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ABSTRACT

There has been an apparent increase in the frequency and duration of El Niño–Southern Oscillation events
in the last two decades relative to the prior period of record. Furthermore, 1990–95 was the longest period of
sustained high Darwin sea level pressure in the instrumental record. Variations in the frequency and duration
of such events are of considerable interest because of their implications for understanding global climatic
variability and also the possibility that the climate system may be changing due to external factors such as the
increased concentration of greenhouse gases in the atmosphere. Nonparametric statistical methods for time series
analysis are applied to a 1882 to 1995 seasonal Darwin sea level pressure (DSLP) anomaly time series to explore
the variations in El Niño–like anomaly occurrence and persistence over the period of record. Return periods for
the duration of the 1990–95 event are estimated to be considerably smaller than those recently obtained by
Trenberth and Hoar using a linear ARMA model with the same time series. The likelihood of a positive anomaly
of the DSLP, as well as its persistence, is found to exhibit decadal- to centennial-scale variability and was nearly
as high at the end of the last century as it has been recently. The 1990–95 event has a much lower return period
if the analysis is based on the 1882–1921 DSLP data. The authors suggest that conclusions that the 1990–95
event may be an effect of greenhouse gas–induced warming be tempered by a recognition of the natural variability
in the system.

1. Introduction

In a thought provoking paper, Trenberth and Hoar (1996,
hereafter, TH) suggested that the 1990–95 El Niño–
Southern Oscillation (ENSO) event was very unusual and
may provide evidence of global warming and climate
change associated with increased greenhouse gas concen-
trations in the atmosphere. Their argument is based on a
statistical analysis of the 1882–1995 time series (Fig. 1)
of seasonal (4 seasons yr21) Darwin sea level pressure
(DSLP). They fit an autoregressive-moving average
(ARMA) model of order (3, 1) to the seasonal 1882–1981
DSLP time series. Based on simulations from the ARMA
model they assign a return period of 2000 yr to the mean
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anomaly associated with the 1990–95 event. The return
period associated with a 22-season long 1990–95 run of
positive anomaly (PA) was reported as 8850 yr.

The estimation of recurrence intervals for multivariate
extreme values (e.g., a run) of time series requires the
specification of a time series model and its attributes. The
choice of model may affect the outcome. Although the
ARMA model is a plausible choice, investigation of al-
ternate models is useful. Specifically, we (a) directly ex-
plore evidence of nonstationarity in ENSO occurrence over
the record, and (b) examine alternate representations (e.g.,
Markov chains) that focus more directly on PA runs and
can model nonstationary processes. An analysis of the
DSLP time series from this perspective is presented here.

2. Overview

An ARMA model for DSLP assumes stationary, lin-
ear dynamics underlying the ENSO occurrence process.
These assumptions of linear dynamics in particular may
be improved on as seen in Fig. 2. This figure shows a
locally weighted regression or LOESS (Cleveland and
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FIG. 1. The seasonal DSLP time series (1882–1995).

FIG. 2. Scatterplot of DSLP(t 2 2) and DSLP(t 2 1) vs DSLP(t) along with the fitted LOESS
surface, for the period 1882–1991.
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Devlin 1988) surface fitted to the scatterplot of DSLP
(t 2 2), DSLP(t 2 1), DSLP(t); the fitted surface can
be thought of as the state transition function from
DSLP(t 2 2), DLSP(t 2 1) to DSLP(t). A nonlinear
state transition function has an ‘‘S’’ shape that is sug-
gestive of a binary or two state system with switching
between the two states. This is consistent with the par-
adigm of ENSO dynamics that consider nonlinear un-
derlying dynamics (Tziperman et al. 1994, 1995; Gra-
ham and White 1988) for the tropical ocean–atmosphere
system associated with ENSO.

Trenberth and Hoar applied the ARMA model to a
continuous random variable, and identified runs of pos-
itive (PA) or negative (NA) anomalies from the cli-
matological mean. The run lengths are used to assess
the return period associated with the 22-season long
1990–95 PA anomaly. The two states (PA, NA) can be
thought of as the state space of a binary discrete random
variable. It is possible for the mean run length of PA
or NA to be biased downward in this process as random
crossings of the mean DSLP may be more likely in a
model defined with a continuous rather than a discrete
random variable. Conversely, there is a loss of infor-
mation if one works directly with a discrete represen-
tation. Nevertheless, a discrete representation allows a
more direct focus on the run length statistics. Nonpara-
metric time series models are useful to address the pos-
sibility of nonlinear dependence and to explore nonsta-
tionarity.

The 1882–1995 DSLP series is converted into a bi-
nary sequence (PA 5 1, NA 5 0), hereafter referred to
as BDSLP, with anomalies defined relative to the 1882–
1981 DSLP mean. The sign of the anomaly depends on
the choice of the period used to compute the mean.
Different choices may influence conclusions. Conse-
quently, we used the same period as TH to allow a
consistent comparison with their results. Nonstationar-
ities in the rate of occurrence of PA events over the
record are then identified using a kernel intensity esti-
mator (Solow 1991; Rajagopalan and Lall 1995b). The
kernel intensity estimate can be thought of as a filtered
representation of the BDSLP series using a filter with
a bandwidth optimized by cross validation.

Markov chain (MC) representations of the BDSLP
series are then considered. A second-order, homoge-
neous MC is first fitted to several segments of the his-
torical record and differences in state transition prob-
abilities across these segments are noted. Kernel
(weighted moving average) methods (Rajagopalan and
Lall 1996) are then used to estimate the state transition
probabilities of a first-order nonhomogeneous MC as a
continuous function of time over the historical record.
These two representations of nonstationarity in ENSO
occurrence are compared. Finally, we make 100 simu-
lations, each of length 100 000 yr from a second-order
homogeneous MC model and a first-order nonhomo-
geneous MC model assess the probability of exceedance
of runs longer than 21 seasons (the 1990–95 event).

3. PA occurrence rate

The Poisson process is often used to describe any
occurrence process or point process (Waymire and Gup-
ta 1981; Cox and Isham 1980). In this case the occur-
rence of PA can be thought of as a point process (i.e.,
each event of a PA occurs at different point in time).
For a stationary point process, the number of events
(e.g., seasons of PA) occurring in a duration T is a
random variable n(T) with a Poisson distribution with
mean lT:

p[n(T) 5 k] 5 (lT)ke2(lT)/k!
k 5 0, 1, 2 . . . , (1)

where l is called the rate or intensity parameter. A non-
homogeneous Poisson process is one for which the rate
l(t) is presumed to vary over time. If T is taken to be
one season, l(t) is interpretable as the time-varying
probability of occurrence of a PA event [hereafter,
PPA(t)]. Serial dependence of PA values is not consid-
ered, and hence this model is appropriate to investigate
variation in the average rate of incidence of PA over
time, but not for investigations of run length properties.

Kernel intensity estimators (see Diggle 1985; Solow
1991; Rajagopalan and Lall 1995b) can be used to es-
timate PPA(t) from the record, through an optimal,
weighted moving average of the rate of occurrence of
PA over time. Here, we use a discrete kernel estimator
from Rajagopalan and Lall (1995a):

n t 2 tjP (t) 5 K H(t ), (2)OPA j1 2hj51

where H is the characteristic function for PA; H(tj) 5
1 if DSLP . 0 at time tj and 0 otherwise; t1, t2, . . . , tn

are the time indices from the start to the end of the
record; K(·) is a kernel or weight function centered at
the time t; and h is an integer bandwidth or averaging
interval:

3h
2K(u) 5 (1 2 u ) for zuz # 1,

21 2 4h

5 0 otherwise. (3)

The bandwidth h is selected by minimizing a least
squared cross-validation (LSCV) function [Rajagopalan
and Lall 1995a, their Eq. (16)]:

n n

2LSCV(h) 5 H(t )[P (t )] 2 2 H(t )P* (t ) ,O Oi PA i i PA i5 6i51 i51

(4)

where (ti) is the estimate at time index ti obtainedP*PA

by dropping a PA event at time ti from the dataset. The
LSCV optimal bandwidth h for the BDSLP time series
is 35 seasons. The rate function is consequently esti-
mated using a 70-season (ø17 yr) weighted moving
window. The estimated rate is plotted in Fig. 3. The
estimates of the first and the last 35 seasons lack a full
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FIG. 3. Intensity or rate function PPA(t) estimated by the DKE. The dotted line is the constant rate estimated from the BDSLP data.

complement of data on one side of the window and are
disregarded. If the occurrence process was a homoge-
neous Poisson process, then the constant rate l would
be the inverse of the average number of seasons of PA
in the entire record. In this case, it turns out to be 0.5
and is shown as a dotted line in Fig. 3. The rate of
occurrence of PA at the turn of the last century is similar
to that in recent times. It appears to be almost constant
during the 1920–65 period and starts to increase from
about 1970. This is consistent with recent observations
and links to interdecadal changes in climate throughout
the Pacific basin (Trenberth 1990; Trenberth and Hurrell
1994), and reflects an interdecadal to century-scale vari-
ation.

The choice of bandwidth reflects a trade-off between
bias and variance in the estimate of the rate of occur-
rence. A reduction in the bandwidth potentially reduces
the bias, but leads to an increase in the variance since
a smaller sample is being used and vice versa.

4. Homogeneous Markov chain

Markov chain models (e.g., Gabriel and Neumann
1962; Hopkins and Robillard 1964; Guzman and Torrez
1985, etc.) of times series are attractive because of their
nonparametric nature, ease of application, interpreta-

bility, ability to approximate nonlinear state transition
functions, and well-developed literature. Discrete pa-
rameter MC models are considered here. For a kth-order
MC, the state (PA or NA) at the current time ‘‘t’’ is
presumed to depend only on the state in the preceding
‘‘t 2 k’’ time steps. The MC is defined through data-
based estimates of state transition probabilities. For a
Markov chain of order one, the transition probabilities
needed are the probability of an NA following a PA,
PPANA 5 a1 and the probability of PA following an NA,
PNAPA 5 a2; PPAPA and PNANA are (1 2 a1) and (1 2 a2),
respectively. Tong (1975) and Gates and Tong (1976)
proposed Akaike’s information criterion (AIC) for
choosing the order k.

For the seasonal 1882–1981 BDSLP time series, cor-
responding to the DSLP series modeled by TH, this
criteria suggests an order two MC. Eight permutations
of PA and NA are possible for the three season se-
quences considered. The probabilities P(PAt z PAt21,
PAt22) and P(NAt z NAt21, NAt22) are 0.77 and 0.72, re-
spectively, suggesting the possibility of long run lengths
in either state.

The transition probabilities for a second-order Mar-
kov chain applied to three subperiods, 1882–1921,
1922–61, and 1962–88, are also summarized in Table
1. The transition probabilities P(PAt z PAt21, PAt22) and
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TABLE 1. Transition probability matrix. The values within the pa-
rentheses (from left to right) are for the three time segments: 1882–
1921, 1922–61, and 1962–88.

Preceding
seasons

t 2 2 t 2 1

Observation season, t

PA NA

PA
PA
NA
NA

PA
NA
PA
NA

0.77 (0.86, 0.70, 0.76)
0.30 (0.07, 0.36, 0.41)
0.58 (0.67, 0.52, 0.56)
0.28 (0.25, 0.35, 0.33)

0.23 (0.14, 0.30, 0.24)
0.70 (0.93, 0.64, 0.59)
0.42 (0.33, 0.48, 0.44)
0.72 (0.75, 0.65, 0.67)

P(NAt z NAt21, NAt22) for the three time segments in-
dicate that the probability for long runs of PA or NA
varied considerably over the last 100 yr, and the current
probability levels for persistence of PA are reaching
those for the start of the century. Using the transition
probabilities from the 100-yr period, 1000 Monte Carlo
simulations each 40 yr in length (the approximate length
of each subperiod) were made and the 95% and 90%
confidence limits for each transition probability were
estimated. The transition probabilities of the early and
recent subperiods were significantly different at the 90%
confidence level.

One hundred simulations, each of length 100 000 yr
were made with the second-order MC fit from the 100-yr
transition probabilities. The average return period of
runs of PA greater than or equal to 22 seasons was 575
yr. Simulations were also made from the second-order
MC fitted from each of the three time segments. The
average return period for a run of PA of length greater
than or equal to 22 seasons were found to be 79, 3250,
and 660 yr using the models based on 1882–1921, 1922–
61, and 1962–88, respectively.

5. Nonhomogeneous Markov chain

Nonstationarity in the serial dependence attributes of
the BDSLP series is investigated using a nonhomoge-
neous MC with time-varying transition probabilities es-
timated using kernel methods (Rajagopalan et al. 1996).
Only a first-order MC model was considered to simplify
the analysis.

For a homogeneous MC, the transition probabilities
are estimated as the ratio of the number of transitions
from PA or NA to the total number of PA or NA events
in the historical record, as appropriate. For a nonhom-
ogeneous MC, these estimates are localized using a
weighted moving window centered at the time of in-
terest. The procedure is conceptually similar to that used
earlier for estimating the rate of PA events. The kernel
estimators for the transition probabilities PPANA(t) and
PNAPA(t) are

n21 t 2 tiK H(t )[1 2 H(t )]O i i111 2hi51 PN

P (t) 5 (5)PANA
n21 t 2 tiK H(t )O i1 2hi51 PN

n21 t 2 tiK [1 2 H(t )]H(t )O i i111 2hi51 PN

P (t) 5 , (6)NAPA
n21 t 2 tiK [1 2 H(t )]O i1 2hi51 PN

where H, K, and h have the definitions provided earlier.
To complete the set of transition probabilities note that
PPAPA(t) 5 1 2 PPANA(t) and PNANA(t) 5 1 2 PNAPA(t).

The transition probability estimates at any time t are

obtained by using the information from time points in
the range [t 2 h(·), t 1 h(·)] with the contribution to the
estimate determined by the discrete kernel as given in
Eq. (3). Rajagopalan et al. (1996) propose a LSCV mea-
sure for selecting the bandwidths for the estimators in
Eqs. (5) and (6).

To allow for a graphical comparison with the rate
parameter estimated for PA events, the bandwidths hPN

and hNP were chosen to be 35 seasons, and the estimators
[Eqs. (5) and (6)] were applied to the 1882–1995 data.
The transition probabilities PPAPA(t) and PNANA(t) are
shown in Fig. 4 (as the other two probabilities are com-
plimentary). The dotted line in each plot represents the
transition probability estimated by fitting a one-step ho-
mogeneous MC to the BDSLP series. As before, the
estimates of the first 35 and the last 35 seasons are
disregarded. The trend in PPAPA(t) is of interest. First,
we see that it is consistent with the PPAPA(t) values es-
timated for the three segments using a homogeneous
MC. Second, it is generally similar to the trend in
PNANA(t), during 1891–1970. The transition probabilities
are high through 1882–1920, then decrease with minima
around 1930 and 1955–60, and then increase until 1970.
During 1970–86, PPAPA(t) continues to increase, while
PNANA(t) decreases sharply to 0.4. This may represent
an interesting shift in the regime associated with the
underlying dynamics of the system. The general trends
(Fig. 3) in the probability of PA occurrence, PPA(t), are
consistent with the trends in PPAPA(t). This is a conse-
quence of the fact that each PA event is several seasons
long. The variations in PPAPA(t) are more pronounced
than those in PPA(t).

The probability of a PA event in any season has re-
cently reached levels as high as or higher than those at
the turn of the last century (Fig. 3). Given the high
recent values of PPA(t) one may be tempted to argue for
a change in the dynamics of the underlying system.
However, an examination of the variations of PPAPA(t)
reveals that the magnitude of this statistic is now ap-
proaching levels reached during 1882–1920. This sta-
tistic is indicative of the potential for a spell of PA
values. The observation that PPAPA(t) was also high dur-
ing the 1882–1920 period, when CO2 was lower, seems
to suggest natural variability of the system, rather than
a monotonic response to the monotonic increase in CO2
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FIG. 4. One step time-varying transition probabilities (a) PPAPA(t) and (b) PNANA(t) for the non-
homogeneous MC estimated using kernel estimators. The dotted line in each frame is the cor-
responding one step homogeneous transition probability estimated from the BDSLP data.

as a more plausible explanation for the observed phe-
nomena.

The persistence of the system in the state PA or NA
as indicated by PPAPA(t) or PNANA(t) is significantly dif-
ferent from that indicated by PPA(t) or PNA(t). This is
implicit in the fact that the optimal order of the MC
is greater than one and is also established from an
analysis of PPAPA(t) 2 [PPA(t)]2 and PNANA(t) 2
[PNA(t)]2, respectively. An interesting observation from
the plots of PPAPA(t) and PNANA(t) is that the dynamics
of the system is likely different for the period at the
end of the last century and the recent period. While the
PPA(t), PPAPA(t), and PNA(t) values are similar for the two
periods, the PNANA(t) values are quite different (high at
the end of the nineteenth century, and low during the
recent period). Thus, one would expect PA events to
have longer spell lengths, but NA events to have shorter
spells than in the earlier period. The higher recent values
of PPA(t) are consistent with the interpretation that while
the PA spell length attributes have not changed, the
frequency with which PA spells are initiated is in-
creased, since the NA spells are now shorter. Indeed,
the PNANA(t) is the lowest it has been over the record,
and provides more of an evidence for long-term trend
than any of the other statistics. The issue of whether
this is a consequence or sign of natural variability or of
greenhouse gas–related warming remains unresolved.

One hundred thousand simulations, each 100 yr long
were made from the first-order nonhomogeneous MC
fitted to the 1882–1981 BDSLP data. The process used

here is analogous to drawing samples that are statisti-
cally similar to the 1882–1981 record, with Markov
chain probabilities changing over time within each sam-
ple, in a manner consistent to the time line in the original
data. The average return period for a PA run of 22
seasons is about 350 yr. A 1000-yr run from the Zebiak–
Cane model (Zebiak and Cane 1987) for ENSO pro-
duced a return period of about 330 yr for warm spells
of length greater than or equal to 22 seasons. Thus, this
model of the tropical Pacific, with no feedbacks from
elsewhere, is capable of producing long warm spells.
Internal oscillations of the tropical ocean–atmosphere
system are consequently a plausible cause of the unusual
long spells.

6. Conclusions

An objective of the work presented here was to ex-
plore the sensitivity of the conclusions from the ARMA
analysis of DSLP presented by TH to (a) model form
and (b) likely nonstationarities. The rarity of the 1990–
95 event in their analysis led TH to argue for anthro-
pogenic effects rather than natural decadal-scale vari-
ability. One could argue that the low-frequency vari-
ability is adequately captured by their ARMA model
since the variance spectrum of the data is adequately
reproduced by the fitted model. However, second mo-
ment properties (the spectrum) and linear dynamics (the
ARMA structure) need not constitute a necessary and
sufficient description of a stochastic process.
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The nonparametric methods used here permit such
sensitivity analyses while retaining the general Mar-
kovian constructs inherent in ARMA modeling. Models
of lags 0, 1, and 2 were used. The state variable used
in the models is directly the indicator of the state of
interest (PA or NA), rather than a surrogate (DSLP)
from which runs of this variable are inferred as with
the ARMA model. Nonstationarity is directly focused
on. One observes that there is considerable sensitivity
to assumptions regarding model form, to the segment
of the record used, and to explicit consideration of non-
stationarity in modeling the process. In the analyses
reported here, the return periods are considerably small-
er than those obtained using the ARMA analysis. In-
deed, the average return period of 350 yr from the non-
homogeneous MC suggests that the 1990–95 event
could occur in a 114-yr record with a probability of
0.28, not a very rare event at all. The spectral analysis
of BDSLP suggests spectral power at interannual
(around a 4-yr band) and interdecadal (around 17 yr)
frequencies.

This paper also illustrates the point that given a lim-
ited record of 100 yr of serially correlated data, esti-
mates of the return period of extreme runs of data are
likely to be subject to a very high degree of variability
and sensitivity to model assumptions. Also, the time
series is too short to determine the true return time of
a 5-yr 1990–95 event, and a return period of 350 yr is
just as likely (and defendable) as TH’s estimate of 8850
yr because these differences in return period can result
from subtle (and equally defensible) differences in the
models that are used to fit the existing data.

In summary, we would like to argue that conclusions
as to anthropogenic factors as the cause of the 1990–
95 event may be somewhat premature, in the absence
of any direct statistical or mechanistic results that relate
it to the historical evolution of greenhouse gases. At the
same time, the likelihood of such factors being respon-
sible cannot be ruled out. It may be useful to consider
effects of anthropogenic factors as juxtaposed on natural
decadal-scale variability rather than viewing them as
mutually exclusive causes of the observed variability.
Thus, we cannot rule out the possibility that green house
warming made the recent persistence event more likely,
even though the variability in the 100-yr period appears
to provide an adequate explanation for the increase in
the recent frequency of PA events.
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