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Abstract

A primary objective of paleoclimate research is the
characterization of natural climate variability on time-
scales of years to millennia. In this chapter, we have de-
veloped a systematic methodology for the objective
and verifiable reconstruction of climate fields from
sparse observational networks of proxy data, using re-
duced space Objective Analysis (OA). In this approach
we seek to reconstruct only the leading modes of large-
scale variability that are observed in the modern cli-
mate and resolved in the proxy data. Given explicit as-
sumptions, the analysis produces climate fields and
indices and their associated estimated errors. These pa-
rameters may be subsequently checked for consistency
with parameter choices and procedural assumptions
by comparison with withheld data and results from
benchmark experiments.

The methodology is applied to the candidate tree-
ring indicator data set described in Chapter 10 by
Villalba et al., (2000) for the reconstruction of gridded
Pacific basin sea surface temperature (SST) over the in-
terval 1001-1990. We find that one mode of variability
may be verifiably distinguished by the tree-ring indi-
cators. This mode may be interpreted as a decadal, El
Nifio /Southern Oscillation (ENSO)-like pattern that
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influences climatic conditions in both North and South
America. We speculate that this pattern is recovered
because large-scale SST variability influences down-
stream local meteorological conditions sensed by the
tree-ring data. Verification statistics for the proxy-re-
constructed fields may be compared with those derived
from calibrated red noise time series and from histori-
cal temperature and precipitation data collected near
the proxy sampling sites. The results suggest that while
credible reconstructions are possible, resolved variance
is small and reconstruction errors are large, limiting
interpretation to regions where there is the most skill.
Additional proxy data from the Pacific coast of the
Americas should improve the resolution and number
of reconstructed large-scale SST modes, given that the
observations are unbiased, the map describing the con-
nection between SST and the proxy data is well de-
fined, and appropriate observational errors have been
pr escribed. Copyright © 2001 by Academic Press.

Resumen

Uno de los objetivos principales de la investigacién
paleoclimética es la caracterizacién de la variabilidad
climatica natural en diferente escalas temporales que
van desde la anual a la secular. En este estudio se ejem-
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plifica el uso del Andlisis Objetivo (OA) para recon-
struir en forma confiable los campos climéticos glo-
bales a partir de un grupo reducido de registros paleo-
climéticos. Sélo se intenta reconstruir aquellos modos
dominantes de variabilidad climatica de gran escala
que estan presentes en los datos instrumentales y que
pueden ser resueltos a partir de los registros paleo-
climéaticos. Bajo ciertos supuestos explicitos, este anali-
sis reconstruye campos climaticos, indices de circu-
lacién, asi como los errores de estimacion asociados. La
consistencia de los pardmetros seleccionados para las
reconstrucciones bajo diferentes supuestos puede ser
probado posteriormente a través de la comparacion
con informacién reservada para la verificacién o con los
resultados de experimentos de referencia.

En este trabajo, se aplica la metodologia de OA a un
grupo reducido de cronologias de anillos de arboles,
descriptos en Villalba et al. (2000), con el objeto de re-
construir una grilla de temperaturas de la superficie del
mar (SS5T) sobre el Océano Pacifico durante el interva-
10 1001-1990. Se observa que uno de los modos de vari-
abilidad en SST puede ser resuelto por el conjunto de
cronologias de registros de anillos de &arboles. Este
modo podria ser interpretado como un modo de vari-
abilidad decenal con un patrén espacial similar al de los
eventos El Nifio/Oscilacién del Sur y que afecta las
condiciones climaticas tanto en América del Norte
como en América del Sur. El hecho de que este patron
puede ser resuelto por los registros dendrocronol6gicos
se debe a que la variabilidad de gran escala en SST in-
fluencia las condiciones climéticas locales donde crecen
los arboles muestreados. La verificacién de estos cam-
pos climaticos reconstruidos a partir de los registros de
anillos de drboles pueden llevarse a cabo a través de la
comparacién con aquellos campos derivados a partir
de series temporales de ruido rojo y/o aquellos ob-
tenidos a partir del uso de datos instrumentales de tem-
peratura y precipitacion préximos a los sitios de
muestreos. Los resultados obtenidos a partir de este re-
ducido mimero de cronologias sugiere que atin cuando
se pueden obtener reconstrucciones confiables, el por-
centaje de variancia explicado es pequefio y los errores
asociados grandes, limitando la efectividad de las re-
construciones a aquellas regiones donde los resultados
son mas significativos. La incorporacién de un niimero
mayor de registros paleoambientales a lo largo de la
costa Pacifica de las Américas podria incrementar la
resolucion y el niimero de modos de variabilidad en
SST a ser reconstruidos dado que las observaciones no
son sesgadas, los mapas que describen las conecciones
entre SST y los registros dendrocronolégicos estan bien
definidos y los errores observaciones correspondientes
han sido establecidos.

4.1. INTRODUCTION

4.1.1. Motivation

Much of the work in the rapidly growing field of pa-
leoclimatology has emphasized the need to put re-
cently observed secular climatic trends and shifts
within the context of natural low-frequency variabili-
ty (Martinson et al., 1995). For example, evidence for
(1) global warming since the middle of the last centu-
ry (Hansen and Lebedeff, 1988); (2) variations in the
amplitude, duration, and frequency of El Nifio / South-
ern Oscillation (ENSO) events (Trenberth and Shea,
1987; Trenberth and Hoar, 1996); (3) apparent state
changes in the Pacific basin climate (Ebbesmeyer et al.,
1991) and the timing of the Indian Monsoon
(Parthasarathy et al., 1991; Krishna Kumar et al., 1999);
and (4) severe mountain glacier retreat (Diaz and Gra-
ham, 1996) suggest changes in the base state of the
global climate since the beginning of the Industrial
Revolution. However, the processes underlying these
observations are not very well understood, and some
may indeed be part of quasi-periodic or low-frequen-
cy phenomena.

It has been hypothesized that many of these obser-
vations are tied to a small number of preferred, natur-
al modes of spatial and temporal variability within the
ocean—atmosphere system. Together these modes may
explain much of the modern large-scale, low-frequen-
cy variance in the climate system (Wallace, 1996a,b).
Examples of large-scale climatic processes are ENSO,
the Pacific-North American Oscillation (PNA), and
the North Atlantic Oscillation (NAO) patterns of
standing atmospheric pressure waves, decadal vari-
ability in surface and intermediate circulation of the
subtropical and tropical oceans (Chang et al., 1997),
and globally homogeneous trends (Wallace, 1996b;
Cane et al., 1997). Since these phenomena have long
temporal and spatial scales, variability associated with
them may be successfully retrieved from sparse obser-
vations (Miller, 1990; Cane et al., 1996). For instance,
limited observations in the eastern equatorial Pacific
are sufficient to crudely indicate the occurrence of an
ENSO event, albeit with large uncertainties (Kaplan et
al., 1998). In this chapter, we test implicitly the hy-
pothesis that a sparse observational network com-
posed of proxy paleoclimatic data (Epstein and Yapp,
1976; Fritts, 1976; Evans et al., 1998) may be used to re-
construct the major features of large-scale climate vari-
ability. The focus of this chapter is the development of
a methodology by which we may seek skillful and ver-
ifiable reconstructions of these dominant modes using
proxy data sources.
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4.1.2. Proxy Climate Data
and Their Interpretation

In the absence of direct physical observations, the
science of paleoclimatology provides climate informa-
tion through the measurement of proxies. In a broad
sense these are parameters that vary in some under-
stood way with the climatic variable of interest. Proxy
measurements made on tree rings, ice cores, reef corals
and sponges, sediment cores, and other geological and
biological archives provide qualitative to semiquanti-
tative estimates of climate for decades to millennia pri-
or to the rise of direct observations (Bradley and Jones,
1992; Jones etal., 1996). Ideally, proxy observations may
be used to produce what we term here a climate field re-
construction (CFR): a near globally complete, verifiable,
and temporally continuous estimate of climate vari-
ability over some period of interest. Once we have the
CFR, it is straightforward to obtain temporal indices
averaged over some subarea of the global spatial do-
main.

The broader implications of CFR from paleoclimatic
data are difficult to overestimate. Traditionally in pale-
oclimate research, “reconstruction” indicates recovery
of a single time-varying climate index, usually of a
local nature (such as seasonal air temperature from
tree-ring-width chronologies) or having an immediate
physical connection (such as NINO3 reconstruction
from any coral site affected by ENSO). The interpreta-
tion of proxy reconstructions, usually in terms of a
linear or linearized function of desired instrumental
quantities, is generally verified by means of compari-
son with local instrumental data over a short, recent
common period, although verification is increasingly
made via comparison with regional or synoptic-scale
observations over longer time periods. When the proxy
data are contemporaneous with direct observations,
opportunities are provided for intercomparison of
proxy and instrumentally observed data. For example,
intercomparison of independently derived proxy time
series may be used to determine common features of
cross-site variability. Potential biases in proxy-based
records of sea surface temperature (SST) variability
(age uncertainties, sampling artifacts, or other noncli-
matic information) are independent of those in other
proxy data or those in the bank of historical observa-
tions (instrument calibration, precision, accuracy, mea-
surement method, frequency and spacing of sampling,
and analysis procedures). In both cases, we hypothe-
size that common features observed across proxy real-
izations and in the direct observations are indicative of
large-scale climatic phenomena and not small-scale or
nonclimatic effects; if the instrumental and proxy data

describe climatic phenomena, then they should agree
(Jones et al., 1998; Evans et al., in revision; Villalba et
al., 2000; Briffa and Osborn, 1999). Such intercompari-
son efforts are essential for development, calibration,
validation, and interpretation of individual data sets,
but they may also be used to determine the potential
for the development and interpretation of CFRs from
proxy data (Evans et al., in revision). They provide an
important link between research in climate dynamics
and paleoclimatology.

Hence, we believe the most effective use of paleocli-
matic data for the study of climate dynamics is via CFR
based on consideration of all available proxy informa-
tion, and for the reconstruction of patterns of variabili-
ty, rather than point measurements. This is the idea of
globality (Kaplan et al., 1997, 1998; Mann et al., 1998,
2000; Evans et al., 1998, 2000). Our view of the role of
CER as a natural link between data (proxy or instru-
mental) analysis and the study of climate dynamics fol-
lows the pioneering work of Fritts et al. (1971) and
Fritts (1976, 1991) and is illustrated schematically in
Fig. 1. Fritts provided a lucid and comprehensive in-
troduction to the CFR concept within the context of
dendroclimatological reconstruction of air tempera-
ture, sea level pressure (SLP), and precipitation anom-
alies over North America. More recently, the potential
use of CFR on a global scale has been discussed by
Jones and Briffa (1996). Bradley (1996) and Evans et al.
(1998) have examined the observational array design
problem, considering CFR from proxy data of varying
quality and quantity. The successful extraction of vari-
ability in large-scale, low-frequency climatic phenome-
na from single point proxy data sources or small obser-
vational networks (Cook 1995; Wiles et al., 1998; Stahle
etal., 1998; Cook et al., 2000; Evans et al., 2000; and oth-
ers) has shown the potential for CFR from subsets of the
available proxy paleoclimatic database. In a recent ap-
plication, Mann et al. (1998, 2000) obtained very en-
couraging CFR results by applying space reduction and
statistical techniques related to Smith et al. (1996) and
Kaplan et al. (1998) for the reconstruction of surface
temperature fields from several proxy data sources
(Bradley and Jones 1992).

4.1.3. Globality and Optimality

The field of inverse modeling provides tools partic-
ularly suited for extraction of maximum information
from a sparsely sampled, smoothly varying field. The
term Objective Analysis (OA) encompasses a set of in-
verse methods employed in the estimation of the best-
fit field (here in a least-squares sense) to both a sparse
observational network of data and a description—a
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FIGURE1 Methodology of climate field reconstruction (CFR) from proxy data. Numbered arrows
on the diagram correspond to the steps in our CFR procedure (see Section 4.2).

model—of how the field varies. Errors are admitted in
both the observations and the model. A cost function,
consisting of the appropriately weighted squared er-
rors in the observations and the model, is then formu-
lated. Minimization of the cost function with respect to
the field variable produces the analyzed field that is
consistent with both the data and the model, given pri-
or estimates of how precisely the model and observa-
tions are known. The error in the OA-analyzed field
produced in this manner is a function of the observa-
tional error, the model error, and the extent to which the
field is resolved by the observations and can be com-
pared to either a withheld set of data for validation or
to the data used in the assimilation to check the as-
sumed observational error magnitudes.

The OA techniques have become a powerful tool
used in the estimation of atmospheric and oceano-
graphic fields of interest from spatially and temporally
incomplete observations and imperfect models (Ben-
nett, 1992; Wunsch, 1996). Special reduced space analogs
of these techniques have been developed to reconstruct
fields from sparse sampling in space and time when the
fields are sufficiently smooth and have coherent, large
spatial, and long temporal-scale patterns (Cane et al.,
1996; Kaplan et al., 1997). Here, we apply these same
tools to the reconstruction of climate fields from the
even sparser but rapidly growing network of annual-
resolution paleoclimate records, in order to produce
CFRs from proxy data. By the reduced space rationale,
we seek reconstruction of only the features of climate
variability that are expected to be resolved, given the
quality of the observations. Bringing the CFR problem
into the context of reduced space OA provides four
benefits:

1. The solution is optimal, provided the a priori as-
sumptions hold; that is, if the data are unbiased and the
covariance of a priori errors in the observations and

model are correctly estimated, then the solution ob-
tained minimizes the squared error in the reconstruct-
ed field.

2. Space reduction emphasizes common features ex-
pressed across the proxy data set, which we expect to
be climatic in origin, and discounts both climatic and
proxy variability that explains little variance and is
most likely to be dominated by observational errors.

3. Theoretical error estimates are provided for the so-
lution.

4. The a priori assumptions, space reduction choices,
solution, and error estimates can be tested for mutual
consistency.

We illustrate this approach using the candidate data
set described by Villalba et al. (2000) for the recon-
struction of gridded SST for the Pacific basin over the
time interval 1001-1990. The procedure is given in de-
tail later. We focus here on the methodology of objec-
tive paleoclimatic reconstructions; the actual recon-
structions shown here, which are based on a very
limited number of tree-ring indicators, are not intend-
ed for interpretation. Future work will apply the
methodology described here to more extensive sets of
proxy indicators. Instead this methodological work is
intended to complement the work of others, such as
Villalba et al. (2000), who seek to characterize and in-
terpret the climate information content of North and
South American Pacific coast tree-ring chronologies. In
Section 4.2, we describe the reduced space, OA CFR
methodology. Section 4.3 describes the application of
the technique to the reconstruction of near-global SST
anomaly fields from selected Pacific-American tree-
ring-width chronologies. We discuss the character of
the climate information provided by tree-ring-width
chronologies and conclude (Section 4.4) with some

general comments on future applications of the proce-
dure.
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4.2. METHODOLOGY OF CFR
FROM PROXY DATA

Our approach to CFR from proxy data will be quite
similar to that applied previously to historical SST and
SLP data (Kaplan et al., 1997, 1998, 2000). At all steps of
the procedure we seek globality, optimality, and space
reduction. The process involves six steps, which are
schematically outlined in Fig. 1 and are described in de-
tail later.

4.2.1. Characterization of the Target
Climate Field

We use the modern observed data to provide esti-
mates of the climatological mean and spatial covari-
ance C of the target climate anomaly field. For the pur-
pose of the study of large-scale phenomena, statistical
description of the field can be further improved by first
performing an optimal analysis of the historical climate
data to provide reconstructions of the target climate
field itself. We then determine the leading spatial
modes of signal variability E (expressed as empirical
orthogonal functions, or EOFs) and their energy distri-
bution A (eigenvalues) through canonical decomposi-
tion of the covariance matrix C and truncation of sta-
tistically insignificant modes (Cane et al., 1996; Kaplan
etal., 1997, 1998):

C = <TTT> =~ EAET 1)

where boldface variables indicate vectors or matrices,
<...> indicates time averaging, and superscript T de-
notes the matrix or vector transpose. Here, E is a matrix
whose columns are a relatively small number of the
eigenvectors of C, and A is a square matrix whose diag-
onal elements are the eigenvalues corresponding to E.
We then assume a reduced space form for the solution

T® = Ea(®) + residual 2)

where a(t) is the low-dimensional vector of amplitudes
with which the modes E contribute to the climate field
T at time t, and T is the long-term mean zero. For the
modern period, the EOFs E and the vectors a(t) are
known from the analysis of the instrumental data. For
the purposes of CFR, a portion of this analyzed data set
T may be used for calibration of the proxy data (see Sec-
tion 4.2.3). The part of the target climate field not used
for calibration purposes can then be used for indepen-
dent verification of the corresponding period of the
proxy-based CER (see Section 4.2.5).

We presume the analysis of the target modern cli-
mate data captures the potential modes of variability
reflected in proxy observations. Specifically, we assume
that the leading patterns of pre-instrumental SST vari-

ability may be adequately represented by some linear
combination of the EOFs used in the analysis of the SST
data. Although this assumption may be true for the
largest scale patterns that are likely to be resolved by
proxy data over the past several hundred years, it may
be that the climate system has operated in modes that
are not spanned by this characterization of the instru-
mental data. We also assume that the errors in this
analysis are small relative to the errors in the proxy-
based CFR we seek and that the climatic patterns re-
solved by the proxy data are a small subset of those re-
solved in modern historical observations.

4.2.2. Characterization of the Proxy Data

In cases where numerous proxy data realizations are
expected to resolve a much smaller dimension of cli-
matic information, we may perform a similar statistical
decomposition and analysis of the proxy data, D(t), to
determine the leading modes of variability evident in
the proxy data. In doing so, we assume that the leading
modes of variability observed in the proxy data set it-
self are climatic in origin, rather than the expression of
small-scale climatic effects or the imprint of nonclimat-
ic influences. If this is the case, the leading eigenvalues
of the decomposition may be well separated from the
rest, and the corresponding EOFs will explain a large
fraction of the variance in the proxy data set. This hy-
pothesis may be checked by examining the corre-
sponding spatial structure in the target climate field or
by examining the frequency domain characteristics of
the proxy amplitudes (Wallace, 1996a,b). We may also
use these results to analyze the proxy data itself, fol-
lowing Egs. (3)—(12) in Section 4.2.4, to emphasize com-
mon cross-site features observed in the proxy data.
Such prefiltering of the proxy data reduces the poten-
tial for unrelated patterns in the proxy data to falsely
project upon the leading modes of climate field vari-
ability. Statistical analyses may be checked for consis-
tency with physical or empirical knowledge derived
from development and intercomparison of the proxy
data with local climatic data.

4.2.3. Calibration

We seek calibration of the proxy data D(#) in terms
of the time amplitudes of the reduced space represen-
tation of the climate field, a(t). More precisely, the low-
dimensional representation of T in terms of E and a(t)
permits the estimation scheme

D(t) = Ha® + =. 3

Equation (3) sets up the Gauss-Markov observation-
al scheme for estimation of a(t) from the observed
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proxy vector D (Gandin, 1965; Mardia et al., 1979; Rao,
1973). The measurement operator H is a linear function
that maps from the climate field to the proxy observa-
tions. In other words, it represents a linear regression of
the proxy data on the temporal amplitudes of the lead-
ing patterns of climate variability. For example, if D
were SST estimates at points, then H would be a spatial
interpolation of E to the observational locations. In this
work H describes the linear function relating dimen-
sionless tree-ring-width indices from terrestrial locales
to leading modes of global SST variability. Locally, it
might express the linearized relationship expected
from local calibration studies or from principles of den-
droclimatology.

We introduce R = <eeT> as the matrix of observa-
tional error covariances. As defined, it is the error in ob-
servation of the climate field from the proxy data.
Hence, it includes the error in observations of each
proxy, the error due to space reduction [Eq. (2)], and the
error in estimation of the measurement operator H.
This last error component is estimated via calibration
over a limited time interval with good data coverage.
Note that the construction of H in this manner permits
nonlocal information to be recovered by the proxy data.

We use the proxy data and the instrumental data to
estimate H and € over a calibration interval, using the
singular value decomposition (SVD). The SVD proce-
dure decomposes the covariance between the proxy
data and principal components (PCs) of the climate
field into linear combinations of singular values and
left and right singular vectors:

C = <DaT> = UZVT @)

where the columns of U and V are orthogonal vectors
describing modes of covariance between the proxy
data and the climate field, respectively, and <. . .>now
indicates time averaging over the calibration period.

As a sparse observational network of proxy data
may be expected to robustly resolve only a few leading
modes of climate variability, we retain for multivariate
regression with vector of coefficients h only the leading
modes of covariance between proxy data and climate
field, as defined by the SVD procedure

D ~hV, Ta. )

Here, V_ is the matrix consisting of the first few
columns of V. How many columns of V to retain is
a somewhat subjective choice, though one that may
be subsequently tested statistically. The use of such
screening techniques to form more robust estimates of
the relationships between two fields has long been ap-
plied in meteorology (Bretherton et al., 1992) and den-
droclimatology (Fritts et al., 1971; Cook et al., 1994).
The vector of regression coefficients h is then esti-

mated based on these presumably resolvable and cli-
matic modes:

h = <Da T ><a 0 T>"1 6)

where @ = V _Ta. The error in the map ¢ is the differ-
ence between the proxy observations and their best-fit
estimates:

e=D-ha_ R = <geT>. 7)

The map from the reduced space representation of the
climate field to the proxy data [cf. Egs. (3) and (5)] is
then

H=hVT. ®)

Equations (7) and (8) specify all parameters necessary
for the estimation scheme given in Eq. (3).

In some cases the instrumental data and an under-
standing of the target climate field and its dynamics can
be used to constructa model for climatic time transitions:

a(t+l) = Aalt) + ¢, Q = <ge,™>

which can be used in CFR as an additional source of in-
formation for OA in an optimal smoother analysis (Ka-
plan et al., 1997). If no such model is available, and the
signal is assumed to have zero mean, then the trivial
time transition model A = 0 may be employed:

a(t+1) = 0aft) + ¢, <e,g,T> = <aaT™> = A.

This procedure assumes that the proxy measure-
ments may be represented as a linear function of the
time variability of large-scale modes of climatic vari-
ability and a residual. This functional dependence may
include other factors insofar as they are linearly related
to the variability exhibited by the climate field T with-
in the calibration period. In fact, we have found in stud-
ies of coral 3'%0 data that nonlocal climatic variability
may constitute a significant part of the map to SST
(Evans et al., 2000). We further assume that any bias in
the linear relationship between climate field and proxy
data is removed prior to analysis. Proxy age model un-
certainty is included here only through influence on the
estimated observational SST error € in the map H. We
also assume that the map from climate field to proxy
data is a robust estimate, which neither overfits nor un-
derrepresents the climatic information in the proxy
data, and that this map and its error do not change over
the period of the reconstruction. These assumptions
may be subsequently subjected to testing and verifica-
tion (Section 4.2.5).

4.2.4. Analysis

In many observed and gridded meteorological and
oceanographic fields, the number of patterns that may
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be readily discerned above observational noise, data
gaps, and other uncertainties is small. For CFR based
on proxy data, the number of observations is much
smaller and the observational error is far larger, so the
dimension of the resolvable climatic space is expected to
be even smaller.

We seek the field T(x,t), which is the best fit to the
proxy observations constrained to be near the spatial
target field covariance. We construct a cost function

S(a) = (D-Ho)"R"Y(D~Ha) + aTA g (9)

S evaluated at each time t is a unitless scalar quantity.
Here, @.is the vector of temporal amplitudes we seek to
reconstruct from the proxy data. The first term of Eq. (9)
represents the squared residuals between the proxy ob-
servations and their a-based predictions at each time t.
R is the estimate of their covariance [Eq. (7)] and
weights this set of residuals. Similarly, the second term
weights the residuals of the trivial prediction model a =
0 with its inverted error covariance, which is the co-
variance of the signal [Eq. (1)]. At each time t, the analy-
sis is punished (S — large) for putting too much stock
either in observations with large error or in patterns
that explain little of the energy in the spatial covariance
patterns observed in the modern SST field (Kaplan et
al., 1997).

Minimization of a quadratic cost function such as
Eq. (9) retrieves the generalized least-squares estimate
of @ (Sokal and Rohlf, 1995). If the proxy observations
are unbiased, and if the a priori error covariances R and
A are well estimated and uncorrelated in time, then
minimization of S produces the best linear unbiased es-
timate (BLUE) (Mardia et al., 1979). For this specific
minimization problem, in which S has been written in
terms of reduced space variables, minimization at each
time t produces the reduced space optimal estimate
(Kaplan et al., 1997):

a (t) = PHTR'D(t) (10)
and the field T is recovered by Eq. (2)
T () = Ea (). 11)
P is the error covariance in the estimate T:
P=(HTR-H + A1 (12)

and it represents a weighted average of the error in the
observations mapped to the analysis domain and the
spatial field covariance estimate. The weights are de-
termined by the observational error covariance matrix
R, and the variance A is resolved by the EOFs E over
the calibration period. The rank of H is determined as
part of the calibration procedure (Section 4.3.3). The
matrix H in Eqs. (10) and (12) consists of the rows of H
defined by Eq. (8) for which the proxy data are avail-

able at analysis time t. When the observations are rela-
tively accurate (R small) or sufficiently numerous (H
has high row dimension), the analysis error is low, and
the analysis puts variance into the solution T. When ob-
servations are poor (R large) or absent (H has low row
dimension), the analysis error is large, and the analysis
estimate T approaches climatology (e.g., the trivial so-
lution T = 0). Similarly, if the proxy data do not skill-
fully describe climatic variance over the calibration
period (H of low rank and / or R large), the analysis es-
timate T will have low amplitude. In either case, the
analysis error covariance is formulated to be consistent
with our a priori assumptions about the error in the ob-
servations, map, and model; our error covariance esti-
mates; and the availability of proxy observations over
time. Subsequent verification exercises may show that
we have assumed the proxy data are too accurate or the
relationship between proxy data and climate field is too
well resolved. Tteration of the procedure, with different
choices for the rank of H and more reasonable estimates
of R, is required until a priori assumptions match a pos-
teriori results and produce the optimal analysis field es-
timate T.

4.2.5. Verification

The initial verification of the reconstructed climate
field is a comparison with the observed climate data
withheld from the calibration procedure (Sections 4.2.1
and 4.3.3). The more complicated issue is testing the
consistency of the analysis, as was mentioned earlier.
Technically, the analysis solution is optimal, provided
the proxy calibration holds for the entire period of re-
construction; the data and model are unbiased esti-
mates; and the observational error € is uncorrelated in
time. We may test the validity of these assumptions via
cross-validation experiments with withheld data, com-
parison of the verification residuals with the theoretical
error in the analysis, and comparison of the analysis re-
sults with other independent data (instrumental or
proxy). In addition, to determine the extent to which
climatic information is resolved by the proxy data, the
proxy-based CFR may be compared to CFRs based on
synthetic proxy data chosen to represent benchmark
observations or data sets devoid of information.

4.2.6. Study of Climate Dynamics

Once the reconstruction field T has been satisfacto-
rily validated, we may begin to study it as a source of
climatic information within the context of its strengths
and limitations. In many cases, the analysis error will
be quite large and will limit interpretation to only the
largest scale area-average indices. Such indices may be
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subjected to time series analysis, epoch analysis, fre-
quency domain analysis, joint spatial-temporal mode
analysis, and climate change hypothesis testing. Many
such studies become more direct and convenient when
the reduced space form of the solution [Egs. (10) and
(12)] is utilized.

4.3. APPLICATION: PACIFIC BASIN
SST FIELD RECONSTRUCTION
FROM PACIFIC AMERICAN
TREE-RING INDICATORS

4.3.1. Target Climate Field

SST is an important diagnostic of the global climate.
The surface ocean and atmosphere participate (or are
suspected to participate) in positive and negative dy-
namical feedback mechanisms on a wide range of
timescales (Namias, 1969, 1980; Cane, 1986; Deser et al.,
1996; Latif and Barnett, 1994; Lau and Nath, 1994; Web-
ster, 1994; Trenberth and Hurrell, 1994; Clement et al.,
1996; Cane et al., 1997; Clement, 1998). As a statistical
field, SST varies relatively smoothly on large time and
space scales, and so we hypothesize that its leading
temporal and spatial covariance patterns are likely to
be captured by a sparse observational network com-
posed of proxy observations.

Our source of SST data for use as a target climate
field is the recently produced analysis (Kaplan et al.,
1998) of the MOHSSTS5 (Parker et al., 1994) product of
the U.K. Meteorological Office. MOHSST5 is a 5° X 5°
monthly compilation of historical (1856-1991) ship-
based observations of SST, and the Kaplan et al., (1998)
analysis employs the newly developed technique of the
reduced space optimal smoother to objectively extract
large-scale variations of SST from incomplete spatial
and temporal observational coverage. Variance on
small spatial scales, amounting to (0.3-0.4)2 °C2 of the
intermonthly variance, which is not constrained by the
observations, is filtered out by the reduction of the EOF
space. The analysis can reconstruct anomalies associat-
ed with ENSO and other large-scale phenomena, in-
cluding low-frequency variability (Enfield and Mestas-
Nuiiez, 2000; for several examples and tests, see Kaplan
et al., 1998). Since our purpose is the reconstruction of
large-scale SST field variability, we chose this product
as our basis or target climate field for our CFR experi-
ment.

We use 1856-1990 annual means of Pacific basin SST
anomaly (87.5°N to 87.5°S, 110°E to 65°W) from this
analysis (hereafter termed KaSSTa) as our target cli-
mate field. The annual average runs from April of the
current year through March of the following year, the
natural year for much of the Pacific Ocean (Ropelew-

ski and Halpert, 1987). This choice also serves to inte-
grate dendroclimatological anomalies observed in the
Northern Hemisphere growing season (April-Octo-
ber) and those observed during the growing season of
the Southern Hemisphere (November—March), which
together provide complementary information on an-
nually averaged SST anomaly (Villalba et al., 2000). Fol-
lowing Kaplan et al., (1998), these data are decomposed
into a set of EOF weights and temporal loadings, and
the leading 30 modes of spatial variability are used to
reconstruct approximately 85% of the total variance in
the annually averaged gridded 5° X 5° estimates of SST
anomaly on which KaSSTa is based (Bottomley et al.,
1990). The domain, variance, and error in the analysis
of this target climate field are shown in Fig. 2.

4.3.2. Proxy Data

For over a century, those in the field of dendrocli-
matology have sought estimates of local and regional
climate variability from measurements made on trees
producing marked annual growth rings (Fritts, 1976,
1991). One of the most common measurements is the
width of sequential annual rings. In an individual tree,
rings indicate the passage of time, and ring-width vari-
ations reflect the combined effects of biophysical and
environmental factors, including climate. While the
physiological factors controlling ring-width variations
within individual trees are complex and difficult to
quantify (Fritts et al., 1971), the mean weather and cli-
matic conditions at a given site should have a similar
effect on all trees within a homogeneous stand. In ad-
dition, using a priori knowledge of local or regional
growing conditions, the sampling site may be chosen
for its expected sensitivity to a particular, growth-lim-
iting climatic variable of interest (Fritts, 1976). Dendro-
climatologists employ statistical approaches to deter-
mine the common climatic signal extricable from a
population of trees; such a statistical reduction of the
data to a well-dated, continuous, standardized, tree-
growth index is known as standardization, and its final
product is called a chronology.

Many hundreds of tree-ring-width chronologies
have now been developed worldwide (ITRDB, 1998),
and their relationships to climatic variables have been
tested on local, regional, and global scales. In a recent
application, Villalba et al. (2000) found that tree-ring-
based estimates of air temperature and drought devel-
oped from Pacific American tree-ring chronologies
share a common, decadal mode of time variability over
the last four centuries. They showed that this variabili-
ty is associated with an ENSO-like pattern of SST
anomalies in the Pacific basin. With the hypothesis that
this SST pattern forces variability observed in the proxy
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FIGURE2 (a) The target climate field of the annually averaged
Pacific basin sea surface temperature (SST) anomaly. Contours give
root-mean-squared (RMS) variance in degrees Celsius (°C). (b) Error
in estimation of the field (°C). Gray areas show regions where there
are insufficient data for analysis. (Data from Kaplan et al., 1998.)

data, they inferred increased energy associated with
the decadal SST pattern during the period 1600-1850,
relative to the present (Villalba et al., 2000).

Following the intriguing and encouraging results of
Villalba et al. (2000), we hypothesize that large-scale
SST anomalies over the Pacific basin give rise to surface
air temperature, precipitation, and drought anomalies
across the tropical and extratropical Americas; in turn,
dendroclimatological data from affected regions may
be used to reconstruct the relevant SST variability.
Hence, we apply the approach detailed earlier in Sec-
tion 4.2 to the problem of reconstructing Pacific basin
SSTs from the small subset of dendroclimatological
indicators studied by Villalba et al. (2000) (Table 1) for
the interval 1001-1990. For our purposes, we term
these data tree-ring indicators of climate variability,
noting that the data have a diversity of sensitivities (lo-

cal air temperature, precipitation, or both, in the case
of drought indicators) and include tree-ring-width
chronologies as well as climatic indices derived from
tree-ring-width chronologies.

To compare and evaluate the results, we apply the
same methodology to reconstruct SST from two addi-
tional sets of indicators. The first is a set composed of
instrumental climate data from the locations from
which the proxy data were collected (Table 1). These are
selected to mimic the expected sensitivity (to surface
temperature, precipitation, and drought) of the den-
droclimatological data employed. The second is a set of
red noise processes with lag —1 autoregressive charac-
teristics like those of the dendroclimatological data.
These two additional benchmark and noise reconstruc-
tion experiments are expected to return estimates of the
best possible reconstruction results and of skill expect-
ed by chance, respectively. In all cases, the proxy indi-
cators have been normalized, as their original variances
relative to one another may or may not have climatic
significance.

4.3.3. Calibration

4.3.3.1. Construction of the Relationship
between SST and Tree-Ring Indicators

Finding the appropriate mapping H from the SST to
the proxy data is a somewhat subjective task that we
solve in the following manner: we estimate the covari-
ance matrix between the proxy data and the low-di-
mensional vector of amplitudes known from KaSSTa
over the calibration interval 1923-90 [Egs. (3) to (8)]
and we reserve the complementary part of the KaSSTa
amplitudes (1856-1922) for verification exercises and
as an alternate calibration period (see Section 4.3.5. Fol-
lowing the work of many dendroclimatological cali-
bration studies in general (Fritts, 1976) and employing
the findings of Villalba et al. (2000) in particular, we
permit the tree-ring data to provide information on SST
variability through simultaneous and lag -1 year co-
variances.

EOF analysis of the tree-ring data suggests that this
data set has at least one and perhaps up to three signif-
icant EOFs. The first proxy EOF, which explains about
32% of the variance in the time series, is clearly distin-
guishable above the eigenvalue spectrum retrieved
from EOF analysis of red noise time series with the au-
toregressive characteristics of the tree-ring data (Fig. 3).
Similar decomposition of the observed data suggests
that, at most, two to three significant EOFs may be re-
trieved from the sampled regions.

Considering these results and the work of Villalba et
al. (2000), we present the analysis with only the leading
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TABLE1 Tree-Ring Indicators Used in This Analysis*?

Site name Latitude

Longitude Interval

Benchmark historical
time series

Coast of Alaska—temperature sensitive (Wiles et al., 1998)

Ellsworth 60.2°N 149.0°W 1580-1991
Exit Glacier 60.2°N 149.6°W 1580-1988
Miners Wells 60.0°N 141.7°W 1580-1995
Tebenkof 60.8°N 148.5°W 1580-1991
Verstovia Ridge 57.0°N 135.3°W 1580-1996
Whittier 60.8°N 148.6°W 1580-1991
Wolverine Glacier 60.3°N 148.9°W 1580-1991

Northern Patagonia—temperature sensitive (Villalba et al., 1997)

SST at (57.5°N, 142.5°W)

Castafio Overo 41.2°S 71.8°W 1540-1991
Castafio Overo 41.2°8 71.8°W 1550-1991 SST (42.5°S, 72.5°W)
Co.D. de Leén 41.3°S 71.7°W 1564-1991

Southwestern U.S.—drought sensitive (Cook et al., 1999)
TrPDSI Cell 53 31.0°N 107.5°W 1693-1978 PDSI (31.0°N, 107.5°W)
TrPDSI Cell 63 31.0°N 104.5°W 1690-1978 PDSI (31.0°N, 104.5°W)
TrPDSI Cell 80 39.0°N 98.5°W 16801978 PDSI (39.0°N, 98.5°W)
TrPDSI Cell 81 37.0°N 98.5°W 1698-1979 PDSI (37.0°N, 98.5°W)

Northern Patagonia—precipitation sensitive (LaMarche et al., 1979)

El Asiento 32.7°N

70.8°W

1001-1996  Santiago, Chile, precipitation

(33.5°S, 71.5°W)

“For more information on the selection of these proxy indicators, see Villalba et al. (2000).
bTyPDSI is the gridded estimate of the Palmer Drought Severity Index (PDSI) reconstructed from

tree-ring chronologies (Cook et al., 1999).

singular vector of the covariance between SST and
proxy data retained. (We leave as a verification exercise
[Section 4.3.5] determination of whether additional sin-
gular vectors add appreciably to the skill of the recon-
struction.) Figure 4 shows the spatial pattern associat-
ed with the time series of the leading singular vector for
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FIGURE 3 Eigenvalue spectrum of the tree-ring data employed in
this study (O). For reference, the eigenvalues of red noise time series
with similar autocovariance statistics (+) and of historical observa-
tions from the proxy sampling sites (X) are also shown.

both the proxy data and benchmark data calibration ex-
periments. Not surprisingly, the proxy calibration cap-
tures the same pattern Villalba et al. (2000) observed.
Resolution of this pattern is corroborated by a similar
(but stronger) pattern from analysis of the benchmark
instrumental data set (Table 1). However, the error in
the resolution of this pattern [R, Eq. (7)] is large in both
cases, due to the difficulty with which these sparse ob-
servational networks discern the climatic variability.
Results described later show that observational error

variances are, on average, about 80% of the signal vari-
ance.

4.3.3.2. Contribution of Individual Indicators
to the Reconstructed Mode

Table 2 shows the correlations of individual tree-ring
indicators with the single mode of reconstructed SST
variability as a function of calibration period and time
lag. We interpret these correlations as the contribution
made by each indicator to the reconstructed pattern.
Lag 0 or lag +1 correlations that are significant above
the 90% confidence level in both calibration periods are
in bold. Seven of the indicators (3, 4, 5,7, 9, 12, and 15)
meet these criteria for simultaneous correlations, and
nine (2, 3,4,5,7,9,11, 12, and 14) meet these criteria for
lag +1 correlations. Six indicators (3, 4, 5, 7, 9, and




Globality and Optimality in Climate Field Reconstructions from Proxy Data 63

60°N

0° 30°N

30°S

60°S

120E 1S0°E  180°W 150°W 120°W 90°W

0° 30°N 60°N o

30°S

60°S

120E  150°E  180°W 150°W [20°W 90°W
FIGURE 4 (a) Correlation of the first tree-ring principal compo-
nent (PC) with the sea surface temperature (SST) field. (b) Correla-

tion of the first PC derived from benchmark instrumental observa-
tions with the SST field.

12) are significantly correlated with the reconstructed
mode at both lags and in both calibration periods.
These subsets of indicators include precipitation- and
temperature-sensitive tree-ring indicators from both
hemispheres, in agreement with the hypothesis (Villal-
ba et al., 2000) that the resolved SST pattern represents
a common forcing of both Northern and Southern
Hemisphere extratropical temperature and precipita-
tion anomalies. Consequently, the reconstructed SST
pattern produced independently by using the 1923-90
and 1856-1922 calibration intervals share almost 60%
variance. However, the results also show that several
indicators (1, 6, 8, and 13) did not contribute consis-
tently within both calibration periods or for either lag
relationship to the reconstruction, and two (13 and 14)
changed the sign of their simultaneous correlations be-
tween calibration periods.

If the assumption is made that the relationships be-
tween SST and tree-ring-site climate represented statis-

TABLE2 Contribution of Tree-Ring Indicators
to Reconstruction

Correlation with time series of reconstructed pattern®

1923-1990 calibration 1856-1922 calibration

Indicator? Lag0 Lag +1 Lag0 Lag +1
1CAT 0.42 (99) 0.45 (99) —0.17 (14) 0.06 (64)
2CAT 0.18 (86) 0.24 (93) 0.14 (82) 0.30 (97)
3CAT 0.54 (99) 0.58 (99) 0.53 (99) 0.72 (99)
4 CAT 0.31(97) 0.25 (93) 0.24 (93) 0.33 (98)
5 CAT 0.52 (99) 0.45 (99) 0.37 (99) 0.64 (99)
6 CAT 0.31 (96) 0.26 (94) —0.01 (50) 0.11 (75)
7CAT 0.42 (99) 0.49 (99) 0.22 (93) 0.37 (99)
8 NPT 0.37 (99) 0.33 (98) 0.11 (73) 0.17 (86)
9INPT 0.51 (99) 0.31 (98) 0.21 (91) 0.21 (92)
10 NPT 0.37 (99) 0.36 (98) 0.13 (83) 0.15 (86)
11 SWP 0.02 (56) 0.71 (99) 0.28 (98) 0.71 (99)
12 SWP 0.20 (94) 0.76 (99) 0.47 (99) 0.71 (99)
13SWp —0.24 (92) 0.14 (80) 0.17 (86) 0.54 (99)
14 SWP —0.18 (88) 0.29 (97) 0.22 (92) 0.64 (99)
15 NPP 0.25 (94) 0.35(99) 0.39 (99) 0.05 (63)

“Numbers in parentheses give percent confidence level estimates,
which are based on correlations with 1000 synthetic time series hav-
ing first-order autoregressive characteristics of the tree-ring indica-
tors. Lag 0 or lag +1 correlations significant above the 90% level in
both calibration periods are in bold.

bSensitiVity of indicator to local conditions as described by
Villalba et al. (2000): CAT, coastal Alaskan temperature; NPT, north-
ern Patagonian temperature; SWP, southwest U.S. Palmer Drought
Severity Index (PDSI); and NPP, northern Patagonian precipitation.

tically here have not shifted in space, and if the target-
ed single mode of SST continues to be the desired re-
construction target, then these results may suggest that
an additional level of data screening is necessary. For
example, Villalba et al. (2000) make this assumption to
argue that the tree-ring data indicate different tempo-
ral variability before and after 1850. Ten of the fifteen
tree-ring indicators support this assumption for the
1856~-1990 period by calibrating in the same manner
over both halves of the full period (Table 2). However,
several indicators (1, 6, 8, 10, and 13) were significant-
ly correlated during one calibration period, but not
within the other. This result suggests that either a real
change in the relationship between tree-ring indicator
and SST or that the observed relationship is weak. We
cannot eliminate the influence of real changes in either
the proxy SST relationship or the proxy local climate re-
lationship on long timescales. Further steps to test the
stationarity assumption may include data-screening
experiments with the current proxy data set, incorpo-
ration of additional tree-ring indicators from locations
sensing the identified mode of climate variability, and
quantitative estimation of the sensitivity of tree-ring in-
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FIGURE5  Calibration statistics for reconstruction using the 1923-90 calibration inter-
val. All statistics are calculated by using 192390 data from Kaplan et al. (1998) (here termed
KaSSTa) and the tree-ring-based SST reconstruction (TrSSTa) results. (a) Field correlation
{correlation units). (b) Root-mean-squared (RMS) difference between TrSSTa and KaSSTa
(°C). (c) RMS variance in TrSSTa (°C). (d) Theoretical error for TrSSTa (°C).

dicators to local climate variables. Analysis of the phys-
ical differences between these sites and nearby sites
with significant contributions to the reconstruction
may indicate reasons for calibration failures and may
suggest additional locations from which proxy data
may be usefully incorporated or collected. These steps
may all serve to reduce or better estimate the observa-
tional and mapping error in the reconstruction proce-
dure through better understanding of the physical and
biological processes underlying the statistical relation-
ships observed here.

4.3.4. Analysis

We first examine results using 1923-90 as a calibra-
tion period, reserving data for 1856-1922 for verifica-
tion exercises. Four statistics calculated for each point
in the analysis grid are shown in Figs. 5 and 6 for cali-
bration and verification periods, respectively. Correla-
tion between reconstructed (TrSSTa) and verification
(KaSSTa) fields shows where the reconstruction has
skill regardless of signal amplitude (panel a). The root-
mean-squared (RMS) difference between TrSSTa and

KaSSTa gives the actual error in the reconstructed fields
by comparison of withheld observed data and recon-
struction results (panel b). Panel (c) shows the RMS
variance in the reconstructed field; this map may be
compared to Fig. 2 to assess the extent to which the
analysis resolves variance. Panel (d) gives the theoreti-
cal error in TrSSTa averaged over the verification peri-
od. This map may be compared to the RMS difference
described previously to determine consistency of the
reconstruction’s theoretical error estimate.

4.3.5. Verification

4.3.5.1. Consistency of A Priori Assumptions
and A Posteriori Results

Calibration results (Fig. 5) for the 1923-90 period
show that correlation between TrSSTa and KaSSTa
reaches 0.4-0.6 over much of the eastern tropical Pacif-
ic and in the centers of the Pacific subtropical gyres.
This result indicates that ca. 20-25% of the variance in
KaSSTa was calibrated in these regions, consistent with
the map of reconstructed RMS variance in TrSSTa (Fig.
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FIGURE 6 Verification statistics for reconstruction using the 1923-90 calibration inter-
val. All statistics are calculated by using 1856-1922 data from Kaplan et al. (1998) (here
termed KaSSTa) and the tree-ring-based SST reconstruction (TrSSTa) results. (a) Field cor-
relation (correlation units). (b) Root-mean-squared (RMS) difference (°C). (c) RMS variance
in T¥SSTa (°C). (d) Theoretical etror for TrSSTa (°C).

5¢), which has roughly one-fourth to one-fifth of the
amplitude of KaSSTa (Fig. 2a) over this period. Areas of
minimum correlation correspond to regions in which
the map H has little amplitude. Retrieval of small-am-
plitude TrSSTa is consistent with the large error in res-
olution of H shown in Fig. 4; the error plots (Figs. 5b
and 5d) indicate that the mapped variance in the east-
ern equatorial Pacific and in the subtropical gyres is
only partially resolved. Comparison of the actual RMS
error and average theoretical error estimates (Figs. 5b
and 5d) shows that the analysis procedure produces
self-consistent errors.

4.3.5.2. Comparison with Withheld Historical
SST Data

Results (Fig. 6) computed over the 1856-1922 verifi-
cation period are similar to those shown in Fig. 5, sug-
gesting that TrSSTa has captured limited but verifiable
climatic information. Correlations have shrunk in am-
plitude by 0.1-0.2 units in the regions in which H has
nonzero amplitude, but are similar in spatial pattern
and strength to the results shown for the calibration pe-
riod. This result suggests that the resolved pattern is ro-

bustly defined, at least for the interval 1856-1990, and
serves as an initial check of analysis assumptions. An
overlay of the correlation map shown in Fig. 4 with the
verification correlation of TrSSTa and KaSSTa clearly
shows that regions with the best reconstruction skill are
also regions where the resolved map has a large ampli-
tude; regions of minimal reconstruction skill corre-
spond to regions of minimal map amplitude (Fig. 7 [see
color insert]). Actual and theoretical error estimates are
approximately equal (Figs. 6b and 6d), suggesting that
we have not overcalibrated the reconstruction by re-
taining modes that cannot be verifiably reconstructed. -
However, note that the error in the North Pacific region
has a slightly different structure than the actual error.

4.3.5.3. Sensitivity to the Calibration Period

We exchange the calibration and verification periods
chosen for the previous experiment to estimate the de-
pendence of the map from SST to tree-ring indicators
on the calibration interval. The same four statistics are
plotted for a 1856—1922 calibration period and a 1923-
90 verification period in Figs. 8 and 9, respectively. Cal-
ibration results (Fig. 8) give slightly improved skill, but
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FIGURE 8 Calibration statistics for reconstruction using the 1856-1922 calibration in-
terval (as in Fig. 5).
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resolve the same pattern of variability. The verification
statistics are similar to those shown in Fig. 5. We may
also compare the reconstructed time series [Eq. (10)
with one mode of variability retained; see also Section
4.3.6] formed by using each of the chosen calibration in-
tervals (1856-1922 and 1923-90) over their respective
verification periods (1923-90 and 1856-1922). The re-
constructions correlate with r = 0.76 (1923-90) and r =
0.84 (1856-1922); over the pre-observational interval
1001-1855, correlation between the two reconstruc-
tions is r = 0.76. For 11-year running averages, the two
reconstructions correlate with r = 0.9 over the interval
1856-1990 and the full-time interval 1001-1990. How-
ever, there appears to be a tradeoff in skill between the
North Pacific and eastern equatorial Pacific regions de-
pending on the calibration period (compare Figs. 5 and
6 to Figs. 8 and 9). This finding suggests some sensitiv-
ity of H to the calibration interval chosen, which can af-
fect the skill level by about 0.1 correlation unit in re-
gions where TrSSTa has verifiable skill.

4.3.5.4. Comparison with Benchmark and Noise
Reconstructions

In addition to checking the sensitivity of the results
to map stability, we can also compare TrSSTa to an
instrumental data-based reconstruction and a re-

construction based on calibrated red noise. Both ex-
periments employ synthetic proxy data. In the first ex-
periment, we reconstruct the SST field using SST, pre-
cipitation, and Palmer Drought Severity Index (PDSI)
data from locations nearby the tree-ring indicator sam-
pling sites (benchmark). In the second experiment, we
perform the reconstruction based on randomly gener-
ated time series with normal distribution, unit vari-
ance, and lag -1 autocorrelation statistics of the tree-
ring indicators (noise). The verification results obtained
for these two experiments, using 1923-90 as a calibra-
tion period and reconstructing one pattern, are shown
in Figs. 10 and 11, respectively. These results may be
compared to those already shown in Fig, 6.

The calibrated skill in these experiments (results not
shown) has spatial structure similar to that of TrSSTa
(Fig. 5). Not surprisingly, the benchmark experiment
has higher calibrated skill than TrSSTa, especially along
the coasts of the Americas, and there is very little loss
of skill (<0.1 correlation unit) between calibration and
verification periods (results not shown). More surpris-
ingly, our procedure was content to calibrate the noise
proxy data at skill levels very similar to those of TrSS-
Ta (results not shown). The true skill of the experi-
ments, however, becomes apparent in the comparisons
with withheld observed SST (Figs. 10a and 11a). While
TrSSTa seems to capture the larger scale, open ocean
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(as in Fig. 6).

signal and has less skill near the proxy sampling sites
(Figs. 5-8), the benchmark experiment is more skillful
inresolving smaller scale, coastal phenomena, with less
skill in the subpolar North Pacific. We speculate that
this may be due to temporal signal integration or other
smoothing effects introduced by statistical develop-
ment of the tree-ring chronologies, which may high-
light the large-scale oceanographic signal. The noise ex-
periment provides no verifiable skill, as expected (Fig.
11a). Due to the artificial calibrated skill, the recon-
struction error is underestimated (Figs. 11b and 11d).
However, since the noise reconstruction error (Fig. 11b)
is only slightly larger than that of TrSSTa (Figs. 6b and
9b), the magnitudes of the respective reconstructed
variances are similar (Figs. 6¢, 9¢, and 11c) and small
relative to those of the benchmark experiment (Fig.
10c). These results suggest that TrSSTa has verifiable
skill beyond that expected from red noise. However,
the observational and mapping errors are large and
must be correctly specified [Eq. (9)] to obtain recon-
structions with amplitudes that are consistent with
such errors. Verification exercises are required to clear-
ly distinguish artificial skill from climatic information.

4.3.5.5. Rank of the Map H

We have shown results calibrating only the leading
pattern of covariance between the SST and the tree-ring

indicators. This choice for the number of climatic pat-
terns recoverable from this set of proxy data was moti-
vated by PC and SVD analyses (Section 4.3.3, Fig. 3).
Here, we examine the change in the results with in-
creasing rank of H to see if additional patterns may be
verifiably reconstructed. The calibration and verifica-
tion skills for retention of two and three patterns are
shown in Fig. 12. Over the calibration period 1923-90
(Figs. 12a and 12b), employing two or three patterns
improves results marginally in the eastern equatorial
Pacific and in the North Pacific. Verification results for
the period 1856-1922 (Figs. 12c and 12d) show that skill
is not increased by the additional patterns, although
some redistribution of skill between the tropics and ex-
tratropics occurs. The changes in skill are similar in am-
plitude to those observed with reversed calibration and
verification periods (Figs. 6 and 9). These observations
are consistent with the choice of a rank 1 map for the
CFR. Similarly, benchmark experiments retaining two
and three patterns (results not shown) do not signifi-
cantly improve on the verification statistics shown in
Fig. 10. This result suggests that the number of patterns
resolved in the present reconstruction is limited by the
scarcity of proxy data employed as well as by the ob-
servational error. However, note also that while there is
no increase in reconstruction skill with the rank of H,
there is little or no deterioration either, since addition-
al modes contribute little variance to the reconstruction
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[Eq. (6); second term of Eq. (9)]. Hence, minimization of
S makes the choice of the rank of H not as subjective as
it might initially appear.

The preceding results suggest that while TrSSTa has
skill over certain parts of the Pacific basin and in re-
gions far removed from the tree-ring indicators, it does
not have skill in all parts of the Pacific basin. In addi-
tion, as noted in Section 4.2 and shown here, variance
resolved is a function of the quality of the map from cli-
mate record to proxy, as well as the proxy observation-
al error. The first component is determined in the cali-
bration stage of the procedure; the second component
depends on the number of proxy indicators available
for analysis as a function of time. In the most recent cen-
turies of the reconstruction, all tree-ring indicators are
available, and H is a full matrix. The analysis recon-
structs anomalies with variance similar to that of the
calibration period (e.g., Figs. 5¢ and 6c). However, as
we proceed further back in time, fewer chronologies are
available for analysis, and H becomes increasingly
sparse. The observational error variance R grows (Sec-
tion4.3.4; Eq. (12)], and the analysis approaches zero or
climatology, with the error almost the magnitude of the
true or calibration period variance. However, since in
this example most of the error in the reconstruction is

due to error in H, and since we resolve only a single pat-
tern of climate variability, the reconstruction error re-
mains large even into the relatively well-observed
modern period. Additional proxy indicators sensitive
to this leading mode of SST variability will be required
to reduce the mapping error in the calibration stage, as
well as to produce more accurate and precise recon-
structions back through time.

4.3.6. Study of Climate Dynamics

4.3.6.1. Pacific Decadal SST Variability Inferred
from Tree-Ring Indicators

Based on verification results (Figs. 5-8), we form an
index from one of the most skillfully resolved regions,
NINO3.4 (170°W-120°W, 5°S-5°N). Figure 13a shows
the TrNINO3.4 SST anomaly; gray bars indicate 1o er-
ror bars of this index. Since this reconstruction is com-
posed of the time variation of a single mode of spatial
variability, all such indices will be simple linear scal-
ings of this time variation. We expect this index to be
our best estimate of basin-scale SST variability, since
the ratio of signal strength to analysis error is greatest
in this region (Figs. 2 and 6). Correlation over the veri-
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FIGURE 13 (a) NINO3.4 sea surface temperature (SST) anomaly
(170°-120°W, 5°N-5°S) from tree-ring-based SST reconstruction
(TrSSTa), A.D. 1001-1990. Units are degrees Celsius (°C). Shading in-
dicates 1o error estimates. (b) TrNINO3.4 index passed with a 31-year
Gaussian filter. Overlain gray bars indicate the sign of the filtered in-
dex. Units are °C. (¢) Number of tree-ring indicators available for
analysis over this period.

fication period is 0.53. Figure 13b shows this index
passed with a 31-year Gaussian filter. Overlain gray
bars on this plot indicate whether the smoothed data
show positive or negative anomalies.

Although in reality the NINO3.4 region is dominat-
ed by interannual variability, our verifiable reconstruc-
tion appears to be of ENSO-like, decadal variability
(Figs. 2 and 13; Villalba et al., 2000). Note that the re-
construction prior to the 1590s is based upon only one
time series (Fig. 13c), albeit one whose simultaneous
contribution to the reconstruction is significant and sta-
ble in both calibration periods (Table 2). Given this
caveat and the results of verification studies (Section
4.3.5), we interpret the results only qualitatively here. A
shift to the positive phase of Pacific decadal variability
occurs in the late 1970s. Other shifts occur ca. 1940 and
1895. Prior to 1895, TtNINO3.4 remains predominantly
in the negative phase for several centuries, in rough
correspondence to the Little Ice Age (LIA) interval
noted from historical European climate data. Prior to
the seventeenth century, decadal variability in this re-
constructed mode was similar to that of the twentieth
century; this suggests that twentieth-century Pacific
decadal variability is not unprecedented. This result
must be considered preliminary until more data can be
brought into the analysis and the results are deemed
stable to verification exercises.

4.4. CONCLUSIONS

The CFR described here has been derived by using a
reduced space optimal estimation technique; the pro-
cedure is outlined in this chapter. Multiple benefits
arise from placement of high-resolution paleoclimato-
logical data within this context: (1) the solution is opti-
mal (provided the a priori assumptions hold), (2) error
estimates are provided for the solution, and (3) the so-
lution and assumptions can be tested for mutual con-
sistency.

As an application of this technique, we have recon-
structed a single pattern of Pacific basin SST variabili-
ty for the period A.D. 1001-1990, employing a set of
Pacific American tree-ring indicators. The analysis pro-
duces SST field estimates with theoretical errors that
are, at best, about twice the size of the historical SST
analysis error of Kaplan et al. (1998) for the mid-nine-
teenth century and, at worst, as large as the RMS vari-
ance of modern observed SST. The results are encour-
aging enough to suggest that the tree-ring data from the
Pacific coasts of North and South America may be used
to reconstruct and study decadal- to century-scale SST
variability. The results also demonstrate the nonlocal
nature of the climatic information that may be extract-
ed from this set of tree-ring data. However, benchmark
and noise experiments show that verification tests are
essential to determine the extent to which the recon-
structions may be interpreted. Nevertheless, these re-
constructions would benefit greatly from more spatial-
ly and temporally extensive proxy data sets, which
should produce smaller errors in the reconstruction
map and thereby more accurate results.

The results presented here are only a first application
of the OA reconstruction method to proxy data (Fig. 1)
and should be tuned and elaborated on in a number of
ways. The algorithm for construction of the map from
SST to tree-ring indicator may be designed to better in-
corporate frequency domain information likely to be
well resolved by these particular proxy data (for exam-
ple, after Mann and Park, 1994). Careful pretreatment
of the tree-ring data, based on expert knowledge of the
strengths and weaknesses of the tree-ring indicators,
may be used to minimize known sources of bias and
nonclimatic information. The resulting maps relating
the climate field to the proxy variable will hopefully
converge with theoretical or empirical studies of the
links between proxy data and local climate and be-
tween local climate and large-scale climate variability.
In turn, these improvements will result in better obser-
vational error covariance estimates, which are essential
for proper use of the proxy data to form reconstruction
estimates and to determine the true resolvable dimen-
sion of the map. Further improvements will exploit re-
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solvable time transition information. Similar intercom-
parison studies between climate variables and other
proxy data sources will provide similar characteriza-
tions of the information content of these data with re-
spect to the large-scale climate field of interest. Similar
work may also permit seasonal or single-season recon-
structions. Subsequently, we may be able to merge the
information provided by different proxy data sources
to produce a reconstruction that takes no more or less
than full advantage of each data source. Finally, a sim-
ilar approach may be taken toward the reconstruction
of other important climate fields such as air tempera-
ture and precipitation.
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CHAPTER 4, FIGURE 7 Color plot of the verification correlation (Figure 6a) overlain by a contour
plot of the correlation with the leading PC of the instrumental data from the tree-ring location (Figure 4b).





