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This paper describes a fourth-order finite difference model of the equatorial ocean that is 
designed to study dynamic and thermodynamic processes on time scales of a decade or less. 
It is a primitive equation model employing the reduced gravity assumption so that the deep 
ocean is at rest below the active upper ocean. The model consists of a surface mixed layer and 
an active layer below, which is divided into an arbitrary number of numerical layers by means 
of a sigma coordinate. The model can be used in an unstratified version, when temperature 
acts as a passive tracer, as well as in the full stratified version. The numerical formulation of 
the model is described in detail. Experiments comparing three different horizontal smoothers: 
Shapiro Iilter, Laplacian friction, and biharmonic friction are presented. It is concluded that, 
at the level needed to maintain computational stability, the Shapiro filter damps the fields 
least; in addition, it is faster and easier to implement when the horizontal finite difference grid 
is stretched. 0 1989 Academic Press. Inc. 

1. INTRODUCTION 

The El Niiio-southern oscillation phenomenon is the largest interannual signal in 
the earth’s climate. Extensive observations of this phenomenon are, and will be, 
taken during the ten year Tropical Ocean-Global Atmosphere (TOGA) program. 
One of TOGA’s scientific objectives is to explore the potential of coupled 
atmosphere ocean models for predicting climate variability. In this paper we 
describe a numerical model of the equatorial ocean that is specifically designed for 
TOGA studies. Thus there is particular emphasis on thermodynamic processes 
because sea surface temperature is the most important ocean variable to the atmos- 
phere. The model domain can also be limited both in the horizontal and vertical, 
and thus this primitive equation model uses the reduced gravity assumption so that 
the deep ocean is at rest below the active upper ocean. This assumes that only the 
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near equatorial upper ocean is important for the dynamic and thermodynamic 
processes of the TOGA problem on the annual time scale, which means that model 
integration times should be no longer than several years. 

The numerical model consists of a surface mixed layer and an active layer below, 
which is divided into an arbitrary number of numerical layers by means of a sigma 
coordinate. This means that the vertical resolution is fine exactly where it is needed 
below the mixed layer, where there are very large shears in both velocity and tem- 
perature in the equatorial oceans. This overcomes a disadvantage of level models 
which need line resolution over a greater vertical extent when the depth of the well- 
mixed layer varies considerably. In the Pacific ocean this depth varies from less 
than 20 m in the east to about 75 m in the west. This model predicts the depth of 
this layer, and then concentrates its resolution below much more efficiently than 
does a level model. The horizontal domain is a rectangular equatorial B-plane, and 
the model can employ a stretched grid. This gives enhanced resolution at the 
equator and model boundaries in order to resolve better the smaller scale 
phenomena that occur in these locations. In most of the experiments described in 
this paper, however, the mixed layer has a constant depth and the horizontal grid 
is uniform. 

Observations and theory of the equatorial oceans suggest that the dominant 
sinks of energy and heat are vertical friction and vertical diffusion, see [8, lo], for 
example. The model was designed to mimic this situation. Momentum and heat are 
input as body forces in the upper mixed layer, are diffused downwards quite 
strongly, and are lost to the resting, constant temperature deep ocean. The vertical 
coefficients are based on observations and are larger than those normally used in 
midlatitude ocean models. As a horizontal “eddy viscosity” we chose to use the 
Shapiro filter [12] with the intent of suppressing nonlinear computational 
instability while keeping the horizontal sinks of energy and heat much smaller than 
the vertical sinks. Results presented in this paper show that this is indeed the case. 
We also compare experiments using the filter with those using the more familiar 
horizontal smoothing techniques of Laplacian and biharmonic friction and show 
that the horizontal sinks due to these frictional forms are larger than those due to 
the Shapiro filter. These comparisons are made in experiments that spin up from 
rest to an equilibrium state and also in spindown experiments over a period of 
100 days. 

This numerical model was developed from a two-layer, unstratified model that is 
described in [2, 31. The present model can also be used in an unstratified version 
when the temperature acts as a passive tracer. The first comparison experiments 
described below use this version of the model, while the second comparison 
experiments use the full stratified version with live layers. Both versions use the 
same time integration method as the original model, which is the N-cycle scheme 
of Lorenz [7]. 

The plan of the paper is as follows. The model continuous equations are given 
in Section 2, while the finite difference equations are given in Section 3. The vertical 
coordinate, forcing, and vertical mixing are described in Section 4, the horizontal 
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smoothing and friction in Section 5, and the time method and its stability in Sec- 
tion 6. The unstratified and stratified model experiments are presented in Sections 7 
and 8, and the reasons for our choice of the filter are discussed in Section 9. Our 
conclusions are listed in Section 10. 

2. CONTINUOUS EQUATIONS 

(a) Generalized Cartesian Coordinate 

This derivation follows that in [ 111 with the extension of including a free surface 
elevation zT. It uses a generalized vertical coordinate, s(x, y, z, t), so we define 

and 

(2) 

h is then the height between, and W, the volume flux per unit area across, surfaces 
of constant s. u and V are the 2-dimensional horizontal velocity and gradient 
operator, respectively. The incompressible, hydrostatic equations of motion in these 
generalized Cartesian coordinates can be found in [S] and are 

DU --+fkx”+++pVz=- j!;+F, 

Dp l@’ 
E=h-+D’, 

;D;+v.“+; 7 =o, 
( > 

f$+pgh=O. 

(4) 

(6) 

Here k is the unit vertical vector, p is pressure, p is density, and g is gravity. Also 

(7) 

all gradient operations are with respect to constant S, t is stress, Q’ is the density 
flux, and F and D’ are horizontal friction and density damping. 
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(b) Boussinesq Approximation 

We define the buoyancy b and a modified pressure P such that 

where p. is a constant reference density. The hydrostatic equation (6) then becomes 

(10) 

Integrating this equation with the boundary condition p = 0 at s = ST gives 

P=P-PT-&-zT), (11) 
PO 

which simplifies by taking 

pT= gzT; (12) 

i.e., the modified pressure at the surface equals g times the free surface elevation. 
The momentum equation (3) can now be written in the form 

(13) 

The Boussinesq approximation in s coordinates is then to set p/p0 equal to one in 
Eq. (13) which becomes 

Du Dl+fkxU+VP-bVz=;;+F. 

In general the buoyancy is a function of temperature and salinity. For the present, 
however, we ignore the effects of salinity and further simplify the equations by 
assuming that b is only a linear function of T, i.e., 

b=b(T)=ag(T-T,), (15) 

where Ts is a constant reference temperature and a is the coefficient of thermal 
expansion. Substituting from Eqs. (8) and (15) into the density equation (4) gives 
an equation for temperature; namely, 

DT 1aQ 
ot’i-+D. (16) 

Here Q is the downward heat flux divided by pocp, where cp is the specific heat of 
water at constant pressure, and D is the thermal damping. 
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(c) Reduced Gravity Approximation 

The reduced gravity approximation is to assume that below a certain depth the 
ocean is at rest and has a constant density, or in this model a constant temperature. 
In s coordinates the no-flow assumption requires no pressure force at the base of 
the model s=sB, i.e., 

VP-bVz=O at s=sB. (17) 

This can be satisfied by choosing 

b,=O, P,=O at s=sB, (18) 

which is accomplished by setting the temperature of the deep ocean to Ts (i.e., zero 
buoyancy in the deep ocean, see (15)) and (from integrating Eq. (9)) setting 

P,= J =’ bh ds. 
SB 

(19) 

Finally (14), (16), and (5) can be rewritten in flux form, viz., 

;(hu)+V(uhu)+;(w,u)ffkxhu+h(VP-bVz)=;+hF, (20) 

;(hT)+V+hT)+&,T)=~+hD, (21) 

aw 
;+V(hu)++=O. (22) 

The equations of the reduced-gravity, primitive equation model in s coordinates 
are (20) through (22), with z, P, and b defined by Eqs. (l), (9), and (15), respec- 
tively, and surface values of z and P given by Eqs. (12) and (19). 

(d ) Boundary Conditions 

The inviscid boundary conditions are no normal flow at horizontal boundaries 
and no vertical flow at the top and bottom, i.e., 

u-n=0 on SL?, 

we=0 
(23) 

at s=sT,sB. 

The latter condition results from the assumption that the ocean surface and the 
base of the model are material surfaces. The viscous boundary conditions depend 
upon the form of the nonconservative forces F and D, but are either no-slip or free- 
slip and either zero heat flux or specified temperatures at horizontal boundaries. 
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(e) Energy Equation 

The energy equation is formed by taking u. (20) - agz(21) + (P + agzT,) (22); it 
can then be manipulated into 

a& ,+v. [u(e+hP)l+i co [ e(;+lJ)+Pg] 

=u-(g+hF)-agz(z+hD), 

where 

(24) 

c=h(+u.u-bz). (25) 

Integration of (24) over the total volume and use of boundary conditions (18), (19), 
and (23) show that the model energies are 

PotentialEnergy=~~Ddxdy[~~~-hbTdS+:gi:]i 

=ff*dxdJff:: hb(z.-z)ds-fgz2, . 1 
(27) 

Thus the sum of kinetic and potential energy is conserved in inviscid, adiabatic 
flow. The potential energy has been defined such that it is zero if the buoyancy is 
zero (T = T,) everywhere in the domain. This is an appropriate reference level for 
potential energy as it is the state the ocean will spin down to in the presence of 
vertical temperature diffusion. Manipulations of (21) and (22) and integrations 
over the total volume show that heat content and temperature variance are also 
conserved in inviscid, adiabatic flow, where 

(29) 

Temperature Variance = jjQ dx dy jxy hb’ ds. (30) 

Again these quantities are zero if T = T, everywhere. 

(f) Unstratified Model 

An unstratified version of the model can be deduced from the stratified version 
if T and hence b and p, are kept constant throughout the model domain. In this 
case the constant b is called the reduced gravity (often denoted by g’), and Eq. (21) 
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for T is trivially satisfied or can be thought of as an equation for a passive scalar 
quantity. It is then easy to show that 

P,= gz,= bH, VP-bVz=%‘H 
PO ’ 

(31) 

where H(x, y, t) is the total depth of the active ocean layer. The last equation in 
(31) gives the unstratified form of the pressure gradient force for use in (20). Equa- 
tions (27) or (28) and (29) or (30) then give the unstratified potential energy and 
the conservation of the total fluid volume, i.e., 

Potential Energy = ss R 
dxdy;:,, 

Constant = ss dx dy H. 
R 

The boundary conditions are still those of Eq. (23). 

(g) Linearized Model 

A consistent linearization of the reduced-gravity primitive equation model in 
s-coordinates can be made and is given below. However, it is somewhat unfamiliar 
compared to the linearization in z-coordinates. One way to see this is that the 
hydrostatic equation in s-coordinates, (9), is nonlinear and is thus approximated in 
the linearization, whereas the equation is linear in z-coordinates and is thus 
retained exactly in the z-coordinate linearization. This results in an unfamiliar 
potential energy in the linearized s-coordinate model. For the linearized model the 
depth and buoyancy are divided into mean and fluctuating components as 

h = h(s) + h’, 

b = 6(s) + b’. 
(33) 

The hydrostatic equation (9) and reduced gravity assumption (19) linearize to 

g = 6h + hb’; 

(34) 
P,r gz,= 

s 
” (6h + hb’) ds. 

SB 

The momentum, heat, and continuity equations (2Ok(22) linearize to 

-$hu)+fkxhu+h(Vf’-6Vr)=$+hF, (35) 

(36) -$h6+hb’)+V.(h6u)+-$ve6)=crg(~+hD), 

ah 
d,+V-(hu)+%=o, (37) 
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where (36) has been formulated in terms of buoyancy rather than temperature. The 
other model equations (1) and (15) remain unchanged. An energy equation for this 
model can be formed in exactly the same way as for the nonlinear version; the 
result is 

ad z+v. [uh(P-6z)l+$ 
1 
w.(P4z)+Pg 1 

="-(~+hF)-agz(~+hD), (38) 

where 
EI=ljj” “+‘(hb’)2 

2 - 
- - z(6h + hb’). 

2 a6/as 

Integration of (38) over the total volume shows that the linearized model energies 
are 

Potential Energy = JJQ dx dy [J‘:,: [ (“~~~~‘)’ - z(6h + hbt)] do + i gz+]. (40) 

A linearized version of the unstratified model can be found from the above equa- 
tions by setting 6 to a constant and b’ to zero in (33)(37), which results in a 
kinetic energy given by (39) and a potential energy given by (32). The boundary 
conditions are unchanged in these linearized models. 

(h) Spherical Coordinates 

The model can also be defined in spherical rather than Cartesian coordinates in 
which case s = s(L, 8, z, t), where 1 is longitude and 8 latitude. In this case f in the 
momentum equation should be replaced by f + u tan 8/R, where R is the earth’s 
radius, and the divergence operator has an extra geometric term, see [ 111. 

3. FINITE DIFFERENCE EQUATIONS 

(a) Grid Configuration 

A stretched horizontal grid mesh is used to allow for increased resolution at the 
equator and lateral boundaries where phenomena with small spatial scales occur. 
The stretching is accomplished by solving an equation of the form 

XT = a + bx,+ c aj tan-’ [j?,:‘(xi- yj)], 
i 

(41) 

for the location xi of the ith point in physical space given that the points in com- 
putational space are equally spaced. Thus (41) is solved for the xi that gives xj+ = 
(i - 1) dx. In (41) /Ii is a measure of the thickness of the stretched region at x = yj 
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and ffj is a weighting factor that determines how many mesh points will be in this 
stretched region. The stretching can be done at all four lateral boundaries and 
symmetrically about the equator, or can be ignored, giving a uniform grid in both 
computational and physical space. Horizontal cross sections of model variables can 
be plotted in either computational or physical space. This configuration and other 
details of finite differencing were first used in [2]. 

The vertical grid is shown in Fig. 1. We define 

sT=o, sB= -NZ, K=i-s, (42) 

where NZ is the number of model layers and K is an integer from one to NZ 
designating the midpoints of those layers. K is the opposite of s in that the layer 
numbers increase downwards in the model so that layer 1 is at the top and layer 
NZ at the bottom of the model, and the layer midpoints are designated by half 
integer values in the vertical coordinate s. 

(b) Horizontal Differencing 

In the horizontal all model variables are at the same locations at the corners of 
the grid squares (Scheme A in Arakawa’s nomenclature). Single horizontal 
derivatives are calculated as 

(43) 

where dx*/dx is calculated analytically from Eq. (41). In the interior df is the 
fourth-order centered difference approximation defined by 

Sf,= j& Cfi~z-8fi-,+8f,+,-fi+,l, 

s,=o W2’0 

K=, __---- ---- 
UIY T h, 

s=-I . WI I,2 
. 
. 

. 

S=-NZ+I WNZ-I,2 

K=NZ ----------- uNz vNz TNz h,, 

S,= -NZ WNZtI/Z=O 

FIG. 1. The vertical finite difference grid. 

(44) 
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At points on and next to the boundary, one-sided differences are used that are 
third-order accurate in Ax, but these are regions of finer resolution when the grid 
is stretched. The boundary forms are 

(45) 

(46) 

These boundary forms mean that continuous equations in conservation form will 
not be exactly conservative in finite difference form. This nonconservation will be 
discussed again later. The third-order boundary forms were necessary, however, 
because the fourth-order forms that were tried proved to be computationally 
unstable. 

(c) Vertical Differencing 

All model variables except w, are held at layer midpoints, i.e., integer values of 
K, whereas w, is held at the layer interfaces, i.e. integer values of s. Single vertical 
derivatives are simply calculated as 

fifK=fK- I,2 -f!C+ I,2 

(47) 

since As = 1 across each layer. This form is second-order accurate in As. The flux 
form of the equations requires values of II and Tat the layer interfaces, and we have 
chosen the forms 

UK+ l/2 = i(u,+ “K+ 1) (48) 

T (h,T,+h,+,T,+,) 
K+ l/2 = 

(h~+h~+~) ' 
(49) 

These forms conserve total energy and heat content in finite difference form but not 
temperature variance unless the layer depths hK are equal (see below). 

(d) Pressure Gradient Force 
In this subsection the finite difference form of some of the model equations and 

the form of the pressure gradient force will be given. Equations (l), (9), (15), and 
(19) are represented by finite difference forms in the following obvious way 

581/81/2-15 
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b, = Ng( TK - TB), 

P,=gz,= “c” h,b,. 
K=l 

(52) 

(53) 

These finite difference forms are all centered approximations to the continuous 
forms. The finite difference form of the pressure gradient term in (20) is 

PGF, = h,(VP, - b, Vz,), (54) 

where the gradient operator now means the finite difference form given by 
(43)-(46). After manipulation using (5Ob(53), this can be written in the form 

(g-bK)VZ,+bKV 
(55) 

where the free surface elevation zT is given by (53) and is calculated diagnostically 
in the model. 

(e) Model Equations 

The finite difference form of the continuity equation (22) is the obvious form 

ah, 
,,+V-@K~K) + wK- 1/2 - wK+ 1/2 =o, 

where the e subscript has now been dropped from “vertical velocity” in the s-coor- 
dinate. The obvious form of the temperature equation (21) is 

=QK-I/~-QK+~/~+~KDK. (57) 

Summing these equations over all layers and horizontal points shows that, in the 
absence of sources and sinks, the heat content in finite difference form 

Heat Content = F (hK( T, - TB)) (58) 
K=l 

would be conserved, where angle brackets denote an area average. This requires 
that the divergence operator be conservative (which it is, except at the boundaries) 
and is independent of the values assumed for T at the layer interfaces. However, 
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(57) is not the form of the heat equation used; instead we choose to split the 
horizontal divergence term into three parts and to substitute from (56) for the layer 
divergence. This gives the form 

+wK-*,2V-l/2- qTK)-WK+*,Z(TK+l,2-tTK) 

= QK- 112 - QK+ l/2 + h, D,- (59) 

It remains to specify the temperatures at the layer interfaces and this is done by 
considering which invariant to conserve in finite difference form. Consider the finite 
difference form of the temperature variance 

Temperature Variance = y ( hK( T, - rB)2). 
K=l 

(60) 

Its conservation is analyzed by multiplying (59) by T, and summing. The two 
horizontal advection terms can then be written as a single divergence term which 
sums to zero, and it remains to ensure that the vertical advection terms sum to 
zero. The only choice that makes this possible is 

T,-,,,=#k,+Lh TK+,,~=~(TK+TK+I), (61) 

so that this is the form that conserves temperature variance. However, the finite 
difference form of the potential energy (28) is 

Potential Energy = y K=l (h”bK(~~~hj+~))-fg(z:), (62) 

with zT given by (53). Its conservation is analyzed by multiplying (57) by -crgzK 
and adding (PK + agz,T,) times (56). Some algebra then shows that the w terms 
sum to zero if and only if the layer interface temperatures are given by (49). This 
is the form used in the model, which then conserves temperature variance (60) if 
and only if the layer depths are equal. It is shown in [ 1 ] that in sigma coordinates, 
if the hydrostatic equation is differenced locally, then only one of energy and tem- 
perature variance can be conserved. The finite difference form of the kinetic energy 
(26) is 

Kinetic Energy = z ( $hKuK. uK). 
K=l 

Its conservation is analyzed by considering the dot product of the finite difference 
form of the momentum equation with uK. Thus its conservation is assured by 
assuming layer interface velocities to be the simple averages given in (48) and to 
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employ an equation with similar advection properties to that for temperature (59). 
Thus the finite difference form of the momentum equation (20) is 

$hK”K)-; II, $$+ $7. (uKhKuK) +; h,u, .Vu, 

+ WK- l/2(“, - l/2 - 4°K) - wK+ ,,*(“K+ l/2 - f-u,, 

+fk x h,“, + PGF,= tK- 1,2 - zK+ ,,2 + h,F,, 

where the pressure gradient force is given by (55). 
The model finite difference equations are (56), (59), and (64) with the pressure 

gradient force, b, and zT defined by Eqs. (55), (52), and (53), respectively. The 
stability of these equations is discussed in Section 6b. Diagnostic quantities are 
given by (58), (60), (62), and (63) and equations for these quantities will be given 
in the next section when the forcing and vertical dissipation terms have been 
specified. 

(f) Unstratified Model 

The finite difference equations of the unstratified model are (56) and (64), where 
the pressure gradient force is given by the simplified form 

PGF,=zh,V (65) 

The unstratified model kinetic energy is still given by (63), and an available poten- 
tial energy can be derived from (62) for this simpler model, and is given by 

(66) 

Equation (59) can be thought of as an equation for a passive scalar in the 
unstratified model. 

4. VERTICAL COORDINATE, FORCING, AND VERTICAL MIXING 

(a) Mixed Layer 

The upper layer of the model, K = 1, is taken to represent the well-mixed layer 
at the ocean surface. The velocities and temperature are considered as constant in 
this layer so that T, is sea surface temperature (SST). The model has three 
possibilities to represent the physics of the mixed layer: (i) the depth of this mixed 
layer remains constant, i.e., 

h,=const=-w,,,,=V.(h,u,); (67) 
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(ii) a true layer, with no entrainment or detrainment of fluid from the base of the 
layer, i.e., wi 1,2 - -0; (iii) the entrainment or detrainment at the base of the mixed 
layer is determined by an equation derived, for example, from a Kraus-Turner 
model [6]. This option is similar to the method described in [ 111. The upper layer 
depth is then given by (56) with K= 1. 

(b ) Remaining Layers 

The vertical coordinate s over the remaining layers has been chosen to be like a 
sigma coordinate which divides the total depth of these layers into prescribed frac- 
tions. A sigma coordinate is most often used in atmospheric models with pressure 
as the vertical coordinate and divides the atmosphere into layers with prescribed 
fractions of the total model pressure difference, see [S]. With this vertical coor- 
dinate, the first step is to update the total depth of layers 2 through NZ. This is 
done by summing (56) over these layers to obtain 

(68) 

where w1 ,,2 is given by (67) or mixed layer physics and w is zero at the base of the 
model. The total depth is divided into the separate layer depths by 

(69) 

where (TV, K= 2, NZ is prescribed beforehand. The vector CJ is such that 

<h,) 

a1 = c;$, (hK)’ (70) 

and 0, has been defined as in (70) for convenience. 
Now that the time derivatives of all the layer depths from 2 to NZ are known, 

repeated application of Eq. (56) with K = 2, NZ - 1 is used to calculate the remain- 
ing wK+ i,*‘s diagnostically. Thus the entrainment or detrainment at the base of the 
mixed layer, w1 1,2, has to be predicted but the remaining w’s governed by a sigma- 
type coordinate are calculated diagnostically. Now that all the w’s are known, the 
velocities UK and temperatures TK, K= 1 . . . NZ can be updated using (64) 
and (59). 

A fourth model option treats the total fluid depth using a sigma coordinate. In 
this case, the sums in the definition of the (T’S, (69) and (70), start at K= 1 rather 
than K= 2. In this more usual case the total layer depth is first predicted by 
summing (56) over all the layers. Then all the w’s are calculated diagnostically by 
repeated application of (56) with K = 1, NZ - 1. Finally all the velocities and 
temperatures are updated using (64) and (59). 
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(c) Surface Forcing 

The surface stress ri,* and heat flux Qi,* in the model are assumed to affect 
directly only the upper mixed layer, K = 1. They can be general prescribed functions 
of x and t or can depend upon the model variables in the upper layer. The forms 
used at present are simple and well known: r1,2 is constant in space and time and 

QI,,(x, t) = @(T, - T,), (71) 

where T, is some prescribed “atmospheric” temperature, presently set to a con- 
stant; T, is the model SST; and 0 is a constant heat flux per degree centigrade. 

(d) Vertical Mixing 

The finite difference forms of vertical mixing in the model are approximations of 
the continuous forms 

v,au 
r=j--, Q+, (72) 

where vy and K” are the vertical eddy diffusivity and conductivity. The finite 
difference forms are 

t K+ 1/2 = BINT,, 1,2 ;“,;y+’ 3 
Kfl 

tN~+l,z=BINT,,+,,,~~, (73) 

Q K+l,2=cINT~+1,2 z;z:;, QNZ+ 1/2 =CIWv,+1/2 TN;;TE. (74) 

The internal terms merely redistribute momentum and heat within the layers, but 
the bottom terms are sinks of these two quantities. The finite difference forms (73) 
and (74) are approximations to (72) because they have sigmas in the denominators 
rather than the actual depth between the midpoints of layers K and K + 1, which 
is a function of x and t. The definition of sigma in (69) then gives the relations 

(BINT, CINT)=2(v,, rc,,) 
I 

“c” (hK). (75) 
K=2 

Equation (75) indicates that, if the depth of layers 2 - NZ increases, then the values 
of BINT and CINT should be reduced to keep the same values of vy and K,,. 
However, this is only true for the well-resolved vertical wavenumbers and, with 
only a few model layers, no vertical wavenumber is well resolved. In fact, the verti- 
cal friction and thermal damping act primarily on the shortest possible vertical 
wavelengths. A simple analysis shows that BINT and CINT should be proportional 
(not inversely proportional) to the depth of layers 2 - NZ in order for the damping 
on the 2As wave to remain the same. These forms for vertical mixing give the 
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following forms for the budgets of total energy, heat content (HC) and temperature 
variance (TV): 

(uK-uK+d* wurN~‘BINTx+,,2 (aK+aK+,) 
K=l 

- BINTNz + 1/2 

+y f hKN~‘CINTK+,,2(TK-TK+1) 
K-2 K=l 

+ q CINT,, + i/2 (TN, - T,) zNz 
ONZ 

+ “c” hK(uK ‘F,-a@,D,) , 
K=l > 

$ (Hc) = (tit,,2 - CINTNZ, I/Z (TN;i=B) + “c” h, &), 
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(76) 

Equation (76) shows that internal friction and friction and thermal damping at the 
model base act to reduce the energy in the active ocean layer, whereas internal ther- 
mal damping acts to increase it by mixing warmer water downward. Equation (77) 
shows that the total heat content is only changed by the surface heat flux, thermal 
damping at the base of the model, and horizontal damping, which is usually small. 
Equation (78) shows that temperature variance is reduced by thermal damping and 
has the spurious finite difference term when the layer depths are not equal; see the 
discussion in Section 2(e). The forms (76)-(78) also assume no contributions from 
horizontal finite differences; see the discussions in Sections 3(b) and 5. 

5. HORIZONTAL SMOOTHING AND FRICTION 

(a) Shapiro Filter 

The horizontal smoothing in the model is the filter devised by Shapiro [12]. In 
one dimension, the filter of order n is defined by 

j’,!’ = fi - F”“(fi), (79) 
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where 

wi,=awi-f,+I-h~I). (80) 

Here n must be an even integer and is twice the order of the filter as originally 
defined in [ 121. We use this definition of n because n/2 repetitions of the finite dif- 
ference operation F, which reaches to points i + n/2, is a finite difference approxima- 
tion of P/ax” which is second-order accurate in Ax. Thus 

F”“(fJ z ( - 1 )““r g{, (81) 

where 
y = (AX/~)“. (82) 

Thus the filter of order n is like the nth differential operator with a coefficient that 
depends upon the grid spacing. The coefficient of one quarter in (80) is chosen such 
that, whatever the value of n, the coefficient of the 2Ax wave in fi is set to zero in 
fl by the filter. This filter suppresses nonlinear computational stability by eliminat- 
ing the 2Ax wave. By eliminating it completely during each application, the filter 
does not have to be applied each timestep for the computation to remain stable. 
The less often the filter is applied, the less viscous is the solution. The amount of 
smoothing is also very dependent upon the order n of the filter chosen. The higher 
the value of n, the fewer waves with shorter wavelengths are affected by the filter, 
such that when n = 16 all waves longer than 4Ax are virtually unaffected by the 
filter. 

In a bounded domain, a boundary condition for the filtering must be imposed. 
In the model there is a choice between two possibilities: a conservative scheme and 
no change at the boundary. These are accomplished by 

Conservative, Wd=~Uo-f,), (83) 
No change at boundary, Wo I= 0. (84) 

The conservative scheme means that the sums of fi and f; over all i points are the 
same and the no change at the boundary scheme means that fi and f7 have the 
same boundary values. We note that use of either scheme means that the coefficient 
of the 2A.x wave is not set exactly to zero at the boundary. Also, if the grid is 
stretched as described in Section 3(a), then the conservative scheme does not 
conserve line integral quantities unless the variable f is modified by the varying line 
segments Ax before the filtering is done (see Section 9). 

The model also has the option to use the Shapiro filter with reduced order near 
the boundaries. With this option, the order of the filter at the point adjacent to the 
boundary is 2, at the next point the order is 4, etc., until the full order n is achieved 
at the (n/2)th gridpoint from the boundary. This idea was first used in [9]. The 
main reason to use this option is that the stratified model rapidly becomes unstable 
at the boundaries if uniform filters of order 8 or more are used. This is not true of 
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the unstratified model which remains stable using uniform filters of order 8, 16, or 
32. However, the stratified model is much more sensitive and is always unstable 
with uniform filters of order 8 or more. Thus the stratified model uses the reduced 
order filter. This can also be justified physically by the argument that friction and 
mixing are greatest at ocean boundaries and so should be in the model where the 
boundary motions are well resolved. The reduced order filter also has the advan- 
tage that only the usual frictional boundary conditions are applied and no 
arbitrary, higher order boundary conditions are needed. The reduced order filter 
uses (83) or (84) only once at the boundary, which means that the “conservative” 
scheme is not conservative even when the grid is uniform. The reduced order filter 
can be made truly conservative (see Section 9). The coefficient of the 2 Ax wave is 
not set to zero near the boundaries, and this might mean that filtering has to be 
done more frequently than in a model where this coefficient is set to zero, i.e., using 
a uniform filter in a doubly periodic domain (see Section 9). The model filters hu, 
0, and h first in x and then in y after a given number of Lorenz N-cycles (see 
Section 6). This means that the order of the reduced filter is asymmetric in x and 
y near the boundaries, as in [ll], whereas the reduced order filter in [9] is 
symmetric in x and y. 

(b) Boundary Conditions 

The inviscid boundary conditions are the usual ones of zero normal velocity at 
solid boundaries and no boundary conditions on temperature. The model has a 
choice of three different velocity boundary conditions and two different temperature 
frictional boundary conditions. They are 

1. No slip at all boundaries. 
MBC = 2. No slip at E, W and slip at N, S boundaries. (85) 

3. Slip at all boundaries. 

i 

1. Temperature specified at N, S boundaries and 
MTC = zero heat flux at E, W boundaries. u-36) 

2. Zero heat flux at all boundaries. 

These boundary conditions are implemented by using the appropriate form of the 
Shapiro filter, i.e., no change at boundary if u or T have specified boundary values, 
and conservative if u or T are not specified. For options MBC = 2 and MTC = 1, 
this requires using the different filter options in the x and y directions. h is also 
filtered with constant order in the unstratified model and with reduced order in the 
stratified model (see Section 9). In the code, the filtering is done after the boundary 
conditions have been applied. 

(c) Laplacian Friction 

In order to compare the effects of the Shapiro filter with other frictional forms 
used in numerical models, we have implemented Laplacian and biharmonic friction 
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forms. For simplicity, these forms were only tested with a uniform horizontal grid 
and then compared to runs using the filter on the same grid. 

For Laplacian friction, the forms in Eqs. (20) and (21) are 

F=v,V*u, D=uHV2T, (87) 

with no friction in the continuity or h equation (22). The boundary conditions are 
no slip and zero normal derivative of temperature at all boundaries. The Laplacian 
operator is approximated in finite difference form by 

a’! (L+1+L-1-2fi) 

@= (Ax)* ’ 
(88) 

which is second-order accurate in dx. The boundary form for temperature is 

(89) 

A boundary form for velocity is not needed because of the no slip boundary 
condition. 

(d) Biharmonic Friction 

The biharmonic friction forms used in (20) and (21) are 

F= -&,V4u, D= -r?,V4T, (90) 

again with no friction in the h equation (22). Extra boundary conditions have to 
be specified with these forms. We have chosen to implement no slip and zero second 
normal derivative of velocity and zero first and third normal derivative of tem- 
perature. The higher order boundary conditions seem the most logical to use given 
the usual frictional boundary conditions. These different boundary conditions on 
velocity and temperature mean they require different finite difference forms next to 
the boundaries. The finite difference forms are again only specified for use with a 
uniform horizontal grid and are second-order accurate in dx. The interior form is 

The next to the boundary form for velocity is 

(91) 

(92) 
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A boundary form for velocity is again not needed because of the no slip boundary 
condition. The forms for temperature next to and on the boundaries are 

Tf (f3-4f2+7f1-4fo) 
ax;‘” (Ax)4 ’ 

a”f 
ax4,= 

2(f, - 4fi + 3fO) 
(Ax)4 * 

(93) 

(94) 

(e) Consistency and Convergence 
We have given the accuracy of the horizontal and vertical differencing and 

horizontal smoothing and friction schemes. It is straightforward to demonstrate the 
consistency of the finite difference equations except for the Shapiro filter where the 
coefficient y depends upon Ax, see Eq. (82). Thus the coefficient of the nth 
derivative in the Shapiro filter changes if the horizontal resolution is changed, and 
in fact tends to zero as Ax --) 0. Thus the model formally becomes inviscid as 
Ax --f 0 and it is inconsistent to apply the viscous boundary conditions. This dif- 
ficulty can be overcome by defining y in (82) to be the maximum of a constant y* 
and (AX/~)“. The finite difference equations are now formally consistent with the 
partial differential equations and, as Ax + 0 when y = y*, the numerical solution is 
convergent. 

In practice the filter is used with y given by (82). Thus, if the horizontal resolu- 
tion is doubled, then y is much reduced and the solution is less viscous. However, 
in geophysical fluid numerical modeling, if the option to double the horizontal 
resolution exists, then the coefficient of Laplacian or biharmonic friction chosen 
would be reduced by factors proportional to (Ax)* and (Ax)~, respectively. The 
reason is that these subgrid scale mixing parameterizations are needed to maintain 
numerical stability by suppressing nonlinear computational instability and to 
provide sinks at the smallest resolvable scales of the model. In fact, the biharmonic 
friction was first used because it separates more distinctly the dissipation scale from 
the energy-containing scale than does Laplacian friction. Thus the Shapiro filter 
and Laplacian and biharmonic frictions are used in a similar way in practical 
computations. 

6. TIME METHOD AND STABILITY 

(a) Time Differencing 

The model uses the N-cycle time differencing scheme of Lorenz [7], with N equal 
to four. To solve the equation 
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where u is a vector and f is a matrix, the scheme may be described as follows. Let 
the timestep be 6t and define At = N 6t. The timesteps are counted by an index n, 
which is zero initially, and the vector a is set to its initial value. The scheme is 

1. m=nmodN, (96) 

2. 
-m At 

4=x, b”=(N-m)’ 

3. v” = b, [any”-’ +f(un, t”)], (98) 

4. un+‘=un+vn, (99) 

5. n=n+l. Cl@)) 

With N set to 4, the scheme is fourth-order accurate in At if S is linear, but only 
second-order accurate in At if f is nonlinear. The scheme also has the property that 
at any intermediate step, m less than N, the solution is correct to first order in At. 
These convergence properties of our time scheme are derived in detail in [7], see 
Eq. (18). 

(b) Linear Stability 
In this subsection we examine the computational stability of Eq. (95), where f is 

considered to be linear and a purely advective operator. In this situation let Aj = iA, 
be the timestep At times the jth eigenvalue off: Then the growth rate, Gj, of the 
mode with eigenvalue Aj for the Lorenz scheme is 

(101) 

Computational stability requires that all growth rates are such that ]Gjl < 1. With 
N = 4, Eq. (101) gives 

(102) 

which shows that the scheme is stable and damping if 1, < fi. When A, 4 1, (101) 
can be approximated by 

For N even, 

G,Neij,A- (ilA)N+’ 
I- (N+ l)! ’ (103) 

which shows that the Lorenz scheme is damping if N is a multiple of 4, but need 
not be so when N is an odd multiple of 2. 
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We now consider the timestep restriction due to an advective term of the form 
CU,. The maximum eigenvalue of the fourth-order centered scheme (44) is 1.37/Ax, 
so that the timestep restriction is 

With the 4-cycle scheme At = 4 6t and for a two dimensional equation, the timestep 
restriction from (105) becomes 

Here iit is in seconds, Ax and Ay are in m and an appropriate speed c is 3 m/s 
because it is larger than any wave or advective speed attained in model runs. This 
advective restriction on the timestep is much more severe than that due to vertical 
mixing in the form described in Section 4(d). This analysis is based on work 
in [2, 41. 

7. UNSTRATIFIED MODEL EXPERIMENTS 

In this section we describe a series of experiments using the 2-layer unstratified 
version of the model that were run in order to compare the effects of various 
horizontal smoothing techniques. The experiments use either constant easterly wind 
stress or constant southerly wind stress of 0.5 dyne/cm2 and the model is integrated 
to 2000 days. A no slip condition is applied at the boundaries. Other details of the 
model setup and parameter values for these experiments are given in Table I. The 

TABLE I 

Unstratified Model Parameter Values 

Domain 30”x30°x200m 
Resolution 60X60X2 
Horizontal Uniform of f” 
Vertical Constant 40 m, initial 160 m 
b/p, = 0.019 m/s’ 
BINT = 1.5 x 10m5 m/s 
7x= -0.5 or 0 dynes/cm* 
7y= 0 or 0.5 dynes/cm’ 
Lorenz N-cycle, N = 4 
61= fi days or 45 mins 
At= i days or 3 h 
Uniform filter order 8 and 16 applied every f day 
Uniform filter order 32 applied every 0.04 days 
Reduced filter order 16 applied every i day 
Laplacian friction vH = 4 x 10’ mZ/s 
Biharmonic friction S, = 4 x lOI* m4/s 



466 GENT AND CANE 

model has a constant depth mixed layer of 40 m and a variable depth layer below 
that is uniformly 160 m at t = 0. The density difference between these two layers and 
the resting ocean below is set at 2 x 1O-3 g/cm’. The value of vertical friction is 
equivalent to a vy = 12 cm’/s acting over the 160 m layer. The time integration 
scheme used is the Lorenz 4-cycle scheme. 

The horizontal smoothers used are the uniform Shapiro filter of order 8, 16, and 
32, the reduced filter of order 16, Laplacian and biharmonic frictions. All 
experiments are run as close to the stability boundary as possible. Applying the 
uniform filter every 0.5 days for order 16 is the largest number of complete Lorenz 
4-cycles that maintains stability during the spin-up phase of the experiments. The 
filter was also applied every 0.5 days when the order was 8. When the order was 
32, however, a smaller timestep had to be used and the filter had to be applied after 
every Lorenz 4-cycle in order to maintain stability. The Laplacian and biharmonic 

b) 

d) 

FIG. 2. Unstratified model equilibrium response to constant east wind stress of 0.5 dynes/cm2, using 
order 16 uniform filter. (a) IA in upper layer; (b) u in lower layer; (c) h in second layer, and (d) II along 
the equator in lower layer against time for last 100 days of spin up. 
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friction values of 4 x lo3 m*/s and 4 x lo’* m”/s are also the minimum values 
required to maintain stability during the spin-up phase. If the frictions were reduced 
to 3 x lo3 and 3 x lo’*, then either the east or the south wind case blew up during 
spin-up from rest. 

First we describe the different equilibrium states in the two cases using easterly 
or southerly wind stress. The zonal velocities in the two layers and the depth of the 
second layer at 2ooO days in the east wind case using the uniform Shapiro filter of 
order 16 are shown in Fig. 2. In the upper layer there is mostly westward flow with 
some return flow in the countercurrents. Most of the water is returned to the east 
by the undercurrent in layer 2. At the equator, the second layer is much deeper in 
the west and much shallower in the east than the average depth of 160 m. The 
undercurrent in this case is slightly unstable and has meanders in the eastern half 
of the domain. These meanders propagate eastwards as shown by Fig. 2d, which is 
a plot of u2 along the equator against time for the last 100 days of the experiment. 
This instability for east winds only occurs when using the uniform filter of order 32 
or 16, and the equilibrium state is truly time independent in the remaining cases. 
The fact that these cases have more damping than the uniform order 32 and 16 filter 
cases is also borne out by the equilibrium values of KE and PE, which are given 
in Table II. There is not a large difference in the PE values since the largest 
contribution comes from the basin wide slope in the depth of the second layer. 

TABLE II 

Unstratified Model Experiments: Values of KE/lO” and PE/10’3 at 2000 Days and 
Percentage Losses during 100 Days Spindown. 

Case Easterly wind stress Southerly wind stress 

Uniform filter KE 
order 32 PE 

Uniform filter KE 
order 16 PE 

Uniform filter KE 
order 8 PE 

Reduced filter KE 
order 16 PE 

Biharmonic KE 
friction PE 

Laplacian KE 
friction PE 

Uniform filter KE 
order 16, no VF PE 

Laplacian KE 
friction, no VF PE 

2.15 -15.8% 
1.89 -13.4% 

2.32 -13.5% 
1.85 -17.0% 

2.04 -73.5% 
1.79 -15.3% 

1.91 -73.1 % 
1.92 - 16.0 % 

1.50 -83.3% 
1.71 -16.5% 

1.02 - 90.9 % 
1.67 -84.3 % 

2.32 -40.1% 
1.85 -64.6% 

1.02 -85.4% 
1.67 -81.6% 

4.38 -19.4% 
2.42 -49.1% 

4.24 -78.2% 
2.63 -55.3% 

3.90 -87.2% 
2.17 -57.2% 

3.93 -85.2% 
2.19 -58.8% 

3.21 -92.1% 
2.05 - 62.0 % 

2.16 -97.1% 
1.93 -65.3 % 

4.24 -49.6% 
2.63 -38.0% 

2.16 -96.6% 
1.93 -63.2% 



468 GENT AND CANE 

There are large differences in the values of KE, however, with the Laplacian friction 
value being about half the filter values. 

There is a much stronger instability in the south wind case. Figure 3 shows the 
zonal velocities and lower layer depth at 2000 days in this case again when the 
order 16 uniform filter is used. The waves now propagate westward, as is shown in 
Fig. 3d, which is again a plot of u2 against time for the last 100 days of the experi- 
ment. For south winds there are stronger local depth variation and velocities than 
for east winds, so that the final PE and KE are larger in this case. The instability 
is much stronger for south winds and occurs with all the horizontal smoothers. 
It is rather weak in the Laplacian friction case, however, which again has an 
equilibrium KE value about half the filter values. All the equilibrium values of KE 
and PE for south winds are also given in Table II. 

A series of spindown experiments was also run. The forcing is switched off and 
the model is run for an additional 100 days, and then the percentage reductions in 

FIG. 3. Same as Fig. 2 except for constant south wind stress of 0.5 dynes/cm2. 
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both kinetic and available potential energy are calculated. The ICE and PE would 
eventually go to zero if the model were allowed to spindown completely. The evolu- 
tion of KE and PE over the 1OOday spindown experiments for the order 16 
uniform filter are shown in Fig. 4. The KE drops much more steeply initially for the 
south wind case as the instability source is switched off and the local velocities 
decrease. The KE decrease is much more uniform in time in the east wind case and 
the percentage loss of KE is smaller than in the south wind case. For PE, however, 
the opposite occurs and the initial decrease is much steeper in the east wind case. 
This is also a result of the forcing being switched off, which results in the very fast 
adjustment of the lower layer depth away from its uniform east-west slope along 
the equator in the equilibrium state. This adjustment is accomplished by equatorial 
waves, mainly by the Kelvin wave, in the first 12 days. The PE decrease in the 

FIG. 4. Plots of kinetic and potential energy against time for 100 days of spin down experiments 
using order 16 uniform filter in the unstratified model: (a) KE; (b) PE from east wind case; (c) KE and 
(d) PE from the south wind case. 

581/81/2-16 
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south wind case is much more uniform with time and the percentage lost in 100 
days in this case is much smaller than in the east wind case. 

These differences between the east and south wind spindown cases are similar 
when using any of the other horizontal smoothers, but the percentage reductions in 
energy vary considerably between horizontal smoothers. The cases are listed in 
Table II starting with the order 32 uniform filter, which loses least energy down to 
Laplacian friction, which loses most. It is not accidental that this order would be 
the same if the criterion were the amount of energy in the equilibrium state. For the 
order 16 uniform filter and Laplacian friction, the spindown experiments were 
repeated with no vertical friction. With Laplacian friction the percentage reductions 
are not much smaller than when vertical friction is present, which shows that the 
horizontal damping is the major energy sink. For the order 16 uniform filter, 
however, the percentage reductions are much smaller, which shows that vertical 
friction is a very significant energy sink. This is also known to be true in the 
equatorial oceans and was the major criterion by which we judged the various 
horizontal smoothers. Another criterion in favor of the high-order filter cases is 
their much higher overall values of KE and PE in the equilibrium state. Table II 
also shows that there is little advantage in the order 32 uniform filter over the order 
16 uniform filter in terms of energy spindown, whereas the computation cost is 
many times larger because of the smaller timestep, more computation per filtering, 
and filtering much more often. The filtering is a significant fraction of the total com- 
putation in the order 32 case, whereas the fraction is much smaller in the order 16 
cases, when it is about the same as using Laplacian or biharmonic friction. We 
prefer the order 16 uniform filter to the order 8 uniform and order 16 reduced filters 
because of the higher equilibrium energy values and the smaller percentage reduc- 
tions during spindown. Thus we conclude that, for the unstratified model, the order 
16 uniform filter is the best choice of a weak horizontal smoother that is not 
excessive in computational cost. 

8. STRATIFIED MODEL EXPERIMENTS 

In this section we describe a series of experiments using the 5-layer stratified 
version of the model. The model forcing and configuration is the same as that 
described in Section 7 except that the lower layer is divided into four equal layers 
using the c coordinate, each of which is 40 m deep initially. The model setup and 
parameters are given in Table III which shows that the vertical eddy conductivity 
is an order of magnitude smaller than the eddy diffusivity and is equivalent to 
K y = 1.2 cm*/s acting over the 160 m layers. The heat flux into the ocean is relative 
to a constant atmospheric temperature of 30°C at a rate of 30 W/m* “C. No slip 
and zero heat flux conditions apply at the boundaries. The time step for the 
stratified model is slightly smaller than that for the unstratified version. We com- 
pare runs using the Shapiro filter of order 16 and 8 both of which are reduced to 
order 2 at the boundaries (necessary to retain stability), and Laplacian and bihar- 



EQUATORIAL OCEAN MODEL 471 

TABLE III 

Stratified Model Parameter Values 

Domain 30”x30°x200m 
Resolution 60X60X5 

Horizontal Uniform of lo 
Vertical Constant 4O*m, initial 4 x 40 m 
C?= 2.55 x 10-4”c-’ 
g= 9.8 m/s* 
BINT = 1.5 x 10m5 m/s 
CINT = 1.5 x 10m6 m/s 
TX = -0.5 or 0 dynes/cm* 
rj = 0 or 0.5 dynes/cm* 
8= 30 W/m* “C 
T,= 30°C 
Lorenz N-cycle, N = 4 
Lit= 0.025 days 
At= 0.1 days 
Reduced filter order 8 and 16 applied every 0.4 days 
Laplacian Friction vH = 4 x lo3 m*/s 

fcH = lo3 m*/s 
Biharmonic Friction JH = 4 x lOI* m4/s 

C7, = lo’* m4/s 

manic friction. We again use vH = 4 x lo3 m*/s or v”, = 4 x 10” m4/s and a smaller 
horizontal thermal diffusion of lo3 m’/s or 1012 m”/s. The cases were run to equi- 
librium, 10 and 5 years for the easterly and southerly wind cases, respectively. The 
equilibrium values of KE, PE, and heat content (HC), given by Eqs. (63), (62), and 
(58), are listed in Table IV. In the stratified model, PE is not an available potential 
energy, as in the unstratified model, and is thus much larger than the KE at equi- 
librium in these experiments. The KE, PE, and HC are all defined such that they 
would eventually go to zero if the model were allowed to spindown completely. 

The equilibrium state with constant easterly wind stress of 0.5 dyne/cm2 using the 
reduced filter of order 16 is shown in Fig. 5. It shows the zonal velocities in the 
upper two layers, the free surface elevation zT. and the sea surface temperature, and 
can be compared to Fig. 2 from the unstratified model. For east winds, the surface 
velocity is again mostly westward, most of which is returned to the east by the 
equatorial undercurrent. This current is strongest in the second layer and weakest 
in the fifth layer. The surface elevation slopes upwards to the west with a difference 
of 25 cm at the equator across the 30” of longitude. The corresponding depth of 
layers two to five increases to the west, but the changes along the equator are 
reduced from those in the unstratified model. Most of the longitudinal changes in 
surface elevation are caused by temperature, not depth, variations as there is a 
difference of 8°C in sea surface temperature across the basin at the equator. The 
model was integrated for 10 years in this case because of the long adjustment time 
for temperature (due to small K y) and the fact that the final state had a weak 
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TABLE IV 

Stratified Model Experiments: Values of KE/lO”, PE/lO”, and HC/lO’ at 10 Years (East) and 
5 Years (South) and Percentage Losses during 100 Days Spindown 

Case Easterly wind stress Southerly wind stress 

Reduced filter 
order 16 

Reduced filter 
order 8 

Biharmonic 
friction 

Laplacian 
friction 

Reduced filter 
order 16, 
no VF 

Laplacian 
friction, 
no VF 

KE 
PE 
HC 

10.0 -57.9% 
4.22 -5.1% 
2.19 -5.6% 

KE 
PE 
HC 

9.9 -58.3% 
4.21 - 5.2 % 
2.19 -5.6% 

KE 
PE 
HC 

8.9 - 50.4 % 
4.31 - 5.0 % 
2.19 -5.1% 

KE 
PE 

HC 

4.6 -65.1% 
4.36 -5.0% 
2.21 -5.1% 

KE 10.0 
PE 4.22 
HC 2.19 

KE 4.6 
PE 4.36 
HC 2.21 

+51.7% 
-0.4% 
+ 0.2 % 

+ 4.1% 
-0.3 % 
+0.1% 

14.0 -78.9% 
4.10 -3.6% 
2.13 -5.3% 

10.1 -83.0% 
4.12 -3.6% 
2.13 -5.4% 

7.0 -84.3% 
4.14 -3.1% 
2.14 - 5.4 % 

3.3 -81.5% 
4.13 -3.7% 
2.13 -5.4% 

14.0 -38.5% 
4.10 -0.1 % 
2.13 + 0.2 % 

3.3 -61.7% 
4.13 -0.2% 
2.13 +o.l% 

instability and was not quite time independent. For east winds, this situation 
occurred when using any of the four horizontal smoothers. 

In contrast, all four cases with southerly winds stress of 0.5 dyne/cm2 go to a 
genuine steady state. It is shown in Fig. 6 using the order 16 reduced filter, and can 
be compared to Fig. 3 from the unstratified model. In both model versions the 
zonal currents are much more barotropic than in the east wind case and the maxi- 
mum zonal velocities are at about 3”N. There is a corresponding minimum in 
surface elevation zT at this latitude, just as there was a minimum in layer depth in 
the unstratified model. There is relatively little gradient in sea surface temperature 
from the equator to 5”N so that the layer depth variations have a significant effect 
on surface elevation in this region. This is in contrast to the situation along the 
equator in the east wind case. 

The cases in Table IV have been listed in order of the amount of KE in the equi- 
librium state. For the east wind case, the values for the reduced filter of order 16 
and 8 are almost the same because most of the small scale velocity variance is near 
the boundaries where there is no difference between these filters. In the south wind 
case some of the small scale velocity variance is away from the boundaries and the 
order 16 reduced filter has significantly more KE. As for the unstratified model, the 
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Laplacian friction cases have the least KE: it is less than 50 % and 25 % of the 
order 16 reduced filter KE in the east and south wind cases, respectively. There are 
only small differences in the values of PE and almost no difference in the HC values 
using the different horizontal smoothers. This indicates that the layer depths and 
temperatures have large horizontal scales and their equilibrium values are dictated 
mostly by the value of the vertical heat diffusion. The PE and HC values change 
slowly with time and take a long time to reach their equilibrium values. 

Spindown experiments were also run with the stratified model and the percentage 
losses in KE, PE, and HC over a period of 100 days are listed in Table IV. The 
evolution of KE, PE, and HC for the east wind case with the order 16 reduced filter 
are shown in Fig. 7. It shows that initially there is a conversion of PE to KE which 
remains above its equilibrium value for 25 days before decreasing to 42% of its 
equilibrium value after 100 days. In contrast, PE and HC decrease slowly and 

10.5 

5.N 

10.5 

D.0 5.E I0.E lS.L Z0.L 2s.E 0.0 5.t I0 .E 15.c 20.t 25.t 

FIG. 5. Stratified model equilibrium response to constant east wind stress of 0.5 dynes/cm2, using 
order 16 reduced filter: (a) u in upper layer; (b) u in second layer; (c) free surface elevation z,; and (d) 
T in upper layer. 
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almost linearly over the entire 100 days. This long decay time is determined by, and 
is inversely proportional to, the vertical heat diffusion rcy. In a comparison experi- 
ment starting from the same equilibrium state, but with IC,, increased by a factor of 
ten, PE and HC decreased by 45.0% and 53.5%, respectively, compared to 
decreases of 5.1% and 5.6% in the standard case. Also shown in Fig. 7(d) is the 
evolution of KE over 100 days when there is no vertical friction. In this case KE 
increases by 70 % of its equilibrium value in the first 15 days and remains at over 
150% of its equilibrium value for the entire 100 days. In the same time PE only 
decreases by 0.4% but, because of its much larger equilibrium value compared to 
KE, the total energy of the flow does decrease over the 100 days. This shows that 
the major sinks of KE, PE, and HC in the stratified model are vertical friction and 
heat diffusion as is desired on physical grounds. 

The evolution of KE, PE, and HC for the south wind case with the order 16 

FIG. 6. Same as Fig. 5 except for constant south wind stress of 0.5 dynes/cm2. 
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reduced filter are shown in Fig. 8. In this case KE falls uniformly and smoothly to 
only 21% of its equilibrium value after 100 days, and again PE and HC decrease 
slowly and almost linearly over the entire 100 days. Figure 8(d) shows the evolution 
of KE over 100 days when there is no vertical friction. There is a small initial 
increase in KE, but after 100 days it has decreased to 62 % of its equilibrium value 
which again shows that vertical friction is the major sink of KE. PE and HC are 
essentially unchanged over 100 days in the no vertical friction case, which shows 
that their major sink is vertical thermal diffusion. With Laplacian friction this 
dominance of vertical over horizontal damping processes is considerably reduced; 
see Table IV. 

Table IV also shows that there is relatively little difference in percentage reduc- 

FIG. 7. Plots of kinetic and potential energy and heat content against time for 100 days of spin down 
experiment using order 16 reduced filter in the stratified model with east wind stress: (a) KE; (b) PE; 
(c) HC; and (d) KE from a similar experiment with no vertical friction. 
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tions between the horizontal smoothers when vertical friction is present. This is in 
contrast to the unstratified model where the differences are quite large. This much 
more comparable energy loss in the stratified model is due to the necessity of using 
the reduced order filter so that the smoothing near the boundaries is now quite 
large. There are two reasons why we still prefer the filter over Laplacian and bihar- 
manic friction in the stratified model. The first is that the flow is much less damped 
as indicated by the equilibrium values of KE in Table IV. The second is that the 
differences in percentage reductions between the filter and the other frictions in 
spindown experiments increases when more points than the 60 x 60 used here are 
employed. This will certainly be the case in most model applications. Also with a 
stretched grid the high dissipation region of the filter will be smaller than when the 
grid is uniform, which again reduces the dissipation effects of the filter compared to 
the other frictions. Thus we conclude that, for the stratified model, the order 16 
reduced filter is the best choice of a weak horizontal smoother. 

KE- 
noVF: 

FIG. 8. Same as Fig. 7 except with south wind stress. 
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9. CHOICE OF FILTER 

Since the horizontal average of the height field is time independent, a conser- 
vative filter should be applied to h. However, in our work with both versions of the 
model, we have found that a conservative filter is worse at suppressing the 2Ax 
wave near the boundaries than a nonconservative one, so that the conservative 
filter has to be applied more frequently to suppress nonlinear computational 
instability. For example, if the order 16 uniform filter is used in the unstratified 
model under the conditions given in Table I with the conservative (CON) filter (83) 
on h and the no change at boundary (NCAB) filter (84) on hu, then experiments 
with east and south winds both fail. The experiments listed in Table II for these 
conditions in fact use the NCAB filter on both hu and h, i.e., the correct BC on u, 
but the incorrect BC on h. Thus the model has errors in h due to this as well as 
the nonconservation of the horizontal differencing scheme described in Section 3(b). 
At the end of these experiments at day 2000, the error in the average depth of the 
160 m second layer is 61 and 33 cm in the east and south wind cases, respectively. 
These values are given in Table V which lists the depth error in cm for several of 
the experiments described in Sections 7 and 8, and for some experiments described 
below. Our philosophy is to accept these depth errors of 0.4% and 0.2% after 2000 
days for the following reasons. The greater numerical stability of the NCAB filter 
means that filtering can be done less frequently so that the ratio of horizontal to 
vertical damping in the model is minimized. The model is only intended to be run 
for several years, so that depth errors in the unstratified version are likely to always 
be less than 1 %, which we find acceptable. We note here that conserving h would 
require modifying the horizontal differencing scheme near the boundaries and 
modifying the variables by the varying line segments Ax before filtering when the 
grid is stretched. Laplacian and biharmonic friction are not applied to h, but depth 
errors do occur due to the horizontal differencing near the boundaries. The errors 
are very small for Laplacian friction because the flows are much less energetic, and 

TABLE V 

Depth Error in cm of the 160 m Layer after 2000 Days (Unstratified Model) 
or 5 Years (Stratified Model): Order 16 Filter Applied 

Every 4 Lorenz 4-cycles with NCAB Filter on hu. 

Model 

Unstratified 
Stratified 

Unstratified 
Unstratified 
Unstratified 

Stratified 

Grid 

Uniform 
Uniform 
Uniform 
Uniform 
Stretched 
Stretched 

No. of 
points 

60X60 

60X60 

60X60 

100x100 
60X60 

60X60 

Filter 

Uniform 
Reduced 
Reduced 
Reduced 
Reduced 
Reduced 

BC on 
h,hT 

NCAB 
CON 
CON 
CON 
CON 
CON 

East South 
winds winds 

61 33 
219 124 
306 162 
84 30 
21 86 

120 - 
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slightly larger for the somewhat more energetic flows using biharmonic friction. The 
order 8 and 32 uniform filter experiments listed in Table II also use the NCAB filter 
(84) on both hu and h, and this is the form of the filter we recommend for the 
unstratified model. 

The same questions arise for the reduced filter which has to be used in the 
stratified model and the answers are similar. The reduced lilter can be made truly 
conservative, but we have found this to be more numerically unstable than other 
forms of the reduced filter. For example, if the order 16 reduced filter is used in the 
stratified model under the conditions given in Table III with a truly conservative 
filter on h and hT, and the NCAB filter on hu, then the experiment with south 
winds fails. With east winds, the experiment runs to 5 years but the final fields 
contain a considerable amount of 2 Ax noise. The experiments listed in Table IV for 
these conditions in fact use the NCAB filter (84) on hu and the conservative (CON) 
filter (83) on h and hT. However, as described in Section 5(a), the CON filter is not 
conservative when the reduced filter is used. The depth errors in the 160 m layer at 
5 years in these experiments are 219 and 124 cm in the east and south wind cases, 
respectively, see Table V. These depth errors using the order 16 reduced filter are 
considerably larger than those for the unstratified model using the order 16 uniform 
filter, but less than the errors in the unstratified model using the order 16 reduced 
filter. These errors are 306 and 162 cm for the east and south wind cases, respec- 
tively, see Table V. 

These depth errors with the reduced filter are quite large but are considerably 
reduced in most model applications when more than 60 x 60 points are used and 
the grid is stretched. First, we have run the unstratified model with a uniform grid 
of 100 x 100 instead of 60 x 60 points using the order 16 reduced filter. The depth 
errors at 2000 days are 84 and 30 cm (Table V) compared to 306 and 162 cm in the 
60 x 60 case. Second, we have used the stretched grid employed in [2, 31. This has 
c( = 0.35, b= 0.037 at the equator, a = 0.25, j?= 0.03 at the east and west boun- 
daries, and a = 0.17, b =0.02 at the north and south boundaries. We have not 
modified the variables by the line segments dx before filtering. In the unstratified 
model with 60 x 60 points using the order 16 reduced filter, this reduces the depth 
errors at 2000 days to 21 and 86 cm in the east and south wind cases, respectively. 
Third, this same stretched grid in the stratified model using the order 16 reduced 
filter reduces the depth error at 5 years from 219 to 120 cm in the east wind case 
(Table V). In this configuration, the south wind case failed, as it did using several 
other boundary condition forms of the order 16 reduced filter. These depth errors 
of 0.5% after 2000 days in the unstratified model and 0.75% after 5 years in the 
stratified model are much more acceptable given that the model will only be run for 
several years. We have run some experiments with the stratified model using the 
NCAB reduced filter on h and hT. Compared to experiments using the CON 
reduced filter on h and hT, the depth errors at 5 years are sometimes larger and 
sometimes smaller. However, with the stretched grid and using east winds, the 
CON filter on h and hT case is stable (Table V), whereas the NCAB filter on h and 
hT case failed. Thus, we conclude that the NCAB filter on h and hT is slightly less 
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stable than the CON filter on h and hT. We have also run experiments using the 
CON filter on hu, but have found no advantage over the NCAB filter which is the 
correct boundary condition on u. The order 8 and 16 reduced filter cases listed in 
Table IV use the NCAB filter (84) on hu and the CON filter (83) on h and AT, and 
this is the form of the filter we recommend for the stratified model. 

10. CONCLUSIONS 

We have described a reduced gravity, primitive equation model of the upper 
equatorial ocean. There are two versions of the model: unstratified and stratified. 
The model has a well-mixed layer at the surface, which is of constant depth in all 
experiments described here, and an ocean layer below, which can be divided into 
several numerical layers by means of a sigma coordinate. This concentrates the 
model resolution in the equatorial thermocline and undercurrent where the vertical 
shears are largest. The reduced gravity approximation means that the deep ocean 
is at rest and has constant density or temperature. The model is forced by surface 
wind stress and heating that act over the mixed layer. The vertical damping has the 
form of an interfacial drag and thermal diffusion. The numerical grid can be 
stretched in the horizontal and the finite differencing is fourth-order accurate in the 
horizontal and second-order accurate in the vertical. The time stepping method 
used is the N-cycle scheme of Lorenz [7]. 

We have chosen to use the order 16 Shapiro filter to suppress nonlinear com- 
putational instability for several reasons. In experiments with constant easterly or 
southerly wind stress, the filter consistently gave much higher equilibrium values of 
kinetic and available potential energy in the unstratified model and higher values 
of kinetic energy in the stratified model than the more familiar Laplacian and bihar- 
manic frictions. In spindown experiments with the unstratified model, the filter loses 
much less energy than these frictions. In spindown experiments with the stratified 
model, the filter losses are comparable to those of the frictions. The reason is that 
the reduced order filter is needed in the stratified model to maintain numerical 
stability, and it has larger damping at the model boundaries. This is justified 
physically because friction and mixing are greatest at ocean boundaries, and so 
should be in the model where the boundary motions are well resolved when the 
grid is stretched. Finally, the filter requires less computation than Laplacian and 
biharmonic frictions when the grid is stretched. We have chosen to use the most 
stable boundary forms for the filter so that it can be applied as infrequently as 
possible. This minimizes the ratio of horizontal to vertical damping, which is what 
we want on physical grounds. Thus the filter uses incorrect boundary conditions on 
layer depths and temperatures. This introduces depth errors which have been 
shown to be less than 1% in experiments lasting several years. We find this error 
acceptable and have chosen not to make the horizontal differencing and filter truly 
conservative, which could be done but would require more computation. 
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