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ABSTRACT

We study the behavior of an iterative map as a model for El Niifio and the Southern Oscillation (ENSO).
This map is derived from a model that combines linear equatorial beta-plane ocean dynamics with a version
of the Bjerknes hypothesis for ENSO. It differs from the linear model of Cane et al. only in that the coupling
from ocean to atmosphere is idealized as a nonlinear relation 7( 4.) between a wind stress = of fixed spatial form
and A,, the thermocline displacement at the eastern end of the equator. The mode] sustains finite amplitude
periodic and aperiodic oscillations. A period doubling bifurcation leads from a period of less than 2 years to
the 3-4 year one observed in nature. Other principal results are: the resulting period depends on the curvature
of the function away from the unstable equilibrium at 4, = 0, and not solely on its linear instability; at least
two Rossby modes must be included in the model for aperiodic oscillations to appear; no stochastic term is
needed for this aperiodicity, but it appears more readily if the model background state includes an annual cycle.

1. Introduction

In recent years the explanations for El Nifio~-South-
ern Oscillation (ENSO) have focused on the hypothesis
of Bjerknes (1969) regarding ENSO as a positive feed-
back interaction between the tropical Pacific and the
atmosphere above it. Various numerical models in-
corporating Bjerknes’ idea were developed that showed
a number of similarities with ENSO (especially Zebiak
and Cane 1987; Schopf and Suarez 1988; and Battisti
1988). In order to explain the behavior of these nu-
merical models highly simplified models were created
in attempts to capture the essence of the numerical
model oscillations. The models of Battisti and Hirst
(1989) and Suarez and Schopf (1988) fall in this cat-
egory.

In Cane et al. (1990, henceforth CMZ) we put for-
ward such a simple model and analyzed its linear ver-
sion. It has 4., the thermocline height anomaly at the
eastern end of the equator, as its single dependent vari-
able. If A, > 0O the thermocline is deeper than usual
and the sea surface temperature warmer, as in an El
Niiio event. The warming in the east reduces the east—
west temperature contrast along the equator, which
causes the easterly wind to weaken, in accord with
Bjerknes’ ideas. The CMZ model retains only the es-
sence of the complex ocean-atmosphere physics im-
plicit in this description: a linear shallow water equa-
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torial ocean is driven by a wind stress of fixed form
whose amplitude depends only on 4,.

The CMZ model gives growing oscillations or pure
growth depending mainly on the coupling strength be-
tween ocean and atmosphere. In contrast to the results
of the more complete nonlinear numerical model of
Zebiak and Cane (1987, henceforth ZC), we found
that a small change in parameter values changes the
period from 2 years to infinity. Such behavior is char-
acteristic of the other simple linear models as well; viz.
Fig. 2 of Battisti and Hirst (1989). Since these models
are such far reaching simplifications of reality—or even
of the numerical models—*“realistic”” values of param-
eters cannot be determined with precision. We there-
fore feel that the linear models such as CMZ do not
provide a sufficient explanation for the ENSO time
scale. So either CMZ does not capture the basic mech-
anism for ENSO or nonlinear effects are crucial in de-
termining the period range of ENSO. The latter may
well be the case, as we shall see below.

The remainder of this paper is organized as follows.
Section 2 reviews the iterative map obtained in CMZ
and shows how to include friction in the model. In
Section 3 we present results from calculations with this
model. Section 4 is a summary and discussion. The
Appendix gives a derivation of our model from the
shallow water equations.

2. The model

In this section the iterated map we study will be
derived from the model equation in the companion
paper CMZ. We review briefly this inviscid model and
add Raleigh friction. The Appendix gives a more com-
plete derivation.
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The ocean dynamics of the CMZ model are governed
by linear shallow water equation on an equatorial beta-
plane. The ocean is meridionally infinite and zonally
bounded by meridional walls. The forcing wind stress
7 is chosen to be only zonal with the fixed spatial struc-
ture

T = A()e WPV f(x) (1)

where x denotes zonal, y meridional distance. The am-
plitude A4 at each time is taken to be solely dependent
on the thermocline height at the eastern boundary, #,,
except that in some cases it will also depend on the
time of year. As discussed in CMZ this is a simple
version of Bjerknes’ (1969) hypothesis for ENSO.
Cane et al. (1990) was devoted to the case of linear
forcing A(h,) = «h,. It was shown that the resulting
low-frequency ocean response is nearly independent
of the zonal forcing structure f( x) over the ocean as
long as the mean forcing strength over the ocean and
the zonal center of the stress are kept the same. The
appendix to Schopf and Suarez (1990) gives an expla-
nation for this independence. This allowed us to pick
J(x) for convenience. We chose an infinitely narrow
forcing at x = x5 (0 < xp < 1);1.e., f(x) = 6(x — Xxo)
and derived for that the following equation for the
Fourier transform of 4, [CMZ eq. (45)]:
- hod . 1
h(w) = a z¥h(w) + ———— (17
( ) jz:l j e( ) (1+#)1/2(
+z 2 2% — ai T DA(0)  (2)
j=1

with

and the aj defined by

0
(1—x)*2=17F 3 a*x/.
j=1
We transform this back into the time domain, and in-

clude a Rayleigh friction r as shown in the Appendix.
The result is

he(t) = 2 aj+e_4jrhe‘(t - 4])
j=1
L
(+w7e

1 x . . L
+ iT+_u)l7§ e [1+(4) 1)Xo]r[aj pi— a,-_lvf 1]
J=1

TUTRTALL = (1 = Xo)]

X A{t=[1+(4j— Dxl}. (3)

As one can see from the Appendix the sum in (3) ex-
tends over the odd Rossby waves. We neglect higher
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Rossby waves j > N and assume Xp to be rational: xq
= k/[ with integer k, [. If we rescale time by 1// and
evaluate a*, a~ we get

(1 + p)'2h(t) = e %074 — [1 - k])

N
— 3 bjai(p)e IO 4L — [2 + (4] — 1)k]}

Jj=1

N
(14w S be™h (i — 4jl) (4)

Jj=1
with b, = a;*; i.e
1 135+ «oo «(2i—3
b1=§, b= 2.4.6- ...(.sz );
and
4 = (1 - M)j_l [(4)— Du+ 11
l+p 1 +pu

A1) = A(he(1), 1).

This is a recursive equation for £.(¢). If A(h.(t), t) is
specified, %, is determined for all times by 4.(¢), . . .,
h.(t — 4Nl + 1). It can be written in the form

h(n + 1) = F(h(n))

he(t = n)
h(t=n-—1)

h(n) = (3

ho(t = n — 4Nl + 1)

with a fixed map F: R* — R*M Tterating (5) we get
a time sequence for 4, at discrete points in time. The
behavior of such iterative maps is studied in dynamical
systems theory (see Collet and Eckmann 1980), but
most of the results deal only with one-dimensional
maps. Here we study (5) experimentally, by computing
the resulting time sequences for different 4(4,).

3. Results from computer experiments

If the zonal structure of the real wind is f( x), then
the best choice for xq is xo = f(: xf(x)dx. For our nu-
merical study we fix the location of the forcing to be
in the center of the basin (x, = %2). This is a realistic
choice, and because of the small value for /, it has the
advantage of leading to the simplest version of (4):

(1 + 1) he(t) = e™2A4(1 = 1)

N
- z bnan(“)e.(“n-'—l)r/zA(t —4n—1)

n=1
N
+(1+ w'? Y be™*"?h,(t — 4n). (6)
n=1

The damping time is set to 30 months; for the Pacific
time scale (Kelvin wave crossing time) of 2.3 month,
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r = 0.076. The parameter u controlling the meridional
width is set to 0.1, which corresponds to an e-folding
scale of ~15°.

a. Forcing with cubic nonlinearity

The case of linear forcing A(A,) = kh, was thoroughly
analysed in CMZ. We add to this a cubic nonlinearity:

' A(hy) = K (ke — ah?) (7)
We can eliminate the second parameter by rescaling
hl,and k" define A, = a'/?h.; k = o~ /2%, In these new
variables (7) becomes

A(he)=K(he'_he3)- (8)

Figures 1a-f show the resulting time sequences for dif-
ferent «. The series in (6) are truncated at N = 10 and
the initial condition here, as in all the following runs,
ish(t=0)=10"%h(t<0)=0.

As the coupling parameter « is increased the resulting
time sequences goes through the following regimes:

(i) For « small (x < 1.2) the feedback is too weak
to sustain oscillations. The system shows dying oscil-
lations due to Raleigh friction.
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(ii) For 1.2 < «k < 1.88 we obtain finite amplitude
periodic oscillations. The periods increase from 1.5
years for k = 1.2 to 2.1 years for x = 1.88. In the linear
case, (CMZ Fig. 2) for this relatively small parameter
interval the period ranged from 1.6 years for x = 1.2
to infinity for « > 1.7. Comparing the linear and non-
linear results, we conclude that the nonlinearity short-
ens the periods for stronger coupling. Hence there is
less sensitivity to the coupling strength in the nonlinear
case.

(iii) If x > 1.89 the nonlinearity alters the behavior
of the model considerably. Without the nonlinearity
we would be in a regime of pure growth. Now we ob-
serve a bifurcation. The period doubles from 2.1 years
for x = 1.88 to 4.2 years for x = 1.89. The shape of the
oscillation changes as well, now showing a double
maximum on each side of the cycle. The period be-
comes nearly independent of « for 1.89 < « < 2.14
(not shown). It decreases to 3.75 years as « increases
from 1.89 to 2, and then increases to 3.8 years at «
=2.14.

(iv) At = 2.15 the model has another bifurcation.
The period jumps to 5.5 years and the time sequence
now shows many spikes on each side of the cycle. These

T T T T T T T T T T
a)
- VWw K=l.1
i T=1.3y
Ig — b)
K=1.6
o | T=17y
i c)
k=1.88
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k=1.89
St T=42y
3+ )
- K=2.2
oI T=53y
Q —
- f)
2 K=2.3
o T=58y
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FiG. 1. Time sequences of 4(¢) for cubic forcing 7 = «(h — h*) and different «.
T, the average period in years, is determined from the output.
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peaks change from cycle to cycle making the sequence
not perfectly periodic, although the fundamental period
remains fixed.

(v) For x = 2.29 this is no longer true: the aperiodic
oscillations dominate.

(vi) Finally, at x = 2.31 the system becomes unstable
and the time sequence goes to infinity.

To summarize: for small values of the coupling pa-
rameter « the system has a fixed point (2 = 0). As « is
increased there is a Hopf bifurcation to a periodic orbit.
At still larger values of « there is a second bifurcation
to a period doubling. As « is increased further a third
bifurcation brings aperiodic behavior. Thus the dy-
namical system described by (6) and (8) appears to be
following what Eckmann (1981) has termed the
Ruelle~-Takens—~Newhouse road to chaos.

b. A more realistic forcing function

A cubic nonlinearity is a quite natural choice (viz.
Schopf and Suarez 1989). It is the lowest order non-
linear antisymmetric forcing and so will be a good ap-
proximation to the real forcing as long as the nonlin-
earity is weak. But for x = 1.6, a range suggested by
the ZC model, this is not the case. For « > 1.7 the
amplitude of A, becomes larger than 37'/2, where the
cubic forcing reaches its maximum value. So in these
cases the forcing actually decreases before the anomaly
reaches its maximum, an unphysical behavior. For «
> 2.2 the amplitude of /. becomes so big that the wind
stress anomaly actually reverses its sign. We must rule
out the possibility that it is this unrealistic property of
the forcing that is responsible for the bifurcation and
aperiodicity.

To this end, we change the forcing function in the
remainder of our numerical study to the following:

r

b, + 2 {tanh[@ (h— ;m] - 1} ,

ay b.

hy<h

AChY=4q «h, h_.<h<h, (9)
b - {tanh[& (h- ;L)] - 1] :
a. .
L h<h_.

We must have a. > 1 and
— b+ . f— —b_ -—
hy = e (ar —1); h= > (a-—1) (10)

in order to ensure that 4 ( 4) is continuous. The function
(9), alinear piece inserted smoothly between two tanh
segments, is fashioned after the shape of the tropical
thermocline (viz. Fig. 2 on its side; also see ZC). It has
the following desirable properties. It is three times dif-
ferentiable and strictly monotonically increasing: as
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Fi1G. 2. Forcing function 4(/) given by Eq. (9).

h — +o00, A - *b,. Without loss of generality we
may take b, = 1. If the function is symmetric (b-
= 1), then it is determined by « and a.. In the lin-
ear stability analysis of CMZ, « (the slope at # = 0),
was the paramount parameter. In the present nonlinear
case we add a.., which control the curvature of 4(%),
i.e., how rapidly 4 approaches the asymptotic values
b.. The larger a. are, the faster these limits are reached,
with its limit function as a.., a_ = o0 being the piece-
wise linear form

’b+, h %
—~b_ b
A(h) =1 «h, —:’—shsf (11)
-b_, h<—£):.
L K

We first consider the case of symmetric forcing: o
=a_, by = —b_ = 1. Choosing a. = 1 we increase x,
a measure of the instability of the system at 4 = 0.
Figure 3a shows the resulting time sequences for dif-
ferent k. The model undergoes the same bifurcations
as in the case of cubic forcing: After « is big enough («
> 1.2) to sustain a finite amplitude oscillation it os-
cillates with periods between 1.3 years (for « = 1.2) to
2.2 years for k = 2.25, where the period doubles to 4.5
years. Increasing x further reduces the period to 4.0
years. At x = 2.66 the system undergoes another bi-
furcation, the period increasing to 6.7 years, roughly
triple the value for small «. Further increases in « up
to k = 2.83 reduce the period slightly, but leave the
qualitative behavior unchanged. At x = 2.84 the system
locks into a steady warm state. No aperiodic behavior
appears in this sequence.

Figure 3b shows a similar set of runs, but with in-
creased curvature: a. = 2. There is similar sequence
of bifurcations, but the transitions occur at lower values
of k. Also, aperiodic behavior now appears for « = 2.33.
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FIG. 4. (a) h(?) for the symmetric forcing function (a, = a_; b,
= —b_ = 1), varying the curvature of the forcing (a.). N = 10 and
k = 2.2. T gives the average period in years. (b) A 500-year sequence
for the case a. = 5.
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We conclude that the bifurcations are not simply an
artifact of the unphysical weakening allowed in the cu-
bic case, but are typical for the system. In fact, we found
them for many different forcing functions. Further-
more, the differences between a. = 1 and a., = 2 show
that these bifurcations are not determined solely by the
degree of instability at 2 = 0. Note that we increased
the curvature of 4(4) in Fig. 1 and Fig. 3 by increasing
k. We now make another parameter study, where we
increase d., keeping « fixed. This will increase the cur-
vature of A(h) around 4. but not its slope at 2 = 0.
The resulting sequences for fixed « = 2.2 are shown in
Fig. 4a.

Again the system shows the same kind of parameter
. dependence: a period doubling at a. = 1.1 and another
bifurcation at a. = 1.76. For a. > 3.0 aperiodic time
sequences appear. For a. = 6.0 the time sequence goes
towards a new equilibrium state. Clearly, the slope at
h = 0 is not the only parameter influencing the period.
The curvature—how fast the forcing levels off towards
its maximum value—can determine how long the re-
sulting period of the model will be and whether it will
be periodic or not. In fact, for a piecewise linear func-
tion like (11) we observe aperiodic behavior for a very
wide range of «. It is not uncommon in dynamical
systems for changes in a variety of parameters to yield
the same range of qualitative behaviors.

The rather bizarre behavior at a. = 5 is illustrated
at greater length in Fig. 4b. Remarkably, the value of
h, can remain roughly constant for almost 15 years
and then make a rapid transition to another state. Re-
call that A, is the only variable in this model system,
and that with the friction we use 15-year-old infor-
mation has been reduced by a factor of e~®. Therefore,
it must be the very small irregularities of the quasi-
constant period that jolt it into a new regime. We see
no obvious feature predicting that the transition will
occur, for example, at 7 = 90 rather than 7" = 85. Qur
model system is obviously quite sensitive to initial
conditions.

¢. Necessary number of Rossby waves

We want to see how many Rossby waves N must be
included in our model (7) to obtain aperiodicity.
Suarez and Schopf (1988) and Battisti and Hirst (1989)
use only one delay time and so include only one effec-
tive Rossby wave. They observe neither bifurcations
nor aperiodicities in their models. The existence of
more than one Rossby wave may be crucial for these
richer behaviors. Indeed, with N = 1 our model always
has a rather short period of 1.2-1.8 years. No period
doubling or quasi-periodic behaviors are observed.

The number of Rossby waves is closely related to
the dimensionality of the system and so gives an upper
bound for its dimension. From (6) we know that for
every Rossby wave included we increase the dimension
of the map F by 8—a large increase of dimensionality.
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Varying the parameters of A(#) in (9) we find that we
need at least four Rossby waves to observe the first
bifurcation. For N < 4 the time sequence either oscil-
lates quite rapidly—showing periods of 1.2-2 years—
or it converges toward a new equilibrium. For N = 4
the model again shows the characteristic period dou-
bling and aperiodic behavior, but it behaves this way
only for a small interval of « or q.. This parameter
range widens considerably if we increase the number
of Rossby waves. Figure 5a shows an example of dou-
bled and tripled periods, but no aperiodicity (the N
= 7 behavior is transient). For the parameter setting
of Fig. 5b aperiodicity appears at N = 8.

d. Annual cycle

The matter is different if we include an annual cycle
in the forcing by making « time dependent:

k(t) = Ko[l + B cos(% t)}

This form takes crude account of the mean annual
cycle in such factors as SST and wind speed. [ Zebiak
and Cane (1987) and Battisti (1988) offer some dis-
cussion of how the ocean-atmosphere coupling varies
over the course of the year.] We now find an aperiodic
time sequence for only two Rossby waves (Fig. 6).
Apparently this more interesting behavior occurs only
for well selected parameter values. The chaotic islands
in the parameter space are small. We cannot exclude
the possibility that these islands exist for N = 1 but are
so small that we did not see them.

(12)

e. Asymmetric forcing function

The forcing function in the real world is not sym-
metric around the mean state. A positive thermocline
anomaly might move the intertropical convergence
zone towards the equator and so reduce the easterlies
over the central Pacific. The effect for a negative ther-
mocline anomaly is much weaker, so the resulting wind
anomaly is much weaker. We can implement this by
choosing b_ < b, ; the resulting time sequences show
eventlike oscillations. The system stays much longer
on the negative side close to 0 and shows short strong
positive anomalies (Fig. 7 top). This is more in keeping
with the character of the observed ENSO cycle.

If we add an annual cycle in « the periodic oscillation
becomes aperiodic (Fig. 7 middle ). But the annual cy-
cle is not essential for the aperiodicity. Figure 7 (bot-
tom) shows an aperiodic oscillation without an annual
cycle in «. Apparently, adding the more realistic feature
of asymmetry encourages aperiodicity. Finally, we note
that the combination of asymmetry and an annual cy-
cle (Fig. 8) allows the iterated map (6) studied here to
rival the more physically complete ENSO model of
Zebiak and Cane (1987) in the apparent chaos it can
generate.
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FIG. 5. h(t) for the symmetric forcing function varying the number
of Rossby waves. (a) x = 2.7, a, = b, = 1;(b)x =22, a, = 3.5, b,
=1.
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4. Discussion

In this paper we propose an iterated map as a possible
paradigm for the El Nifio-Southern Oscillation. Itis a
distillation of the Bjerknes (1969) scenario for ENSO,
as amended by Wyrtki (1975) to emphasize the role
of remote wind forcing and the equatorial waveguide.
[Cane (1986) provides historical background.] The
map is derived as the solution for wind-forced motions
described by the shallow water equations on an equa-
torial beta-plane. The wind forcing is purely zonal, is
centered longitudinally in the model ocean basin, and
has fixed spatial form: infinitely thin in the longitudinal
direction and Gaussian in latitude. The wind amplitude
A depends solely on the thermocline height in the east,
h.. In a previous paper, Cane et al. (1990) presented
the model used here and thoroughly analyzed the case
where A is linearly related to A..

Here we numerically investigate cases where the re-
lation A(A,) is nonlinear. While there are many phys-
ical features making the coupling between the tropical
ocean and atmosphere nonlinear (e.g., cf. Zebiak and
Cane 1987), we will mention only the one we believe
to be most important: the vertical temperature profile
in the upper layers of the tropical ocean does not have
a constant gradient. (It resembles Fig. 2 turned on its
side. This of course is not accidental.) Consequently,
a given change in thermocline displacement has a vari-
able effect on the sea surface temperature and hence
on the atmospheric circulation, depending on how close
the thermocline—the region of maximum gradient—
is to the surface.

The nonlinear model exhibits a rich behavior, no-
tably including finite amplitude oscillations with pe-
riods between 1.3 and 6 years. If the coupling between
atmosphere and ocean is very weak the solution is a
fixed point (4. = 0). As it increases a bifurcation point
is passed and simple periodic oscillations with periods
of approximately 2 years appear. A further increase
leads to a second bifurcation and a period doubling to
3—-4 years, the mean period observed in nature. The
shape of the oscillations changes from nearly sinusoidal
to one with multiple extrema on either side of the cycle.
That is, a quasi-biennial period is still evident. A further
increase produces a third bifurcation, after which ape-
riodic behavior is observed. This sequence seemingly
conforms to the Ruelle-Takens-Newhouse (“period 3
is chaos”) scenario for the onset of chaos.

By varying the shape of the relation A (4, ), the same
qualitative sequence may be obtained even if the cou-
pling strength dA/dh, in the neighborhood of 4, = 0
is kept fixed. The parameter regimes showing aperiodic
behavior widen, if we include an annual cycle in the
forcing, and narrow, if we diminish the number of
Rossby waves included. A minimum of two Rossby
waves appear to be necessary to obtain aperiodicity;
for only one Rossby wave the system either oscillates
with a short period (less than 2 years), or converges
toward a new equilibrium.
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FIG. 6. h(t) for the symmetric version of function (9) with an
annual cycle and 2 Rossby waves. N =2, a, =7, b, = 1, B=0.25,
x=1.9.

The most striking result is the aperiodic oscillation
of our model without stochastic forcing. Though not
strictly necessary for aperiodicity to appear, incorpo-
rating an annual cycle or an asymmetry in the forcing
makes it appear more readily. If this is true in the real
world, then we may regard ENSO as a deterministic
chaotic system.

The same idea has been expressed before, notably
by Vallis (1986, 1988). However, there is little evidence
that the simple models he studies characterize the way
ENSO works in the real world. In contrast, as noted
in the Introduction, there is a considerable body of
work suggesting that the mechanisms incorporated into
the model presented here are the ones crucial for
ENSO. It is certain that they apply in models of ENSO
that include complex ocean and atmosphere physics
and show a fair degree of verisimilitude. Indeed, one
of these models has been used to predict El Nifio events
(Cane et al. 1986; Barnett et al. 1988).

We do not claim that the iterated map presented
here is a realistic model, but do suggest that it is a
proper paradigm for ENSO. Generally speaking, it has
the same dynamics and air-sea interactions as the class
of simple models (Battisti and Hirst 1988; Suarez and
Schopf 1988; Schopf and Suarez 1990; CMZ) that have
been used to explain the workings of ENSO. It is quite
similar to that of Schopf and Suarez (1990), except
that they usually neglect higher (N > 1) Rossby waves
and so do not find the more complex behavior our
maodel exhibits when several Rossby waves are retained.

The basic oscillation may require only one or two
Rossby waves, but our results suggest this oscillation
is unstable to perturbations which include higher
Rossby waves. Thus, in our results, the higher Rossby
waves can change the period of the system and even
induce chaos. This occurs although the meridional
form we choose for the forcing, being concentrated at
the equator, makes the amplitudes of the higher modes
relatively small [viz. Fig. (4). bs/b, = 0.05, and the
factors involving p and r further reduce the effect of
the N = 5 mode]. In this regard our model is consistent
with previous results indicating that the Rossby wave
component in coupled numerical models (Battisti
1989) and the oceanic response to observed winds
(Zebiak 1989) is concentrated in the low N, low-lati-
tude modes. So it may be, that despite its relatively
small size, the off-equatorial response in nature also
influences the period of the coupled system. The in-
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clusion of higher latitudes creates a longer mean period
and chaos. Possibly, this mechanism is a role for the
off-equatorial signals documented by White et al. (cf.
Graham and White 1988 and references therein),
which is neither causal nor trivial. This is all the more
likely because the real wind system anomalies have
larger amplitudes off the equator than our model
system.

While the papers cited above all offer fairly similar
accounts of the ENSO cycle and why it oscillates, there
is no agreement on what sets the characteristic period
or what is reponsible for the aperiodicity. In the light
of their numerical model results, Schopf and Suarez
(1988) and Battisti ( 1988 ) suggest that the irregularity
of the ENSO cycle is a consequence of natural “noise”
such as the intrusion of higher frequency midlatitude
effects into the tropics. We do not have a certain ex-
planation for the lack of chaos in their numerical mod-
els. Perhaps the higher Rossby waves needed to desta-
bilize the periodic solution are too slow to survive the
higher dissipation rates in these models. That possibility
is consistent with the results reported here. In any case,
the clear implication of the present work is that ENSO
could be intrinsically chaotic; no noise is required to
explain the observed aperiodicity.

Battisti and Hirst (1989) suggest that the period of
the ENSO oscillation is set by a linear mechanism, the
balance between dissipation and the inherent instability
of the tropical Pacific ocean-atmosphere interactions.
The role of nonlinearity is to be dissipationlike and
limit the amplitude of unstable modes. Here we are
suggesting that the most basic period is quasi-biennial,
and that the observed period of approximately 4 years
comes about through period doubling and the transi-
tion to chaos; the mechanism choosing the preferred
period is in essence nonlinear.

It is obvious from the observations that ENSO is
aperiodic, but the historical time series is too short to
apply methods for identifying dynamical chaos with
any certainty. Perhaps the ability of a model to forecast
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is evidence in its favor (cf. Barnett et al. 1988), but it
is far from decisive.

The model results of Zebiak and Cane (1987) give
some support to the period doubling thesis: they show
a low amplitude quasi-biennial fluctuation accompa-
nying the dominant quasi-4-year ENSO oscillation.
There is also a suggestion of a quasi-biennial compo-
nent in the tropical Pacific observational record (e.g.,
Rasmusson et al. 1990; Barnett 1990). Additional
work, both observational and theoretical, will be needed
to elucidate the quasi-biennial patterns and explore
whether the observed quasi-biennial features lend sup-
port to the ideas proposed here.

APPENDIX

Deriviation of the Delay Equation

Consider the scaled shallow water equations on the
equatorial beta-plane:

i+ '+ R+ ru' = F/,
vi—yu' +hy+rv =G,

hy+ustv,+rh = (A1)
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As usual ¢ stands for time, x and y denote longitudinal
and meridional distances, u and v the velocities in these
direction and / the equivalent depth. Partial derivatives
are written as subscripts. F, G, H are the forcing func-
tions and r is a frictional parameter. If we introduce
new variables u, v, Aby u = u' exp(rt), v = v’ exp(rt),
h = k' exp(rt) (A1) becomes formally inviscid:

w+yv+h,=F=F'e"
~yu+hv=G=Ge"
H=He" (A2)

We take the Fourier transform of (A2 ) with respect to
x and obtain

h+u +o,=

ul(k9 y’ t)+9(k: J’)“(k, y’ t):F(k’ y: t) (A3)
with
0 -y ik
Uk, =Ly 0 9].
ik 9, 0
The free wave solutions of (A2) are of the form
(Pl
‘I)n,j(k, y)ei(kx—wn,jt) = (q)%u)(k y)el(kx wn, j1)
3

where the &, ; are the eigenvectors and the iw, ; the
eigenvalues of Q(k, y). These are the well-known grav-
ity, Rossby and Kelvin waves; viz. Cane and Sarachik
(1976) from where we adopt our notation. As shown
there, these waves form a complete set. We may there-
fore expand F and u in these waves:

F(ka Y, t) = z.f;l,j(k9 t)q>n,j(k7 J’), (A4)
n,j

u(k, v, t) = 2 wnj(k, ), (k. ¥), (AS)
nj

where the f,, ;(1, ;) are the projections of F(un) onto &, ;
defined by
(F, ®,)

Jni = (®,,%,))

f (F*®' + G*®* + H*®%)dy
= . (A6)
(2'*@' + 2222 + 3*@3)dy

-0

Inserting (A6) in (A3) yields the following equation
for the coefficients
au,,, j
ot

We make the long-wave, low-frequency approxima-
tion: we neglect the gravity waves (j = 1, 2) and con-

+ iw,,,j(k, t)u,,,,» =f;,’j(k, t) (A7)
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sider the Rossby waves as being nondispersive. De-

noting the Kelvin wave by n = —1
w1 T W = k
n = e == l’ 2’ N LIRS A
On3 = On 2n+ 1 3 (A8)

W¢ take the forcing F to be of the form

0

Cane and Sarachik (1981) give the projections of
exp(—uy?/2) onto the Kelvin and Rossby modes:

Sor = A8 (x — x)r—

1
F(x, y,t) = A(1)8(x — xo)e =+ . (0).

1/4
(1+p'?
(A9)

= A(t)o(x - Xo)
fén,B(’Q l) =0
Sonnra(k, 8) = A()(x — Xo)ranry = — S

20!2,, l(l - 'u)n 1
(1++ ) (“ Tt 3) (A10)

with

[(2n + 1)!]”2
Ayl = T— .

If we Fourier transform (A7) with respect to time we
get, using (A8) and the fact that exp(—ikxp) is the
Fourier transform of §(x — xg),

Sk, @)
(w+ wy,)

. k
= —ikxg i _
A(w)e rn/[l(w 2n+1)]
and so

tnx, ) = e [y /

un(k, w) =

2w
iw———k~ dk, n=-1,1,3 All
2n+1 3 3 b 3 b ( )
where we wrote u, for u, ; and u_, for u_,,,. This in-

tegral can be evaluated by using the fact that 1/ik is
the Fourier transform of the Heaviside function H(x).
We obtain

Un(x, @) = A(w)r,H(xp — x)(2n + 1)e!@n+Dux—%0)
for

U_1(x, ©) = A(w)ro H(x — xp)e“ >

n>0,
(A12)

Summing these contributions we find a solution for
the forced shallow water equations
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Urorc(X, ¥, @) = z A(w)r,H(xo — x)
nn:;d

X (2n + l)ei(2n+l)w(x—x0)(pn(y)
+ 1 A(w)H(x — Xo)e ™0 &_ ().

The general solution consists of the forced solution plus
the free solution of arbitrary amplitude.

o0
Ugen = Uforc + Ufree = Z (an + A(w)rnH(-xO - .X)
=1
:odd
X (2n + 1 )e~iCmDexo) § i (2n+Dux
+ (a-y + A(w)r- H(x — Xo)

X (2n + 1) “*)d_e™ %, (A13)

The a, and a_; will be determined by the boundary
conditions. At the eastern boundary (x = Xx,) the lon-
gitudinal speed has to vanish #(x,) = 0. Now v is small
in the low-frequency approximation as concluded in
Cane and Sarachik (1976) and we see from the second
equation of (A2) that « and # are in geostrophic bal-
ance. Now if « = 0 as it is at the boundary it follows
from yu + A, = 0 that A(y) is constant. Cane and Sar-
achik {1977, Eq. (23)] gives the following expansion
ofu=1(0,0,h)"

i

Comparing the coefficients of (A13) at x = x, and
(Al4) gives

= bt (P + D 2a,9,). (Al4)
n=1
n odd

anei(2n+l)mx, = 20(,,1!' ”4he(w),

a_e % + A(w)r_e@0%) = 14 (w). (A15)

The boundary condition at the western end of the basin
is not as straightforward as the one on the eastern side.
Cane and Sarachik (1977) concluded that for the low-
frequency approximation the correct western boundary
condition is that the meridional integral of the zonal
velocity has to vanish. So if the western boundary is at
x=0

f u(x=0,y,0)dy=0.
To compute this we need the zonal integrals of the
Kelvin and the Rossby waves. These were given in Cane
and Sarachik (1981):

1/4

OO (I)l_ dv = 1/4; foo én‘d - T oy
f_w 1dy = L S TR

for n odd.
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We insert (A15) into (A13) and compute

fudy=0== > 20he(w)e 2 Dwxe
nn:;d

+ 3 A(w)r,(2n+ l)e‘i(2"+1)‘”""f ®,'dy
nn:(:d

+ (7% (w)e™* — A(w)r_ e™*) f &L, dy;
he(w) = A(w) -1%-;—4 e“iw(XE—XO)

hd r.(2n + a,

+ A —_—
zx (@) 2n(n+ 1)=x'/*
n odd

—i(2n+1)wxg—iwxe

K0

z

n=1
» odd

Nowlet2j—1=n,

aZ

n h —i(2n+2)wxe.
n(n+1) (w)e

(Al6)

b= a%j—l
(2j—1)2j’

(L= VT 4 - D +1
aj(u)_(l+u) 1+u ]’
and use (A9) and (A10) in (A16) to obtain

A(w)
(1+p'?

1

()

(A17)

he(w) =

e‘i‘ﬂ(xe“x())

* s .
S A(w)bay(p)elreoio
Jj=1

+ 3 bh(w)e it
j=1

(A18)

Transforming (A18) into the time domain yields (3)
of the main text.
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