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ABSTRACT 
The effect of bottom topography H on the barotropic transport in a periodic zonal channel is 

studied. An asymptotic approximation is found for the zonal transport on anf-plane and a 
P-plane when all f/H isolines are blocked by the zonal walls. It is shown that to leading order, 
the zonal channel transport is independent of friction. In this it is similar to the Sverdrup 
transport in a basin. To leading order, the transport is proportional to the bottom topographic 
wavelength, and inversely proportional to the height of the topography and to R, the range of 
values of f/H that exists on both sides of the channel. For sufficiently high topography the 
transport varies inversely with the topographic height squared. The analytic results are verified 
by numerical experiments. 

1. Introduction 

From the very beginning of Antarctic Circumpolar Current (ACC) modeling 
efforts it was clear that a realistic ACC transport (of the order 130 Sv [l Sv = 
lo6 m3/s]; e.g. Whitworth, 1983) in a constant depth model can be obtained only with 
a horizontal turbulent viscosity, AH, of the order of lo6 m2/s (Hidaka and Tsuchiya, 
1953). This is higher than the data allow. Stommel(l957, p. 178) writes: “. . . the fact 
that deep warm water in the Circumpolar Current preserves its Atlantic characteris- 
tics even into the Pacific Ocean suggests that the lateral diffusivity can hardly exceed 
lo7 cm2/sec. . . .” 

The ACC transport in the Bryan and Cox (1972) GFDL homogeneous global 
ocean model reached 650 Sv before steady state was achieved in the case of a flat 
bottom and&, = 4 * 104 m2/s; it decreased to 32 Sv when realistic topography was 
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introduced. Bryan and Cox (1972) explained this result by the reduction in f/H 
contours (f is the Coriolis parameter and H is the ocean depth) passing through the 
Drake Passage. Johnson and Hill (1975) have shown that any deviation from a flat 
bottom ocean leads to a reduction of the ACC transport. Bye and Sag (1972) 
concluded that “the effect of frictional processes on the circumpolar circulation is of 
minor importance in a variable depth model.” Ichiye (1976) attributed the underesti- 
mated ACC transport in the Bryan and Cox (1972) variable depth model to excessive 
horizontal viscosity. He suggested that its influence was increased by the narrowing 
of the jet following f/H isolines. However, according to Ichiye’s arguments the ACC 
transport should be inversely proportional toAH, whereas Bryan and Cox found that 
ACC transport decreased only by 30% when& was eight times higher. 

Munk and Palmen (1951) were the first to suggest that it is topographic pressure 
torque that balances the input of vorticity by the wind stress curl. There are 
significant submarine ridges which allow transfer of horizontal momentum to the 
solid earth. Eddy resolving numerical experiments by McWilliams et al. (1978), Wolff 
and Olbers (1989) and Wolff et al. (1990, 1991) have unambiguously shown topo- 
graphic pressure drag to be an extremely important control on simulated ACC 
transport. Holloway (1987) studied the effects of topography on eddies analytically. 
He emphasized east-west asymmetry of the topographic drag which was shown to 
drive the mean flow “in the sense of intrinsic wave propagation,” i.e. westward. This 
result was confirmed by Wolff et al. (1991). 

The goal of this study is to show that in the absence of horizontal viscosity, 
topographic pressure forces alone are able to effectively restrict barotropic transport. 
This is true even when the amplitude of topographic variation is relatively small. We 
consider a simple linear barotropic model which allows an analytical treatment. The 
model may be considered an extension of work by Ivanov and Kamenkovich (1959), 
Kamenkovich (1960, 1962) and Johnson and Hill (1975). All used essentially the 
same equations to study zonal channel flow in the case when there are closed f/H 
isolines encircling Antarctica. In this paper we focus on the case of topographic relief 
high enough so that all f/H isolines are blocked by the zonal walls. A study very 
similar to ours was simultaneously undertaken by Wang and Huang (1994). They 
considered a narrow ridge in an otherwise flat-bottomed channel. Their conclusions 
are very similar to ours in finding a quasi-Sverdrup regime in the interior of the 
channel. They also find similar dependencies of the transport on the parameters of 
the problem. 

2. The model 

We shall consider a barotropic current driven by a zonal wind in a periodic channel 
of length Lx and width Ly with bottom relief H depending only on the zonal 
coordinate, H = H(x). Lx is also chosen as the topographic wavelength. The wind 
stress 7 is taken to be purely zonal and depends only on latitude. We ignore all 
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baroclinic effects. Then, provided that the Rossby number RO x 1 (R, = U/fdx 
where U is the horizontal velocity scale and fO is the mean value of the Coriolis 
parameter), the steady barotropic vertically integrated equations are: 

fiiH=gH$-rv, 

$ (ZH) + ; (FH) = 0, 

where r is the bottom friction coefficient, q is the surface elevation and the X, y and z 
axes are directed eastward, southward and downward respectively. This unconven- 
tional right-handed coordinate system is convenient for the Southern hemisphere 
because both the depth and the Coriolis parameter are positive. Overbar represents 
the vertical average: 

Horizontal viscosity terms have been omitted because we wish to show that they are 
unnecessary. The often used parameterization of friction in (l), (2) is the simplest 
and most convenient parameterization of bottom frictional processes. It is not 
physical; a proper parameterization would involve bottom velocity, not the baro- 
tropic velocity component. Since the bottom friction coefficient is generally believed 
to be small, we are primarily interested in studying the almost inviscid current. In this 
case the exact form of the parameterization should not be important. In view of (3) 
one may introduce a stream function $: 

4J 
- = VH, ax 

a* -= 
aY 

- EH. 

Then dividing (1) and (2) by H and taking the curl yields 

+jH’$+ pHg= -Hi;. (7) 

(6) 

This equation states that the wind stress curl is balanced by the bottom friction, 
topographic pressure torque and the p-effect (the first, second and third terms on the 
left-hand side, respectively). 
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The solution to (7) with no flow through the boundariesy = 0, L,, is an Lx-periodic 
function: 

qJ(x = 0) = lJJ(x = Lx), (8) 

NY = 0) = 0, (9) 

Jl(y = LY) = -T. (10) 

We note that (9) and (10) are somewhat artificial for the ACC, since they imply that 
the current is confined between solid walls. This condition will be relaxed in a sequel 
to the present work. 

Kamenkovich (1961) showed that the constant T, i.e. total zonal transport in the 
current, can be determined by integrating (1) along either side wall. Alternatively it 
can be found by integrating (1) along any other latitude circle (Kamenkovich, 
personal communication). Making use of the continuity of surface elevation 7 yields 

We will consider small depth variations: 6 =A/& I 0(10-l), whereA is the relief 
height scale and Ho is the mean ocean depth. Then at the sidewalls (11) implies 

@) = id 
p0r’ 

y=O,L 
Y’ (12) 

where angular brackets denote the zonal average and (9) (10) are used. 
It is convenient to nondimensionalize the equations. Denoting dimensional vari- 

ables with asterisks, define nondimensional variables by 

x* = Lxx, y, = L,y, 7* = 707, 

p =L+, f=l+P(y-a/2), 
0 

H, =Ho+Ah=Ho(1+6h)=H& 

(13) 

where h is O(1) nondimensional topography, 6 < 0(10-l), and a is the aspect ratio 

LY a=-. 
LX 

Define a velocity scale 

70 -. u=fop&o’ ii, = uu, UHdy 
Jr* =a*. 

(14) 

(15) 
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Eq. (7) becomes 

where 

(17) 

We shall explore how the principle parameters affect the total zonal transport T. If 
H = const then (12) holds everywhere; in nondimensional form 

Thus with constant H the zonal current transport is inversely proportional to the 
bottom friction coefficient. Since the observations of the ACC indicate that (c * ) = 0 
(0.1 m/s) and since T = 0 (0.1 N/m2), the unrealistically large valuer = 0 (10m3 m/s) 
is required in a constant depth model. 

We now consider the effects of variable bottom topography. It is well known that 
sreamlines of the zonal channel current tend to follow lines of constant f/H (Ivanov 
and Kamenkovich, 1959). Two dynamically distinct situations arise. If the topogra- 
phy is small enough, then there are closed f/H isolines encircling Antarctica and a 
rather large transport results. There is a minimum value of the topographic height 
S = S,,, where f/H lines no longer close: one f/H isoline just crosses the channel from 
side to side. This occurs for the value S,, such that 

f(y = 0) =f(y = a) 

1 - SC, 1 + s,, ’ 

or 

s =f(y=a)-f(y=O)=ap 
” f(y=a)+f(y=O) 2’ (19) 

With p * = 1.3 . lo-l1 m-%-l, LY = 1000 km, f0 = 10e4 s-l 6, = 0.065. if S > 6, there 
is a range R of f/H lines that intersect both walls: 

R = max (f/H&,, - min (f/H),,=, 
1 - a@/2 1 + ap/2 

= 1-S - l+S 
(20) 

Kamenkovich (1962) showed that in the small topography case 6 < 6, the transport 
is inversely proportional to the friction parameter E as in (18). In this paper we 
consider the case S > 6, where all f/H isolines originate and terminate at zonal walls. 



6 Journal of Marine Research w, 1 

0.0 50.0 100.0 150.0 200.0 
longitude 

250.0 300.0 350.0 

Figure 1. Map off/H isolines, drawn using ETOPOS (5 x 5 minutes Navy database) brought 
to one degree scale and smoothed. Units are 10m8 m-k’. 

This case appears.to be more applicable to the real ocean, cf. Figure 1. It wiil become 
clear from the discussion below that the dynamics of the zonal current in the two 
cases are quite different and that the stream function cannot be scaled to make $ = 
0( 1) in both cases. 

3. f-plane channel 

We begin with the case of the f-plane (p = 0) channel. Since H = H(x) all f/H 
contours are meridional. Consider (16) withf = 1 and p = 0 

i 

a2* a2* eilx2+-s$; +~h’~=-H~ 
3Y 1 dY dY . W) 

In the vicinity of lines h ’ = 0 (-A < h ’ < h; A K 1) internal boundary layers 
arise. Away from these boundary layers we find an interior solution by neglecting the 
friction terms and integrating (21) along the characteristics H = const starting from 
the southern wall when h ’ > 0 and from the northern wall when h ’ < 0: 

I 

-T - g (T - T,) h’ x- X,y > A 

*=I 
- g (T - TV) h ’ << -X,y < a - A 

\ 

(22) 

where 7, = T(a) and r. = $0). 
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At the far wall (northern for h’ > 0; southern when h’ < 0) there is a boundary 
layer similar to that studied by Stommel (1948). It is required to satisfy the sidewall 
boundary condition (9) or (10). Within these layers the boundary layer stream 
function may be found from the approximation to (21): 

the thickness of these layers is A = O(E/~). Note that the boundary layer changes its 
position from one wall to the other when the sign of the bottom slope changes; the 
two sides are connected by internal, cross-channel layers centered on h ’ = 0 lines. 

With the exception of these boundary layers, the circulation consists of alternating 
closed gyres trapped between lines where h ’ changes sign. Thus all net transport is 
concentrated in the boundary current which crosses the channel from side to side in 
the internal boundary layers where h’ = 0. The stream function undergoes sharp 
changes across topographic extrema, with the internal part of the boundary layer at 
h ’ = 0 lines connecting the pieces of the boundary layer along the zonal walls 
(Fig. 2). A similar example of an internal boundary layer may be found in Kamenkov- 
ich and Mitrofanov (1971). 

As shown in the Appendix, applying the nondimensional version of condition (11) 
to (22) yields 

T = 0(6-l) (23) 

for a general wind stress. If $0) = r(a) = 0 the leading order terms vanish and the 
residual terms yield T + 0 as E + 0 (see Appendix). 

Streamline plots calculated numerically for selected parameter values are shown 
in Figure 2. The topography used here is 

Of course, (24) is not the real topography. It is a simple example to demonstrate that 
even relatively small topography [6 = O(O.l)] exerts a very strong effect on the zonal 
current. We used a new barotropic solver developed at L-DE0 (Naik et al., 1994). 
The method employs a compact fourth order discretization, based on analytic 
solutions of one-dimensional problems. It has advantages over conventional solvers 
for cases with narrow boundary layers. 

In all cases the circulation consists of two alternating closed symmetric gyres and a 
boundary layer jet moving between north and south walls where h ’ = 0. The 
following parameters were used in all experiments: f. = 10e4 s-l, Ho = 4 km, Ly = 
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Figure 2. Stream function isolines (Sv) in an f-plane channel calculated numerically using 
(21), (8)-(10). The additional half-period [-OS, 0] was added to improve the view of the 
two gyre system. Topography is given by (24); wind stress is specified by (25); E = 2.5 . 10m4, 
a = 0.1. (a) 6 = 6.25. 10-3, (b) 6 = 1.25. 10m2, (c) 6 = 2.5. 10m2, (d) 6 = 5. 10m2. 

1000 km, TO = 0.1 N/m2, p. = lo3 kg/m3 and 

(25) 

The value r = 1O-4 m/s used in most of the experiments is one order of magnitude 
less than needed to yield a realistic transport value in the constant depth model: (18) 
implies a value of 2500 Sv. The dependencies of the transport on E, 6 calculated 
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topography (24), wind (25) topography (24), wind (25) 

- h=sin(2m), wind (25) - h=sin(2m), wind (25) 

- topography (24), % =sin(ny/a)+O.l - topography (24), % =sin(ny/a)+O.l 

.l I I 

10.7 10-e 10-5 

E 

1-4 

Figure 3. f-plane channel transport calculated numerically; a = 0.1. (a) as a function of E, 6 = 
0.1; (b) as a function of 6, E = 10T6 

numerically using (21), (25) for topography (24) and h = sin (27~~) are shown in 
Figure 3a, b. 

4. p-plane channel 
Introduce new orthogonal coordinates (5, q), along and across the gradient off/H: 
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topography (24), wind (25) 

- h=sin(2nx), wind (25) 

- topography (24), z=sin(xy/a)+O.l 

.Ol 

6 

Figure 3. (Continued) 

.l 

In these coordinates (16) reads 

where 

(27) 

(28) 

(29) A=s+$, 
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a 

Figure 4. A schematic of the characteristics f/H, wind stress and model topography. Points A 
and B are discussed in the text. 

p2H2 +f2s2hr2 
S2H2h ’ (30) 

and the small term of order ~8 has been omitted. 
Since the friction parameter E is very small, the zero order solution is readily found 

by integration of the inviscid version of (27) 

SH2J(& q) 2 = -H; 

along the characteristics, i.e., lines of constant q: 

or 
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where (x0, yO) is the origin of the characteristic which connects the point .x(6, q) with 
the sidewall (the direction of integration is shown in Fig. 4). 

Since 

As long as dyldx’ = q-‘l3IH’ f 0 along the characteristic, (32~) may be rewritten as 

4JcGY) = Wo,Yo) - q-1 $$q dY’. 
7 

A schematic of the characteristics of (31), q = f/H = constant, is given in Figure 4. 
The direction of integration, shown in Figure 4 by arrows, is determined from (31). 
As in the Stommel problem or the f-plane problem of the last section, consideration 
of which side allows a boundary layer dictates integrating in the direction of Vc when 
H’ > 0 and -V.$ when H’ < 0. The location of boundary layers is shown by bold 
lines. Boundary layers arise at the sidewalls, where characteristics end, and inside the 
channel, where critical characteristics separate regions in which information comes 
from the opposite walls. We consider only the case 6 > 6, where no f/H isolines 
close in the channel. Then there are a number of cross-channel f/H isolines with the 
critical characteristic qC being the westernmost. In the vicinity of the critical 
characteristics we write 

* = *I + 51, (33) 

where JI1 is the interior solution satisfying (32) and 4 is the boundary layer correction 
term near q = Q. Substituting (33) into (27) one finds the equation for $ 

- 

&J + H2J(& q) 5 = -E&/Q. (34) 

Since the gradients are larger across the boundary layer than along it, it is the term 
proportional to a2$/%12 which balances the second term of (34) in the internal 
boundary layer. To leading order, after substituting (26) into (34): 

E 
p2H2 + f 262hr2 3 + *I _ p2H2 + f 262h’2 a~$ -= 

S2H4 [ 1 aq2 aq2 6h’ 

o 

aE 7 

or simply (as long as l3 f 0) 

(35) 

We will not need to solve (35). It will be sufficient to note that the internal boundary 
layer width is 0((~/8)l/~). It is interesting that, as in the f-plane case, the near-wall 
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Figure 5. Stream function isolines (Sv) in a P-plane channel calculated numerically from (16), 
(24) with the wind stress (25); p = 0.13~‘. (a) 6 = 5 . lo-$ (b) 6 = 6,, = 6.5 . lo-$ (c) 6 = 
7.5. 1O-2; (d) 6 = 0.1. Other parameters and forcing are the same as in Figure 2. Since 6, = 
6.5 . 1O-2 (A,, = 260 m) allf/H isolines are blocked in (c), (d). 

boundary layer width is O(E/~): the internal boundary layer is substantially wider. 
One can observe this feature in Figure 5c, d. It is convenient to set E = O(S3) to 
express all the parameters in terms of 6, the parameter of primary interest. Then the 
internal boundary layer width X = O(6). 

We shall find the transport using the nondimensional auxiliary condition (11) 
applied aty = a/2: 

(36) 
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After integration by parts, the left-hand side of (36) can be written using (32~) as 

_ [c;, + 1’” + E4 + Ii’] dG[-+J && (37) 
11 12 13 14 11 

where A, B are the intersections of the critical characteristics with the line centery = 
a/2 (Fig. 4). The pointsA, B are defined by 

f(a/4 _ f@> . f(a/2> f(a) 
H(A) Hmin’ -=- H(B) f&n, 

so 

(38) 

Since +(x,,, y,,) = 0 for B < x < A and +(x0, ya) = -T otherwise, 

S 
dH-’ o1 Nxg, Yo) - 

Iv 
dx ah = -TH-1 

2@ - h) 
= 1 _ 62 T = 2(6 - 6,)T + 0(S2T). (39) 

-l+A 

It is straightforward to show that the contribution of the interior boundary layer 
corrections $ of (35) is O(ti2T). For the integrals Z2, Z4 it is convenient to split the 
internal integrals at the extrema of H where dyla!x changes sign (Fig. 4). For example 
for Z, 

(40) 

The integrals Zi, Z3 and the first terms on the right of (4) in the integrals Z,, Z4 can be 
evaluated as in (32d): x 1 ar J I xop&dx'=q-* 

y aday 5 y. ,,dy = rl-‘IW’)-‘I[$Y) - $YO>I, (41) 

where the braces denote the appropriate average. This average exists if the topogra- 
phy is reasonably well behaved. We further assume that 

[(HI)-‘} = (42) 

where xl is the point where the characteristic q = -q(x) crossesy = a/2 (i.e. xl is the 
point such that H(x,) = H(x); for Zi, Z3 and the second terms on the right of (40) 
xl = x). Eq. (42) will hold if either: (i) there is little change in x between y. and a/2 
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(e.g. 6 z=- SCr) or (ii) there is little curvature. For the piecewise linear profile (24) the 
curvature is zero and this is exact. Numerical experiments show that this approxima- 
tion has a negligible effect on the final result in all cases considered here due to the 
assumed symmetry of the topography and forcing. 

Since we assume T = 0 at the sidewalls, and since q-r@, a/2) = H(x), using (41) 
and (42) in (38) and (40) results in 

- 
s o’$$x = 2(S - S,,)T + so’&& 

where they * ‘s, the intersections of the characteristics with the linesx = ‘/ andx = 3/d, 
respectively, are determined by 

1 1 + NY * - a/2) - = 
H(x) 1+6 (44) 

(The plus sign applies for x = 1/, the minus sign for x = 3/.) Assuming symmetry 
about the extrema of H implies H’(xl) = -H’(x). Now substituting (43) in (36) yields 

2(S - S,)T= 2sg114+bx + 2[14+&. 

Since the range ofy * is (a/2, a) in the first integral and (0, a/2) in the second, the 
transport is a weighted integral of the wind stress at all latitudes. With an approxima- 
tion similar to (42) and changing the variable of integration according to (44) we 
obtain 

(6 - &r)T = - j&j f” T(Y) dy - & 1” T(Y) dy. 

With the wind (25) 

(S-s,)T=g 1 (46) 

With the piecewise linear topography (24) H’(B) = -H’(A) = 46, hence 

to leading order. 
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This is an asymptotic approximation to the transport in the case 6 > 6,. The 
transport is inversely proportional to the topographic height 8 and to the range of 
values of cross-channel f/H isolines R = 2(6 - 6,,); hence for 6 B S,, it varies 
inversely as S2 and does not depend on friction to leading order. 

In dimensional units (47) reads 

T, = 
P * &b!G~” 

TAfopo(ufo - P .H&J 
(47’) 

The validity of (47) is based on the assumption E I O(S3). For larger values of E 
the solution to (16) will be jointly controlled by topographic pressure drag and 
friction. The critical value 6 = SC, marks the transition from the frictionally controlled 
flow regime to the topographically controlled one. 

Since the transport is independent of dissipation to leading order it is interesting 
to study the energy budget in the limit of very small friction. It follows from (31) that 
&l~/&q is negligible compared to &Jr/a& Hence to leading order 

4J 4J% f8h’H tk 
-c-z- 
8Y a@Y p2H2 + f 2S2h I2 dy ’ 

where use is made of (26b) and (31). The zero order total energy input is 

It follows from (49) that the net total energy input vanishes to leading order, if we 
assume that H(x) is symmetric with respect to lines where dH/& = 0. In the more 
general case where the total energy input is non-zero to leading order the dissipation 
needed to balance it occurs in the boundary layers (see Discussion). 

Now we proceed to verify the analytic results with numerical solutions to (16) with 
the topography (24) and wind (25). 

The solution is sought as 

where $i satisfies (16) and the boundary conditions 

h(y = 0) = *I(Y = a) = 0, 

while +2 satisfies the homogeneous version of (16) and the boundary conditions 

\cI2(Y = 0) = 0, IJJ~(Y = a) = - 1 

SO that T may be found using the nondimensional form of (11) at y = a/2 (or any 
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other line of constant latitude): 

T= - 

When S > 6, circulation patterns are quite similar to those of the f-plane solution 
(Fig. 5c, 5d). Streamlines tend to follow f/H isolines in the major part of the domain. 
The broad, strong current in the case S < 6, (Fig. 5a, 5b) becomes very narrow and 
confined to the boundary layers when S > 6, (Fig. 5c, 5d). 

Dependence of the transport on the zonal scale Lx is similar to the f-plane case 
when S > S,,, whereas when S -=z S,, the p-plane channel transport is insensitive to 
the topographic wavelength (Kamenkovich, 1962). Qualitatively, the dependence of 
the transport on the relief height may be described as follows. For small S (6 < S,) 
the transport is proportional to the range of closed f/H isolines R = 2 (6 - S,,) and 
inversely proportional to the friction parameter E. For S 2 1.26,, (47’) agrees well 
with the results of the numerical experiments (Fig. 6): the transport varies inversely 
as S(S - S,,). 

For a constant wind 7 = 7c, the wind stress curl is zero so \11r = 0. The denominator 
of (50) is calculated similarly to (39) and equals 2 (6 - S,,) to leading order. Thus 

7c 
T, = 

2@ - Scr) . (51) 

Repeating the steps (43)-(47) for the case of an asymmetric wind (T(a/2 + y) = 
- T(a /2 - y)) yields no leading order contribution 

T, I O(1). (52) 

Since the problem is linear and since any function can be represented as a sum of a 
symmetric and an asymmetric component, (47) can be combined with (51) (52) to 
yield a solution for a general wind forcing. 

5. Discussion 

We have investigated only one of many phenomena possibly relevant to ACC 
dynamics. Using a simple physical model it was shown that the zonal channel current 
is strongly affected by topographic pressure drag. As is well known, if closed f/H 
isolines exist, the transport is nearly independent of the topographic wavelength, 
proportional to the range of closed f/H isolines and inversely proportional to the 
friction parameter E. Here we found an asymptotic approximation to the transport of 
the P-plane channel current in the case when all lines of constant f/H are blocked by 
the zonal walls. In this case the zonal transport is proportional, to a first approxima- 
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Figure 6. p-plane channel transport calculated numerically for different aspect ratios com- 
pared to (47’). Other parameters and forcing are the same as in Figure 5. 

tion, to the bottom topographic wavelength, and inversely proportional to the range 
of values off/H that exists on both sides of the channel, R = 2 (6 - 8,) = 24/H - 
IfN - fs I/f0 and to the topographic height 6; when S x=+ 6, the transport varies as S-2. 
The transport is independent of friction. In the case of closed f/H isolines (S < S,), 
friction is essential to dissipate the wind’s input of momentum and energy, leading to 
an e-l dependence on the transport. In the blocked case (6 > S,) studied here, the 
momentum input is balanced by topographic pressure drag. The energy input is 
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dissipated (to leading order) entirely in boundary layers. Since LB = O(E/~), 

As in the Sverdrup-Stommel problem (Stommel, 1948) the boundary layer width LB 
changes with friction to make the energy dissipation independent of friction. We saw 
in Section 4 that with our specific choice of symmetric bottom relief the net total 
energy input from the wind vanishes to leading order outside the boundary layers. 
The general result that to leading order the transport does not depend on friction is 
independent of this assumption. 

The strong effect of the depth variation amplitude on the transport of the P-plane 
channel current is consistent with results of the eddy resolving numerical experi- 
ments of Wolff et al. (1990, 1991) and Treguier and McWilliams (1990) and lends 
support to the importance of the form drag studied here. In our simple model vertical 
viscosity is parameterized (artificially) to transfer momentum down the water 
column. It replaces the eddies which are responsible for this momentum transfer in 
eddy resolving models. However, in the other studies topography has a strong effect 
on eddies which would seem to be relevant to the real ocean. This level of complexity 
is completely missing in our model, which is deliberately kept simple to illuminate 
the effect of the bottom topography on the large-scale zonal current. 
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APPENDIX 

An asymptotic solution on an f-plane 

It will be assumed here that H(x) is symmetric with respect to lines where dHldx = 
0. The transport can be found by applying the nondimensional condition (11) 

along the center line y = a/2 (subscript c hereafter refers to this location). We 
evaluate (Al) using (22) and 
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The last equality follows because with the symmetry we assume 

h’(Hm, + A) = h’(Hmi, - A) 

h’V-&nm - A) = h ‘(Hmi, + A). 

Using (22) (Al) can now be written as 

The last term on the left is the contribution of the internal boundary layers 
centered at H,, and Hmin. Since His constant to O(SA) within these layers 

( O(SX2J,), smooth topography 
0(6X J,), piecewise linear topography 

where subscript m is generic for min and max, J, is the magnitude of the jump. The 
jumps may be evaluated using (22). If the topography is smooth, then 

WCm,x+) - W&,ax-1 = T + He (Tc - 7,) + He (Tc - To), 
(A44 

$(Hmin+) - 31(Hmin-) = - 

For the piecewise linear topography (24) 

H 
W4,,,+) - WLax-1 = T + -g (Tc - 7,) + Hz (Tc - %), 

644’~) 

+(Hmin+) - +(Hmin-) = - 

The net contribution to the left-hand side of (A3) from these jumps is, since H,,,, = 
l+SandH,,,i,=l-6, 

s ,,,,<,g$ = &/I + $11 + o(A) 
= &T + O(A) = 26T + O(A). 

(A3 
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Substituting (22) and (A5) in (A3) yields 

The first terms on the right and on the left of (A6) cancel out; the last term on the 
right vanishes since H is assumed symmetric with respect to h ’ = 0. One finds 

+ To ~,<-h$x + O(h) (4 

If, as assumed in (25) 7. = T, = 0, then the leading order dependence of Ton the 
parameters would be qualitatively different. It follows from (21) that within the 
internal boundary layer the stream function satisfies 

2 
$?!!+&!!kO 

ax2 ay ’ 

so the width of this boundary layer is 

x = 1 
o((E/8y3), smooth topography 
O((ElS)““), p’ iecewise linear topography. (A8) 

Finding an asymptotic approximation of the f-plane transport requires resolving the 
complicated structure of the internal boundary layers similarly to Kamenkovich and 
Mitrofanov (1971). However, some conclusions can be drawn from (A7), (A8). Since 
A + 0 as E + 0, it follows that T -+ 0 as E -+ 0. Keep in mind, this assumes E > 0 and 
no additional physics such as nonlinearities. Faster growth of the internal boundary 
layer thickness with E/S in the case of piecewise linear topography implies sharper 
dependence of the transport on E, 6 in this case (cf. Fig. 3a, b). 

If 7. = T, f 0 the numerical solution exhibits behavior predicted by (A7). The 
transport is independent of friction to leading order and varies inversely with 6 
(Fig. 3a, b). If To = T, = 0 (A7) and (A8) predict 

where 

T = 8-l(G)“, t fw 

%, smooth topography 
(Y= 

I 1/, piecewise linear topography. 

Numerical experiments agree with the form (A9), but with CY = 0.5 in the case of 
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smooth topography and CY = 0.65 in the case of piecewise linear topography 
(Fig. 3a, b). In both cases the experimental cx is approximately ‘/6 greater than the 
analytic estimate. 

The zero order total energy input on the f-plane may be evaluated using (22): 

with the assumed symmetry in H. 
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