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ABSTRACT

The Kalman filter is implemented and tested for a simple model of sea level anomalies in the tropical Pacific,
using tide gauge data from six selected island stations to update the model. The Kalman filter requires detailed
statistical assumptions about the errors in the model and the data. In this study, it is assumed that the model
errors are dominated by the errors in the wind stress analysis. The error model is a simple covariance function
with parameters fit from the observed differences between the tide gauge data and the model output. The fitted
parameters are consistent with independent estimates of the errors in the wind stress analysis. The calibrated
error model is used in a Kalman filtering scheme to generate monthly sea level height anomaly maps for the
tropical Pacific. The filtered maps, i. €., those which result from data assimilation, exhibit fine structure that is
absent from the unfiltered mode! output, even in regions removed from the data insertion points. Error estimates,
an important byproduct of the scheme, suggest that the filter reduces the error in the equatorial wave guide by
about 1 cm. The few independent verification points available are consistent with this estimate. Given that only
six data points participate in the data assimilation, the results are encouraging, but it is obvious that model
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errors cannot be substantially reduced without more data.

1. Introduction

In the work reported here, a Kalman filter is used
to assimilate data into a wind-driven numerical model
for the equatorial Pacific in order to produce monthly
mean sea level maps for the period 1978-83. To our
knowledge, this is the first application of a true Kalman
filter to a real oceanographic problem. Given the cur-
rent high level of enthusiasm for both “data assimila-
tion” and “sea level data” among oceanographers, any
introductory justification for considering these broad
topics is superfluous. We therefore present only a brief
discussion of our particular choices of problem and
methodology to frame the issues at the core of this
study.

Primarily through the collection and analysis of tide
gauge data by Wyrtki (see especially 1975, 1979), the
study of tropical Pacific sea level data has advanced
our understanding of both annual and interannual
changes in the tropical ocean. Indeed, Cane (1986 ) has
argued that Wyrtki’s shift of attention from sea surface
temperature to sea level variations was the crucial in-
sight leading to a dynamical theory for El Nifio and
the Southern Oscillation (ENSO). Current theory,
while characterizing ENSO as a cycle of the coupled
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ocean-atmosphere system, assigns a pivotal role to
variations in tropical sea level (more precisely, to its
near equivalents, dynamic topography or heat con-
tent). Dynamical prediction efforts (Cane et al. 1986),
which are based on this view of the ENSO cycle, have
an essential requirement for fields of tropical Pacific
sea level as initial conditions.

Maps of sea level (or equivalent ) have been produced
regularly from tide gauge station measurements (dis-
tributed monthly in the Climate Diagnostics Bulletin
by the Climate Analysis Center/NMC/NOAA, Wash-
ington, D.C.; see also Wyrtki and Nakahara 1984),
from XBT data (White et al. 1987), and from Geosat
altimeter data (Cheney et al. 1987). The first two data.
sources provide only very sparse coverage, so much of
the field must be created by an interpolation scheme.
The last provides ample coverage, but may have errors
which are large relative to the characteristic size of
anomalies and is, in any case, too new to allow reliable
definition of means and anomalies. For these reasons,
it must still be regarded as experimental. Fields of sea
level also may be created with a wind driven numerical
model, which necessarily provides an estimate every-
where within the model domain. This approach is taken
by Cane et al. (1986), who initialize their forecast runs
with the ocean fields created by driving the ocean com-
ponent of their coupled dynamical model with ana-
lyzed monthly mean wind fields derived from merchant



774

ship observations (Goldenberg and O’Brien 1981). As
discussed further below, the sparseness of the wind ob-
servations means that the accuracy of the analyzed
fields is poor, and numerous studies (e.g., see Mc-
Phaden et al. 1988) have shown that the consequent
errors in sea level can be comparable to all but the
most extreme anomaly signals. In principle, the best
field should result from a procedure which combines
estimates from a model with in situ data. Work in this
vein has been reported by Leetmaa and Ji (1989), who
applied a relatively simple data assimilation scheme to
a complex model, an ocean GCM.

Here we apply a sophisticated data assimilation
methodology, the Kalman filter, to a 2 vertical mode,
5 meridional mode, linear wind-driven numerical
model. There are numerous studies which support the
contention that such a simple model is adequate to our
purpose of hindcasting sea level in the equatorial
waveguide.

The paper by Gill (1983 ) is an especially interesting
heuristic precursor to the work reported here. He used
a similar model to estimate sea level and surface current
anomalies at Canton and Christmas Islands based on
Kelvin and Rossby wave amplitudes estimated from
data taken at the Galapagos. Gill did not calculate error
statistics, but even if he had, direct comparison between
that work and ours would be difficult.

Though in principle a more elaborate model should
do a better job, we are aware of no evidence which
establishes that this is now the case. Perhaps this merely
reflects the paucity of evidence one way or the other;
the only reported results of a GCM study for a long
time series are those of Latif (1987). For present pur-
poses, it is sufficient to argue that the linear dynamics
of our model represent the dominant sea level response,
and that its deficiencies in this regard are dwarfed by
errors in the surface wind forcing. Consequently, we
take the “model error” to be due entirely to wind error.
However, in view of the empirical way that our model
error is determined, the reader who disagrees with us
is invited to attribute as much as he wishes of the model
error to model shortcomings. Such a change in inter-
pretation has only a small effect on our conclusions
about our assimilation methodology.

In contrast to the simplicity of the physical model,
the Kalman filter, widely used in engineering practice,
is by some criteria a more sophisticated data assimi-
lation procedure than any now in operational use in
meteorology or oceanography. If certain conditions are
met, it can be shown to yield an estimate of the present
state of the system which is statistically optimal. In
some respects, the sea level hindcasting problem is an
ideal candidate for Kalman filtering. The evolution
equations are predominantly linear. The errors result
largely from errors in the forcing (and, if you like,
model deficiencies), as opposed to the loss of predict-
ability inherent in nonlinear dynamics. Application of
the Kalman filter in the context of numerical weather
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prediction was first presented by Ghil (e.g., see Ghil et
al. 1981).

Implementation of the Kalman filter requires that
the covariances of the errors in the model and in the
data be specified explicitly. Such detailed quantitative
knowledge is not available; our ignorance permits only
crude approximations. One of the goals of this study
is to see if the filter retains any efficacy when subjected
to assumptions that are not easily defensible in terms
of the real world. Still, it bears repeating that every
data assimilation scheme which is based upon mini-
mization of an error functional involves error models
of some sort. As an example, one might consider the
strong constraint methods (Sasaki 1970), in which the
analyzed field is a solution to the model equations,
with the initial and boundary conditions chosen so that
the resulting solution agrees most closely with obser-
vations. In such schemes the model error is assumed
to vanish identically. This is a detailed, if trivial, error
model. The Kalman filter can be implemented in strong
constraint form. The need for explicit error statistics
is often cited as a disadvantage of the Kalman filter;
in fact, all statistically based data assimilation schemes
require estimates of error statistics in some form.

The major disadvantage of the Kalman filter can be
cost. In its most straightforward implementation, the
cost of the Kalman filter increases quadratically with
the number of state variables in the dynamical system.
Applications to even as large a system as that studied
here are rare. The computational burden here is easily
managed, but it could be prohibitive in a high reso-
lution model such as a GCM. A goal of our research
is to find ways to implement the Kalman filter in such
a context, perhaps in some approximate form, and the
present application to a minimal model contributes to
that goal in two ways: First, it provides an encouraging
indication that the filter can be implemented readily
and to good effect; second, as an illustrative example
of the workings of the methodology on a practical
problem in oceanography, it provides guidance for fu-
ture work.

The physical model, the Kalman filter and the data
are described in sections 2, 3 and 4 respectively. The
parameterization of error statistics necessary for im-
plementation of the Kalman filter is described in sec-
tion 5. The model performance without data assimi-
lation is described in section 6. Quantitative details of
the testing and calibration of the error model are given
in section 7. Section 8 describes the filtered results and
section 9 contains discussion and summary.

2. The physical model

Our physical model, the linearized equations of mo-
tion on an equatorial beta plane with the long wave
approximation, has been described in many places. Our
notation is most like Cane (1984) and Cane and Sar-
achik (1981; hereafter CSII). In this model, the motion
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is decomposed into vertical modes as in Cane (1984).
The amplitude of each vertical mode satisfies the lin-
earized shallow water equations on the beta plane, sub-
ject to long-wave approximations. Solutions obtained
by classical separation of variables take the form

(um) _ Fm(X, 1) (%(y))
P 22 \go(y)
+ g Tnm(X, 1) (n+ 1)_1/2‘/’n+1 - n—llz‘/’n—-l
2:2172 \(n+ 1) Y+ 07 2 |
(1)
The subscript » denotes quantities associated with
the mth baroclinic mode. In the above equation:

U, the zonal velocity component
h,, the sea level height anomaly; the total sea level
anomaly is 2 A,

m
arm the amplitude of the Kelvin wave
rnm the amplitude of the nth meridional mode
Rossby wave
¥, the nth Hermite function (cf. CSII).

The ay and r, for the mth baroclinic mode are gov-
erned by the simple wave equations:

3ak a(lk

o Tm e 7i(x, 1) (2)
ar, Cm  Orn _
o mm+iex %D 3)
subject to the boundary conditions
u=0 at x=Xg (4)
fudy-—-o at x=0 (5)

where x = 0 and x = Xj are respectively the western
and eastern boundaries of the ocean basin; 7, and 7,
are calculated by projecting the zonal wind stress field
on the meridional modes.

The model itself is implemented using the method
of characteristics to solve (2) and (3) explicitly. Com-
putation proceeds in three distinct steps. First the Kel-
vin wave amplitude a; is calculated by explicitly solving
(2) as an ordinary differential equation along the char-
acteristics x = ¢,,f 4+ Xp in the x—¢ plane. Physically this
amounts to simulating the eastward propagation of the
forced Kelvin wave. This calculation only involves
those points which are not influenced by the western
boundary, i.e., those points which lie a distance of at
least ¢, At east of the western boundary. The amplitude
of the Kelvin wave at the eastern boundary determines
the amplitude of the Rossby waves there through the
boundary condition (4). In order to satisfy (4) we must
have (cf. CSHI)

rl(XEa t) = 2ak(XE9 t)
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and, in general:

n+1

1/2
T (Xg, t) = ( ) Fn1(Xg, 1)

for even n > 0; these are the symmetric modes which
interact with the Kelvin waves. The antisymmetric
modes have zero amplitudes at the eastern boundary.

Since we must truncate the series in (1) at some
finite N, (4) will not be satisfied exactly. This introduces
some dissipation into the numerical scheme: neglect
of the higher modes means energy is lost at the eastern
boundary and mass is not conserved there. Energy is
also lost at the western boundary. This follows from
the derivation of (5) (cf. CSII). It has been widely noted
(cf. CSII) that the Hermite series converges very slowly,
and does not efficiently represent the solutions to the
underlying equations outside a narrow band of latitudes
near the equator.

Once the r, are known on the eastern boundary, (3)
can be solved for the entire domain. The result of this
step yields the values of r, on the western boundary,
and this, in turn allows the values of a, to be calculated
for the western boundary by (5). Equation (2) is then
solved as a signaling problem for the values of a; near
the western boundary. As noted above, (2) and (3) are
treated as ordinary differential equations in the char-
acteristic plane. Linear interpolation is used to estimate
initial values and the quadrature is done by the mid-
point rule. We use common Pacific values (cf. Cane
1984) for physical parameters in the model, i.e., wave
speeds of 2.91 and 1.78 m s™! and length scales of 357
and 279 km for the first and second baroclinic modes,
respectively.

To combine the dynamical model with the Kalman
filter we take a state space approach. For each of the
two vertical modes, we calculate five meridional Rossby
mode amplitudes and a Kelvin wave amplitude at each
longitude. Our model extends from 125°E to 80°W in
5° intervals. Thus we have 12 values at each of the 32
gridpoints in the model domain for a total of 384 values
at each time. These values are the components of the
state vector w which completely specifies the model.
Our numerical scheme, then, is a method which, given
a state vector and a wind field, can predict the state
vector at the next time step, 10 days hence in this case.

Within this framework, we may write our numerical
model as

WI{+1 = Lw® + ¢,

where the subscripts denote time step, superscript f
denotes “forecast” and superscript a denotes “analy-
sis”, our best guess at the state vector at time #.

The vector 7 is the forcing. The matrix L represents
our numerical scheme for the left hand sides of (2)
and (3).
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3. The data assimilation scheme: the Kalman filter

We assume that the model system differs from the
true system by random noise, i.€., the underlying dy-
namics obey: ’

Wie = Lwd + 7 + by,

where the quantities with the superscript ““¢” represent
the true system and by is a random variable uncorre-
lated from time step to time step:

(bibi’y = Qedi,

where each Qy is a positive semidefinite matrix which
we shall refer to as the “system noise covariance”. The
superscript “T” denotes the transpose.

The only information we have from the true system
comes to us in the form of observed data. When data
become available, we use them to form a correction to
the forecast. The procedure we use to form this cor-
rection is the Kalman filter. The basic formalism which
follows is essentially identical to that first introduced
by Ghil (e.g., see Ghil et al. 1981), who first developed
the Kalman filter in the context of numerical weather
prediction.

Ghil’s formulation was later applied to a prototype
problem in numerical ocean modeling by Miller
(1986). .

Assume that at a given time there are observations
w9, available which are related to the true state vector
Wie by:

(6)

where b, is the observation error, which is assumed
to be a white sequence with zero mean and covariance
given by (b%:b?l,)> = Ri.i. Here Hy is the linear
transformation which relates the state variables, in our
case the Kelvin and Rossby wave amplitudes, to the
observed quantities, i.e., the sea level heights at time
Ir. The actual coeflicients in H; are determined by (1).
In order to form the correction we must estimate the
forecast error covariance

S f S
Pin = <(W;c+1 = Wis1)(Whay — Wk+1)T>-

If the error covariance of the analyzed field at time #;
is :

0o _ : 0
Wier = Hip Wiy + by,

wd = W (wd —w)T) = P&,
we may calculate
Plo = LPALT + Q. (7)

The updated state vector, the analysis, is taken to be a
linear combination of the forecast and the observations.
We write

- w/ S
Wit = Wier + Kot (Whet — i W),
where K., is the Kalman gain matrix:
Kiet = PLoyHE (Hir P HEy + Ryyy) ™l
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The error covariance of the updated field is given
by

Piit = (1 — KiatHiy )Py

The most expensive step is (7), the covariance update,
which requires two prediction steps per state variable.
It is not prohibitively expensive. A typical run with our
384 state variable mode! takes under two hours on the
Masscomp 5600 to simulate six years with 10-day time
steps. Further improvement is possible since no effort
has been made to optimize our code.

In order to use this schemie, we must estimate Q and
R, the statistics of errors in the model and in the data.
Here R may be estimated by consideration of the in-
struments and the manner of processing the data. Es-
timates of Q must be based upon assumptions about
the physical and computational errors in the model.
Such assumptions aré always problematical. Our es-
timates of Q are empirically based and checked a pos-
teriori for consistency; details are given in sections 5
and 7. Another approach would be to use an adaptive
algorithm to estimate Q and R as in Dee et al. (1985).

4. The data

Our model requires two types of data: wind forcing
data and sea level height for assimilation and verifi-
cation.

a. Wind data

The wind data we use come from the FSU monthly
pseudostress analysis (Goldenberg and O’Brien 1981).
This is a subjective analysis based on ship observations,
and little is known about its error characteristics. We
do, however, have some basis for inference of error
statistics based on comparison of different wind prod-
ucts. Halpern and Harrison (1982) carried out a one
month study comparing wind products. They estimated
the error amplitude to be about 2 m s~'. Chelton and
O’Brien (1982) compared SEASAT scatterometer
winds with the FSU analysis. This work suggests highly
spatially inhomogeneous wind stress error fields with
an error magnitude consistent with the results of Hal-
pern and Harrison.

b. Sea level data

Data were taken from tide gauges at various islands
in the Pacific (Wyrtki et al. 1988). The locations of
these islands are shown in Fig. 1. The raw data consist
of monthly means with tides removed. We further pro-
cess the data by removing the averages for each month
to yield the monthly mean anomalies. These stations
were chosen for two fundamental reasons: first, they
are near the equator where the model is expected to
do its best, and second, these six stations provide the
longest overlapping time series. Because of the length



777

JUNE 1989 ROBERT N. MILLER AND MARK A. CANE
~ 20N -
10N ¢
® Christmas Santa Cruz
" Jarvis
-
4 .
1 7T T 1t r 1 T 1
180 160w 140W 120W 100w

FG. 1. The model domain, showing locations of tide gauges
from which data are drawn for assimilation.

of the records, data from these locations raise the fewest
questions about reliably removing the monthly means.

The tide gauge data can be considered accurate
within 3 cm (K. Wyrtki, personal communication).
The actual accuracy of reading the instrument is about
2 cm for the monthly average. In addition, the tide
gauge is a point measurement, while the sea level pre-
dicted by the model is actually an average over some
region several degrees in extent.

The locations of the tide gauges shown in Fig. 1 can
be seen to cluster into three rough groups: Rabaul and
Nauru in the west; Jarvis and Christmas in the central
Pacific and Callao and Santa Cruz in the east. Some
specific features should be noted. The record at Nauru
contains rather strong local wind events that are the
result of local geometry and should not be assimilated
into the model. Callao at 12°S would seem to be near
the southern edge of the waveguide, but at this level of
approximation, the sea level is constant along the entire
eastern boundary (cf. CSII). Intuitively, given the scale
assumptions in the model, this is reasonable because
any slope of the sea surface would result in a geo-
strophically balanced flow into the solid boundary.
Physically, this amounts to the assumption that the
time required for the coastal Kelvin wave to commu-
nicate meridional pressure differences is short com-
pared to any time scale in the model. In practice, tide
gauge readings from coastal stations differ significantly,
partly due to the lack of precision of this assumption
and partly due to local effects such as topography or
local variation in the longshore winds.

5. The model error
a. Parameterization of wind error statistics

Our basic assumptions in constructing the system
noise field are: (i) the dominant source of model error
is error in the wind stress, and (ii) the wind stress error
is statistically homogeneous. In view of the large wind
errors, assumption (i) is thought to be reasonable, de-
spite the simplicity of the model. Assumption (ii) is
not strictly defensible (cf. Chelton and O’Brien 1982),
but it is a reasonable starting point in the absence of
more detailed knowledge of the structure of the wind

stress error field. We shall see that our simple wind
stress error model is adequate to establish bounds on
the overall influence of error amplitude and scale upon
forecast errors. We leave more elaborate realistic error
models for future work.

Let the wind stress error at month j be given by ¢;( x,
y). Assume

ei(x1, y)e(xo, Yo))
= dA exp[—(x1 — Xo0)*/L? — ()1 — %)’/ L,’]. (8)

This is a three-parameter model: error amplitude 4
and scales L, and L,. The assumption of serial inde-
pendence is certainly questionable, but long-term biases
aside, it is plausible that the errors in these subjective
analyses may not be highly correlated from month to
month. We also assume that the wind stress anomaly
error (rather than the wind error) has Gaussian distri-
bution with zero mean.

Since the model functions by decomposing the wind
forcing into meridional modes, the wind stress error
must be similarly decomposed. The projection of the
zonal wind stress on the jth meridional mode is given
by

00 = [T WO nay, )

where j is the index of the meridional mode (j = —1
is the Kelvin wave), 7 is the zonal wind stress, and
wW(y) is the weighting function in the projection. Since
our model is linear, the error in forcing of the jth mode
at the kth time step is given by

o0

e’(x) =f_ ex(x, y)w'(y)dy

(here superscripts denote mode and subscripts denote
time, consistent with previous notation). Therefore,

&' (xo)en (x1)

f_ ex(x0, Y)W/ (»)dy

J: f_z ex(Xo, Y)em(xy, 2)WH(¥)W(z)dydz.

fw en(x1, 2)W(2)dz
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FIG. 2. Covariance among errors in meridional mode response due to errors.in wind forcing as a function

of the assumed correlation scale of the wind stress error. Here the abscissa is the meridional correlation
length in degrees. The ordinate is the value of [*_ [~ exp[—(y ~ z)%/L,*1w/(y)w!(2)dydz. The indices
j and [ denote the meridional modes; —1 denotes the Kelvin wave. (a) Variance of error in Kelvin wave
forcing. (b) Covariance of error in Kelvin wave forcing and error in first meridional mode Rossby wave
forcing. (¢) Kelvin wave and third mode Rossby wave. (d) Variance of first mode Rossby wave forcing. (¢)
First Rossby wave and third Rossby wave. (f) Variance of second Rossby mode. (g) Variance of third
Rossby mode. Covariance between the second Rossby mode and the other waves pictured here vanish

identically by symmetry.

Taking expected values:
(e’ (x0)em (x1))
f_ f_ (ex(x0, YYem(x1, 2))wI(y)W!(z)dydz
= Sumd exp[—(x1 — X0)*/L;’]
, ><J: f_ exp[~(y — 2)*/ L, 1w/ (y)w!(z)dydz.

The double integral can be evaluated by numerical
quadrature. The results as a function of L, for the error
covariance among the Kelvin wave and the first three
meridional Rossby wave modes for the first baroclinic

mode are shown in Fig. 2. These quadratures were per-
formed numerically on a 2° grid, which is the resolution
of the wind dataset. This is inaccurate for small L,,
but it is faithful to the way wind forcing enters the
model. Asymptotic values for large L, can be estimated
by noting that as L —> oo, the Gaussian error covari-
ance function approaches 1 over most of the region in
which the weighting functions differ significantly from
zero, so the asymptotic limits may be calculated by
simply integrating the weighting functions. As Fig. 2
shows, dependence of the total system noise covariance
upon the meridional covariance scale L, is compli-
cated. The effect of varying L, upon the covariance
matrix which results from the given system noise will
be investigated in section 7.
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FI1G. 2. (Continued)

Though our statistical model relates solely to wind
stress as opposed to wind speed, we have found it help-
ful to write down a systematic if approximate relation
between the two. This process of backing out the wind
speed error from the wind stress error has aided us in
placing our statistical wind stress error model in the
context of the comparative wind speed studies of Hal-
pern and Harrison (1982) and Chelton and O’Brien
(1982).

The wind stress is given by

1]

T P
— = =% Cpug|uy|,
w w

where Cj, is the drag coeficient, u, the surface wind
velocity, and p,, p, are the densities of air and water
respectively. We take the value of (p,/ p,,)Cp to be 1.95
X 1078 in our calculations.

Now let u = uy + Au where wu, is the true wind ve-
locity and Au is the error. The error variance in the
pseudostress u,|u,| is

((ulu] = wolug|)?)
= 40,2 (ue®) + 4{ Au’uo) + (Au*),

where we have assumed that the ensemble of wind
speed errors have variance o,2 and are uncorrelated
with the wind speed itself. We take {up>) = 25 m?s~2,
and estimate the other terms as if Au were Gaussian.
This leads to

{upluy = 0; (Au*) = 30.,°,

so the pseudostress error variance becomes ¢,? (100
m?2s2+ 30,%). The value of ¢, is related in a straight-
forward manner to the parameter A, which is deter-
mined by a fitting procedure described in section 7.

b. Transfer of wind error into individual waves

The asymptotic error covariance of the individual
waves can be investigated analytically in a straightfor-
ward fashion if we neglect interactions between the dif-
ferent wave modes. For the second and other even
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mode Rossby waves, this neglect is entirely justified:
since the boundary condition (4) implies that the am-
plitude of these waves vanishes at the eastern boundary,
and symmetry considerations imply that these waves
satisfy (5) identically, each of them is uncoupled from
all other modes.

In the dissipation free case, the amplitude of the wave
is governed by the partial differential equation:

u + cu, = f(x, t).
(The phase speed c is negative for the Rossby waves.)
Because the equation is linear, the error evolves by the
same dynamics as the wave amplitude itself. For a sin-

gle time step length A¢, for points more than ¢ At west
of the eastern boundary, we have

u(x, to + At) = u(x — cAt, ty)

1 X
+ -

C Jx—car

f(z, fo+ At + E—Z—J—c)dz.

If we now consider « to be the error, its variance is
given by

(U (x, tg + AL)) = (uP(x ~ cAt, 1))

| S * 2'—x
e 222)
C” JIx—cAt Vx—cat 4

X f(z, to + Af + Z—_c'f)>dz'dz,

under the assumption that the modal amplitude error
u(xg, o) is not correlated with the wind forcing error
f(xl, t;) for =1y,

We now make the assumption that

(f(x0, o) f(x1, 1)) = (2] Ar*)e~xi=%)/Ls?
for ¢y and ¢, in the same month
=0 for f and ¢, in different months;

recall that we have monthly data. (Note o2 has the
dimensions of #2.) In our simulations, time steps never
bridge across months, so the integral becomes

0'2 x x : 2/1.2
— [ f e~ =L ot ds
At Jx—cAt Vx—cAt

L.¢* (° [° .
= Axtz e~ ’dz'dz,
R VTu

where u = | cAt|/ L. After a bit of algebra, the expres-
sion for the variance becomes

(P (x, o + AD)) = (WP (x — AL, 1))

2 m 2

g g
+—fe4m-7u—rﬁ.

K V—p [
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The equilibrium solution is reached when

{u(x, t9)) = {u*(x, 1o + AD))

2 ru
= (u*(x — cAt, 1p)) + z f e’ ds
, "

2

ag
-5 (1 —e*),

7

Suppose the wave travels considerably less than a cor-
relation length in a time step, i.e., u <€ 1. This limit is
approached for the Rossby waves, though not for the
Kelvin waves. ’

Then

(uz(x, L)) ~ (uz(x —clt, o)) + o2,

and the error variance is independent of the zonal cor-
relation length and increases linearly to the west (recall
that ¢ < 0) at a rate which depends inversely on wave
speed. In the parameter range of interest (L, = 10°,
At = 10 days and ¢ =~ —0.6 m s '), the slope of {u?)
as a function of x is not strongly sensitive to L,.

In the other extreme case in which the wave travels
many correlation lengths each time step, i.e., u > 1,
the expression for the variance becomes

<u2(x7 t0)>

. 1/2
~ (U (x — cAt, t)) +

0'211'

+ O(r™?).

This case, in which the errors average out, is the basis
for the intuition that the Kelvin wave errors do not
grow rapidly towards the eastern end of the waveguide.
Since u is the number of correlation lengths traveled
by the wave in a single time step, we may think of the
wave as being subjected to roughly that number of in-
dependent random perturbations, each with mean zero.
We therefore expect the variance to be inversely pro-
portional to p; compare this to the previous estimate
in which the variance increases by o2 in each length
cAt, independent of L,.

To complete the problem we must consider the re-
gion near the eastern boundary x = Xg. The wave ar-
riving at Xp — AXx at time f, + At left the eastern
boundary at time ¢, + ¢ where

F=ar—2% .
c

Integrating along the characteristic yields
u(Xg — Ax, to + At)-
1 Xg—Ax

f(x, t0+f+)—£)dx.

C Jxg
The analysis used in the interior case yields
(u*(Xg — Ax, 1))

AXx Ax /Ly _ 0,2 )
zf e szds—P(l — e~ (AX/LI%y

;LZLX —Ax/Ly
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6. Unfiltered results

The model as described in section 2 above was run

for the six-year interval from January 1978 through

December 1983, for initial comparison with the tide
gauge data at the island stations shown in Fig. 1. Raw
results of these tests are shown by the thin lines in Fig.
3. Gaps in some of the sea level records complicate the
comparisons of model output with the data. Another
complication arises at Nauru where, as noted in section
2, local weather conditions combined with the place-
ment of the instrument give rise to large spikes in the
sea level record which are highly localized in space and
time, and do not represent valid data for comparison
or assimilation. One such spike occurs in the record
in 1979 as an anomaly of 19.8 cm, making it the largest
positive anomaly in the record. That spike was subjec-
tively removed from our quantitative comparisons, and
is treated for our purposes as a gap.

All model runs were performed with two baroclinic
modes and five meridional modes. Experiments were
performed with as many as nine meridional modes.
The additional modes rarely resulted in significant
changes in the output and did not necessarily result in
increased accuracy in those cases in which the differ-
ence was noticeable. The resolution of the wind data

5
—1031
RABAUL 4.2S 152E
B T e e e S e L A A A S e SALAE |
0+ >
1 NAURU 4.25 167E |
-3+ rrrrr T T
O~. .
1 JARVIS .4S 160W
301
0 T Y S
CHRISTMAS 2.0N 157W
_3OIYIIIIIIIlI|IllI¥IIIIIIIIlllilllllll
30 .

SANTA CRUZ .75S 90w

- 30— T T
30
0
CALLAO 12S 77W
F3OIV’I'|l‘l‘l1|IIIII'IIIIr'Ill""llI!
1978 1979 1980 1981 1982 1983

FI1G. 3. Comparison of observation, raw model output and filtered
model output at six selected tide gauge stations, Observed data points
are marked with *; thin line: unfiltered model output; heavy line:
filtered model output.
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is too coarse to allow the amplitude of the higher me-
ridional modes to be calculated accurately.

The dynamic topography output from this model is
just that: dynamic. We include no source term in the
mass equation. Once a mass anomaly is detected as a
change in sea level, it will be advected around correctly,
whatever its source.

Our formalism admits the addition of a thermal
forcing term, but inclusion of such a term would in-
volve the introduction of heat flux data, which are no-
toriously unreliable, and the cost in complication of
our error model would be considerable. We therefore
accept our inability to deal with steric effects. This is
not as serious as it may seem. Assuming a thermal
expansion coefficient of 2 X 107%/°C, a temperature
anomaly of 1°C over a depth of 50 m would be required
for a change of 1 dynamic centimeter.

The unfiltered model underpredicted the 1982-83
ENSO event at every station except Rabaul. The model
sea level anomaly was particularly weak at Christmas
Island. There, the 1982-83 response is barely stronger
than that of the non-ENSO season of 1980-81. We
believe, but cannot prove, that this is due to an overly
conservative estimate of anomalies in the wind prod-
ucts which necessarily bias regions of sparse data toward
climatology.

Other possibilities are model deficiencies or an un-
derestimate of the drag coefficient. Weighing against
the former is the fact that ocean GCMs also understate
the response; e.g., see Latif (1987).

7. Testing and calibration of the wind error model

We now describe the calibration of the wind error
model (8) by estimating the values of the parameters
A, L, and L, which are optimal in some sense. We
begin by comparing the unfiltered model output with
the tide gauge data over five years of a six-year run,
leaving the first year for spinup. We use these com-
parisons to calculate covariance matrices. In the lan-
guage of section 2, above, we estimate that

{(w? — Hu")(w? — Hu,/)T) = HPH™ + R. (10)

Here, P without subscripts or superscripts represents.
the equilibrium value of the error covariance matrix
of the forecast state vector. We then calculate the system
noise matrix Q (constant in time for this error model)
for a particular choice of parameters and use this Q in
(7), iterated to convergence, to find the equilibrium
value P. We then choose the parameter values resulting
in estimates which agree most closely with the statistics
(10) of the comparison between the model output and
the data.

These statistical comparisons were not straightfor-
ward. We adopted a simple strategy to test the reliability
of the error statistics based on the differences among
subsamples. Our total trial duration was six years, be-
ginning January 1978 and ending with December 1983.
Since the model was initialized from rest, we did not
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use the first year of our simulations in the calculation
of our statistics. This represents approximately the time
required for the Kelvin wave to cross the basin and the
reflected Rossby wave to return. A one-year spinup
period is also consistent with our calculations of the
evolution of the forecast error covariance. This left
three possible three year subsamples from five years
remaining. We did not use smaller subsamples because
the test period contains the intense ENSO event of
1982-83, resulting in a broad scatter in one- or two-
year statistics due to the event itself, the setup and the
recovery.

Except at Santa Cruz, the variances of the forecast
errors differ widely among the subsamples, varying by
as much as two to one. Based on this, we had little
confidence in the variance pattern itself as a stable es-
timate of the true ensemble variance. We therefore
chose another criterion to fit the parameters of our
wind error model.

Upon calculating the error correlation matrix, we
found that the two leading EOFs, which together con-
tained more than two-thirds of the total variance, dis-
played a pattern which appeared in all of the subsam-
ples as well as the overall run. Based on these apparently
reliable statistics, we chose to minimize:

M=% — %12+ N8 - 0|5

where A;, A, are the lead eigenvalues of the observed
error correlation matrix, v; is the eigenvector of the
observed correlation matrix corresponding to A;, v; is
the corresponding eigenvector of the error correlation
predicted by the model. The numerical results of our
parameter sweep are shown in Table 1. While the
spread in values of M was not extremely large for our
range of parameter choices, there was enough sensitiv-
ity to distinguish extremes. Since the total variance A
enters linearly into the error model and the dynamical
model, it enters simply as a variance scale and does
not affect the principal components of the error cor-
relation matrix. Here A is fit for given L, and L, by
applying least squares to the variances for the full 5
year run. While the fits are uncertain, it is worth noting
that the values obtained for the parameters of our error
models are consistent with our ideas about the errors
in the model and in the forcing. The best agreement

TABLE 1. Fit of error model parameters to statistics of observed
— predicted sea level height anomalies. Values are: |, — ¥,[?
+ Af¥ — ¥,

L,
L, 5° 10° 20° 30°
<2° 0.7915 0.5892 0.7465
2° 0.7756 0.5616 0.7518 0.8414
3° 0.5631 0.7393 0.8431
4° 0.5831
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is obtained with a zonal error correlation scale of 10°
and a meridional correlation scale of 2°. Since 2° is
the resolution of the wind grid, we cannot distinguish
resolutions finer than that. We can, however, perform
a calculation in which wind errors at points 2° in lat-
itude apart are independent. This is the case we refer
to as L, < 2°. As expected from our analysis in the
previous section, the values were more sensitive to the
meridional scale than to the zonal. We found the best
fit total wind stress error variance A4 to be (pa/ p,)2Cp?
X 579 (m? s72)2, which corresponds to a wind error
of roughly 2 ms™', a figure consistent with the estimates
cited in section 2. In summary, a plausible if crude
model for the wind stress errors is able to account for
the gross characteristics of the model hindcast error,
consistent with the assumption that the wind error is
the dominant source of system noise.

8. Results of filter experiments

a. Comparisons of model output with data at selected
stations

The wind error model parameters determined by
the process described above were incorporated into the
Kalman filter for our model. In this section we present
the results of the filter runs, including error estimates.
We attempt to verify their accuracy, but the tide gauge
network is too sparse to allow definitive verification of
the calculation.

A good test of the Kalman filter would be an exper-
iment in which some of the data were withheld from
assimilation for comparison purposes. Unfortunately,
the sparse and uneven distribution of tide gauge data
makes such experiments difficult to interpret. If we were
to withhold data from, say, Jarvis Island and use data
from Christmas Island for assimilation, the meaning
of the results would be unclear. The two are so close
that the data at Christmas already contain most of the
information from the data at Jarvis: the sample errors
at the two stations have a correlation coefficient =~ 0.9.
On the other hand, were we to withhold data at both
Jarvis and Christmas, we would anticipate compara-
tively little impact of the assimilation of data at the -
other four stations upon those two, because the nearest
assimilation point would be Nauru, 33° away. This
distance is larger than the wind error correlation scale,
so even if the wave amplitudes were known exactly at
Nauru, wind errors between Nauru and Jarvis would
contribute significantly to the result at Jarvis. No up-
dating scheme, no matter how carefully optimized, can
be expected to counteract the effect of this wind error
entirely.

While there are not suitable data for thorough quan-
titative verification of the assimilation model, there are
two partial verification methods available: comparison
to other stations which were not included, for one rea-
son or another, in the original six, and examination of
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TABLE 2. Statistical summary of comutational results.
Observed
I Unfiltered Filtered
Variance
(cm?) Variance (cm?) Variance (cm?)

Station Total Total Error Est. error Correlation Total Error Est. error Correlation
Rabaul 72 57 51 89 .63 76 1 6 1.0
Nauru 118 33 54 30 .76 82 3 6 .99
Jarvis 68 31 27 31 .78 53 3 4 98
Christmas 100 23 51 37 73 65 2 5 1.0
Santa Cruz 119 59 61 42 71 59 4 6 .99
Callao 73 56 52 69 .63 59 1 7 .99
Kapingamarangi 35 33 29 34 .50 88 29 15 .82
Tarawa 78 35 25 35 .83 72 13 10 93
Canton 55 22 42 51 .53 48 37 30 73
Fanning 65 19 59 66 37 73 17 37 .90

the statistical error estimates generated by the filter for
consistency. A statistical summary of the results of the
runs with updating at six stations appears in Table 2.
The comparisons of the observed, filtered and unfil-
tered results for these six islands are shown in Fig. 3.
As expected, the filtered sea levels are almost identical
to the observed. This shows the filter to be implemented
correctly, but little else.

Four additional stations, Kapingamarangi, Tarawa,
Fanning and Canton, are close to the equator and have
some data available for the 1978-83 interval, but were
not used to update the analysis. The data at Kapin-
gamarangi and Tarawa consist of short, gappy records.
The record at Kapingamarangi contains only two April
records and three March records. The record at Tarawa
is short and is missing most of 1982. This leads to

s AN
CANTON 2.85 172W o .
A B o e e e o o S S S A L e B S B i e e o e e e B ES B S

30+

1 FANNING 3.9N 159W

LI S S B B B S B M S S S S B S B S B B B B B S S B B B S B S B B

1981 1982 1983

FIG. 4. Comparison of observation, raw model output and filtered
output at four stations. Data from these stations did not participate
in the assimilation; Observed data points are marked with *; thin
line: raw model output; heavy line: filtered model output.

1978 1979 1980

problems of defining means and anomalies, and renders
the results problematical. Fanning and Canton are in
the Line Islands, very close to Jarvis and Christmas,
and cannot be expected to provide much independent
information.

The comparisons of observed, filtered and unfiltered
results are shown in Fig. 4. The most improvement is
at Fanning. This is near Christmas and Jarvis, and
benefits from assimilation of data from those nearby
stations.

The unfiltered results at Tarawa are good, and as-
similation improves them. Tarawa is close to the equa-
tor and reasonably far from the western boundary.

The unfiltered results at Canton are very poor. The
filtered results are slightly better, but the agreement is
still not good.

UNFILTERED

T T T T T T T T T T T T
L Fannin, h

4N/5”—/;’4g/5)

2N ,__m"c’ *Christmas K

6
eak @ga ) Callag|
Nauru

Santa Cruz\+ |/
s .

iy
\
E C

(a) FILTERED
N ::_T/,. —T T Fanming T T ]
/_-—-———r N
/5 ‘_/——-\‘\/ B
2N [ f - Tarawa Chiistmas i
EQ-/ Kapinga Callao]
y Jarvis® -
e Nauru
25 ? ., Santa Cruz |
F = Canton B
Rabaul ./—— x\\ \ 4
43 ?. N A /K MR R WIS I i
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FiG. 5. Contour maps of expected rms error, showing updating
and verification sites. (a) expected rms error of raw model output.
(b) expected rms error of model updated at the six stations shown
in Fig. 1.



VOLUME 19

JOURNAL OF PHYSICAL OCEANOGRAPHY

784

M.08

“yndino [opour parepdn gim Indino [spowr mer Jo uosuedwiod uImoys ‘0861 wndny 01 .61 sunf woy 14310y [2A9] €3S Jo sdeur ooy ‘9 *OI

ONILvadn

epnibuo
M09} 3.081 3,094 3.0v1

YO0 VA TN W N O U U0 Y WO U TR T 0 O O |

M.00! M.0ZH ‘M.OvE

| TSNS SR SN TS DA T ST ST U S0 SN U0 W A B S U |

S.02

- S
u a
@
] b1
LIS R B S B N S N S SN B B S S S S S R BN S AL LY L L AL L B
apnybuoy
M.08 M.001 M.02ZL M.OPi M.094 3.081 3.084 3.004
[T RO T T 0 VO NN U0 AN YN U U NN U VA T T O PO O W W [ T U N O W O VY G G S MU 3
4 [
] -
1 8
- o=
-4
1 Q
-4 @®
R N
-1
LINN B S B S S B B I L B B B B L L L L L L L L L B L
epnyibuo]
M.08 M.00} Mm.0o2k M.Oori M.091 3,081 3.091 3.0v4
[TV S A S SN A W N 10 W0 YT SN U T ST SO S0 IR VAT U U A W U0 W0 M O S S W B S B S O | W.
4 (7]
E -
4y e 8
- o=
- ‘s
4 [
] 3
SN JL AL A N SN BN N S T S S I N N B A N SN SN BN N R S A N B LI L BN I B
epnybuol
M.08 MO0} . Mm.0o2t MOorL M.09L 3.084 3.094 3.0v1
Lot a3 bags v ba g b g b ba g 01 g g a1t W
w

FUID WS T T S T O B

.0
epnie

t SELNLINE LI LI N A I L AN RO B B N SN S A D AR S AN SN R BN SN M S N S L SN R BN S

N.02

03a

100

on

NN

\

“'

ONILvAdN ON

apn)ibuo
M.08 M.00L m.oe MOri M.091 3.081 3.09¢ 3.0v1 »
1o b e by b g o by e b b biaaa o
N w
B |
<
b -
] - B
- - =
- - Q
N [, @
] ]
 SLENLINE SIS L S S B N S B e S N B S N S N S D S N N L AN LML L S L B P
epnybuo
M.08 M.00L M.0Z) M.oPt M.091 3.084 3.091 3.00i
| ST AR T IO TN T ST T A WA S T U0 U U0 VR (500 00 S 0 T AT ST S S S T W S S M
4 | &
T -
] - 2
- -0 =
‘c
. - Qa
n . @
. [N
LS N S R S S B S S S I B B (N N B B B NN N D A SN N SN R B B M
epnybuo
M.08 M.001 M.02L M.OPL M.091 3,084 3.091 3.0v4
| BT VT S Y (0 U S W T [T T SV S U O N S SN U G W W U N U S T T [ WO T T T A S A W

RIS TS W 0 00 S0 B A

epnie

Tttritrjrrrryrrrrrryrerqrrrrrgprqrrr v T nmmTmT -

epnybuoq
Mm.0e M.00} M.0Zi M.Oori M09 3.084 3.091 3.001

Lo v o b v s vy v s be g by ay by e bavwalgs s 8

] ]
h I
1 Y
- o=
‘C
- a
. @©

T N

-q—_-~d14.-qq.qqﬁ.-1—q4-~_~.________.__M

6.6} ‘Ajewouy 1ybieH [are] eeS



785

ROBERT N. MILLER AND MARK A. CANE

JUNE 1989

(panupuo)) 9 "ol

ONILYAdN

epnybuo
M.08 M.00L m.ozt M.Or) M.091 3.08 3.091 3.0k
_nr____r._____._________._._._—._..____—‘W
~ (7]
. o
‘c
1 Q
. [
.
-
3
U — LLLELEE B LIS — LIS S B | — IR — LELELEEAE B T _ e N-
spnubucy
Mm.08 M.001 M.02L M.OPL M.09% 3.081 3.091 3.0v1
_.._.__...___..—.—.___.______.___—______W.
w

N
—_ulﬁd—_——_———-1—~J\N-——~n——~_---~—~u.~M-
epnibuol
M.08 M.00% Mm.0et M.ori M.09L 3.081 3.091 3.0vk
[ SO ST N U N Y AN YA S N TV U [ U U Y0 W VO O WA I T Y U Y O WA | M.
. (7]
4y, "2 00
1 4 _.-2l2ZSs3TTvEEe
- 9" -
1. ARl
4 et
 ILIL L S (N B L B Y N N S I N LA BN B L LI BN N
epnybuo
M08 M.00} M.0Zt MOl M.091 3.081 3,091 3.004
[ W EAT T VUL T U WA T T YA TN TN VAT N WO OO TN U U WA U TG T T AT O OO0 S N B R | 8
%3
B N
N
-4
L
. 1%.
2

—_.T-—.-.-—-.-.—.--—...-—.-._-__._-q__

epne

onv

NOr

Hdv

834

ONILYAdN ON

apnjbuo
M.08 M.00L M.0ZL M.ovt M.09L 3.084 3,091 3.0t

[T I AN T AR SR U0 VY AT EE T EA I N SOV AN AN U0 T N S [ S A 0 T A N W

s.02

4
i b
- o=
c
4 [N
i o
i 8
—_—-_—__,-_—_—_-_-_-——__———_‘_-_———-——J—_N-
apnybuo
M.08 M.001 M,02L movi M09t 3.081 3.09¢ 3.0vL
_____—_.___._._—.._._.F__—_________—____W
@
||||| pTEzma=me i oy 8T .
an.nmm.vhllununnll”.vlnn..dﬂ qvlw.
o=
'
Q
®

N
J} L — LR J‘|—\ LELER — LS — L] | TP 17 —‘ LELELELEE LA BRI m.
epnubuon
M.08 M.00} M.02L M.OovL M.09L 3.081 3.094 3.0v)
[ A R T A S AT (N ST - |
] %3
1 L e et - IO
~ @] it S PEE A
1 > = N N e e e =
AT Ty = Z0F el o=
~ Al\l'o “.\LN = A kumhnn.mMNMMMM: &
F —_—5 mm CRCER S T T TS i ®
3
— LI — LR q LRI — LELBLER — L L ﬂ LR — LS — LA BRI N-
epnybuo
M.08 M.00% M.02Z4 M.OPL M.09L 3.084 3.094 3.0¢1
[T AR IR TR A AE TSNS S B DU A G B AN ST S U TN AU AR S SN B S S A B SO TSN AT - |
J L v
E -
-4 V - —
4 - &
- o=
. 5
) [ &
] [
N
m LEELELEL — LB d‘- T 1 1T — LER BRI — LI AN A | — 71T T3 — LR — LI L M

0861 ‘Alewouy 1ybioH |ana] eas



VOLUME 19

JOURNAL OF PHYSICAL OCEANOGRAPHY

786

*€8/7861 JO 192 OSNF Suons ay) 10 ‘g iy 0) Je[rums ‘[oA3] as Jo sdew INOIUO)) */ L

ONILvadn

spnyibuo .
M.08 M.00} Mm.oet M.OPL M.09} 3.084 3.091 3.001
Lo g o b e a gl e g g ta g g b e s by o o by va o by g1 R.

epriyye

TrTrIrtrfrJrrrryyryrrjyrrryryrrroprrrryrrrryrrrr g

[S

apnybuoT
M.08 M.00L M.02) MOvL M.09} 3.08% 3.094 3.0y}
__u,.__p_.p._..hr~rr_....n.—___.»_p—.___M.
4 [ &
T ©
. - »
o=
] 1 'S
4 | o
[ 3
v~_————-——__-—--—~,—u-1—-__——~—_——-N-
spnybuon
M.08 M.00L M.021 M.Oori M.0SL 3.081 3.091 3.0t
Loe o daa e by b v baos v 4y a e b g tagaa 8
| %
e
—‘ L B B | BLIRARAR LR L LR T T LR L) LI B § -l&.
I 1 I T T I 2z
epnybuo
M.08 M.00} M.021 M.Oori M09 3.081 3.091 3.091
| TSNS S I TN SE N IR R WS AN IS AV A S A W S ET ST S SRS N S U S S S U NS S S -
%

T T S W U

.0
epnje

N.0Z

fryyrrrTrryrrrTrrrrrrrrrrrrrrrrr Ty

03d

100

onv

NP

ONILvadN ON

epnybuo
M.08 M.00} M.02t M.Oori M.09L 3.08} 3.094 3.0v1
__________—.kr__...__.-n__..._~...__.__.R.
- (7]
S ] 0 < o Qbrammmmm, P AP T
AT Ly 2 Y.L LIt s S T
- ’l\/ o lluﬂllu.o '_.q.nlWh.Fl.-W-m.lm? m
. S g
. et e R T S T I S
J -
i [y
— LB — LU — LA - LIS — LB — LI m T -J’-\— LIS S N ] N-
. epnybuoy
M08 ‘M.00} M.0ct M.0P) M09} 3.08 3.094 3.074
‘___.____.._._r-_-.___._..._..__...Lxhhkpp,@.

.0
epnie]

__._-__._._...____.._.q_.__._._..4-_..-.W
epnybuo
M.08 M.00L M.0et M.OvE M.09L 3.08 3.091 3.0v1
___~_________[~.__.__pb_—_..___..——.._..M.
w

A IR I A A A

epnyibuo
M.08 M. 001 M.och M.OPi M.091 3.084 3,09¢ 3.001
[EFENUNEN S GF A AR ST SN ST US SE AE S SR BT NS S A E A U T U N AT G S AN O S AR

epnye

PO T S T W T |
/o

2861 .>_mEoc< 1ybiaH |one] ees



ROBERT N. MILLER AND MARK A. CANE 787

JUNE 1989

ONILvadn

(panutiuoD) “L

epnibuo
Mm.08 M.001 Mmoet M.ort M.09L 3.084 3.094 3.0vL
| I S WA U U NN OO0 AT TN T W U N SN T U U S SN W A U AN D T T U S Y G Y S w
4 [ »
1s= f
-wﬂlﬂbdw e
- <= S
lnmwwnnmwlllllm_mmuuv
- v&
TT T Ty T T T T T ry T Ty rryrrrrrrrrrprirro
epnybuoi
M.08 M.001 M.02L M.ovL M.091 3.084 3.091 3.0v1
_____—.—.\F_-_..—_..r_—-w__ht__~FL_h___~M.
w

.0
epnjieT)

—‘ T 1T ¥ 7 — TTIrnri d LA —j LI — LI —%— T3 u‘j— L — LS R B | m
opnybuo
Mm.08 M.00} M.021 M.OoPL M09t 3.081 3.09¢ 3.0v
TSNS WS UET IS YOO U [ WY U WU U N U N TN W01 JS U U U0 U N 0 0 TS W SO0 U N T (O S U R.
| &
N [ o2
c
4 F Q
l . O
N ]
q__——\d-_j__-l—\d_.—1——-1-—-—_1_\—-_—‘-|—1—-_- N.
apnybuo
M08 M.001 M.02 Mmori M09} 3.08} 3.081 3.001
—_.nE_.r—._t_.E__rr._pt._.hp.»___bR.
(7]

1= -em=22235 3T nnns SomOb oo
] j ........ g
s O G de s g o oF
._\1Mm”uuuuuuuuuunwmmuwJMWW\huuuu &
“T‘\\(\ow <
] 3

T 11 — T i 1T — LI 1—\ T 1 V¥ lq T F F 7 — T 1 T 7 — LI — LA S I N.

onv

NOP

Hdv

g34

€861 ‘Ajewouy ybisH [ans eaS

o1y
epnyibuo
Mm.08 M.00 M0zt M.ori M.0St 3.08i 3.091 3.0}
TN ST NN OO0 00 T K AT [N S U WO T N U W T W N W T G U N T U WV Y T O 0 0 B B A | M
4 o
i SoTies m.m.nﬁ.uu.w.u.u.u.m_l."u”
. Iz =208z, m
- o=
o4 F Q
4 [ ©
. ]
— LR BN 200 4 - L] —A—\d LAY — LEBLLLS — T — L -fjﬁ LI I | — T 1 U7 N-
apnybuo
M.08 M.001 M.0ZL M.0opL M.09 3,081 3.094 3.0
| IS NN S A U U S [N W N0 Y U [ WA S O W (D OO0 U SO N T SN N U N Y O W T A 0 B O M.
/2]
“lm T e e e T I IR AT TR S FE S E RS SIS =S RNTS-T L
| £z S%roayFveesizzzzsl o
- Io.m.
s ———sscooooIzIosood A
] T —— ®
] [ 8
— LI — LN — TV 1T _ LOELELER — T 1 77T — ¢ P — LR BRI — LA LS N.
epnybuo
M.08 M.001L Mozt M.O¥L M.09L 3.081 3.09} 3.0v4
| S T S T SN W T OO W A G S0 UG WO A T S U T W W N W U6 SO T U S O T T S T B O R.
. | &
N e L 5
-1 ST . oS
4 SReeSh e [
) F°
g F ey
— LR — LSS — LN O S — LR AR — L L — 1777 u LR B ] ~ LA N-
epnybuo
M.08 M.00S M.02t M.or1 M.091 3.081 3,091 3.001
[ IS I AU UE A RO BN SN U Y S SN0 T U N U S SU S U A N U AN AU A -1
4 L«
Li— S T e [ ISP TP T IO s |
-€© S O\ Sl iz o R L Lt il o
+ .\lujdv bt St i - B
$ Y e A - sy o=
a . g A N E
] %> PR TSI ¢
llmlmmll\nvamv Nf: D PN, o=t -3 ST P o
™ N
| BRI LELEL — LIRS LR I-J\lﬂ T _‘—\d\ T 17 1— LA Tt T 7 M



788

The filter has little effect at Kapingamarangi. Several
reasons for this can be suggested. This is the shortest
and gappiest of the records. The means and anomalies
are therefore most suspect.

It is also close to the western boundary, being almost
due north of Rabaul, and may be subject to effects of
local geometry. Alternatively, Rabaul may be a poor
choice for a data assimilation site for that same reason:
note that New Guinea does not appear at all in our
model domain, so local effects in the data will not be
present in the model and the effects of wind forcing on
the model results for that region actually occupied by
New Guinea are unpredictable. Finally, the record has
a gap during the large ENSO event. At stations where
significant improvement is noted, that improvement
is largest for the event. This improvement accounts for
much of the total improvement in the filtered records.

We can also examine error estimates derived from
the output of the filter itself. Figure 5 shows contour
maps of the rms expected sea level height error for the
unfiltered and filtered cases. The map of the unfiltered
error shows a strong meridional gradient approximately
3° from the equator. Verification points at Fanning
and Canton islands appear in that band of strong me-
ridional gradient. Poleward of that region the estimated
error falls off. This apparently enhanced accuracy is
artificial: the model is invalid in that region due to the
truncation of the series (1) and the effect of wind stress
curl. Generally the map of expected errors can be said
to predict the results of the verification experiments.
The differences at the updated stations are smaller than
the errors the map would suggest, because they are dif-
ferences with error contaminated data rather than true
sea level.

b. Monthly maps of sea level anomaly

Monthly maps of sea level anomaly for the period
of the simulation were prepared for the model run with
and without updating. In view of the expansion in only
a few meridional modes the maps can not be expected
to have much validity outside of the region very nea
the equator. :

Figures 6 and 7 show two series of maps, one from
June 1979 through August 1980 and the other from
June 1982 through August 1983, spanning the intense
ENSO event. Beginning in June 1979, the updated
maps show the region of negative height anomaly in
the east extending rather further westward than in the
map without updating. The updated map also shows
the negative anomalies in the western part of the region
restricted to be north of the equator, while the map
without updating shows a broad region of negative
anomaly. In October, both maps show a broad region
of negative height anomaly along the equator centered
at about 125°W. By December, this region of negative
height anomaly has disappeared to a large extent.
Traces remain in the unfiltered map, but the filtered
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map now has a region of near zero anomaly from
120°W to the eastern boundary.

In February and April of 1980, the filtered maps
exhibit long slender regions of positive height anomaly
which do not appear quite so distinctly in the unfiltered
maps.

In August of 1980, both maps exhibit a region of
intense positive height anomaly in the south-central
part of the map; the filtered map, however, exhibits a
region of strong positive anomaly in the west just north
of the equator which does not appear at all in the un-
filtered map.

The impact of data assimilation upon the analysis
of the intense ENSO event of 1982 is particularly strik-
ing. In June of 1982, the filtered map shows very strong
positive anomalies in the west along the equator. The
anomalies appear only as narrow bands just north and
south of the equator in the unfiltered map, and they
do not extend past the dateline. By August, the filtered
map shows the anomaly on the equator at the dateline
to be 20 cm, while it is approximately half that in the
unfiltered case. By December, the intense positive
anomaly appears in the eastern part of the basin in
both maps, but the filtered map shows the anomaly to
be stronger, narrower, and greater in extent. It is par-
ticularly important to note here that the region from
160° to 90°W is completely data void. The error maps
of Fig. 5, which were verified at the four withheld sta-
tions, indicate that the differences introduced by the
filter represent an improvement.

In 1983, as in the other maps, we observe the features
in the filtered maps to be of larger amplitude and to
contain more fine structure than the unfiltered maps.
By August, the maps are similar west of 120°W or so.
In the east, the filtered maps again exhibit more detailed
structure, including a region of strong positive anomaly
south of the equator and east of 120°W which does
not appear in the unfiltered map.

¢. The spatial patterns of the influence of the data

Another way to study the behavior of the filter is to
examine the columns of the gain matrix K. The i, j
element of K can be viewed as the influence of obser-
vation j upon state variable i. In our physical model,
the state variables are Kelvin and Rossby wave ampli-
tudes. Physical variables such as sea level heights can
be calculated as linear functions of the state variables.
Thus we may write ‘

|:|W 4 = Flwkf+ FIKk(WkO - kakf),

where H is the matrix which transforms the state vector
into a gridded field of sea level anomalies. The columns
of HK are depicted as spatial maps in Fig. 8 for K eval-
uated at the end of the six-year filter run. Places where
the mapped function is largest for a given tide gauge
station are the places where data from that station have
the greatest impact on the analysis.
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Often the maximum influence is not located at the
station itself. This is a consequence of the inhomoge-
neity of the observing pattern. Ghil et al. (1981) found
a similar result. The maximum influence of the data
from Jarvis (Fig. 8¢) is south of Jarvis itself. Christmas
is sufficiently close to Jarvis that the scheme splits the
difference between the two to form the analysis for
Jarvis. A few degrees south of Jarvis, the influence of
Christmas is weaker, so the data from Jarvis dominate
the analysis. The peak influence of the station at
Christmas occurs north of the island itself for the same
reason.

The influence of Santa Cruz (Fig. 8¢) extends much
further west than that of Callao (Fig. 8f), which is
mostly confined to the coast. The influence of Callao
does not diminish significantly in the meridional di-
rection. This follows from the physical approximation
in the model that the sea level height is constant along
the eastern boundary.

The data from Santa Cruz contribute most strongly
to the analysis in the large data void region between
the Galapagos and the Line Islands, but no station has
much direct influence at 120°W. Consequently, the
changes in the structure of the maps there (Figs. 6 and
7) must be attributed to propagation of information
from relatively data rich regions.

These maps contain the precise information needed
to construct an optimal interpolation (OI) scheme
similar to those used in operational numerical weather
prediction (e.g., see Lorenc 1986). An OI scheme based
on these maps could even be used with a different
model such as that of Cane and Patton (1984). Most
OI schemes use a specified form of HK, assuming, for
example, that the error correlations are homogeneous
and isotropic. One could fit a functional form to Fig.
8 without much difficulty. The maps in Fig. 8 are highly
anisotropic, but a homogeneous function might not be
too bad for stations far from boundaries.

9. Discussion

We have applied a Kalman filter to a simple nu-
merical model driven by analyzed fields of tropical Pa-
cific winds in order to assimilate monthly mean sea
level anomalies derived from tide gauge measurements.
The maps produced by the Kalman filter, which com-
bines data from the tide gauge network with model
output, shows much richer spatial structure than maps
derived from the model or data alone. Updating at a
mere six stations enriches the structure of the sea level
fields considerably. Significantly, the pattern is altered
away from the data gathering sites, especially in the
data void from the Galapagos to the Line Islands. Ac-
cording to the error estimates, these changes represent
an improvement (see Fig. 5): the unfiltered error,
which is more than 5 cm almost everywhere, is reduced
by 1 cm or more within about 5 degrees of the equator.
Since these error estimates are dependent on our error
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model assumptions, they must be interpreted cau-
tiously. In their support, the a posteriori errors calcu-
lated at the few available verification points are con-
sistent with the estimated error (see Table 2).

On the one hand, the improvement is quantitatively
small. On the other, it is an impressive change to
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squeeze out of only six data points. We can reasonably
conclude that the Kalman filter worked, in the sense
of making good (and perhaps optimal ) use of available
- data. Nonetheless, it is not the modelers’ version of
the philosopher’s stone, able to turn small quantities
of tide and wind data into oceanographer’s gold. The
need to reproduce reality limits the creativity of any
data assimilation scheme; a definitive description of
the state of the ocean is impossible without more data.

Though the filter is not miraculous, it is an instru-
ment with many virtues. Given the general rule that
the utility of data is enhanced by error bars, the error
maps are a valuable adjunct to the filtered model re-
sults. Within the limits imposed by our uncertain
knowledge of the model and data errors, the Kalman
filter, being optimal, tells us the best we can hope to
do with the available data. Proposed changes in the
observing system can readily be evaluated by applying
the filter formalism in simulation studies. The error
maps are an immediate indication of their potential.

In order to implement the Kalman filter, we had to
form an estimate of the covariance of the error in the
model. We derived this estimate by assuming that all
of the error in the model output resulted from errors
in the pseudostress fields used to drive the model. The
parameters fitted to the statistics of the actual differ-
ences between the data and the model output were
consistent with generally accepted estimates of the ac-
tual error in the pseudostress field. It might seem to
some that a model as crude as the one used here would
contain physical errors that would be comparable in
magnitude to those resulting from errors in the wind.
If this is the case, quantitative estimates of the effects
of such errors are lacking. Neither nonlinearities nor
errors in the wave speed, for example, could be expected
to contribute nearly as much to the error amplitude as
wind errors of the magnitude we expect. The question
of how large the errors would be if we had perfect winds
cannot be answered by our analysis here.

We have calculated the level of the system noise
necessary to explain all of the difference between our
model calculation and the data. If we interpret this
system noise as being entirely due to error in the wind
field, we then find these errors in the wind field to be
consistent in magnitude and covariance characteristics
with prevailing estimates of the statistics of the wind
field error. This is the precise statement of our result.

We expect two types of experiments, in particular,
to shed light on the future direction of this work. One
is obviously the use of different types of data such as
satellite altimetry or hydrographic data. The other is a
series of observing system simulation experiments, in
which appropriate random perturbations added to the
wind field, and sea level heights from the unperturbed
model run are assimilated into predictions made using
the perturbed winds. :

Acknowledgment. This work was supported by the
National Science Foundation Grant OCE86-11434,

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 19

NOAA Grant NA-87-AA-D-ACO81 and JPL Grant
JPL 957647. We would also like to thank Michael Ghil
for his part in giving this project its initial shove and
for helpful discussions along the way.

REFERENCES

Cane, M. A., 1984: Modeling sea level during El Nifio. J. Phys.
Oceanogr., 14, 1864-1874.

——, 1986: El Nifio. Ann. Rev. Earth Planet. Sci., 14, 43-70.

——, and E. S. Sarachik, 1981: The response of a linear baroclinic
equatorial ocean to periodic forcing. J. Mar. Res., 39, 651-693.

——, and R. J. Patton, 1984: A numerical model for low-frequency
equatorial dynamics. J. Phys. Oceanogr., 14, 1853-1863.

——, 8. E. Zebiak and S. C. Dolan, 1986: Experimental forecasts of
El Nifio. Nature, 322, 827-832.

Chelton, D. B., and J. J. O’Brien, 1982: Satellite microwave mea-
surements of surface wind speed in the tropical Pacific. Trop.
Ocean-Atmos. Newslett., 11, 2-4.,

Cheney, R. L., L. L. Miller, B. C. Douglas and R. W. Agreen, 1987:
Monitoring equatorial Pacific sea level with Geosat. Johns Hop-
kins APL Technical Digest No. 8, 245-250.

Dee, D. P., S. E. Cohn and M. Ghil, 1985: An efficient algorithm for
estimating noise covariance in distributed systems. IEEE Trans.
Autom. Control, AC-30, 1057-1065.

Ghil, M,, S. E. Cohn, J. Tavantzis, K. Bube and E. Isaacson, 1981:
Applications of estimation theory to numerical weather predic-
tion. Dynamic Meteorology: Data Assimilation Methods, L.
Bengtsson, M. Ghil and E. Kallen, Eds., Appl. Math. Sci. Ser.
Vol. 36, Springer-Verlag, 330 pp.

Gill, A. E., 1983: An estimation of sea-level and surface-current
anomalies during the 1972 El Nifio and consequent thermal
effects. J. Phys. Oceanogr., 13, 586-606.

Goldenberg, S. B., and J. J. O’Brien, 1981: Time and space variability
of tropical Pacific wind stress. Mon. Wea. Rev., 109, 1190-1207.

Halpern, D., and D. E. Harrison, 1982: Intercomparison of tropical
Pacific mean November 1979 surface wind fields. Report 82-1,
Department of Meteorology and Physical Oceanography, Mas-
sachusetts Institute of Technology, 40 pp.

Latif, M., 1987: Tropical ocean circulation experiments. J. Phys.
Oceanogr., 17, 246-263.

Leetmaa, A., and M. Ji, 1989: Operational hindcasting of the tropical
Pacific. Dyn. Atmos. Oceans, in press.

Lorenc, A. C., 1986: Analysis methods for numerical weather pre-
diction. Quart. J. Roy. Meteor. Soc., 112, 1177-1194.

McPhaden, M. J., A. J. Busalacchi and J. Picaut, 1988: Observations
and wind-forced simulations of the mean seasonal cycle in trop-
ical Pacific sea surface topography. J. Geophys. Res., 93, 8131-
8146.

Miller, R. N., 1986: Toward the application of the Kalman filter to
regional open ocean modeling. J. Phys. Oceanogr., 16, 72-86.

Sasaki, Y., 1970: Some basic formalisms in numerical variational
analysis. Mon. Wea. Rev., 98, 875-833. .

White, W. B., S. Pazan and M. Inoue, 1987: Hindcast/forecast of
ENSO events based upon the redistribution of observed and
model heat content in the western tropical Pacific, 1964-86. J.
Phys. Oceanogr., 17, 264-280.

Wiyrtki, K., 1975: El Nifio: the dynamic response of the equatorial
Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5,
572-584.

——, 1979: The response of sea surface topography to the 1976 El
Nifio. J. Phys. Oceanogr., 9, 1223-1231.

, and S. Nakahara, 1984: Monthly maps of sea level anomalies

in the Pacific, 1975-1981. Technical report HIG-84-3, Hawaii

Institute of Geophysics, Honolulu, Hawaii. 93 pp.

——, K. Constantine, B. J. Kilonsky, G. Mitchum, B. Miyamoto,
T. Murphy, S. Nakahara and P. Caldwell, 1988: The Pacific
Island Sea Level Network. JIMAR Contribution No. 88-0137,
Data report No. 002, Joint Institute for Marine and Atmospheric
Research, University of Hawaii, Honolulu, Hawaii, 71 pp.




