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ABSTRACT

A linear equivalent barotropic (EB) model is applied to study the effects of the .bottom topography H and
baroclinicity on the total transport and the position of the Antarctic Circumpolar Current (ACC). The model is
based on the observation of Killworth that the time mean velocity field of the FRAM Model is self-similar in
the vertical.

A realistic large-scale topography H is constructed by filtering 5-minute resolution data with an appropriate
smoothing kernel. It is shown that the asymptotic behavior of the solution of the barotropic model (a particular
case of the EB model) in the limit of very small bottom friction depends on subtle details of topography and
basin geometry. Given the uncertainties of the smoothing procedure the authors conclude that the barotropic
model is not robust with respect to possible variations of model topography.

The authors found that the EB model with a vertical profile function similar to that of Killworth reproduces
the major features of the time- and depth-averaged FRAM solution, including the position and the transport of
the ACC, reasonably well. The solution is robust with respect to uncertainties in A. The EB model is much
improved by a parameterization of the bottom friction via near-bottom velocity, which tends to shut off the flow
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in the shallow regions.

1. Introduction

The purpose of this work is to develop a simple
wind-driven model describing the depth-averaged flow
in the Antarctic Circumpolar Current (ACC) region.'
The primary objective of the model is to study the in-
fluence of bottom topography and baroclinicity on the
total transport and the position of the ACC.

The ACC is a strong eastward current encircling the
Antarctic continent with a mean transport of about 130
Sv (Whitworth 1983). It is bounded by the Subtropical
Front (except in Drake Passage ) on the equatorial side
and by the poleward edge of the Upper Circumpolar
Deep Water on the poleward side (Orsi et al. 1995).
There are no apparent external constraints that dictate
the position of the ACC axis. The maximum of west-
erlies driving the ACC is situated well to the north of
Drake Passage. This appears to be the main reason for
a general southern drift in the ACC. To the east from
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Drake Passage the current abruptly turns northward
forming a western boundary current (the Malvinas Cur-
rent). This is, in the essence, the scheme suggested by
Stommel (1957), where the global scale deviations of
the ACC from the zonal path are determined by the
location of the continents and by the wind stress field.
The bottom topography must be the primary reason for
the observed smaller scale meridional deviations of
the ACC.

It has long been noticed that topography seems to
steer the ACC on certain parts of its path, notably over
the zonally oriented midocean ridge in the southwest-
ern Pacific (e.g., Gordon et al. 1978). At the same time,
the flow appears to be less affected by the meridionally
oriented topographic features. Even such a major ob-
struction as the Kerguelen Plateau forces only a part of
the current to the north where one would expect the
whole flow to turn, had it been barotropic. The branch
of the ACC associated with the southern ACC front
circumvents the Kerguelen Plateau from the south, im-
plying a great deal of baroclinic compensation.

The deviations of the ACC from the zonal path due
to the influence of topography were analyzed in the
early linear barotropic models by Ivanov and Kamen-
kovich (1959) and Kamenkovich (1962). (More re-
cent linear barotropic models are reviewed in section
4.) Thompson (1971) suggested that the intensification
of the ACC over the northern flank of a zonally oriented
ridge can be caused by upgradient transfer of momen-
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tum by eddies. McCartney (1976) and Smith and Fan-
dry (1978) attributed this feature to crowding of f/H
contours (f being the Coriolis parameter, H the ocean
depth) over the northern slope. Eddy-resolving numer-
ical experiments using two-layer quasigeostrophic
models by McWilliams et al. (1978) and Wolff and
Olbers (1989) showed the intensification of the current
over the northeastern slope of a localized seamount.
The Wolff and Olbers (1989) model ACC exhibited
very large deviations from a zonal path over a high
meridional ridge.

The early attempts to model the ACC as a current
over a flat bottom led to excessive transport, which
could only be controlled by assuming huge lateral vis-
cosities (e.g., Hidaka and Tsuchiya 1953). Munk and
Palmen (1951) were the first to hypothesize that it is
topographic pressure drag (the resultant pressure force
acting against submarine hills and troughs) that bal-
ances the input of momentum by the wind stress. Using
the results of FRAM, D. Stevens and V. Ivchenko
(1994, unpublished manuscript) and Killworth and
Nanneh (1994 ) found that the major part of the zonal
momentum input by the wind within the latitude belt
of the Drake Passage is balanced by topographic pres-
sure drag. Thus, topography significantly affects not
only the path but also the momentum balance in the
ACC. It should be noted, however, that these balances
may differ from that of the ACC itself (Ivchenko et al.
1996). The reason is that the ACC deviates signifi-
cantly from a purely zonal path and action of pressure
forces on the lateral boundaries of the ACC may be
noticeable.

The dependence of the magnitude of the ACC trans-
port on the bottom topography was extensively studied
using global barotropic models with ‘‘realistic’’ relief.
II’in et al. (1969, 1974 ) considered a linear barotropic
model with bottom friction as the only mechanism of
dissipation. With the coefficient r = 7.7 X 1077 s™!
(r = &/H in the notation of section 2) they found trans-
ports of 51 Sv and 43 Sv (Sv = 105 m?s™!) in the
constant depth and realistic depth cases, respectively.
It is likely that the difference would be larger if the
coefficient r were taken smaller. Laykhtman et al.
(1971) integrated the barotropic streamfunction equa-
tion with a modified bottom friction parameterization
for the global ocean with realistic depth distribution.
The flow was forced by the wind stress derived from
monthly atmospheric pressure fields. They found an av-
erage ACC transport of 350 Sv with seasonal variations
from 248 Sv in December to 434 Sv in July. Bryan and
Cox (1972), using the GFDL homogeneous global
ocean model, calculated ACC transport to exceed 650
Sv in the case of a flat bottom. The essential dissipation
used was Laplacian lateral friction with coefficient Ay,
= 4 X 10* m? s™'. The transport decreased to 32 Sv
when realistic topography was introduced. Bye and Sag
(1972) reported a substantial difference between the
ACC transport in the constant and variable depth cases
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of their numerical model with bottom friction coeffi-
cient r of order 10 7% s 7': 358 and 177 Sv, respectively.
They also found that in the variable depth case the ef-
fect of the frictional processes on the circumpolar cir-
culation was of minor importance.

The wide scatter in magnitude of the ACC total
transport calculated using different barotropic models
is apparent. We argue that this is to some extent due to
the different models using different large-scale bottom
topographies. Our hypothesis is that much of the scatter
results from uncertainties in the large-scale topography
H. This conjecture will be supported by the results pre-
sented in sections 4 and 5.

It is generally accepted practice to use large-scale
components of the relief H for the modeling of
the large-scale ocean circulation. In this connection two
questions arise: First, how to define the large-scale
component H of the bottom topography if we know the
real depth H at each location with sufficient accuracy.
The concept of *‘large-scale component’” is intuitively
clear, but it is hardly possible to define it uniquely.
Then one should consider not only the influence of H
but also the robustness of the results with respect to
some perturbations 6H. A somewhat related problem
of the influence of uncertainties in the forcing field was
studied by Schréter and Wunsch (1986). The issue of
robustness, however, of model results with respect to
the bottom topography does not seem to be addressed
in the current literature. We will discuss it in section 3.

Second, it is possible that the small-scale component
of the topography H' = H — H cannot be completely
neglected. For example, H' could generate small-scale
components of velocity u’ and then the ‘‘Reynolds
stresses,”” u’ - VH', could generate large-scale motion.
Scaling arguments suggest that such terms may be im-
portant (Bogden et al. 1993). Based on analysis of the
FRAM output, Grose et al. (1995) argued that smooth-
ing the bottom topography leads to an increase by about
50 Sv of the total transport of the ACC, as compared
to the observations.

One of the most comprehensive modeling efforts to
date to study the dynamics of the ACC in their full
complexity is the Fine Resolution Antarctic Model
Project (FRAM Group 1991). An eddy-resolving
model with 32 vertical levels is used to assimilate cli-
matological data to produce dynamically consistent
fields of temperature, salinity, and velocity. While
FRAM appears to reproduce satisfactorily many of the
known features in the Southern Ocean, the sensitivity
studies with such a model are prohibitively expensive.

The nonrobustness of barotropic models and the com-
plexity of the general circulation models like FRAM
have been a motivation for us to build a model of a
different type, more suitable for the intended process-
oriented studies. Analysis of the FRAM results (Kill-
worth 1992) showed that the time-mean velocity field
in the ACC is close to self-similar in the vertical, that
is, the flow at one depth is both parallel and proportional
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to the flow at another depth. While the correlations be-
tween the velocity fields on different levels somewhat
deteriorate with depth, they mostly remain above 0.5 for
both u and v components, an ‘‘observational’’ fact which
we find quite remarkable. We do not address the ques-
tion of formation of such equivalent barotropic (EB)
structure in this study but simply take it as a given. This
ansatz enables us to construct the EB model described
in section 2. Equivalent barotropic models are widely
known in atmospheric sciences since the application to
numerical weather forecasting by Charney and Eliassen
(1949). Shtockman (1950) used a similar approach to
estimate the density distribution in the ocean from the
known depth-averaged velocity field.

In studying the effects of bottom relief and baroclin-
icity on the transport and the position of the ACC, an
EB model has the advantage over a general circulation
model of allowing many variations in model parame-
ters. In addition, an analytical treatment of some typical
cases may be obtained, adding to our understanding of
the ACC behavior. The familiar barotropic model is a
particular case of the EB model. A somewhat related
study was recently undertaken by Marshall (1995) who
assumed that potential vorticity is a linear function of
density.

Although Killworth (1992) put forward a simple
theory predicting the existence of the EB structure on
isopycnal surfaces for a wide variety of situations, it
still remains unclear how the EB structure is established
and what the conditions for its existence are. For in-
stance, in the idealized eddy-resolving numerical ex-
periments by Wolff and Olbers (1989) a meridional
ridge (case R3) seems to have destroyed much of the
self-similarity.

The paper is organized as follows. The model is de-
scribed in section 2. The averaging of the topographic
data and a discussion of resulting H and potential
vorticity fields is given in section 3. The numerical so-
lutions for the case of a B-plane channel with an ide-
alized topography are presented in section 4. The so-
lutions for the realistic geometry and topography are
discussed in section 5. We conclude with a brief sum-
mary in section 6. Numerical methods for solving prob-
lems considered in sections 4 and 5 are outlined in ap-
pendix B.

2. The model
Neglecting horizontal viscosity and nonlinear terms,

the steady momentum equations on a £ plane are writ-
ten as

op' 9?2

u

TR A )
o’ R

fu=3py‘+Aua—zz» (2)
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where x, y, and z are directed eastward, northward, and
upward, respectively; u, v are the zonal and meridional
velocity components, respectively; fis the Coriolis pa-
rameter; p’ = p/p,, p is the pressure and A, is the
vertical viscosity coefficient. In accord with the result
of Killworth (1992), we assume

Viup' = g(Vr§)P(2). (3)

Here £P(0) is the unknown sea level and P(z) is the
prescribed vertical profile function. Representation (3)
is the cornerstone of our model. Integrating (1) and (2)
in the vertical yields

0
—fV=——gF~é+7'x—7'Z

o (4
fU=—gFg—§+Ty—T’y’, (5)

where g is the acceleration due to gravity; 7, and 7,
(7% and 7%) are the zonal and meridional components
of the wind (bottom) stress (divided by the mean den-
sity pg), respectively;

0
U=(U,V) =f (u,v)dz;

F(H) = JiH P(z)dz.

Here H is the depth.

We assume that bottom friction is proportional to
near-bottom velocities (7, ~ u,). Ansatz (3) then al-
lows the parameterization

P(-H)
F(H) "’

where ¢ is the constant bottom friction coefficient.
Assuming P(z) = 1 reduces this model to a conven-
tional barotropic model where F(H) = H.
Equations (4) and (5) are supplemented by the ver-
tically integrated continuity equation

v
ox Hy_

The system (4), (5), and (7) constitutes the equiv-
alent barotropic (EB) model. The parameters of the
model are the friction coefficient £ and the profile func-
tion P(z).

We assume that the lateral boundary of the Southern
Ocean consist of two closed curves I's and T'y: I's is
the southern boundary, that is, the Antarctic continent,
and I'y consists of the boundary of the South American
continent and some zonally oriented fluid boundary.
The boundary conditions are

(U-m)=0 atTy,
0 atsolid part of T
(U-n) = PR
U™ at fluid part of T'y,

7y = (13, 73) = U

(6)

(7

(8)
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where UT is a specified function and n is the unit nor-
mal to the boundaries I's and I'y; between the bound-
aries of South America | U"dx = 0.
We introduce the transport streamfunction :
d d
pooB o
dy ox
Dividing (4), (5) by F(H) and taking the curl yields
the potential vorticity equation

[o(repary, o (reman)

ox F?  9x Jdy F? 9dy
+ J<¢, %) ='cur12—;:, 9)
where
am - 3
curl,A = % - %j}—" . '

The boundary conditions for ¢ follow from (8). Us-
ing that ¢ is determined up to a constant, we have

Yy=0 atly (10)
T at solid part of T'y
Y = . _ (11)
T+ atfluid part of [y,
where
Yl = —f UTdx.

The integral is taken along the fluid part of the bound-
ary I'y from one continent to another (recall that the
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total transport between each pair of continents is as-
sumed to be zero).

The constant T is the total transport of the ACC,
determined from a constraint

foy P(-H)oy 7,

Sgr (F as  °F’ on F)ds 0. (12)
which is readily derived from (4) and (5) using the
single valuedness of the sea level ¢ (Kamenkovich
1961). Here I' is an arbitrary closed contour that lies
within the domain of integration and embraces the Ant-
arctic continent, s is directed along I in a counterclock-
wise sense, n is orthogonal to I" in such a way that (s,
n, k) constitute the right triplet, where k is the vertical
unit vector.

The EB model is formally equivalent to the usual
barotropic model with the quantity f/F playing the role
of potential vorticity. Therefore, the results obtained for
barotropic models are also fully applicable to EB
model.

To solve (9) with the boundary conditions (10) -
(12) we represent ¢ as

=i+ T, (13)

where the auxiliary function ¢, is the solution of (9)
with the boundary conditions '

=0 atl, (14)
0 at solid parts of T'y
=1 , (15)
" at fluid parts of Ty,

and the auxiliary function i, is the solution of the ho-
mogeneous version of (9) with the boundary condi-

tions
0 atT, (16)
P, =
1 atly. (17)

The total transport T of the ACC is determined from
(12) by substituting (13):

Loy P(=H) T,
Sﬁr<F as T F° on +F>d5

L [ ol P(—H) a4
S}Sr(F as ° F )ds

on
(18)

The auxiliary functions ¢, and ¢, are the solutions of
Dirichlet problems for elliptic differential equations
and are uniquely determined. Note that taking the area
integral of (9), applying Stokes theorem and using the
boundary conditions (14) ~ (17) shows that integrals [,
and I, are independent of the path of integration. Then,
for all T closed around Antarctica

(19)
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Parameter ¢ is poorly estimated and is usually as-
sumed small (the models reviewed in section 1 assume
e of order 107 m s™!). Fortunately, many features of
the solution do not depend on &, as long as ¢ is small.
For this reason, it is very helpful to find the leading
term in the expansion of the solution in an asymptotic
series in . The first step is to neglect the term with ¢
in (9) in the interior of the domain of integration. Then
we obtain the generalized Sverdrup relation

J<¢r, %) = curlzl—q;. (20)

The characteristics of this first-order differential
equation are the isolines of the equivalent-barotropic
potential vorticity

q = f/F = const. (21)

In the pure barotropic case, P(z) = 1, the charac-
teristics of the problem are the familiar f/H isolines.

Consider a cluster of g isolines that intersect the
boundary of our region. Generally (20) is valid in the
interior of the region, but near the boundary we expect
the formation of a Stommel boundary layer. It is easy
to show that a boundary layer exists if
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(&)
Os ¢
where the coordinates (s, {) are such that  isolines are
parallel to the boundary, s isolines are orthogonal to it
with the domain of integration to the left of (Vs),. The
subscript b indicates that the function is evaluated at
the boundary.

As in the familiar Sverdrup solution, (20) should be
integrated along g isolines from the boundary where
the boundary layer cannot exist. At this boundary the
solution of (20) should satisfy the specified boundary
conditions (10) or (11).

If, on the other hand, g isolines are closed around
Antarctica, then the asymptotics are completely differ-
ent. Kamenkovich (1962) showed that to a first ap-
proximation the isolines of s and ¢ will coincide and
¢ will be O(e™"). Transitional boundary layers of
width O(e'?) will be formed between the regions
where y = O(1) and ¢y = O(e™") (see also Has’min-
skii 1962; Gill 1968). A brief derivation of asymptotic
expansions for a simple model case with closed g con-
tours is given in appendix A.

The asymptotics demonstrate in the most distinct
way that the value of the ACC transport depends cru-
cially on the geometry of the g contours. We turn now
to the determination of these isolines in the Antarctic
region. \

<0,
b

(22)
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Note that the location of boundary layers becomes
intuitively clear if (9) is viewed as the advection—dif-
fusion equation for ¢ with the streamfunction f/F.

3. Determination of the large-scale
bottom topography

As we have discussed already, there is no ultimate
method to determine the ‘‘real’’ large-scale topogra-
phy. The standard approach is to apply some kind of
averaging to the original topographic data to filter out
small-scale structures and to preserve large-scale fea-
tures.

To smoothly map available topographic data (5’
X 5’ resolution Navy database ETOPO5) to an arbi-
trary grid we use the procedure suggested by II’in et al.
(1974). Let x, y be a point where we wish to find the
smoothed depth H (large-scale component of H). Then

@
ERZ H(Q;) eXP(" RE_ 2 riz)

r1
a b
> eXpl — 57 ——=
r',2<R2 R2 - r,?

where Q; = x;, y; is a node of the original grid, H(Q;)
is the depth at the point Q;, r? = (x; — x)* + (y;
— ¥)?, @ and R are parameters. The summation in (23)
extends over all points with nonzero depth. The func-
tion H(x, y) is defined everywhere and is smooth and
continuous. Differentiating (23) with respect to x and
y_yields explicit exact formulas for the derivatives of
H (I’in et al. 1974). These are needed to solve (9)
numerically. The parameters R and « are chosen to pro-
vide reasonable smoothing for the scales that are char-
acteristic for the real ocean. After a number of tests
with small-scale (of order 100 km) perturbations su-
perimposed on a large-scale sinusoidal topography, we
chose the following values: R = 500 km, o = 2R?.
Figure 1 shows how the weight decreases with distance
from (x, y).

Figures 2a,b illustrate how the method performs. The
vast majority of small-scale features of the original map
do not exist in the smoothed field and the smoothed
isobaths generally follow the mean paths of their coun-
terparts in the unsmoothed field. The notable exception
is the absence of the smoothed 3-km isobath repre-
senting the East Pacific Ridge in the original data. Be-
ing relatively narrow, the East Pacific Ridge has be-
come deeper as a result of smoothing and is represented
by the isobath 3.5 km in Fig. 2c.

A smoothed topography for the whole circumpolar
region to the south of 40°S is shown in Fig. 2¢, with
islands (including New Zealand) submerged to 500 m
before smoothing for simplicity. All the prominent
large-scale structures (midocean ridges, abyssal plains,
trenches) are reproduced. The picture is dominated by
features of the 10° length scale. The corresponding map

H(x,y) = (23)
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1809

of fIH contours is shown in Fig. 2d. There are several
large closed f/H contours associated with well-known
topographic features: the Agulhas Plateau, Kerguelen
Plateau, South Indian abyssal plain, and the triple junc-
ture of midocean ridges in the South Atlantic.
Inspecting Fig. 2d, one observes that there is a nar-
row band of closed f/H contours around Antarctica.
However, these closed contours pass very close to the
Antarctic coast at Cape Ann near S0°E. For brevity, we

call this location A.. The smoothing algorithm near
shore entails additional choices that in essence decide
how to tell ocean from land in the smoothed field. With
different reasonable choices the band of closed f/H
contours can be wider or narrower or can disappear
completely. We cannot objectively determine whether
these closed f/H contours really exist.

We pose the following question: Is the ACC trans-
port predicted by the barotropic model robust with re-

N~
N
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FiG. 5. The solution to (26) for § = 1.5 (in Sv). (Sverdrup solution); ¢ and 7 are given by (25) and (27), respectively.
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Fia. 6 The numerical solutions for the function ¢, (Sv) for Varlous grids and e. § = 1.5; ¢ and 7 are as in Fig. 5. (a) 2° X 1°,
e=10"2ms™" (b) 2° X 1°, &= 107"ms™; (c)2°>< 1°%e=10""ms 5 () 1H° X 1/°% e =102ms™ ! () 14° X 1/4° & = 1073

ms )1 X 1, e =10 ms™".

spect to perturbations of model geometry? To address
this question we perturb the geometry near Cape Ann
by artificially adding a small (about 100 km long) pen-
insula at A.. We refer to the perturbed model geometry
as case B and the unperturbed geometry is case C. The
narrow band of f/H contours, which are closed in Fig.
2d (case C), are all blocked by addition of the artificial
peninsula in case B. Recalling that for small & the so-
lution to (9) is crucially dependent on the structure of
f/H contours, we expect quite different behaviors in

cases B and C. This conjecture is examined by numer-
ical experiments in the following sections.

The EB model, on the other hand, is expected to be
more robust because F(H) depends more weakly on
H. The vertical profile function P(z) found by Kill-

worth (1992) is approximated by
P(2) = c. + e, (24)

where c.. and H, are some parameters that characterize
P(z). In the following we choose c.. = 0.05, H, = 900
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m as the most appropriate values. These parameters allow
a broad band of characteristics ¢ = f/F circumnavigating
the Antarctic continent (Fig. 2e). Note that, if P(z) tends
to zero very rapidly with depth, then the dependence of
F on H is negligible so that g contours almost coincide
with latitude circles, as in a flat bottom model (e.g., see
Fig. 2f showing ¢ for c.. = 0, Hy = 500 m).

4, Cases with an idealized topography

The key question of circumpolar dynamics is what bal-
ances the input of momentum and vorticity by wind.

Based on the arguments presented in section 2, one ex-
pects the solution to be fully determined by the pattern of
g isolines rather than by the geometry of the coast lines
or by the details of wind forcing. In the early models of
the ACC developed by Kamenkovich (1960, 1962), Gill
(1968), and Johnson and Hill (1975) it was assumed that
some contours of potential vorticity g close around Ant-
arctica. Such a configuration effectively stipulates the
breakdown of the Sverdrup balance in the circumpolar
domain. Since the pressure gradient cannot build up on
the closed contour, the friction, no matter how small the
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coefficient, must balance the wind input. Consequently,
the solution varies inversely with the friction coefficient.

The other possibility was studied by Krupitsky and
Cane (1994). They considered nearly inviscid wind-
driven flow in a zonal channel with the large-scale
piecewise linear topographic relief sufficiently high so
that all g contours are blocked by the sidewalls. They
found that the zonal transport in the channel is inde-
pendent of friction, similar to the Sverdrup transport in
a basin. Certain parts of the sidewalls act as ‘‘quasi-
western’’ boundary layers where the circulation closes.
A similar study was conducted by Wang and Huang

(1995). Results for domains of a more general shape
are reported by Wang (1994 ), Krupitsky (1995), and
Ishida (1994). .

To investigate the fundamental properties of the EB
model and to select and test the numerical scheme (see
appendix B) we begin with an idealized configuration.
The ACC is represented as a current in a periodic zonal
channel on a B plane (0 s x < L., 0 <y < L)) with
vertical walls: I'sisy = 0, [yisy = L,, ¢ = 0 [cf.
(10), (11)]. The domain dimensions are chosen to be
relevant to the Southern Ocean: 360° X 40°; the wind
stress will be specified below [cf. (27)]. For conve-
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TABLE 1. The transport T (Sv) and its standard deviation o (T) for
the case § = 1.5; g and 7 are given by (25) and (27), respectively.

2° % 1° 15° X 1s°
e(ms™") T o (D T o (T)
1072 16.0 0.01 16.0 0.001
1073 31.7 0.3 30.6 0.05
10~ 394 0.4 38.5 0.1

nience, instead of specifying H we prescribe the poten-
tial vorticity g [cf. (21)] so that

6 . 27x y
= +— — _ —
q qo[l 2<1 sin Lx>+Ly]’ (25)

where g, and 6 are parameters (Figs. 3a,b).

If 6 > 1, all g isolines that lie in the region are
blocked by the boundaries (for such isolines 1 < g/g,
< 2 + §6); if 6 < 1 some ¢ isolines (such that 1 + 6
< g/qy < 2) are closed around Antarctica. We will
solve one representative case from each class by con-
sidering (9) with the boundary conditions (10)—(12).
For simplicity we take H = (f, + By)/q, F = H, so
P(—H) can be found from (24).

(a) 6 > 1. We start our analysis with the case 6
= 1.5. The typical layout of the boundary layers of ¢/,
[the solution to (9) with the conditions (14), (15)] is
given in Fig. 3a. (For the function i, the picture is
similar.) The boundary layers are schematically shown
by dashed lines. Arrows show the direction of integra-
tion along ¢ isolines according to (22). In this case,
there are Stommel boundary layers of width O(e) near
the parts of the boundary y = 0 and y = L, where
characteristics end. Furthermore, there are internal
boundary layers of width O(e'/?) and four transitional
regions with the scales O(e'”? X £%/?) associated with
matching of internal and Stommel boundary layers and
with the termination of the latter. Similar internal
boundary layers and transitional regions were analyzed
by Kamenkovich and Reznik (1972). A general ap-
proach and necessary mathematical proofs for the case
analogous to 6 > 1 can be found in II’in (1992, ch. 4).

Outside the boundary layers and the transitional
regions, the Sverdrup relation (20) is valid. The equa-
tion for the function ¢, in the coordinate system g, y
reads

T
curl, —
o, L, *H
—_— =— . (26)
dy w64, 27tx
’ ST

To simplify the solution of (26) we choose the wind
stress to be zonal and such that (Fig. 4)

cos 2mx
L,

curl, % =a , (27)
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where ¢ = —2.3 X 107" s72, The wind stress is of a
realistic amplitude. Equation (26) can now be easily
integrated from the boundary where the boundary layer
cannot exist [cf. (22)]. The solution is presented in
Fig. 5.

The purpose of the numerical experiments described
in this section is to determine how small ¢ must be for
the solution to be close to the asymptotic limit and what
grid resolution is required to reproduce all major prop-
erties of the solution for given &. To this end we con-
duct two series of experiments on 2° X 1° and 1/,°
X 1/4° grids for different values of «.

The numerical solutions for the function ¢, on 2°
X 1° and 1/2° X 1/4° grids for different values of £ are
shown in Fig. 6.

Calculations show that the resolution does not affect
the solution outside the boundary layers. Comparison
with the Sverdrup solution depicted in Fig. 5, shows that
with € = 107 and & = 107 the numerical solutions are
very close to the asymptotic limit in the interior. The
solutions for the functions ¢/, and ¢ are shown in Fig. 7
and Fig. 8. The evolution of the boundary layers with &
and grid resolution is clearly seen in Fig. 7. The I'in
scheme used here is not intended to yield good results
in the internal boundary layers, and our experiments
show that for small ¢ the solution in the internal bound-
ary layers changes very little with €. On the other hand,
the Stommel boundary layers appear to be better de-
scribed by a fine resolution model. The dependence of
the transport on ¢ is shown in Table 1. In accordance
with the results of Krupitsky and Cane (1994) and Kru-
pitsky (1995), the transport tends to a finite value of the
order 7oL,/ fy as € = 0. The transport was calculated
using (18) on each latitude represented by the grid.
Since the numerical scheme does not guarantee that (19)
holds exactly, there is a scatter in the values of the trans-
port obtained on different contours. The standard devi-
ation o of this scatter is a measure of the accuracy of
the scheme. In this case ¢ < 1% of the transport.

(b) 6 < 1. The asymptotics in this case were stud-
ied by Kamenkovich (1962), Has’minskii (1962),
and Gill (1968). The general procedure is outlined
in appendix A. The typical layout of the boundary
layers of ¢, is given in Fig. 3b. (The corresponding
picture for ¢, is similar.) In addition to the Stommel
boundary layers near the parts of the boundary y
= 0 and y = L, and four transitional regions (which
are similar to the case 6 = 1.5), internal boundary
layers of width O(&!/?) will be formed between the
regions where ¢; = O(1l) and ¢, = O(1l/e). The
fundamental property of the asymptotic solution that
we would like to reproduce numerically is its inverse
dependence on &£ within the band of closed g con-
tours.

Before we turn to the computationally complicated
case 6 = 0.5, we first treat a similar problem but with
a constant depth and a meridional barrier in the north-
ern half of the basin. Here P = 1, F = H, g = ({,
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+ By)/H,. This problem is much simpler numeri-
cally because the q isolines are latitude lines that are
aligned with the grid. This problem was analyzed by
Gill (1968). The asymptotic solution for ¢; in the
southern part of the domain where g isolines are
closed (g, = g < g,) is simply
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(see appendix A), where g, and g, are the values of
q at the southern boundary and at the southern tip of
the barrier, respectively. The internal boundary layer
connects (28) with the Sverdrup solution in the
northern part of the domain (Gill 1968).

The numerical solution for , for the case e = 10™*
m s~ ' ona 1/2° X 1/4° grid is shown in Figs. 9a,b. Note

4 . . .
@y = aH (g = q)(q — @) (28) that the width of the internal boundary layer is approx-
enf3? : imately 4° (Fig. 9b). Solutions for i, in the southern
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FIG. 9. (a) The function i, (Sv) for the Gill problem, £ = 107" m s™'; (b) same as (a) but showing only internal
boundary layer; 7 is given by (27); H = const. The resolution is 1/° X 1/4°.
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part of the domain for different £ are compared with
the asymptotic solution (28) in Fig. 10. One observes
that the solution with ¢ = 107* m s ™! is reasonably
close to the asymptotic solution and & = 107°> ms™!
yields a very good approximation to it. The solution
with ¢ = 107> ms™' differs significantly from the
asymptotics due to the relatively thick internal bound-
ary layer between the northern and the southern parts.

Now we turn back to the case of g given by (25).
The numerical solutions for the streamfunction ¢ for §
= (.5 are shown in Fig. 11. Analysis of the calculated
solutions and comparison with the solution on a 1/4°
X 1/g° grid shows that we approached the asymptotic
regime with ¢ = 107 m s~'. The dependence of the
transpost on the resolution and the scatter of the cal-
culated values of the transport on different latitude lines
[cf. (19)] suggests that a 1/2° X 1/4° resolution is mar-
ginally sufficient for a reliable calculation of the trans-
port for ¢ = 10™* m s~! and is certainly sufficient for
larger values of & (Table 2). A comparison of Tables
1 and 2 demonstrates that the required resolution de-
pends not only on the value of the friction coefficient
but also, and in a more profound way, on the structure
of the field of g isolines. This structure also strongly
influences the value of & at which we approach the
asymptotic regime.

5. The case with realistic topography and coastline
a. Barotropic model

We compare the behavior of the solution to (9) -
(12) in case B (no g contours closed around Antarc-
tica) with that of case C (a band of closed g contours).
Here I's consists of the coast of Antarctica, I'y consists
of the coast of South America and the latitude line 40°S,
¥T = 0. The model was forced by wind stress from
Hellerman and Rosenstein (1983). The calculations
were performed on grids with the uniform spatial res-
olution 10 km and 5 km (the latter as a convergence
check). From the analysis above we anticipate that the
dependence of the total transport on & would be very
different with and without closed g contours. However,
in the range of friction parameters where the calcula-
tions were feasible (10™* < ¢ < 1072 m s™!) the so-
lution is far from the asymptotic behavior and the dis-
parity in the calculated ACC transport is less dramatic
than in the idealized cases of section 4 (Table 3 and
Fig. 12). The most likely explanation is that the band
of g contours closed around Antarctica is very narrow,
sometimes only about 1° across. From experience with
the Gill problem, we expect the internal boundary lay-
ers to be a few degrees wide even withe = 10 m s ™!,
Hence, in our calculations, the band of closed g con-
tours is entirely overlapped by internal boundary layers
and we are far from the asymptotic regime where the
solution varies inversely with &.

In principle, in case C, we could obtain a realistic
value of order 130 Sv (Whitworth 1983) with
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e =0(10"m s™") on a finer grid, but this calculation
is barely feasible because of the very slow convergence
of the iterative process used. In any event, the solution
for the ACC would closely follow the g isolines (Ka-
menkovich 1962; also viz. Fig. 12¢) and the location
of the ACC would be far from realistic. In addition, the
result would not be robust with respect to the presence
of the peninsula at A.. In case B, we observe the
blocked regime studied by Krupitsky (1995) where the
realistic transport is impossible with any &, on any grid.
The calculated solutions are shown in Fig. 12. For small
values of friction the model predicts very strong local
recirculations in the regions where the g contours are
locally closed. This is explained by the same argument
as the too strong ACC with a flat bottom or in the ide-
alized case 6 = 0.5. In a more realistic model the wind
stress torque acting around closed g contours is likely
to be balanced by the baroclinic pressure term (e.g.,
Welander 1968). Except for the value of the transport,
the solutions with ¢ = 1072 m s ' look more realistic
than the low friction solutions. This suggests that the
omiitted baroclinic terms are crucial in the momentum
and vorticity balances.

Summarizing the results of the last two sections and
taking into account the previous efforts referenced in
the introduction, we conclude that a linear barotropic
model cannot be used for determining the transport and
the position of the ACC.

b. An equivalent barotropic model

It may seem that barotropic and EB versions of (9)
are almost identical. In fact, however, they differ sig-
nificantly because the structures of potential vorticity
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Fic. 11. As in Fig. 8 but for 6 = 0.5.

contours are quite different. Recall that nonrobustness
of the barotropic model was due to specifics of the ge-
ometry of f/H isolines where small perturbations
in H changed the structure of f/H contours from the
closed case to the blocked. The geometry of f/F con-
tours where a broad band of contours circumnavigates
the Antarctic continent (Fig. 2e) is such that small per-
turbations in H do not change their structure. Therefore,
the EB model is robust with respect to topographic vari-
ations.

The solution of (9), (10)=(12) fore = 10™2m s '
(Fig. 13a) is similar in many respects to the time- and

depth-averaged solution from FRAM (Fig. 14). In par-

ticular, the position of the ACC is satisfactorily repro-
duced. The resemblance, while considerable, is not to-
tally surprising since the vertical structure (24) reflects
the time-mean vertical structure of the FRAM solution.
The differences between the two models are concen-
trated in regions with steep topography, for example,
near the southern edge of the Kerguelen Plateau. These
discrepancies can be attributed to the violations of the
EB assumption (3) in the eddy-energetic areas (Kill-
worth 1992). Our model also fails in the Weddell and
Ross gyres where (3) is less likely to hold.
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TABLE 2. The transport T (Sv) and its standard deviation o7 for the
case 6 = 0.5; g and 7 are given by (25) and (27), respectively.

2° X 1° 1/2° X 1/4° 1/4° X 1/g°
€ T o (1) T o (D) T o (T)
1072 48.6 0.01 48.6 0.002
10 3 389 7.6 416 1.5
10 * 1426 660 2713 286 2701 111

The zonal momentum balances were obtained by av-
eraging (4) within the area bounded by the outermost
closed streamlines of the ACC. After integration the
Coriolis term vanishes. The integral of the first term of
the rhs of (4) yields the resultant pressure force due to
topographic pressure drag and due to the action of pres-
sure forces on the lateral boundaries of the ACC. The
resultant pressure force on the lateral boundaries is gen-
erally not zero because the ACC is not strictly zonal.
The integrals of the second and third terms on the rhs
of (4) give the contributions of wind and bottom fric-
tion. The difference of the latter two terms give the
contribution of pressure forces. In this experiment,
pressure forces balance 62% of the zonal momentum
input from wind in the ACC.

It is interesting to investigate the role of the param-
eterization of bottom friction via near-bottom velocities
(6). We repeated the last experiment (Fig. 13a) re-
placing (6) by 7, = et (u = U/H), which parameter-
izes bottom friction via the vertically averaged velocity
(7, ~ u), as in the barotropic model. The resulting
solution is shown in Fig. 13b. The model ACC now
consists of two branches. The southern branch follows
the band of closed f/F contours, which brings its path
along the southern ACC front (Orsi et al. 1995). Given
available observational data, it is difficult to say how
realistic this branching is.

Comparison of Fig. 13a and 13b shows that the role
of P(— H)/F term is to shut off the flow in the shallow
regions. Thus, the southern branch of the ACC mostly
flowing over the Antarctic shelf (Fig. 13b) is com-
pletely absent in Fig. 13a. Another major difference is
observed at the southern edge of the New Zealand Pla-
teau, which the ACC circumvents in Fig. 13a and
crosses in Fig. 13b. The third such area is the conti-
nental shelf to the northeast from Cape Horn, which
pushes the Malvinas Current farther to the east in Fig.
13a. In this experiment, pressure forces balance 51%
of the momentum input from wind in the ACC, with
the reminder balanced by friction.

Notice that the solutions are strongly affected by the
major topographic features (notably the Kerguelen Pla-
teau) despite F(H) depending on H only weakly: VF
= P(—H)VH. The effect is especially pronounced if
T, ~ W, (Fig. 13a). The sensitivity of the solution to
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bottom topography is mainly controlled by the ampli-
tude of the flow near the bottom.

The solution is nearly insensitive to topography for
the choice c. = 0, Hy = 500 m (cf. Fig. 2f), which
confines the flow to the upper ocean. With either pa-
rameterization of 7, the solutions (Fig. 13c, 13d) are
quite similar to the solution with a flat-bottom (Fig.
15). The topography plays only a minor role, especially
in the case 7, ~ @ (Fig. 13d). Pressure forces balance
only 10% of the momentum input from wind in the
ACC. We are in the regime T ~ &' (Kamenkovich
1962), where £ may be adjusted to tune the value of
the transport. Figure 15 shows that the global scale de-
viations from zonal path are mainly due to the location
of Drake Passage and maximum of the wind stress (see
introduction). The results of the numerical experiments
are summarized in Table 4. The values of £ in each
experiment was selected to yield the correct order of
the ACC transport.

Comparing the terms in the vorticity balance (9) we
found that the wind forcing is generally at least an order
of magnitude smaller than two other terms. Therefore,
neglecting ¢, in (18) changes the transport by only
about 7% and ¢ ~ Tis,. It does not mean, however,
that wind forcing is unimportant. Unlike wind-driven
models in closed basins, wind stress itself (more pre-
cisely, 7/F) is much more important than its curl. For
example, if 7/ F were constant then ¢, = O everywhere,
but the transport 7 would be proportional to 7/F;
cf. (18).

6. Conclusions

A linear equivalent barotropic model with bottom
friction is applied to study the effects of the bottom
topography H and baroclinicity on the total transport
and the position of the ACC. The model is based
on the observation by Killworth (1992) who no-
ticed that the time-mean velocity field of the FRAM
model is seif-similar in the vertical. The parameters
of our model are the vertical profile function P(z)
and the bottom friction coefficient . The vertical
profile function P(z) is meant to account for the ef-
fect of baroclinicity. The value of ¢ is chosen so that
the model transport is close to observed. The pro-
cesses of formation of the EB structure are not con-
sidered.

Equivalent barotropic models have been previously
used in atmospheric weather prediction problems (e.g.,

TABLE 3. Transport (Sv) for the barotropic case
with realistic topography.

g(ms™h Case C Case B
1072 16 16
10°3 33 25
10~ 52 28
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Charney and Eliassen 1949). The application of an EB
model to the analysis of the ACC is new. The EB model
is relatively simple and formally equivalent to a baro-
tropic model, allowing one to use numerous results pre-
viously obtained.

Asymptotic analysis of the model equations for
small friction delineates two different asymptotic re-
gimes: (i) If potential vorticity contours that are
closed around Antarctica exist, then the ACC trans-
port varies inversely with ¢; (ii) if all the potential
vorticity contours originate and terminate at ‘the
boundaries, then the ACC transport is independent of

friction for small e. We developed a numerical
scheme suitable for solving linear vorticity equations
with small bottom friction and some of the potential
vorticity contours closed. Computational tests con-
firmed the analytical results.

A field of large-scale bottom topography in the Ant-
arctic region was constructed by filtering 5’ resolution
data with a smooth kernel as suggested by II’in et al.
(1974). This procedure yields a smooth topography H
that closely corresponds to the original. -

For the barotropic ocean [P(z) = 1] with realistic
topography, we considered two cases with slightly
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modified coastlines. In one case all potential vorticity
contours were blocked; in the other some potential vor-
ticity contours were closed around Antarctica. In the
case when all the potential vorticity contours are
blocked, the transport is smaller than observed and the
realistic transport is impossible, with any friction, on
any grid. In the other case, the theory suggests that the
transport will vary as e ', so the observed transport is
achievable. However, the band of potential vorticity
contours that are closed around Antarctica is so narrow
that it requires very small friction and extremely high
resolution. Even if such an experiment were completed,
the ACC would be positioned far south of its real path.
In addition, the result would not be robust with respect
to the perturbations in H.

We conclude that a linear barotropic model cannot
be used to determine the transport and the position of
the ACC. We believe that the inclusion of nonlinear
terms will not mend the situation.

The vertical profile of the velocity field for the EB
model is taken to approximate the time-mean FRAM
solution (Killworth 1992). The solution to the EB
model reproduces the major features of the time- and
depth-averaged FRAM solution reasonably well. The
ACC is strongly steered by the major topographic fea-
tures (e.g., Kerguelen Plateau and the New Zealand
Plateau). The comparison with the FRAM solution is
much improved by parameterization of the bottom fric-
tion via near-bottom velocity, in contrast to the tradi-
tional parameterization of bottom friction via vertically
averaged velocities. This tends to shut off the flow in
the shallow regions (e.g., the New Zealand Plateau or
the continental shelf of South America).

We showed that the EB model satisfactorily de-
scribes the position and the total transport of the ACC.
These are determined by the location of the continents
(especially Drake Passage), bottom topography, bar-
oclinicity (parameters c.. and Hy in our model), and the
wind stress field.

The EB model is found to be robust with respect to
perturbations 6H in the bathymetry field.

The EB model allows calculation of momentum and
vorticity balances. In the experiments with the approx-
imate vertical profile of the time-mean FRAM solution,
the resultant zonal pressure force (bottom pressure drag
plus pressure force against the fluid boundaries) bal-
ances a major part of zonal momentum input from wind
(62% if 7, ~ u, and 51% if 7, ~ @). The remainder is
balanced by frictional terms. :

The sensitivity tests show that, if the profile function
P(z) quickly decays to zero, friction is much more im-
portant in the zonal momentum balance (over 90% in
the momentum balance in our test runs). The influence
of topography on the current for such profile is minor

TABLE 4. Summary of the numerical experiments with the EB

model.
Parameters of P (7)
[cf. 24)) Tp~ W, T, ~ U
=005 Hy=90m &e=10%ms!, &£=3-102ms7},
T =118 Sv T =133 Sv
ce=0, Hy=500m g=1ms', e=10"2ms™'
T =129 Sv T = 80 Sv
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and streamlines are nearly zonal: it resembles the flat-
bottom case.

The role of the parameterization of bottom friction
via near-bottom velocities is to shut off the flow in the
shallow regions. Comparison with the FRAM solution
suggests that this approach yields more realistic results
than the traditional parameterization of bottom friction
via vertically averaged velocities. The analysis of vor-
ticity balance shows that unlike wind-driven models in
closed basins wind stress itself is much more important
than its curl.

Thus, the equivalent barotropic model provides a
simple way to account for the integral effects of baro-
clinicity and topography. A proper selection of the ver-
tical profile function P(z) allows to model a wide va-
riety of possible baroclinic structures: from purely
barotropic to realistic (e.g., calculated by FRAM) to
strongly baroclinic. The solutions presented bear sig-
nificantly greater resemblance to reality than the baro-
tropic solutions. The EB model proved capable of re-
producing reasonably well both the transport and the
overall position of the ACC. However, the model gives
unsatisfactory results over the regions with steep to-
pography, for example, near southern edge of the Ker-

guelen Plateau and in the Weddell and Ross gyres

where the EB assumption (3) is less likely to hold.
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APPENDIX A

Asymptotic Analysis of the Case
with Closed ¢ Isolines

To complete the consideration of the case § < 1 (sec-
tion 4) we proceed with asymptotic analysis of the
problem (see also Kamenkovich 1962; Has minskii
1962; Gill 1968).

In the coordinates s, g (s is the coordinate along g
isolines increasing to the east) (9) can be written as

9

eAfy + — =W(s, q), (A1)
as

where

82 2 2

A =a(s, Q)a—qz + b(s, q) 9405 +c(s, q) 352

) aJ
+ d(s, q)g; + e(s,q)a~s.
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Here a, b, ¢, d, e, and W are periodic functions of s
(0 = s < 2m) in the interval g, < g < g,. The solution
within the band ¢, < g < g, is sought as an asymptotic
series

1
¥ =" Yo(s. @) + 4(s, q) + eu(s. q), (A2)

where the ¢, (k = 0, 1, 2, - - -) are periodic in s. Sub-
stituting (A2) in (A1) and collecting terms at powers
of ¢ yields

—=0 (A3)
s
Ay + % = (A4)
ads
A + % =0 (A5)
ds

Equation (A3) implies ¢, = ¥o(gq). Averaging (A4)
in 5 yields an ordinary differential equation for ¢/y:

Agy = W(g), (A6)
where

_ a2 3]
A=a(s, q) o + d(s, q) 37

o 1 27

Thus, we have an ordinary differential equation for .
The next approximation is found from (A4) as

lffl(s,q)=J;(W-Al/fo)dS’ + ¢ 7(g). (A7)

The ordinary differential equation for ¢{" is obtained
from averaging (AS5) in s:

Ay = —Af (W= Mo)ds’,  (A8)
0
and so on.
The boundary conditions at the northern boundary g
= g, are determined from the continuity of ¢y and dys/
dq . The solution in the vicinity of ¢ = g, is sought as

U =Y(s,q) + e o5, 5)+ -, >0 (A9)
¥ =& Wo(q) + 8705 (& 5) + -+, £ <0, (A10)
where ¢, is the known solution in the region with

blocked g isolines and

g=1"1% (Al1)
€
Substituting (A9)—(A11) in (A1) yields to leading
order
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a(s. qs) a?f + %OSE =0 (A12)
a(s, qp) 90217 doo = 0. (A13)
o€ os
The continuity of ¢ and oY/ dq at g = g, implies
$o(qp) = 0 (Al4)
dpg a irs
—a“’&—‘) = a—‘f; o T;? . (A15)

The additional boundary conditions needed to deter-
mine g and g are

o >0 oo (A16)
po 20 £ - (A17)
po (& s)=0 (A18)

at the eastern coast of the meridional barrier
©0 (& 0) = ¢, (&, 2m). (A19)
In the next order the continuity of ¢ at g = ¢, implies
Ps = 0. (A18)

If the southern boundary of the domain of closed g
contours is fluid (as is the case when é < 1), then the
boundary conditions for iy, @5, @ at g = g, are de-
termined in a way similar to described above. If the
southern boundary of the domain of closed g contours
is solid (as in the case of the Gill problem) then

Po(gs) =0 (A19)

and there is no need to introduce functions ¢, @i .
Thus, the leading order interior solution s, is found
from (A6), (Al14), and (A19).

APPENDIX B
The Numerical Scheme

We would like to have a numerical scheme with con-
stant grid spacing capable of reproducing the solution
of (9) for small ¢, at least outside the boundary layers
for moderate space resolutions. This turns out to be a
difficult problem. It is known that, when the friction is
small, centered finite differences in terms with first de-
rivatives yield spuriously oscillating solutions if the
resolution is not sufficient to resolve the boundary lay-
ers (e.g., I[I’in 1969). Upwind differences, on the other
hand, yield smooth solutions at the expense of adding
artificial viscosity, which could be larger than the phys-
ical one. In the case § = 1.5, we use the scheme sug-
gested by II’in (1969) where Eq. (9) written in the
form

(W + Yyy) + alx. y) ¢,

+b(x, y)¢, =f(x,y) (BI)
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is approximated at the point (x;, y;) as

: Wiy 2};//21, + iy + a ¢i+l,j2_h iy

— 24y + i ijrr = Py
I 4 b -

h; / 2h

Y

zf(xiayj)y

4 (//i,"i-l
+ 8?]‘ !

where

a; = a(x.,y), by=b(x,y)

o _ dyhy il . y_buhy %
Ej = 5 (28 ) s €y~ > /tanh 26 .

Here h, and h, are the grid sizes in x and y. For fixed
h and e = 0, the coefficients of the II’in scheme ap-
proach those of the upwind difference scheme, but this
scheme is superior to the upwind scheme for several
reasons. Like the upwind scheme, this scheme pre-
serves the maximum prmc:lple for (Bl) (I’in 1969).

However, it is second order in 4 for fixed € and for the
one-dimensional problem it yields a first-order approx-
imation uniformly in &, which is not true of the upwind
scheme (II’in 1969). In fact, the scheme is designed in
such a way that for a one-dimensional problem with
constant a(x) the solution of the discretized equations
coincides with the exact solution of the two-point Dir-
ichlet problem on the grid no matter how coarse it is.
Therefore, even if g; > &, the increase in the coeffi-
cients of the second derivatives in the finite difference
equations cannot simply be interpreted as artificial vis-
cosity.

For the Gill problem and in the case 6 = 0.5, we
apply a hybrid scheme whereby centered differences
are used at each grid point laying on a closed g contours
(to the south of the barrier for the Gill problem); else-
where we use the II’in scheme. The corresponding lin-
ear system is solved by the Gauss—Seidel algorithm at
points where the II’in scheme was used and by succes-
sive under-relaxation elsewhere. The latter is a slow but
stable process that was found appropriate for inverting
ill-conditioned matrices resulting from the described
scheme. ‘

Let us show using a simple example that in the case
of closed g contours centered differences yield nonos-
cillatory solutions. (Our numerical experiments.con-
firmed this in all situations.) Consider the equation

eV + J(, q) = 1, (B2)

where

q=ay—x. (B3)

The periodic in s (the coordinate along g isolines)
solution to (B2), satisfying the boundary conditions

Plymo =¥l =0, (B4)
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is

-1
= q(qg - 1)

T 2e(l +a?) (BS)

Assuming a uniform grid resolution 4 in both x and
v, the function (x, y) can be represented on the grid
as Y(ih, jh), where i and j are the numbers of grid
points in x and y, respectively. Thus, the exact solution
on the grid in the interval 0 < ¢ < 1 can be written as

Gl = (ajh — ih)(ajh — ih — 1)
gid ™ 2e(1 + a?) :

(B6)

Substitution of (B6) in the finite difference analog
of (B2) where first derivatives are approximated by
centered differences shows that (B6) is an exact solu-
tion of the finite difference equation.

For the Gill problem, the solution obtained using the
hybrid scheme was found to be almost identical to that
obtained by using II’in scheme at all points, as in the
case 6 > 1. The applicability of the II’in scheme for
the Gill problem is somewhat fortuitous and is due to
the fact that &}, = & because b(x, y) = 0. Our experi-
ments have shown that in the case 6 = 0.5 this scheme
behaves like an upwind scheme and yields erroneous
solutions (see Brandt and Yavneh 1991). A scheme
without artificial viscosity in the direction of Vg is
needed in the region of closed characteristics. This is
why the hybrid scheme is suggested. One might make
a coordinate transformation and apply the II’in scheme
everywhere, but for the real case it would be cumber-
some and the hybrid scheme is preferable.
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