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ABSTRACT

A model testing procedure based on multivariate statistical analysis has been developed to provide an objective
measure of the fit between ocean model simulations and observations, taking into account the uncertainties in
the atmospheric forcing and the inaccuracies in the oceanic data.

The method is applied to the seasonal variations in an ocean model of the tropical Atlantic. A wind-driven
linear multimode model with a simple mixed-layer is tested against surface currents estimated from ship drifts.
The uncertainties in the observations, and in the model response due to random errors in the wind stress and
its interannual variability create a substantial indeterminacy in the available sample, but it is shown that they
do not explain the large discrepancies that are found between observed and modeled seasonal surface currents.
Nor are the uncertainties in the wind stress bulk formulation sufficient to account for the model-data differences.
These can then be attributed unambiguously to the oversimplification of the model physics.

The use of the method in model tuning is illustrated by determining the vertical resolution that provides an
optimal fit to the observed surface currents. The linear model works best with only one vertical mode, and a
mixed-layer depth of 40 m. However, the discrepancies with the observations remain too large for the improvement
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in model performance to be statistically significant.

1. Introduction

Much progress has been made in the modeling of
the equatorial oceans, which respond primarly to
changes in the wind stress. “Rather successful” simu-
lations of the variations in thermocline depth, sea level
and sea surface temperature have been achieved with
simple models (e.g., Busalacchi and O’Brien 1981;
Cane 1984; Du Penhoat and Treguier 1985), and the
whole equatorial current system has been “reproduced
realistically” with general circulation models (e.g.,
Philander and Pacanowski 1986). Usually, the degree
of success is assessed subjectively, based on visual
comparisons with observations. While such compari-
sons can reveal obvious differences, they become less
effective as the models fidelity increases, and, more
importantly, they are inadequate for separating the ef-
fects of model inadequacies from the large uncertainties
in the atmospheric forcing and the oceanic data. Cor-
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relations between model output and observations also
fail to distinguish between model and data errors. Yet,
as there is considerable interest in developing realistic
ocean models for climate studies, it is necessary to test
the models objectively, in a way that takes into account
the observational uncertainties. _

The wind stress is usually estimated from the his-
torical ship reports, which are inaccurate, gappy, and
unequally distributed. There may be enough wind data
to document the mean seasonal variations of the wind
stress above the tropical oceans (Hellerman and Ro-
senstein 1983), but the data base is barely adequate to
describe its interannual variability. Gridded fields of
monthly averaged wind stress for the last few decades
can only be constructed by using subjective or objective
analysis to eliminate obvious errors and fill data gaps
(e.g., Goldenberg and O’Brien 1980; Servain et al.
1985). There also remain large uncertainties in the
bulk formulations used to estimate wind stress from
wind data (Blanc 1985), and information on the high

" frequencies are limited. Even less reliable information

is available on the surface heat exchanges, since they
are estimated with larger errors and biases. Uncertain-
ties in the meterological forcing thus limits the accuracy
to be expected in the model simulations, even if the
physics were perfectly represented. Furthermore, the
oceanic initial conditions are usually unknown, and
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the data used for model assessment are mostly sparse
and noisy and are affected by motions not represented
in the models. More extensive observations are be-
coming available in the tropics and better initial con-
ditions can be provided by data assimilation, but the
data will remain incomplete and noisy.

There seems to be no general methodology for taking
account of the data uncertainties in ocean model test-
ing, although some work has been done on the effects
of observational errors on model predictions. Using a
Monte-Carlo approach, Adamec and Elsberry (1984)
have studied the effects of erroneous initial conditions
and random errors and biases in the atmospheric forc-
ing on mixed-layer evolution predicted with a one-di-
mensional model. Schroeter and Wunsch (1986 ) have
used nonlinear programming to study the effect of un-
certainties in the wind forcing of simple steady-state
ocean models and have discussed how dynamical and
data constraints can influence the “optimal” solution.
This latter approach is elegant and promising, but it
requires extensive programming and it may not be ap-

.plicable to complex models because of the computa-
tional difficulties. This holds for Wunsch’s (1989) at-
tempts to deal with the ill-conditioning of the ocean
modeling problem caused by boundary conditions un-
certainties. Blumenthal and Cane’s (1989) study is
principally concerned with effects of model parameter
uncertainties and makes less thorough use of the in-
formation in the data than the method proposed here.
Inverse modeling and data assimilation studies can also
provide some information on how good models are,
but further developments are needed for their use in
model testing, and there are large computational re-
quirements for data assimilation.

Here we develop a new data sensitivity procedure
for model testing in the presence of inaccurrate oceanic
and atmospheric data, which can be used with existing
models and involves little programming. The method,
which is based on multivariate statistical analysis, in-
volves the construction of detailed error models for the
atmospheric forcing and the oceanic observations.

Although the response of the equatorial ocean to
atmospheric forcing is primarly deterministic, the large
uncertainties in the atmospheric input and in the
oceanic initial conditions create a corresponding un-
certainty in the model output. Given the uncertainties
in the oceanic observations, the model-reality inter-
comparison consists of comparing noisy multidimen-
sional fields with large correlation scales. Model testing
then reduces to estimating if the null hypothesis that
models and observations are identical is rejected at a
given level of statistical significance. In practice, the
dimension of the fields is large, while the error models
are only approximate and the sample size is limited.
Hence, as in climate experiments with general circu-
lation models of the atmosphere (Hasselmann 1979;
Preisendorfer and Barnett 1983; Hannoschick and
Frankignoul 1985), only a limited number of details
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can be considered in the assessment of significance.
The models can thus only be tested after performing
a data compression, which greatly reduces the dimen-
sion of the intercomparison space.

Although the testing procedure is general and can
be applied to any set of observations, its detailed for-
mulation depends on the nature of the data used to
verify the model predictions. In this paper, we develop
the method for the case of seasonal variations in a
tropical ocean. It is illustrated by testing the linear,
multimode model of Cane (1984 ), which is coarse but
economical, and has been used successfully in ocean—
atmosphere studies ( Zebiak and Cane 1987). We con-
sider the seasonal changes of surface currents in the
tropical Atlantic, using the ship-drift data of Richard-
son and McKee (1984) as an observational basis for
the model testing.

The applications of the testing procedure are nu-
merous. In particular, model intercomparisons and
tuning can be done in a more objective and effective
manner, or an optimal model resolution easily estab-
lished, as illustrated here for the vertical resolution of
the linear model. The statistical procedure should also
be useful in model development, showing for example
whether the available data is extensive and accurate
enough to reveal shortcomings and improvements in
model performance.

The plan of the remainder of the paper is as follows.
In section 2, the testing procedure is described in a
general context. Section 3 discusses the surface current
data and its compression, while the error model is con-
structed in appendix A. Section 4 discusses the wind
stress data and its uncertainties. Section 5 tests a “‘stan-
dard” version of the multimode model. Section 6 shows
how the testing procedure may be used in model tun-
ing. Conclusions are given in the final section.

2. The multivariate model testing procedure

To test a model, it is appropriate to work in the
whole space where observations are sufficiently reliable,
and where the model is believed to be realistic. Let the
observed time series (the seasonal cycle in our case) at
the N points of such a region be denoted by the N-
dimensional vector d’, where the time ¢ = 1, T is de-
noted by an upper index. Because of measurement and
sampling errors, including that due to interannual
variability and high frequency motions, the observed
signal can be considered to be the sum of the true sea-
sonal signal {(d") and an error &d’. If the normality
assumption can be made, the observational uncertain-
ties are described by the lagged error covariance matrix
(bd‘8d? '), where the prime denotes a vector transpose.
An estimate DY of this matrix can generally be con-
structed by an error analysis of the observations, as
illustrated in appendix A, or it can be directly estimated
when sufficiently long time series are available. This
leads to the definition of a probability region (an ellip-



SEPTEMBER 1989

soid ) in which there is, say, a 95% chance that the true
seasonal cycle lies. ‘

For comparison purposes, the model simulations are
considered in the same space, which may require suit-
able averagings and interpolations. Let m’ denote the
model sesaonal response, which is a linear or nonlinear
function of the atmospheric forcing and the oceanic
initial conditions, denoted as f. Since the input fields
are not known perfectly, f can also be considered to
be the sum of the true forcing (f ) and an error &f.
The model seasonal response can then be written as
the sum of the model response to the true forcing and
that resulting from the forcing error, m* = {m‘) + ém".
For the simplest linear models, the error covariance
matrix {ém ’6m"'> can be estimated analytically from
the error covariance matrix of the input fields ( 5f3f").
For more complex models, it must be estimated from
numerical experiments. Suppose that different sets of
plausible forcing fields and initial conditions are avail-
able or can be constructed by estimating their likely
errors, for instance using a Monte-Carlo approach.
Then, different plausible model outputs can be pro-
duced. An estimate M ™ of the error covariance matrix
due to forcing uncertainties can be calculated, or a
probability region for (m*) constructed.

In principle, we can test the null hypothesis that the

model has no errors due to misrepresentation of the
physics, so that its response to the true forcing should
represent the true seasonal signal perfectly, (m ) = (d),
where d' = (4!, d%, -+ - d7)and m’ = (m", m?,
-« mT"). Of course, no model is perfect, so the null
hypothesis per se is not of interest. However, the test
is equivalent to asking whether the available data is
good enough to reveal shortcomings in the model,
which is of interest. For example, to decide upon at-
tempting further model improvement: if the data is
not good enough, it cannot be used to decide if a change
has in fact made the model better.

The problem of comparing two sample vectors d
and m with unequal dispersion matrices is a classical
one. If the data are multinormal, and the error co-
variance matrices can be considered to be known (e.g.,
because the sample size is very large), an appropriate
test statistic is (e.g., Seber 1984)

p? = (d — m)'({3dsd’) + (4mdm’>)~'(d — m), (1)

If the null hypothesis holds and the covariance matrix
has full rank, p? has the chi-squared distribution with
T X N degrees of freedom. In practice, however, the
sample is limited, and the error models are only ap-
proximate, so that the covariance matrix is of reduced
rank, or, at best, it differs sufficiently from the true one
for its smallest eigenvalues to be unreliable. Since the
latter dominate the inverse in (1), if it even exists,
incorrect results are to be expected. The dimensionality
of the system must be strongly reduced, minimizing
the role of the troublesome uncertain components.
Data compression can be performed in a number of
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ways; while in a particular problem other methods may
recommend themselves, a general efficient method is
to use principal component analysis. First, we deter-
mine the space of the major sources of variations in
the observations d‘. Assume that the mean has been
removed from d‘, and let D be an unbiased estimate
of the data covariance matrix; D has dimension N X N,
but in the usual case where N > T, it has only 7 — 1
nonzero eigenvalues. The smallest eigenvalues gener-
ally correspond to minor, discardable sources of vari-
ations, or to data noise, and they need not be consid-
ered. IfE = (e, e, + + + €;) is the matrix of the first
K orthonormal eigenvectors (referred to here as em-
pirical orthogonal functions or EOFs) that we select,
then for each observation d’ we can define a K-dimen-
sional vector of sample principal components

y' = E'd" (2)

Our choice of the EOF base provides the most effi-
cient way to represent the observed seasonal changes,
but, in general, it does not suffice to represent the model
response, since a part of the latter may be in the null
space of the observations. The truncated basis EOFs
for the observations may be extended by using the first
few, say R, EOFs of the part of the model response
that does not project on the observation EOFs. Since
these EOFs are orthogonal to the previous ones, we
have constructed a more complete basis of K+ R = Q
orthonormal vectors E = (e, ez, -+ - eg). To give a
fair weight to the two subspaces, R may be determined
by only keeping the EOFs with eigenvalues at least as
large as the smallest one retained in the observations.
The increase in dimension should be small if the model
is realistic (to include the annual mean in the analysis,
a further extension of the truncated base would often
be necessary). The reduced data matrix is now

Y' =E'(d!,d? ---d7). (3)

If only the low frequencies are generally well-resolved
and energetic, a further data compression can be per-
formed in the time domain, say from dimension 7 to
L:

Z'=(z',z% ---zb)=Y'A, (4)

where A is a T X L matrix describing the (linear) fil-
tering or averaging process. We will use weighted sea-
sonal means as a time filter. The observational data is
now reduced to @ X L matrix, written in vector form
ass' = (z',z%, - - - z%).

The error covariance matrix (8sds’) of the seasonal
data s can be partitioned into L? submatrices {6z*6z/")
of dimension Q X @, given by

T T
(2% ) = 3 3 E'Au(8d'8d7 YA,E, (5)
=1 g=1

and can be estimated from D%,
The model prediction m’ is projected similarly on
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the truncated EOF base. The reduced model signal is
the data matrix

- xH)y=E'(m',m? --- mMA,

(6)

given in vector form by p’ = (x!’,x?, - - + x%). The
error covariance matrix associated with the forcing un-
certainties can be estimated as above from M™.

If the data compression is large enough, the sample
vectors s and p can be compared objectively, as the
statistic

p? = (s — p)((ds3") + (3mop")) (s =), (1)

should not be affected by small inaccuracies in the error
models. If the null hypothesis holds, p? has the chi-
squared distribution with L X Q degrees of freedom,
and the usual acceptance and rejection rules can be
applied.

If the error covariance matrices are not known but
estimated from samples, we have a multivariate gen-
eralization of the so-called Behrens-Fisher problem of
comparing two means with different sample variances,
for which various solutions have been proposed (e.g.,
Seber 1984). Suppose that s and p have been estimated
from n; and n, independent years (samples), respec-
tively. Then, if Q and P are estimates of the dispersion
matrices, a natural test statistic for the null hypothesis
is

= (vl w2
X'=(x",x% -+

(s — p)(Q/ns + P/ny)"'(s — p). (8)

Approximate distributions are available for (8), and
they can be calculated from the data, providing some-
what more conservative rejection criterions than the
chi-squared distribution. The statistic (8) is expected
to be robust to normality, since when 7, and #, are
very large, (8) tends to (7) (Seber 1984). Note that
observational errors should be normal, but that the
interannual variations may not be. However, the EOF
projection decreases departures from normality for the
principal components, by the central limit theorem
applied to linear combinations.

The oceanic case may fall between the two extremes
above. In many cases, the observation error covariance
matrix D" will be prescribed from an error analysis of
the observations, and it should be considered as
“known” from the statistical viewpoint. On the other
hand, meteorological fields can be used to drive the
ocean models, and the sample error covariance matrix
M estimated from the model results. However, if the
uncertainties in the meteorological fields and the
oceanic initial conditions have also been simulated,
for example, by Monte-Carlo techniques, then their
form has been prescribed, rather than computed from
a sample, making the choice of an appropriate test sta-
tistic difficult. It should be adapted to the case at hand,
and to the level of sophistication needed.
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3. Seasonal variations of surface currents in the trop-
ical Atlantic

a. The ship drift data

Historical ship drifts are the only available data ca-
pable of resolving the long-term seasonal variations of
surface currents over broad regions. Richardson and
McKee (1984) have used ship drift to describe the long-
term monthly mean surface currents in the tropical
Atlantic. The observations were made over a 100-year
period from 1875 to 1976, but most of the data with
a known year (66%) were collected during the years
1920-40. The data are nearly evenly distributed sea-
sonally. For 2° X 5° boxes (Richardson and Walsh
1986), the average number of measurements is about
180, but the spatial distribution is not homogeneous
as observations are clustered along major shipping
routes. Figure 1 shows the data density in the region
considered in this study, which is limited to the domain
of validity of the numerical model (see below). Each
ship-drift measurement of surface current is an average
over time (usually 12 to 24 h), over a path of a few
hundred kilometers, and over the depth of the ship’s
hull. There are many sources of errors in the individual
velocity observations; Richardson (1983 ) suggests that
the error is primarly random, of the order of 20 cm
s~'. There may also be a small bias in the direction of
the mean winds due to wind drag on the ships, since
the trade winds are very steady.

The analyzed fields consist of mean velocity com-
ponents u and v, variances u'?, v'? and ©'v’, and num-
ber of observations n. Using the formalism of section
2, we describe the mean velocity for each month ¢ at
the N boxes by the 2 X N-dimensional vectord’ = (u,/,
vy, uy', + + « va'), t = 1, 12. For the region of interest
(Fig. 1), 2 X Nis equal to 214. However, it was found
when performing the data reduction described below
that boxes with small data density introduce large un-
correlated noise in the dominant patterns of seasonal
variability, so that they should be eliminated. Sensitiv-
ity experiments showed that a reasonable cutoff cri-
terion is to retain boxes with more than 180 measure-
ments, which reduces 2 X N to 192. '

The observed seasonal current departures from the
yearly mean are illustrated in Fig. 2 (left). The yearly
mean signal is not considered in this study, as it is
governed by physics and global scale processes not rep-
resented in the linear model considered below. The
dimension of the observation vector is 192 X 12. This
is too large for model testing, so we next reduce the
dimensionality.

b. Data compression for the observations

Principal component analysis was used to reduce
the dimension of the observations in an effective way,
while filtering out some of the data noise. The first four
principal components have eigenvalues that account
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FI1G. 1. Distribution in 2° X 5° boxes of the ship-drift observations in the region of interest to this study.
The dashed line represents the boundaries of the linear model.

for a total of 86% of the field variance, and they cor-
respond to coherent space-time structures, as illus-
trated in Fig. 3 and 4. The first two principal compo-
nents describe well-defined large scale patterns, with a
primarily annual or semiannual period. They are very
similar to those computed for a broader region by
Richardson and Walsh (1986, Fig. 9). The pattern of
EOF 3 and 4 are a bit noisy and have a broader range
of time scales, but they still represent coherent struc-
tures. On the other hand, the higher EOFs and principal
components (not shown) are much more noisy and
do not seem to correspond to any significant pattern
of seasonal variability. Thus, they are presumed to be
data noise, and are not included in the analysis, which
is performed in the subspace of the four EOFs in Fig.
3. Examination of the eigenvalues shows that this trun-
cation is not in the middle of a multiplet, and is thus
acceptable.

In the truncated EOF subspace, the seasonal signal
is given by the four principal component time series
in Fig. 4 (error bars are discussed below). They are
not normalized, so that the larger surface current
changes have more weight in the model-data inter-
comparisons. Reconstruction on the original grid (not
shown) confirms that the seasonal currents have not
been noticeably altered by the EOF filtering, as ex-
pected from the large percentage of variance retained.
A large data compression has thus been achieved with-
out significant loss of information.

Finally, a further reduction in dimensionality is per-
formed in the time domain, by considering the yearly
cycle on the seasonal scale. Weighted averages, Ya—!>—
14, centered on February, May, August and November
are used as in Fig. 2, to avoid too much smoothing.
This defines the matrix A in (4).

¢. Error analysis

We need a quantitative estimate D of the obser-
vation lagged error covariance matrix, so that the error
covariance matrix of the reduced data, say S, can be
calculated from (5). The construction of a realistic er-
ror model for the observations is a crucial, but time-
consuming, step in the model testing procedure. Details
of our error model for the surface currents are presented
in appendix A. It accounts for measurement and sam-
pling errors, as well as the dominant space and time
scales of the current fluctuations, but neglects possible
biases and the small contribution of errors in the mean.
The error covariance matrix D" is calculated from the
sample covariances #'?, v'? and u'v’ provided by Rich-
ardson and Walsh (1986), and it depends on an esti-
mate of the effective number of independent obser-
vations. Though D% is calculated from sample esti-
mates, S is considered hereafter as the true error
covariance matrix of the reduced data vector. While
this is not statistically rigorous, the high degree of data
compression applied to obtain S suggests that it is a
satisfactory approximation: the uncertain details of D“
have been eliminated.

To illustrate the observational uncertainties, the 95%
confidence intervals for the principal components time
series of the four EOFs are given in Fig. 4. They are
derived from the diagonal elements of S, under the
assumption of normality, and should be understood
as defining a probability region for the time evolution
of each of the patterns considered separately (thus they
are not appropriate to making simultaneous inferences
on the signal). The first two principal components
(primarly the annual and semiannual signals) clearly
stand above the noise, whereas the other two are not
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always distinguishable from zero. For the higher EOFs
not retained in the analysis, the principal components
becomie increasingly noisy (not shown), consistent with
our assumption that they are dominated by data noise.

4. The tropical Atlantic wind stress

To drive the ocean model, we use a new wind stress
product derived from the historical ship reports
(Duchene 1989). The data are constructed from
monthly averaged fields of pseudo wind stress (the sur-
face wind vector u® multiplied by its magnitude) on a

2° X 5° grid, kindly provided by J. Servain for the

period 1964-84. As described by Servain et al. (1985),
the monthly averages were constructed from the in-
dividual ship reports, after application of stringent
quality control tests. The data density was generally
sufficient to estimate mean monthly values, but there
were regions with gaps or very sparse data. Servain et
al. then used the objective successive correction method
to produce regular fields at 2°-resolution. As this pro-
cedure is not tailored to fields as inhomogeneous as
those encountered in the tropics, it may introduce spu-
rious scales of variability, and eliminate real ones.

Duchene (1989) has designed a new procedure based
on a principal component analysis of the original gappy
data, thus preserving the correlation scales inherent in
the data. Filtering is via truncation to a principal com-
ponent subset that can be distinguished from white
noise, as determined by the method of Preisendorfer
et al. (1981). The resulting pseudostress field is rather
smooth, and is believed to contain no systematic errors
other than those due to the measurements themselves,
and to the limited spatial resolution, which certainly
affects the wind stress curl. A comparison with inde-
pendent measurements made during the FOCAL /SE-
QUAL experiment in 1983-84 shows that the new
product is more accurate than that of Servain.

From the model response to a 21-year dataset, sam-
ple estimates of its mean seasonal cycle and error co-
variance matrix can be computed. The uncertainties
in the model seasonal response that are associated with
the interannual variability of the atmospheric forcing
are then taken into account explicitly, together with
those due to random errors and persistent gaps in the
wind data. Indeed, unless the pseudostress uncertainties
introduce systematic long term biases, they contribute
to the variance in the sample in the same way that the
interannual variability does. On the other hand, we
neglect the influence of the nonsimultaneity of the wind
with the surface current data, which were mainly col-
lected between 1920 and 1940, in the belief that the
interdecadal differences are much smaller than the
shorter term interannual variability we do include.

To calculate the wind stress from the pseudostress,
we follow the approach used by Cardone et al. (un-
published manuscript) to construct the FOCAL /SE-
QUAL wind product. The drag coefficient Cp is given

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 19
N A * ‘
[T T R FEBRUARY
-~ L d L4 - « - »
- " Lt P ' d &~
5 - T e e e e L4 3
- ¢ g . L] ) r'd
v . » . ~ =T NG M }
—
. v 4 4 +* TN \
< L] v » v - > -
5§ 4 * + > v « i
> » > » v *
—
. » . Q * v 4
50cm/s
158 T Y Y T T
50w 40 30 20 10 0 10E
BN A5— 3
4 'y ; + v » v
* . - ™ »
N . — - & .
4___/ T— o - » *
5 A s = . . v \f L] —
- - -— ~
S A /
- » 4 e - = Y \
= - LIV T T
5 A . a . < - M < i
L4 < > 1 ¥ 13
> L 3 » v v £l
~]1 S0cm/s
15§ T T T ¥ I
50w 40 30 20 10 10E
BN A——
» 'y - - - - AUGUST
. My =~
~ — — —
—~ T e > S
549 - oA e e . . v - i
NN - - € « N » )
» » v : A v ’ A l\
v - < » . 1] -’ a b
5 - 4 ” - - - Y
“ v " 3 » >
_— v . % v v > >
50cm/s
158 T T T 1 T
50W 40 30 20 10 0 10E
15N S—o— *
v r] M . 1] L] X
» L4 v > * A -
~ ' - - )
—, — o~y 7 4 a .
5 - Pl -— 2 A L] » v i
- 3 » » » - Lol }
» v v : '0 > v \\
> L4 » - - » -— ¢
5 v ] ¥ » » i
- > » v v s
— < . > v N > 3
50cm/s
158 T T T T !
50 W 40 30 20 10 0 10E

FIG. 2. Left: observed seasonal surface current fluctuations for
February, May, August and November; the annual mean has been
removed, and weighted averages used (see text).

by Large and Pond (1981), and stability effects are
taken into account by assuming mean tropical Atlantic
conditions, namely an air minus sea temperature dif-
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FI1G. 2. (Continued) Middle: corresponding model currents for the standard case. Right: corresponding differences
between modeled and EOF-filtered observed currents.

to the tropical Atlantic, its accuracy remains question-
able, as is the case for all bulk formulations. Blanc
(1985) has studied the uncertainty associated with dif-

ference of —1°C, and a relative humidity of 80%. This
Although this drag formulation is very appropriate

increases the wind stress at low wind speed.
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FiG. 3. First four orthonormal EQFs of the observed seasonal surface currents, which account for 38.6%,
33.5%, 8% and 5.8% of the total variance, respectively.

ferent widely used drag formulations: in the wind stress
range encountered here, the average uncertainty (rms)
due to scheme variation is about 20% of the stress value.
In the following, we shall use this figure as a measure

of the uncertainty in the bulk formulation, assuming
blithely that the adopted law is the “true” one. The
uncertainty in the drag formulation will be modeled
by assuming
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FIG. 4. Principal component time series of the observed seasonal surface currents in the EOF .

subspace of the observations (relative units). The error bars are estimates of the 95% confidence

intervals for each value considered separately.
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éz): Cp(1 +¢), 9
where Cp is the drag coeflicient calculated as indicated
above, and ¢ a normal variate with zero mean and
standard deviation o = 0.2. Since the ocean model is
linear, its mean seasonal response is not affected by
the drag uncertainty, but its error covariance matrix is
increased (cf. section 5). In a nonlinear model, the
effects of the drag uncertainty could be estimated from
Monte Carlo simulations made with various drag coef-
ficients derived from (9).

Here, we shall also perform Monte Carlo simulations
where a 20% random uncertainty is added to the drag
coefficient at each time step and grid point. This crudely
represents wind measurement errors, aliaising, meso-
scale motions, high frequencies, as well as space-time
changes in the drag coefficient.

In summary, we consider the uncertainties in the
mean seasonal response of the equatorial model that
are due to the limited wind stress sample and its in-
terannual variability, and to nonsystematic wind errors
and data gap effects. We also model simply the uncer-
tainties in the drag formulation. Systematic errors re-
main that we do not consider due for example to wind-
age, to the long term variability in the wind field, or
to the lack of spatial resolution. It is assumed that these
errors are smaller than those considered here.

5. Model testing
a. Model description

We consider the linear model of Cane and collab-.

orators (e.g., Cane 1984; Du Penhoat and Tréguier
1985); it is an equatorial S-plane model with M vertical
modes, and a surface mixed layer of fixed depth H.
The multimode model is well documented, and its ex-
tension to represent surface currents given for the M
= ] version in Zebiak and Cane (1987); the extension
to the multimode case is presented in Blumenthal and
Cane (1989). In the course of this study, M and H will
be varied, but in this section we only consider a stan-
dard version with M =2, H = 35 m.

The model, which cannot handle all the irregularity
of the Atlantic basin, covers the region limited by a
dashed line in Fig. 1. As it neglects the short, eastward
propagating Rossby waves which are important at the
western boundary, but propagate too slowly to pene-
trate into the interior, it is inappropriate for simulation
of currents near the western boundary. In the following,
we limit the testing of the model to the region delin-
eated by the continuous line in Fig, 1; it is in this region
that the model surface currents will be compared to
the observations.

b. The standard case

The numerical model is first spun up to a seasonally
varying equilibrium state, which is reached within a
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10-year integration. It is then forced by the 21-year
wind stress dataset, using the reference drag coefhicient
Cp. To eliminate the effects of the unknown initial
conditions, the first year of the 21 is ignored. The re-
sponse time is short in the near equatorial zone of in-
terest, so this delay is sufficient for the model adjust-
ment. The monthly surface current for month ¢ of year
iis given on the model validation grid defined in section
3 by the 2 X N dimensional vector m‘(i), i = 1, 20.
Its sample mean over the 20 years is our estimate of
the model seasonal response.

Figure 2 (middle) shows the model seasonal cycle,
after subtraction of the annual mean. As is typically
the case with visual displays, some features compare
well with the observations (left), while others do not.
The differences between modeled and observed cur-
rents (right) emphasize that the model seems unable
to reproduce the amplitude of the currents south of
the equator, and in the region of the North Equatorial
Countercurrent, in particular during summer. All the
discrepancies cannot be attributed to the oversimpli-
fication of the model, however, in view of the data
uncertainties discussed above.

To distinguish between model and data errors, we
apply the testing procedure of section 2. Only about
half of the variance of the model seasonal response
projects onto the truncated EOF base defined from the
observations in section 3b. Thus, as anticipated, the
validation subspace has to be extended. This is done
by estimating the EOFs of the part of the mean model
response that does not project on the four EOFs in Fig.
3, and keeping those with eigenvalues at least as large
as the smallest one retained in the observations. Only
two additional EOFs, shown in Fig. 5, are needed,
which brings the spatial dimension to 6. Note the sim-
ilarity in pattern between Fig. 2 (right) and Fig. 5. Now
90% of the model and 86% of the observed variance
of the mean seasonal changes, respectively, project onto
the truncated base. '

Using weighted time averages as before, and reor-
dering, we represent the model response at year i by
the reduced signal p(i), i = 1, 20. The vectors have
dimension 6 X 4 = 24. In the notation of section 2,
the mean model response is estimated by

p= p(i), (10)
20 i=1
and its sample covariance matrix by
1 20
P=—=2 (p() —p)(p(i) — D). (11)

W

Monthly anomalies at yearly intervals are basically un-
correlated, so we assume that the data are independent
and estimate the error covariance matrix of p by P/
20, with 19 degrees of freedom.
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FIG. 5. First two EOFs of the residual currents (see text) which account for 52.8% and 28.9% of their variance, respectively.

The observed and the model seasonal variations are
represented at montly intervals in the expanded EOF
space in Fig. 6, together with univanate 95% confidence
intervals estimated as in Fig. 4. This representation
provides a much more synthetic evaluation of the
model performance than the comparisons in the orig-
inal space, and the error bars give some insight into
the extent of the data uncertainties. The main features

of the first two principal component times series, which
correspond to the least noisy EOFs (Fig. 3), are fairly
well reproduced by the linear model: the phase seems
correct, but the amplitude of the model response is
weaker than in the observations. On the other hand,
the agreement for the third and fourth principal com-
ponents, which correspond to more noisy EOFs, is very
poor. The model response in'the model EOF sub-
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F1G. 6. Principal component time series of the observed (dotted line) and modeled (continuous
line) seasonal surface currents in the extended EOF subspace. The error bars are estimates as in

Fig. 4.
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spaces clearly stands above the noise. Even though the
error bars should not be used to make inferences on
how close the true values are, as discussed earlier, Fig.
6 suggests that the data uncertainties will be unable to
explain the discrepancies between model and obser-
vations.

More quantitative information is provided by the
multivariate test of the null hypothesis that the model
response is consistent with the oceanic observations
(section 2). As mentioned before, we assume that we
know the true error covariance matrix of the obser-
vations, but we estimate the model response uncer-
tainties from the sample. An appropriate version of the
test statistic (7) and (8) is then

T>=(5—-p)(S+P/20)"'G—p), (12)

where P is given by (11) and S by (5). Following Yao
(1965), we approximate the distribution of (12), if the
null hypothesis is true, by Hotelling’s 72, with 24 and
v degrees of freedom, where v is estimated by (e.g.,
Seber 1984)

vl = (203 - 203! |
X [(§ = p)Sr'PS; (5 — 9)/T?)* (13)
with 87 = S + P/20. The Hotelling distribution is

related to the F distribution with 24 and v — 23 degrees
of freedom by (Morrison 1976)

v—23
24y

For the standard run, the value of 72 is 1732, and
the degrees of freedom are 953. For such large », T2
behaves approximately as a chi-square variable, and
the critical value is 36, at the 5% level of significance.
The null hypothesis is rejected, which confirms that
the data uncertainties are insufficient to explain the
discrepancies between observed and model surface
currents. The uncertainty in the drag formulation has
not been included, however, so we next take it into
account.

F=

T2, (14)

¢. Drag coefficient uncertainty

First, we_consider the effects of purely random
changes in Cp, on the model seasonal response, by add-
ing a 20% random uncertainty in the forcing at each
time step and grid point, as described in section 4. The
results of Monte Carlo experiments (not shown) in-
dicate that there is no noticable effects on the model
seasonal response, nor on its error covariance matrix.
The lack of sensitivity to uncorrelated noise in the
forcing can be understood easily, considering that the
low frequency, large scale ocean dynamics investigated
here effectively integrates over many of these uncor-
related input. .

On the other hand, coherent changes in Cp have an
influence on the model response. Indeed, in the pres-
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ence of a drag uncertainty of the form (9), and given
that the model is linear, the model response at year i
can be written (1 + ¢)p(i), where p(i) is the response
for the reference drag coefficient Cp. The mean sea-
sonal response should now be considered to be both a
sample mean over time and an ensemble mean over
¢, the latter being denoted by angle brackets. As the
two processes are statistically independent and ¢ has
zero mean, the mean of p does not vary, i.e.

{1+)p)=0p, (15)

but its error covariance matrix does. Indeed, its true
value is given by

cov[(1 +c)pl = {(1 +c)p(1 +)p")
-{(1 + )pHy{(1 + op’)
= {(1 +0)*)(pP")
= {1+ ){p")

= (1+ o) cov[pl + o%D’,  (16)
and it can be estimated by

(1+ 02)P/20 + o’pp". (17)

For ¢? = 0.04, the main effect of the drag uncertainty
is to increase the model response variance when the
signal p is large; when p is small, the changes are neg-
ligible.

Note that the random variable (1 + ¢)p(i) is not
multinormal, being the product of two normal vari-
ables. However, by the central limit theorem, one can
still assume that (1 + ¢)p is approximately multinor-
mal, if the sample is large enough, so that one can
calculate approximate confidence intervals as before.
The results in Fig.7 show that the increase in the error
bars can be substantial when p is large, for the assumed
20% uncertainty in Cp. However, the increase in model
response uncertainty seems insufficient to explain the
discrepancies with the observations. This is confirmed
by the multivariate test, where 72 only reduces to 1374,
with » = 1997. The relative insensitivity of the test
reflects the very high correlation of the model response
changes due to coherent changes in Cp. Note that in
this case the 7?2 statistic should be used with caution,
as (12) is distributed as Hotelling’s T2 only if the co-
variance matrix has the Wishart distribution (e.g.,
Morrison 1976). This only holds approximately at best
when (17) is used.

To verify our model of the wind stress uncertainties,
we have forced the numerical model with the mean
seasonal wind stress data of Hellerman and Rosenstein
(1983), which were constructed with the drag coeffi-
cient of Bunker (1976) that may yield slightly over-
estimated values. Figure 7 (solid line ) shows the model
response in the EOF subspace of the observations. Al-
though the seasonal response is much larger than with
our wind stress, it stays mostly within the estimated
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F1G. 7. Principal component time series of the model seasonal surface currents with the effect
of drag coeflicient uncertainty, in the EOF subspace of the observations (dotted line). The heavy
line represents the model response to the climatological forcing of Hellerman and Rosenstein

(1983).

95% confidence intervals corresponding to the com-
bined effect of interannual variability and drag uncer-
tainty. This suggests that our wind stress uncertainty
model is basically correct.

In summary, the test objectively shows that the un-
certainties in the atmospheric forcing and the oceanic
observations do not account for the model-reality dis-
crepancies. These can then be attributed unambigu-
ously to deficiencies in the equatorial ocean model or,
at least, in the standard version used in this section.

6. Model tuning

Even in the most realistic cases, model development
involves some arbitrary choices. Consider for example
the choice of an optimal model resolution. Physical
analysis often suggests higher resolution than is really
needed, as many model parameters are poorly known,
and various simplifications may have been made that
limit the model accuracy. If sufficient computational
resources are available, the ultimate choice should be
based on how well the model performs in representing
the oceanic observations. For this purpose, the method
developed in the present paper is particularly useful,
in particular since data uncertainties are often too large
to allow for an easy rating between different model
versions.

The 77 statistic is a convenient measure of model-
reality agreement, even if the null hypothesis is rejected,
and it shows how closely the observations can be re-
produced. It is well adapted to model tuning, and its
minimum will show when an optimal fit is achieved.
It can also be used to evaluate the statistical significance
of the improvement in model performances.

The method is illustrated by tuning the vertical res-
olution of the linear multimode ocean model to the
surface current data. Only two model parameters are
varied here: the number of vertical modes M and the
thickness of the mixed-layer H.

The number of vertical modes that should be in-
cluded for best model performances has not been es-
tablished. Linear theory suggests that the model should
be more realistic with many modes. However, in the
presence of mean shear currents and nonlinearities,
the very notion of decoupled vertical eigenmodes be-
comes more and more questionable as the number of
modes increases. Previous choices in simulations of
observations vary between M = 1 (e.g., Zebiak and
Cane 1987)and up to M = 9 (Du Penhoat and Tréguier
1985), while more theoretical studies have included as
many as 60 (McCreary 1981). Work with sea level
data suggests M = 2 (Cane 1984), but the optimal
value is difficult to establish without an objective mea-
sure of model-data agreement.

In Fig. 8, we have calculated the changes in T2 as
the number of vertical modes is varied between 1 and
5, for the standard 35 m mixed-layer depth; for com-
parison, we have also run the model without Ekman
currents. In all cases, the spatial dimension is 6; the
structure of the two additional EOFs is similar to that
in Fig. 5, and a comparable percentage of the total
variance of the observed and modeled currents is rep-
resented in the EOF subspace. Following the discussion
in section 5c, the effect of the drag uncertainty are not
included in this section, even though they would lower
the 77 values. The results show that our a priori choice
of two modes is not the optimal one to represent the






