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Abstract

El Nino-Southern Oscillation (ENSO) is by far the most energetic, and at present also the most predictable, short-term
fluctuation in the Earth’s climate system, though the limits of its predictability are still a subject of considerable debate. As
a result of over two-decades of intensive observational, theoretical and modeling efforts, ENSO’s basic dynamics is now
well understood and its prediction has become a routine practice at application centers all over the world. The predictabil-
ity of ENSO largely stems from the ocean—atmosphere interaction in the tropical Pacific and the low-dimensional nature of
this coupled system. Present ENSO forecast models, in spite of their vast differences in complexity, exhibit comparable
predictive skills, which seem to have hit a plateau at moderate level. However, mounting evidence suggests that there is
still room for improvement. In particular, better model initialization and data assimilation, better simulation of surface
heat and freshwater fluxes, and better representation of the relevant processes outside of the tropical Pacific, could all lead
to improved ENSO forecasts.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

El Nifio, the anomalous warming of the eastern equatorial Pacific that occurs around Christmas time every
few years, was first named by Peruvian fishermen centuries ago, and has caught scientists’ attention in the last
few decades because of its large global influence. Following the very strong, very well observed and very heav-
ily reported event in 1997-98, El Nifo became a household word, and people started to blame it for anything
unusual that happened anywhere in the world. It is implicated in catastrophic flooding in coastal Peru and
Ecuador, drought in the Altiplano of Peru and Bolivia, the Nordeste region of Brasil, Indonesia, New Guinea
and Australia. Resulting huge forest fires on Kalimantan spread a thick cloud of smoke over Southeast Asia
and crippled air travel by shutting down airports in Singapore, Malaysia and Indonesia [1]. The 1997-98 El
Nino also triggered an explosion in research interest [2].
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Although the public perception of El Nino’s influence is somewhat inflated, the climate impacts listed above
have been shown to be strongly correlated with El Nino events at least in the past century, the period for which
instrumental observations are available. There is also plenty of evidence from proxy data that El Nino has
been a prominent feature of Earth’s climate for at least the past 130,000 years [3,4]. The impact of El Nino
is shown by the very fact that many of these proxy data, such as tree rings and oxygen isotope in fossil corals,
actually reflect variations in rainfall rather than temperature. The paleoclimate record also indicates that El
Nino behavior is quite sensitive to climatological conditions, so it is possible that El Nino would behave dif-
ferently in our greenhouse future. Unfortunately, the long-range projections given by present climate models
are far from conclusive [5,6]. We are much better off making seasonal forecasts of El Nifio.

Our understanding of El Nifio’s dynamics started from the recognition that it is part of a coupled instability
of the tropical Pacific ocean—atmosphere system [7]. Its atmospheric counterpart, the Southern Oscillation, is a
seesawing of atmospheric mass, and hence of sea level pressure, between the eastern and western Pacific. The
El Nino-Southern Oscillation (ENSO) cycle consists of two basic elements. First, there is a positive feedback
between the zonal winds resulting from the pressure gradient, and the equatorial sea surface temperature
(SST) gradient which is itself controlled by wind-driven upwelling and thermocline fluctuation; second, the
equatorial ocean dynamics, particularly the non-dispersive equatorial Kelvin and Rossby waves, provide
the out-of-phase element that makes the system to oscillate between warm and cold phases, namely El Nifio
and La Nina states [8-11]. This dynamical coupling is the essence of many ENSO models.

ENSO influences climate worldwide because it brings about large changes in the heating of the tropical
atmosphere that alter the global atmospheric circulation. Since societies and ecosystems are profoundly
affected, predicting ENSO one or more seasons in advance is of great importance for our wellbeing and sus-
tainability. In fact, ENSO prediction was a major motivation and a focal point of several large international
programs in the last two decades, such as the 10-year (1985-95) Tropical Ocean-Global Atmosphere (TOGA)
program and the subsequent Climate Variability and Predictability (CLIVAR) program. Consequently, tre-
mendous progress has been made in the theory, observation and prediction of ENSO [12-14]. In this paper,
we briefly review the present status of ENSO prediction, discuss different opinions on ENSO’s predictability,
and, more importantly, suggest some potential areas for improvement of predictive skill. Our intention here is
to stimulate further research on ENSO prediction and predictability rather than to provide a comprehensive
review.

2. Prediction of ENSO

Experimental seasonal forecasts of ENSO started in the mid-1980s with a dynamical ocean—-atmosphere
coupled model [8,15,16]. This model, known to the community as the Zebiak-Cane model and later the LDEO
model, is of intermediate complexity, with the aforementioned two basic elements of ENSO explicitly built
into its design. Against all odds, the model for the first time demonstrated the possibility of ENSO prediction
by forecasting the 1986/87 El Nifio in real time. Other attempts in the same period include a couple of statis-
tical models [17,18] and a stand-alone ocean model [19], though the latter, by neglecting the feedbacks between
the ocean and the atmosphere, is only good for predicting the onset of El Nino. Barnett et al. [20] discussed the
performance of several models in a case study of the 1986/87 El Nifio and concluded that this particular event
was successfully predicted several months in advance.

Following these early successes, a whole suite of models with different degrees of complexity have been
developed for ENSO prediction over the past two decades. These models can be generally divided into three
categories: purely statistical models, physical ocean—statistical atmosphere hybrid models, and fully physical
ocean—atmosphere coupled models. Most of the statistical approaches are linear regression models based on
matrix operations that maximize the correlation or covariance of selected predictor and predictand fields
[17,18,21], though nonlinear models using neural networks [22], and self-evolving Markov models [23], have
also been developed for ENSO prediction. The hybrid models couple the SST field of a physical ocean model
to the surface wind field that drives the model through a statistical relationship [24,25], assuming that the
memory of the coupled system is entirely contained in the ocean and that the atmospheric response to SST
change is instantaneous. The assumption is grossly applicable to ENSO if high-frequency, internal atmo-
spheric variability is not considered important. The fully physical coupled models are supposed to be at the
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top of the hierarchy. They range from intermediate coupled models with simplified physics [16,26] to coupled
general circulation models (GCM) [27,28].

Latif et al. [14] reviewed ENSO prediction studies during the TOGA era, and concluded that models from
each of the above three categories have useful skills in predicting typical indices of ENSO at lead times of 6-12
months. While fully physical coupled models seem to have more potential at long lead times, their skills are
comparable to that of statistical models at lead times of 6 months or less [29]. More recently, Kirtman et al.
[30] reassessed the state-of-the-art in ENSO prediction using more consistent evaluation metrics and longer
periods of retrospective forecasts. They again confirmed that both statistical and dynamical models produce
useful forecasts for the peak phase of ENSO up to two seasons in advance, and they also found that the
ensemble forecast across all prediction systems is remarkably more skillful than any individual forecast. It
should be pointed out that the predictive skill is time dependent and a good overall score does not guarantee
a good forecast of a particular event. For example, Barnston et al. [31] and Landsea and Knaff [32] examined
the forecasts of the 1997/98 episode by a large collection of models, and found that none of them could predict
the entirety of this particular El Nifo.

At present, the periods of retrospective forecasting are generally too short to distinguish between the skill
scores of various prediction systems [30] and to give a confident estimate of our overall ability to predict
ENSO. This is mostly due to the lack of observational data for adequate model initialization, and in part also
due to the inability of present models to make effective use of available data. Recently, Chen et al. [33] per-
formed an unprecedented retrospective forecast experiment spanning the past one and a half centuries, using
only reconstructed SST data for model initialization. Fig. 1 shows the observed and predicted SST anomalies
averaged in the central equatorial Pacific. At a 6 month lead, the model was able to predict most of the warm
and cold events occurred during this long period, especially the relatively large El Nifios and La Ninas, though
the model had difficulty with small events and no-shows. This kind of skill is representative of the current sta-
tus of ENSO prediction. Operational forecasts by many groups throughout the world can be found in the
quarterly Experimental Long Lead Forecast Bulletin [34] and the forecast website of the International
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Fig. 1. Time series of SST anomalies averaged in the NINO3.4 region (5°S-5°N, 120°-170°W). The thick curve is monthly analysis of
Kaplan et al., and the thin curve is LDEOS prediction at 6-month lead. Adopted from Ref. [33].
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Research Institute for Climate and Society (IRI) [35]. Despite their vast differences in complexity, present
models exhibit comparable predictive skills, which seem to have hit a plateau at moderate level. Our current
real-time forecasts do not appear more skillful than those made years ago [31].

3. Predictability of ENSO

There is no doubt that ENSO is predictable. The questions are how predictable it really is and how much
more room there is for further improvement of our predictive skill. To answer these questions, we need to
know where we stand now, what the underlying physics for predictability is, and how to measure the predict-
ability. So far, ENSO has shown the highest predictability among all identified climate modes in the Earth’s
climate system, and, because of its far-reaching influences, predictions of ENSO-related tropical Pacific SST
anomalies have become the basis for global seasonal forecasts of surface temperature and precipitation. For
example, the two-tiered seasonal forecast system of IRI relies on the boundary conditions predicted by an
ensemble of ENSO models [36,37]. It is largely due to the measurable predictability of ENSO and the quan-
tification of ENSO’s global impact that seasonal climate prediction is no longer a speculative practice.

The long-range predictability of ENSO stems from the ocean—atmosphere interaction in the tropical Pacific,
the crucial role of the slowly-varying ocean in the interaction, and the low-dimensional nature of this coupled
system (dominated by a few distinctive modes). Thus the key point in the debate about ENSO’s predictability
is the coupling strength of the tropical Pacific ocean—atmosphere system, which determines the amplitude, per-
iod and sustainability of ENSO [8]. Classic theories consider ENSO as a self-sustaining interannual fluctuation
in the tropical Pacific, being chaotic yet deterministic [8—11,38]. Thus its predictability is largely limited by ini-
tial error growth, and the potential forecast lead time is likely to be on the order of years [39-41]. On the other
hand, some studies emphasize the importance of atmospheric “noise” [42-44], particularly the so-called wes-
terly wind bursts in the western equatorial Pacific [45,46], as triggers for ENSO events. In such a scenario,
ENSO is a highly damped oscillation sustained by stochastic forcing, and its predictability is more limited
by noise than by initial errors. This implies that El Nino events are essentially unpredictable at long lead times
since their development is always accompanied by high-frequency forcing.

The difficulty of the “noise” theory is that high-frequency atmospheric noise such as the westerly wind
bursts are present all the time while El Nifio occurs on a distinctive timescale of 2-8 years. Thus the noise
is more likely to be an “enhancer” rather than a “trigger” for ENSO. Fedorov et al. [47] tried to reconcile
the different theories by considering ENSO as a slightly damped periodic oscillation modulated by random
noise. In this view the dynamics of ocean—atmosphere interaction controls the timescale of ENSO, while
the noise sustains the oscillation and makes it irregular. Therefore, predictability depends on both initial con-
ditions and random disturbances, with the former determining the phase of ENSO and the latter affecting the
subsequent evolution. A recent study by Chen et al. [33] shows that all of the prominent El Nifos in the past
one and half centuries could be predicted up to two years in advance, using a model that does not invoke any
stochastic forcing. This suggests that predictability depends more on initial conditions than on atmospheric
noise. Moreover, because SST is the only data used for their model initialization, and because the model is
highly simplified and far from perfect, the predictive skill they obtained should be a lower bound on El Nino’s
predictability.

Another cause of uncertainty is in the ways we estimate ENSO’s predictability. In principle, predictability
can be estimated using twin-model experiments by perturbing initial conditions, but the answer is model depen-
dent, and existing ENSO models have not been shown to be realistic enough for this purpose. Aside from one
exception [33], present estimates of El Nino’s predictability are mostly based on retrospective predictions over
one to three decades, encompassing a relatively small number of events. With so few degrees of freedom, the
statistical significance of such estimates is questionable. The uncertainty is worsened by the fact that El Nino’s
predictability is time dependent [48—50]. As evident in Fig. 2, the predictive skill of the LDEO model, as mea-
sured by anomaly correlations and rms errors, varies over significant range in the past one and a half centuries,
especially at longer lead times. The periods with the highest overall scores, 1876-1895 and 1976-1995, are dom-
inated by strong and regular ENSO events. The lower skill in other periods is because of there being fewer and
smaller events to predict. For instance, during the 1936-1955 period, when the predictability was the lowest by
all measures, there were no El Nifios except for a prolonged warm event in 1940-42 (see Fig. 1).
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Fig. 2. Anomaly correlations and rms (root-mean-square) errors between observed and predicted NINO3.4 index. These are shown as a
function of lead time, for seven consecutive 20-year periods since 1856, respectively. Adopted from Ref. [33].

In practice, due to the errors in both initial conditions and model itself, a more useful forecast strategy is to
perform ensemble predictions and evaluate ENSO’s predictability using probabilistic methods. As an example,
Fig. 3 shows the skill of a 5-member ensemble prediction of the LDEO model measured by relative operating
characteristics (ROC) [51]. Model forecasts are considered skillful when ROC curves are above the diagonal to
a sufficient extent, and the farther to the upper right corner the better is the skill (the higher is the hit/false
alarm ratio). It is clear that warm and cold events are equally predictable while near normal conditions are
harder to predict (Fig. 3a). For instance, if four out of five ensemble members predict an event (80% proba-
bility) at 6-month lead, we expect a hit rate of 0.52 and a false alarm rate of 0.13 for both warm and cold
conditions, but the corresponding rates are 0.40 and 0.17 for near normal conditions. It is interesting to note
that, while at short lead times the skill decreases as the lead increases, it reaches a plateau at about 9-month
lead (Fig. 3b). Forecasts made two years in advance are not much worse than those made at 9-month lead.
This further indicates that skillful ENSO prediction at long lead times is indeed possible.

4. Potential areas for improvement

Generally speaking, there are four factors that limit the current skill of ENSO prediction: inherent limits to
predictability, gaps in observing systems, model flaws, and suboptimal use of observational data. As discussed
above, there is considerable debate on the inherent limits to predictability, but increasing evidence suggests
that our current level of predictive skill is still far from those limits and surely there is room for improvement.
Our task is then to improve our observing systems, models, and data assimilation methods. Tremendous
efforts have been made in all these areas in the last two decades. Observation networks such as Tropical Atmo-
sphere Ocean (TAO) array and satellite altimetry/scatterometry missions have proven invaluable for ENSO
monitoring and forecasting; regional and global models with different degrees of complexity have been



3630 D. Chen, M.A. Cane | Journal of Computational Physics 227 (2008) 3625-3640

RELATIVE OPERATING CHARACTERISTICS
a 1.0 T T T T T T T T T

0.9 -

0.7 r B
60%

HIT RATE

WARM EVENTS

0.0 1 1 1 1 1 1 1 1 1
01 0.2 03 04 0.5 0.6 0.7 0.8 09 10

FALSE ALARM RATE

RELATIVE OPERATING CHARACTERISTICS

b 1.0 T T T T T T T T

0.9 - B
207%

0.8 q
407

0.7 - q
60%

0.6 B

807%
0.5 B

HIT RATE

0.4 19 6 MONTH LEAD

12 MONTH LEAD

0.2 B

0.1

21 MONTH LEAD

0.0 1 1 1 1 1 1 1 1 1
01 0.2 03 04 0.5 0.6 0.7 0.8 09 10

FALSE ALARM RATE

Fig. 3. LDEO model ensemble forecast skill measured by relative operating characteristics (ROC). (a) ROC curves for warm, cold and
near normal conditions, respectively, at 6-month lead time; (b) ROC curves for warm conditions at various lead times. These are calculated
based on 5-member retrospective ensemble forecasts for all months over the period 1856-2003.

continuously improved in terms of both physics and computational capability; and various data assimilation
schemes and forecast procedures have been developed and applied to operational ENSO prediction. Here we
discuss a few of the active research areas that we consider have the greatest potential for further improvement.

4.1. Coupled data assimilation and model initialization

At present, the majority of ENSO forecast models uses ocean data assimilation for model initialization. In
other words, during the initialization run, observational data are assimilated into the ocean model driven by
atmospheric forcing — no feedbacks to the atmosphere are allowed. This approach can produce realistic initial
states, but not necessarily the optimal conditions for skillful forecasts. The reason is that, once a forecast
starts, one has to rely on the coupled model which usually behaves quite differently from reality, and there
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may be an “initialization shock”™ at the transition from uncoupled to coupled runs. A more natural approach
is to initialize model using coupled data assimilation, that is, to assimilate data, both oceanic and atmospheric,
into the coupled model that is used for forecast. This should lead to more balanced initial conditions and
smoother forecast start. So far there have been only a few attempts on coupled data assimilation
[33,48,52,53], and most of them are based on intermediate couple models.

A NOAA-sponsored workshop on coupled data assimilation was held in the spring of 2003 to explore the
possibility of implementing systematic data assimilation into coupled GCMs [54]. The workshop concluded
that, for initialization of seasonal-to-interannual prediction systems, more research is needed into (1) best ini-
tialization compared with best analysis; (2) initializing coupled models; and (3) statistical correction to com-
pensate for biases. However, coupled data assimilation presents a host of problems quite different from those
in data assimilation into the forced ocean component. For example, model biases are much harder to deal with
in a coupled model than in a stand-alone component model and, if they are not properly corrected, initial
errors would grow fast and largely degrade forecasts. Unless we put heavy weight on models and ignore
the majority of observational data (which might work for periods when models bear a strong resemblance
to reality [48,55]), a prerequisite for successful coupled data assimilation is to correct systematic model biases.

Bias correction has not been given much attention in the past. The formalisms typically used in ocean and
atmosphere data assimilation techniques take a “textbook” approach and assume that model biases do not
exist. In practice, the ‘“unbiased” a priori error estimates are often inflated in order to achieve consistency
in a posteriori verification. Consequently, almost all successful uses of data assimilation in ENSO forecasting
weight models unrealistically high compared to observations. This is particularly true for adjoint methods,
which treat the model as if it had zero error. Another way of describing the same problem is to say that there
is a shock when data are inserted into initial model states without taking account of model biases. The adjoint
methods take the ultimate path to remove it, sacrificing the data if need be. In other schemes, the data-model
difference projects onto rapidly growing error modes, resulting in a poor forecast.

The effectiveness of statistical bias correction has been demonstrated in several studies [55-57]. For exam-
ple, Chen et al. [55] developed a simple interactive bias correction scheme based on the regression between
model errors and model states in a reduced space of multivariate empirical orthogonal functions (MEOF).
The bias-corrected LDEO model is compared with observation in Fig. 4 in terms of the leading MEOF mode.
The general agreement between the two is quite striking, although some small differences remain. As compared
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Fig. 4. First mode multivariate EOFs calculated from 24 years (1975-98) of observation (24% variance) and from 50 years of bias-
corrected LDEO model run (36% variance). Adopted from Ref. [55].
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to the previous versions of the model, the bias-corrected one not only exhibits a more realistic internal vari-
ability, but also performs better in ENSO forecasting (Fig. 5). More research is definitely needed along this
line, especially in the analysis of the pattern, nature, and statistics of the biases, and in the implementation
of proper bias correction schemes into coupled GCM:s.

4.2. Surface heat and freshwater fluxes

The interannual variabilities of the surface heat and freshwater fluxes are completely ignored in intermedi-
ate coupled models and are not well simulated in coupled GCMs [58,59]. The moderate predictive skills of
these models are largely built on their ability to simulate large-scale, wind-driven ocean dynamics. In other
words, the coupling at work is basically dynamical: the momentum flux is the only flux from the atmosphere
to the ocean that actually counts. This kind of coupling dominates in the central and eastern equatorial Pacific
where SST variability is mainly controlled by ocean dynamics, but it cannot account for the ocean—atmo-
sphere interaction in the areas where thermodynamics plays a major role. For instance, in the western tropical
Pacific, SST is decoupled from the deep thermocline there and is mostly determined by surface layer thermo-
dynamical processes. The omission or mistreatment of the surface fluxes at least partly explains why present
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Fig. 5. Observed and forecast SST and wind stress anomalies in December 1997. Forecasts were made at 6-month lead by different
versions of LDEO model. LDEO4 (bottom panel) is bias corrected while LDEO1 and LDEO3 (middle panels) are not corrected. Adopted
from Ref. [55].
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ENSO forecast models have little predictive skill outside of a narrow strip in the central-eastern equatorial
Pacific.

Fig. 6 shows the first mode MEOFs of observed surface wind, precipitation, cloudiness and SST anomalies
for boreal winter, which apparently represents the mature phase of El Nino. In association with the large SST
warming in the central and eastern Pacific, there is a weaker but well defined cooling in the western and off-
equatorial regions of the ocean. The cloud cover and precipitation have similar anomaly patterns, with a max-
imum in the central equatorial Pacific and a minimum in the western Pacific warm pool, due to the eastward
migration of the warm pool and associated deep atmospheric convection. The wind field has a familiar anom-
aly pattern in the central Pacific: strong equatorial westerlies and associated off-equatorial convergence. There
seems to be a positive local correspondence between the anomalous cloudiness and SST over most of the trop-
ical Pacific, indicating a negative feedback from the shortwave solar radiation. Thus the effect of the cloud-
forced radiation is to hamper the growth of SST, especially in the central and western equatorial Pacific.
The positive correspondence between the anomalous SST and precipitation suggests a positive feedback from
rainfall. The wind speed anomalies, which largely determine the anomalous evaporation, seem to have a posi-
tive feedback on SST in general. The anomalous anticyclones in the western Pacific reduce the wind speed
along the coasts of East Asia and Australia, resulting in SST warming in those coastal areas. Their eastern
branches, on the other hand, increase the wind speed and cool the offshore waters in the western Pacific.

The effects of anomalous fluxes of latent heat (LH), shortwave radiation (SW) and evaporation minus pre-
cipitation (E-P) have been examined in the Lamont ocean GCM. An example is shown in Fig. 7. At the surface

PRECIP

T T

LATITUDE

120 180 240 300

LONGITUDE

Fig. 6. First mode MEOFs (12% covariance) of December—Janauary—February wind, precipitation, cloudiness and sea surface
temperature anomalies based on 16 years of observations (1984-99). Blue (red) shading is for negative (positive) values, and the sign is
adjusted to be consistent with the 97/98 El Nino. Color shading in the top panel is for wind speed anomaly.
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(Fig. 7a), both LH and SW have strong impact on SST during El Nifo as well as La Nina periods, with the
effect of the former generally against that of the latter. However, they do not cancel out and the combined
effects are still very large. Anomalous E-P has relatively small impact on SST, but it is the main contributor
to the interannual surface salinity variability. These anomalous heat and freshwater fluxes also have significant
effects on subsurface temperature and salinity distributions, especially in the equatorial regions (Fig. 7b). It is
interesting to note that E-P has a much larger impact on subsurface temperature than on SST. In the western
equatorial Pacific, the subsurface response to these anomalous fluxes is stronger and penetrates deeper during
La Nina as compared to El Nino. This is because of the stronger upper ocean mixing during La Nifia, when
the cool water coming from the east with the enhanced South Equatorial Current overrides the warm water in
the west.

The surface latent and shortwave radiation fluxes have long been suggested to have negative feedbacks to
SST variations [60,61]. In such a scenario, an increase in SST would cause an increase in local evaporative
cooling and a decrease in local solar heating (due to increased cloudiness). However, this kind of local rela-
tionship does not hold in general, because large-scale atmospheric circulation changes clouds and winds which
in turn influence the fluxes significantly [62]. Although a negative feedback between the shortwave radiation
and SST is pretty common, a positive feedback is often found between the latent heat flux and SST during
ENSO events [63-65]. Rainfall has little direct influence on SST, but it affects SST indirectly by stabilizing
the oceanic surface layer and changing the density structure of the upper ocean [66-68]. It has become clear
that surface heat and freshwater fluxes play significant roles in the ocean—atmosphere interaction on interan-
nual time scales; they are fundamentally important in controlling the SST variability in the western tropical
Pacific; and they are quantitatively not negligible even in the central and eastern tropical Pacific. How to cor-
rectly simulate these fluxes and the associated thermodynamic coupling is a major challenge for ENSO
modelers.

4.3. Influences from outside of the tropical Pacific

Although the basic mechanism of ENSO is contained in the tropical Pacific, there is mounting evidence that
many epochal changes of ENSO and its predictability (see Figs. 1 and 2) are due to influences from outside,
either internal or external to the ocean—atmosphere coupled system. For example, Trenberth and Hoar [69]
analyzed the uniquely abnormal warming during the 1990s and attributed it to anthropogenic global warming,
while Gu and Philander [70] suggested that these decadal changes are part of a natural variability of the mean
thermocline in the tropical Pacific Ocean, resulting from a coupled tropical-extratropical interaction. Kirtman
and Schopf [49] also considered the decadal variability as a natural one, with its amplitude amplified by
uncoupled atmospheric “noise’’. The epochal changes of ENSO have also been related to external factors such
as volcanic emissions and solar variability [71]. All of these are active research areas that may lead to improved
understanding of ENSO variability and predictability.

Within the tropics, an obvious source of influence is from the Indian Ocean sector. The climate variability
in the tropical Indian Ocean has been a subject of considerable debate in recent years. Many empirical anal-
yses indicate that the dominant interannual variability in the Indian Ocean is closely related to ENSO [72-75],
with a basin-wide warming during El Nifio resulting from weakened Walker circulation and surface latent heat
flux. On the other hand, some recent studies suggest the existence of a so-called Indian Ocean dipole (IOD), a
mode of variability internal to the Indian Ocean, characterized by fluctuation of equatorial zonal temperature
gradient [76,77]. It is argued, however, that a real dipole does not exist because the fluctuation is not a distinct
seesaw [78,79], and that this mode is not truly independent since it is highly correlated with ENSO when the
correlation is lagged and seasonally stratified. In any case, while the triggering processes of this mode of var-
iability is not well understood, there are clear indications that, once started, it evolves through local ocean—
atmosphere interaction, with dynamics similar to that of ENSO [80,81].

Because of the huge warm water pool that straddles across the western Pacific and the eastern Indian
Oceans, it is only natural to assume that the climate variations in these two basins are somehow connected.
The simplest picture we can derive from observations is as follows. The Walker circulation ascends above
the warm pool, with easterly surface winds on the Pacific side and westerly on the Indian side, which piles
waters up in the warm pool and lowers sea level and SST in the eastern Pacific and western Indian Oceans.
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This produces a tripole structure with opposite zonal gradients of sea level and SST in the two oceans. When
the double-cell Walker circulation weakens or strengthens, these gradients decrease or increase together, and
positive feedbacks between the gradients and the Walker circulation may take place. This tripole mode is
depicted in Fig. 8. The Pacific part is the familiar ENSO pattern while the Indian part is almost identical
to the IOD pattern identified in Saji et al. [76]. The pattern is also evident in other analyses and coupled model
runs [82,83] though it has not been explicitly described.

This mode of variability, which we refer to as Indo-Pacific Tripole (IPT), is so robust that it can be easily
discerned even in raw data. Fig. 9 compares the zonal gradients of SST and sea surface height (SSH) anomalies
in the equatorial Pacific and Indian Oceans, respectively. There are several points worth noting here. First of
all, there is a striking out-of-phase relation between the SSH gradients in the two oceans and, to a lesser extent,
between the corresponding SST gradients. This is certainly consistent with the IPT mode shown in Fig. 8,
which is characterized by opposite gradients in the two oceans. Second, SST and SSH gradients in each ocean
are highly correlated with each other, indicating the dynamical coupling that operates in the Pacific may also
be at work in the Indian sector. Finally, it is seen in Fig. 9 that every major Pacific ENSO event over the past
half a century had a counterpart in the Indian Ocean, but the opposite is not necessarily true. There were occa-
sions, such as in the years of 1961, 1967 and 1994, when a relatively large Indian Ocean event did not seem to
correspond to a similar Pacific event.

More detailed analyses reveal that IPT is an intrinsic mode of the tropical climate variability that can be
excited by fluctuations in either Pacific or Indian basins, with the Pacific ENSO being the main driving force.
When the mode is started from Indian basin, the Pacific side may not evolve into a full-blown ENSO episode.
Instead, a weak event may occur in the western-central Pacific. This has significant implications for ENSO
prediction. Under the framework of IPI, the interaction between the Pacific and Indian basins is a two-way
street. Not only the Pacific ENSO has a strong impact on the Indian sector, but the Indian Ocean fluctuations
can also have considerable influences on the Pacific sector, especially in those occasions when IPT is started
from the Indian side. An outstanding problem in ENSO prediction is the inability to forecast weak El Nino
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Fig. 8. Indo-Pacific Tripole as depicted by the first mode MEOFs of SST, SSH and surface wind stress calculated using SODA dataset for
September—October-November (SON) over the period 1950-2001. The upper two panels are spatial patterns of SST and SSH with wind
stress superimposed, and the lower panel is normalized time series (principal component) of the mode.
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Fig. 9. Time series of zonal gradients of SST and SSH anomalies in the equatorial Pacific (upper) and Indian (lower) Oceans, calculated
from the Simple Ocean Data Analysis (SODA) dataset [89]. Here a gradient is defined as the difference between the average values in two
20° x 20° boxes at the eastern and western ends of each ocean. All variables are normalized by their respective standard deviations.

events which are usually centered near the dateline. At least some of these weak events are a result of IPT ini-
tiated from the Indian Ocean, and assimilating Indian Ocean data may help to solve this problem. In fact,
Clarke and Van Gorder [84] improved the skill of their empirical ENSO forecast model by including the sur-
face winds over the eastern Indian Ocean as a predictor. We need to further evaluate the impact of assimilating
the Indian Ocean data, including both surface and subsurface observations, on ENSO prediction. The ongoing
project of extending the TAO array into the Indian Ocean will prove invaluable for studying, monitoring and
predicting tropical climate variations including ENSO.

5. Concluding remarks

We have briefly reviewed the current status of ENSO prediction and predictability studies and, in somewhat
more detail, discussed several active research areas that have potential for further improvement. As a result of
over two decades of intensive observational, theoretical and modeling efforts, ENSO’s basic dynamics is now
well understood and its prediction has become a practical venture. There is consensus among most that ENSO
is predictable, but that its predictability is intrinsically limited. The remaining question is what the limitations
really are. Present ENSO forecast models, in spite of their vast differences in complexity, exhibit comparable
predictive skills, which seem to have hit a plateau at moderate level. However, mounting evidence suggests
that there is still room for substantial improvement. In particular, better model initialization and data assim-
ilation, better simulation of surface heat and freshwater fluxes, and better representation of the relevant pro-
cesses outside of the tropical Pacific, could all lead to improved ENSO forecasts.

In some ways, it is disappointing that we, collectively, have not been able to improve ENSO forecasts more
since we started this venture over two decades ago. The level of predictive skill we have achieved so far seems
out of proportion to the enormous efforts and resources devoted to ENSO research and prediction. This leads
to the pessimistic view that ENSO’s inherent predictability is so low that our current skill is already close to its
limit. However, some recent studies have shown reasons of optimism and prospects for further advances. We
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believe that ““the fault is not in the stars (or the natural ocean—atmosphere system) but in ourselves”, and that
the shortcomings in our models and data assimilation schemes are the principal problem. In particular, data-
model incompatibility is considered a major roadblock. To prevent initialization shock and rapid climate drift,
and thus to ensure a smooth and balanced forecast start, we need to develop suitable methodologies for cou-
pled data assimilation and to minimize systematic model biases.

We also emphasize the importance of the surface heat and freshwater fluxes, and the influences from out-
side of the tropical Pacific, especially that from the Indian Ocean. Supposedly, the present global coupled
GCMs already have these fluxes and influences in them, and the forecasts based on these models already
use global data for initialization. The questions are how well these models simulate the surface fluxes and
inter-basin connections on climate timescales, and what the key parameters are for a consistent and effective
initialization. The limited predictive skills of these models, and their similarity to simple models in terms of
skill level and pattern, seem to suggest that they are not doing as good a job as they are supposed to do
and there is still much to be done to fulfill their potential. This calls for a more detailed and systematic analysis
of coupled GCM outputs, a deeper understanding of ENSO dynamics in a global context, and more efforts in
process-oriented experiments using models with various degrees of complexity.

The review and discussion presented here are by no means an exhaustive account of the studies related to
ENSO prediction and predictability. Some potentially important issues and research areas are of necessity left
out of the scope of this paper. For example, we have not mentioned the so-called ““spring barrier” in ENSO
predictability, a drop of skill in persistence as well as model forecasts across the boreal spring, possibly due to
the relatively small signal-to-noise ratio at this time of year [29,85,86]. It seems to be much less severe a prob-
lem in models that are properly initialized and have low level of noise [33,48]. Another interesting development
we have not discussed is the recent work that considers the modulation of “noise” by ENSO itself [§7,88]. It
appears that high-frequency forcing such a westerly wind bursts is not purely stochastic after all — there is a
deterministic part of it that strongly depends on and, at the same time, affects the low-frequency development
of ENSO. Better representation or parameterization of intraseasonal atmospheric variability in coupled mod-
els may lead to improved ENSO prediction.
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