-modulated
WWB-like perturbations to an intermediate ocean–
atmosphere coupled model (Zebiak–Cane model)
and successfully reproduced ENSO diversity, asym-
metry, and extremes. Chekroun et al. (2011) intro-
duced a past noise forecast (PNF) methodology by
embedding the state-dependent noise into empirical
prediction models and showed it can improve the
ENSO prediction skill up to 16-month lead. Penland
and Sardeshmukh (2012) showed the multiplicative
and additive noise forcing in a linear Markov model
could also produce skewed distribution. Thus, a study

FIG. 11. Influence of an energy conserving constraint on the four nonlinear models in Table 1. (a),(b) The quality of the model sim-
ulations measured by skewness; the GCM data skewness to be simulated is shown on the left. Skewness is chosen because it depends on
nonlinearity. (c),(d) Prediction performance, as measured by the correlation coefficient for 12 month forecasts is shown. Models without
and with a constraint are grouped separately and the constrainedmodels carry the same color code as the unconstrained versions, but with
a ‘‘c’’ subscript. See Fig. 5 for additional descriptions of prediction methodology.
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of state-dependent noise may be a promising direction
for further investigation.

b. Seasonality

The seasonal model with periodic noise is able to re-
produce seasonal phase locking for both PC1 and PC2.
In contrast, a nonseasonal model even with a large SST
state vector cannot reproduce ENSO seasonality, al-
though notable seasonal variations are present in these
training PCs. It was expected that the seasonal model
may improve the ENSO prediction and, in particular,
help overcome the seasonal barrier, but it turned out the
seasonal models did not improve prediction skill very
much. A similar conclusion is also reached in Flügel and
Chang (1998) and Johnson et al. (2000b). On the other
hand, our results do show that adding seasonality to a
model with memory (2L1S) has slightly better skill than
the memory model itself (2L). This is similar to Xue
et al. (2000), who found that considering seasonality
improved a multivariate LIM. Therefore, it is fair to
say that seasonality could improve the ENSO predic-
tion if combined with a memory effect. Penland and
Sardeshmukh (1995) and Newman et al. (2003) take an
alternative approach of embedding seasonality into the
noise forcing rather than in the dynamics. Further
studies may explore other possible approaches to rep-
resent the seasonality in empirical modeling.

c. Memory effect

We incorporated the memory effect by adding Z20
in a multivariate model or adding more time levels. We
confirmed that these approaches indeed improve the
ENSO prediction skill, as shown in many previous
studies using a multivariate approach (e.g., Xue et al.
1997; Newman et al. 2011b) or multilevel approach (e.g.,
Kondrashov et al. 2005). We also found that adding time
levels of SST adds fewer coefficients than adding Z20 for
similar skill improvement. If subsurface information is
not available, one could construct an SST-only time-
delayed model without loss of skill. We also showed that
the memory effect is the most important factor for im-
proving prediction skill, especially to reduce the sea-
sonal barrier and target month slippage. Further study
may explore more effective ways to implement and
maximize the memory effect.

d. Seasonal barrier

In addition to the well-known spring barrier in SST
PC1 (Niño-3.4), we investigated an autumn barrier in
SST PC2. It is consistent with the autumn barrier seen in
Z20 PC2 (warm water volume mode) in McPhaden
(2003), given the strong linear relation between SST
PC2 and Z20 PC2. The decorrelation across spring for

PC1 and across autumn for PC2 strongly influence the
models that rely heavily on SSTA persistence, but
models with memory and nonlinearity can largely retain
skill across all four seasons.We also note that, compared
to the spring barrier problem in the GFDL CM2.1, the
problem in the real world (Figs. 5 and 7 in Barnston et al.
2012) seems more difficult to tackle given various
sources of noises.
The seasonal barrier appears not only in statistical

models but also in dynamic models (Barnston et al.
2012). Our results from empirical models may help us
better understand the seasonal barrier in dynamicmodel
prediction. In spring, the increase of atmospheric noise
triggers large anomaly growth (e.g., Larson and Kirtman
2015), and the SSTA field becomes noisy with a less
distinguishable pattern (Xue et al. 1994; Wu et al. 2009).
Models that initialize with additional subsurface state
information work better (e.g., Chen et al. 1995; 2004). It
is consistent with our understanding that adding a
memory effect using the subsurface variable or SST
history compensates the seasonal memory loss in the
SST state alone.

e. Target month slippage

Slippage, a measure of forecast mistiming, occurs
when models retain too much persistence. Barnston
et al. (2012) evaluated forecast models available at IRI
and showed this slippage problem is common in both
statistical and dynamical models. Tippett et al. (2012)
introduced a statistical postprocessing of model output
to correct the slippage. Barnston and Tippett (2013) also
showed that the Climate Forecast System, version 2,
(CFSv2) (Saha et al. 2014) greatly improves on slippage
as compared to CFSv1 (Saha et al. 2006). Adding mul-
tivariate or multilevel approach substantially reduces
slippage, suggesting that the slippage is a consequence of
insufficient representation of the memory effect.

f. ENSO diversity

ENSO diversity studies reveal the rich behaviors of
the tropical coupled climate system. They also raise new
challenges for ENSO modeling and prediction. In this
study, we identified summer phase locking and an au-
tumn barrier in PC2, in addition to the better-known
spring barrier seen in PC1. The results suggest that if the
modeling goal is merely the main ENSO signal (i.e.,
PC1), then memory effect and seasonality may be suf-
ficient. If the goal is to capture the skewed amplitude
and have the ability to predict two flavors of El Niño,
then also adding nonlinearity is useful. The new ENSO
diversity measure D2 reveals that the comprehensive
model (2L1S1NL) is able to predict a wider range of
SSTA patterns than the baseline model.
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Usually the extreme La Niña events tightly follow
the extreme El Niño events (Choi et al. 2013; Cai et al.
2015). Among all the model ingredients, adding non-
linearity most improves the skill for the transition
patterns connecting extreme El Niño to La Niña
events, thus strengthening the model’s ability to sim-
ulate and predict diverse target SSTA patterns. This
provides evidence supporting that ENSO diversity
emerges from the nonlinear evolution of the ENSO
cycle, as in Takahashi et al. (2011).

g. Transferring from GFDL CM2.1 to nature

Although there are discrepancies between GFDL
CM2.1 and observations in the upper-ocean stratifica-
tion (Wittenberg et al. 2006), the general understanding,
that the memory effect is the most important factor to
improve the model skill, which is also supported by
previous EMR and LIM studies conducted using ob-
servation, is applicable to nature. Here we also show
that the memory effect largely reduces the seasonal
barrier and slippage problems, although the improve-
ment may be smaller in the real world with more
stochasticity.
For a strongly nonlinear system like GFDL CM2.1,

nonlinear settings should by construction fit data better
than linear settings and should show better skill to
simulate and predict the given data. But in the real cli-
mate, although nonlinear features do show in extreme
El Niño events, the majority of ENSO events are mod-
erate. The overall degree of nonlinearity is much weaker
in the observation; the observed SSTA PC2 skewness
(20.4) is much less than that in GFDL CM2.1 (21.23).
So the advantage of the nonlinear model compared with
the linear setting may not be that notable in the real
world, as in Kondrashov et al. (2005).

8. Conclusions

We use a 4000-yr GFDL CM2.1 preindustrial simu-
lation to help us gain better understanding of four im-
portant features in ENSO simulation and prediction:
ENSO seasonality, diversity, nonlinearity, and the mem-
ory effect. First, we compare the ENSO statistics in
simulations with observations, and we find that the
GFDL CM2.1 produces reasonably realistic ENSO
statistics. It resembles the ENSO diversity feature em-
bedded in the curved shape in the two leading principal
components of the tropical Pacific SSTA. It also agrees
with observations as to the El Niño–La Niña asymmetry
in the skewed probability density function of PC1
(similar to Niño-3.4) and in the winter phase locking.
Thus, the model experiments based on GFDL CM2.1
may inform us about nature. But we also note that

GFDL CM2.1 has much greater nonlinearity than
observed.
In this study, a series of modeling experiments are

carried out using empirical models ranging from a sim-
ple SSTA linear model to more refined models with
additional model coefficients and terms. The conclu-
sions are as follows: Thememory effect, either by adding
additional tropical Pacific subsurface information
(e.g., a multivariate model with SST and 208C isotherm
depth, as in the recharge oscillator viewpoint) or by add-
ing additional SST history information (e.g., an SST-only
model with multiple time levels, following the time-
delayed oscillator viewpoint), improves the SSTA pre-
diction significantly, although it is more efficient in a
multilevel setting with fewer required model coefficients.
The nonlinear models with quadratic terms reconstruct
the skewed probability density function of SSTA and
improve the prediction of the skewed amplitude. The
memory effect and nonlinearity enhance the model’s
ability to retain prediction skill across the so-called
spring–autumn prediction barriers and to substantially
correct the prediction slippage (i.e., predicted value lags
the target month value). The periodic terms enable the
model to reproduce the seasonal phase locking of SSTA,
even though they do not improve prediction by much.
The comprehensive models with combined coefficients
have the ability to capture several ENSO characteris-
tics simultaneously and exhibit overall better pre-
diction skill, in agreement with Kondrashov et al.
(2005), although they still have difficulty with the pre-
diction of ENSO diversity, especially in predicting ex-
treme El Niño patterns. In summary, this study
contributes to our understanding of ENSO diversity,
nonlinearity, and seasonality, as well as the memory
effect in ENSO simulation and prediction.
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