2288

JOURNAL OF PHYSICAL OCEANOGRAPHY

An Adaptive Procedure for Tuning a Sea Surface Temperature Model™*

NATHALIE SENNECHAEL AND CLAUDE FRANKIGNOUL

Laboratoire d'Océanographic Dynamique et de Climatologie, Université Pierre et Marie Curie, Paris, France

MARK A. CANE
Lamont-Doherty Earth Observatory, Palisades, New York
(Manuscript received 3 November 1993, in final form 23 February 1994)

ABSTRACT

To determine the value of the adjustable parameters of an ocean model required to optimally fit the observations,
an adaptive inverse method is developed and applied to a sea surface temperature (SST) model of the tropical
Atlantic. The best-fit calculation is performed by minimizing a misfit between observed and simulated data,
which depends on the observational and the modeling errors. An adaptive procedure is designed in which the
model being tuned is also used to construct a model of the observational errors. This is done by performing the
optimization on the mean seasonal cycle and using the SST anomalies obtained for different years and plausible
forcing fields as additional information to construct a sample estimate of the observational error covariance
matrix. Assuming idealized modeling errors, the procedure is applied to the SST model of Blumenthal and
Cane, yielding refined estimates for several models and heat flux parameters. The simulation of the mean annual
SST is improved, but not the simulation of seasonal and interannual variability. The model-observation dis-
crepancies remain too large 10 be solely attributed to atmospheric and oceanic data uncertainties and are linked
to the model’s rudimentary geometry and its incorrect representation of SST cooling by upwelling. The existence
of larger model deficicncies than was originally assumed in the model errors is confirmed by a statistical test of
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the correctness of the assumptions in the inverse calculation.

1. Introduction

All oceanic models contain parameterizations of
such physical processes as convection, near-surface
mixing, and horizontal mixing due to subgrid-scale
motions. Parameterizations are based on physical ideas
but typically yield forms that contain parameters whose
values are not known precisely from theory. When a
parameter is model dependent (e.g., mixing is a func-
tion of grid spacing), parameter tuning will be in part
model dependent. Surface forcing also depends on
poorly known parameters. Even in data-rich regions
where random measurement and sampling errors are
small, the fluxes are poorly known because of system-
atic data biases and bulk formulation uncertainties.
Modeling these quantities may be considered part of
the problem of creating an oceanic model (Seager et
al. 1988). In view of their inherent imprecision, the
uncertain parameters should be tuned against observed
data. At the same time, models should be consistent
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with known physics to within the tolerances allowed
by the approximations made.

Particularly in the tropics where observations are
sparse, both forcing and verification data are impre-
cisely known. Hence, the accuracy to be expected in
model simulations is limited, even if the physics is per-
fectly represented, and data uncertainties should be
taken into account in parameter tuning. Frankignoul
et al. (1989) developed a multivariate model testing
procedure that provides an objective measure of the
fit between ocean model simulations and observations,
taking into account the data uncertainties. Using a trial
and error approach, the method can be used for model
tuning. This is illustrated by Duchéne and Frankignoul
(1991) and Braconnot and Frankignoul (1993), who
determined the vertical resolution of the linear model
of Cane (1984), which provided an optimal fit to ob-
servations of surface currents and thermocline depth
in the tropical Atlantic. However, this approach re-
quires that the number of adjustable parameters be
small.

A more efficient tuning approach is that of Blumen-
thal and Cane (1989), who used inverse modeling pro-
cedures to determine the parameter values required to
optimally fit sea surface temperature (SST) in a sim-
plified SST model. A priori knowledge constraining
the parameter range was included in the calculation,
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but only a highly idealized model was used for the data
errors. The error model enters the measure of the misfit
between observed and predicted data which is mini-
mized in the best-fit calculation. Thus, the atmospheric
forcing uncertainties need to be properly represented,
as they introduce large uncertainties in SST model re-
sponse {e.g., Harrison et al. 1990).

As the forcing uncertainties have large and poorly
known correlation scales, the error estimates are best
derived from direct simulations. We have thus devel-
oped an adaptive tuning procedure, where the model
that is being tuned is also used to construct the obser-
vational error model for the best-fit calculation. The
tuned model is then tested against observations and if
it agrees with the data to within expected errors, it will
be judged adequate. Such an adaptive technique com-
bines the model tuning of Blumenthal and Cane ( 1989)
and the model testing of Frankignoul et al. (1989).
Although the procedure is developed in the context of
the simplified SST model of Blumenthal and Cane
(1989), it is general as long as the parameter depen-
dence is linear, and is readily applicable to more com-
plex models. The adaptive procedure requires little
computation and programming, and is much simpler
to implement than the adjoint method. However, since
the effective degree of freedom of the error estimates
is limited by the length of the sample, the number of
parameters that can be tuned is limited.

The paper is organized as follows. In section 2, the
physical model is presented and applied to a simulation
of the tropical Atlantic SST from 1965 .to 1986; the
mean seasonal cycle is then validated using a multi-
variate approach. Section 3 presents the adaptive tuning
procedure in a general way applicable to models with
a linear parameter dependence. Several technical issues
are addressed: construction of the error models, design
of a data adaptive inverse technique, statistical uncer-
tainties in parameter estimation, and model testing. In
section 4, the adaptive procedure is applied to improve
the SST model. The performance of the tuned model
is discussed in section 5.

2. Modeling sea surface temperature variations
a. Ocean model and surface heat flux

The ocean model is that of Blumenthal and Cane
(1989, hereafter BC) and has three major parts: a wind-
driven model for velocity and pressure fields (Cane
1984), an advective/diffusive SST equation (Zebiak
and Cane 1987), and a parameterization for surface
heat fluxes (Seager et al. 1988, henceforth SZC). The
dynamical variables are predicted with a linear, mul-
timode equatorial beta-plane model with a surface
mixed layer of constant depth 2 = 35 m, which adds
a direct Ekman flow to the modal currents. The model
has five vertical modes that are characteristic of mean
tropical Atlantic conditions and have gravity wave
speed of 2.36, 1.38, 0.89, 0.69, and 0.53 m s™!, re-
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spectively. The model basin extends from 30°N to 20°S
and has a simplified geometry; its resolution is 1° in
longitude and 0.5° in latitude and the time step is one
week. The equations are solved in the longwave ap-
proximation, making the model inappropriate for sim-
ulation of currents near the western boundary. In the
following, we only consider the domain in Fig. 1, which
should not be affected by the model’s artificial bound-
aries.

The SST is determined from a nonlinear advective
equation. The temperature is assumed to be uniform
in the mixed layer, and determined from the net bal-
ance of horizontal advection, upwelling, horizontal dif-
fusion, and surface heat exchanges:

&T + ud T + vd,T + yw(T — Ta)/ h

= k(Oxx + 8,,)T + Q/pCph, (1)
where w is the vertical velocity at the mixed layer base
in the case of entrainment, and zero otherwise; T is
the temperature below the mixed layer, « a horizontal
diffusion coefhicient; and Q the surface heat flux into
the mixed layer, positive downward. Note that the up-
welling term is usually written as w(T — T,), where
T. is the temperature of the water entrained into the
mixed layer, but the two forms are equivalent if
T.=(1 =v)T+ T, (2)
The “entrainment efficiency” v is an adjustable pa-
rameter that should be less than unity, as T, is some-
where between T and 7. As in SZC and BC, the pa-
rameterization of 7; is done in two parts: first the ob-
served temperature at the mixed layer base is fit to the
depth of the 20°C isotherm in the equatorial zone using
the Levitus (1982) data, then the 20°C isotherm depth
is fit to the model prediction of the thermocline depth
(the latter fit is sensitive to the wind stress and has been
adapted to each of the wind stress products below).
During the course of this study, it was noticed that this
simple parameterization could lead to temperature in-
versions, hence to a mixed layer warming by upwelling.
Thus, the upwelling flux is set to zero when T, is larger
than 7', which slightly improves the model perfor-
mances (cf. the results reported in Frankignoul et al.
1993). Note that Zebiak and Cane (1987) and Cane
et al. (1986) use a simpler parameterization of 7.
The surface heat flux parameterization is that of
SZC, which was designed to avoid using either the
(poorly measured) air-sea temperature differences
found in the bulk formulas or the artificial feedback
to a prescribed climatological air temperature often
imposed in ocean simulations. This parameterization
solely includes effects that are externally imposed on
the SST: the only measured variables used are wind
speed v¢ and fractional cloud cover C. The air tem-
perature, to a large extent, is fixed by the SST and so
has been eliminated. The heat flux is written as
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F1G. 1. (2) Mean SST (in °C) during January, April, July, and October as predicted by the multimode model using the a priori values
of the parameters for the period 1965-1986. (b) Corresponding SST as derived from the observations by Servain et al. (1985). (¢) Differences

between simulations and observations.

Q =094 Qy(1 — aC + a,x)

= pCelvayg(T) — ar(T = T;).  (3)

The first term is the usual shortwave radiation formula,
where Qp is the clear sky solar flux reduced at the sur-
face by the effects of a constant surface albedo (0.06)
and by the absorption and reflection of the atmosphere,
which depends on cloud amount C and solar angle .
The second term represents the latent heat flux, com-
puted from the standard bulk formula using a fixed
percentage a,, of the saturation humidity ¢,(T') as the
evaporation potential g,(7) — gs( T, ); this assumes
that the. moisture content of the air has equilibrated
with the ocean temperature, which is a reasonable as-
sumption sufficiently far from the coasts. To compen-
sate for the loss of variability in using monthly winds,
the wind velocity v®is not allowed to fall below 4 m s ™.
The smaller sensible heat flux and back radiation are
simply modeled together in the last term as being pro-

portional to 7" minus a constant reference temperature
T,. This formulation gives reasonable results in the
tropics (SZC) but should not be used in midlatitudes
(Liu and Niiler 1990).

In the SST equation and the heat flux formulation,
there are a number of parameters not precisely
known, but which were assigned a “reasonable’ value
by SZC. Here we assume that seven parameters are
adjustable within reasonable ranges: the entrainment
efficiency v, the horizontal diffusion k, and the heat
flux parameters a,, d., a4, ar, and arT,in (3), which
we represent below by the seven-dimensional vector
a. The a priori values of the tunable parameters, de-
noted by a,, are those of SZC for the tropical Pacific,
namely v = 0.5, k = 2 108 m?s™!, a. = 0.62, a,
= 0.0019, a,, = 0.3, ar = 1.5 Wm™2 K™, and T,
= 273.15 K. The drag coefficient for the wind stress
is not allowed to vary as in BC, since its uncertainty
is simulated explicitly. ’



NOVEMBER 1994

b. Simulation of the tropical Atlantic SST
climatology

After spinup, the model is forced by a monthly wind
stress derived from ship reports for the period 1964-
1986. As described in Frankignoul et al. (1989, hence-
forth FDC), the wind stress was constructed by inter-
polating and smoothing monthly averaged fields of
pseudo wind stress provided on a 2° X 5° grid by J.
Servain. To simulate the drag coefficient uncertainty,
we follow the Monte Carlo approach of Braconnot and
Frankignoul (1993) and use five different, equally
plausible drag coefhicients in the bulk formula. They
are calculated by prescribing a relative humidity of 80%
and using either a constant air-sea temperature differ-
ence of —1°C (as in FDC), or a climatological monthly
air-sea temperature difference derived from the
COADS data [ for the parameterizations of Large and
Pond (1981), Liu et al. (1979), Smith (1988), and
Isemer and Hasse (1987)]. To avoid smoothing, the
monthly mean wind stresses were corrected to insure
that linear interpolation on the model time step would
not alter the original means (Duchéne 1989). Cloud-
iness data are of poorer quality, so that cloud cover is
prescribed from the monthly climatology of Esbensen
and Kushnir (1981), with an added normal noise of
0.1 standard deviation to crudely simulate its short
space-time scale variability.

Ignoring the first year to eliminate the effects of the
unknown initial conditions, we have 5 X 22 simulations
of the SST annual cycle whose dispersion is represen-
tative of both the interannual variability and the drag
coefficient uncertainty. The mean cycle of simulated
SST is warmer than the observations, as illustrated in
Fig. 1 for January, April, July, and October by a com-
parison with the mean SST over the same period cal-
culated from the data of Servain et al. (1985).

The differences between the SST predictions and the
observations are due to (i) errors in the atmospheric
data (wind stress, cloud) and the SST observations;
(ii) model shortcomings due to oversimplification of
the physics; and (iii) poor choice of the model param-
eters. To assess the validity of the SST model, we must
take (i) into account and minimize (iii) by an optimal
tuning; remaining discrepancies should then point to
the model deficiencies (ii).

Root-mean-square SST differences between the
mean model response and observations on the 2°
X 2° grid of the latter are given in Table 1 (left col-
umn), where we distinguish between annual mean,
mean seasonal variations around the annual mean
(hereafter the mean seasonal variability), and SST
anomalies. The model-observation differences are large
for the long-term mean, which is strongly affected by
a 3.9°C mean bias. The mean seasonal variability seems
better reproduced, with differences (rms 0.7°C) small
compared to the amplitude of the observed signal (rms
1.3°C). On the other hand, the SST anomaly differ-
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TABLE 1. Rms difference (in °C) between detrended observed and
modeled (averaged response) SST for the yearly mean, the mean
seasonal variability, and SST anomalies for various model versions
in the 10°S-20°N region. The annual mean difference and the
correlation between detrended observed and simulated monthly
anomalies during 1965-1986 are given in italic.

Before After After tuning
(SSTmoa — SSTews) tuning tuning (BC)
Annual mean 4.0 1.4 1.0
(mean bias) (3.9) (1.1) (0.5)
Seasonal variability 0.69 0.75 0.74
Anomalies 0.67 0.65 0.64
(anomaly correlation) (0.26) (0.23) (0.26)

ences (after removing a linear trend to reduce the in-
fluence of artificial trends in the wind measurements—
e.g., Cardone et al. 1990) are comparable (rms 0.7°C)
to the observed anomalies (rms 0.5°C), with no sig-
nificant correlation between observations and simu-
lations, except north of 10°N (Fig. 2, top). These results
underestimate the model skill, however, as they do not
take data errors into account. For instance, the forcing
uncertainties alone create an rms SST anomaly un-
certainty of 0.5°C. Furthermore, the SST data of Ser-
vain et al. (1985), solely based on ship observations
transmitted in real time, are noisy; the rms differences
with the SST anomalies in the more elaborate but
smoother SST product of Reynolds (1988 ), which also
uses satellite data, are more than 0.3°C for the 1979-
1988 period. This, however, is not sufficient to explain
the poor model performance.

A more quantitative estimation of the model per-
formances taking into account some of the uncertain-
ties in the oceanic observations and the atmospheric
forcing, as well as their space-time correlations, has
been made for the mean seasonal cycle. Following the
multivariate approach of FDC, we calculate the misfit
(signal-to-noise ratio)

T? = ((T) - T,)'D'(T) — To), (4)

where { T') and T, describe the mean seasonal cycle of
modeled and observed SST, respectively, the vector
space including all grid points (on the observational
grid) and the 12 months. The overbar denotes the 22-
year mean and angle brackets the average over the five
22-year runs; the prime indicates vector transpose, and
D is the error covariance matrix of ((T) — T,).

To estimate D, we use the five 22-year samples. A
first contribution to D arises from the uncertainties in
the mean seasonal variations that are due to interan-
nual variability and nonsystematic observational errors
of SST, wind, and cloud cover, which affect randomly
each realization of the observed and modeled seasonal
cycles. Assuming for simplicity that each year, denoted
by the superscript ¢, is statistically independent, which
is acceptable for the tropical Atlantic, these uncertain-
ties are estimated by
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FI1G. 2. Correlation coefficient between detrended observed and modeled SST anomalies
over the 1965-1986 period for the initial (top) and the tuned (bottom) model. The 5%

significance level is approximately 0.3.

1 z t t TN T
mz [T) = T5) = ({T) — T,)]

X[((TY =Ty = ({Ty = T,)I" (5)
with 21 degrees of freedom. Another contribution to

D represents the drag coefficient uncertainty and is es-
timated by :

5 |
D, = 7z T (T' = (TN = (T)  (6)
i=1

with 4 degrees of freedom if we assume that the re-
sponses to the different forcing, denoted by the super-
script i, are statistically independent. Since the two
sources of errors are independent, D = D, + D,, with
approximate degrees of freedom v (for instance, v
=~ 24 in the case of the seasonal variations below).
Not represented in D are systematic observational er-
rors (e.g., incorrect Beaufort scale, SST biases), lack
of high-frequency variability, and limited resolution of
the wind stress curl.

Since the dimension of the SST field is much larger
than the degrees of freedom of D, the misfit (4) is cal-
culated in a truncated space that is sufficiently small
to calculate D reliably while representing the main
space-time patterns of (<T> — T,). As described in
appendix A, the annual mean is appraised in a one-
dimensional space and the mean seasonal variability
in a 12-dimensional space. '

If the SST fields are multinormal, the null hypothesis
that the model response to the true forcing is equal to
the true SST (no model errors) can be tested as the
test statistic (4) is then Hotelling’s single-sample T2
statistic with dimension p (the dimension of the space)
and approximate degrees of freedom v. Its distribution
is related to the F-distribution with pand » + 1 — p
degrees of freedom by 7% = vp/(v + 1 — p) F (eg.,
see Morrison 1976). The results, given in Table 2 (left),
show that 7 is much larger than the critical value at
the 5% level (right) and the null hypothesis rejected.
They confirm that the model performances are rather
poor. Although systematic observational errors in SST, -



NOVEMBER 1994

TABLE 2. Misfit between model and observations for the yearly
mean (7-value) and the mean seasonal variability in the 20°N-10°S
region, before and after tuning. The tuning is done in the 10°S-20°N
region. The critical values for rejecting the null hypothesis of no
model error are also given.

After Critical
Before After tuning value
Misfit tuning tuning (BC) (5% level)
Long-term annual
mean 15.2 7.4 7.0 2
Seasonal variability 1751 1636 1666 35

cloud cover, and wind stress have not been considered
in the test, the data uncertainties are likely to be in-
sufficient to explain the model-observation discrep-
ancies, which must be mainly attributed to model
shortcomings and poor parameter tuning.

3. An adaptive procedure for model tuning
a. Linear model corrections

To see how the tunable parameters enter the cal-
culation of the SST in the numerical model, it is con-
venient to write Eq. (1) in matrix form

L(T) + M(T)a, = 0, (7)

where the vector T represents temperature at all the
points in space and time where a model solution has
been obtained, a, = (v, «, @, Ga, Gm, ar, arT,) is the
vector of a priori parameter values, M(T) and L(T)
are linear operators determined at all space/time points
by retaining the terms of the model equations (1) and
(3) that are and are not affected by parameter changes,
respectively. Specifically, the ith row of L(T ) includes
the contribution at space/time point i from

8T + ud T + v3,T — 0.94Q,,

while the ith row of M(T ) correspondingly represents
the transpose of the terms

"~ W(T—T)/h ]
_(axx + ayy) T
0.940,C
~0.94Qpcx
—pCeLv?q(T)
T
-1

Both L and M depend on the atmospheric forcing,
which is imperfectly known, so even if the model was
perfect and the uncertain parameters optimally chosen,
the model predictions would differ from the observa-
tions.

Since SST is a relatively well-measured variable, we
follow BC and estimate the “corrective heat flux” éq
that, for the a priori values of the uncertain model
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parameters, would be needed to make the model SST
match the observed SST exactly. To do so, we run the
model again, using the observed SST, denoted by T,
instead of the calculated one, after interpolation on the
model grid. Equation (7) is then only satisfied by add-
ing a “‘heat flux correction” éq:

L(T,) + M(T,)a, + 6q = 0. (8)

As expected from the limited SST agreement, the heat
flux correction is rather large, showing that additional
cooling would be needed for realistic simulations
(Fig. 3a).

Since 6q depends linearly on the tunable model pa-
rameters, the estimation of their optimal value can be
formulated as an inverse problem

éq = M(T,)éa, (9)

where éa = (8, 0Ok, . .., dayT,) represents the param-
eter changes that minimize the heat flux correction dq,
yielding

(0Q)min = 0q — M(T,)0a. (10)

A good estimator of the parameter correction éa must
take errors into account, as well as our knowledge of
the expected parameter range.

There are many sources of errors in the estimates
appearing in (9). The wind stress and cloud data used
to force the model haveé significant errors, resulting in
model response uncertainties with large correlation
scales, particularly in the equatorial waveguide. The
observed SST is noisy as well, although to a lesser ex-
tent. When the best-fit calculation is based on a mean
seasonal cycle as in this paper, there are also sampling
errors that reflect the interannual variability and have
large correlation scales. Finally, there are “irreducible”
modeling errors inherent in the ocean model formu-
lation, for example, errors due to subgrid-scale phe-
nomena, or to the oversimplification of the ocean dy-
namics and the air-sea fluxes. These cannot be ex-
pected to be reduced by model tuning. The modeling
errors (called system errors in the Kalman filter liter-
ature) thus represent the errors that would exist if there
were no observational errors and the uncertain param-
eters were at their true value.

Tarantola (1987 ) discusses the general inverse prob-
lem in the case of an inaccurate theory, using a Bayesian
viewpoint. When the forward problem is linear as in
(8) and there are Gaussian modeling errors in M, de-
scribed by the covariance Cr, the solution of the inverse
problem takes a simple form if the observational errors
in 6q are Gaussian and statistically independent of the
modeling errors. If the a priori value of the parameter
correction éa is zero, as in the present case, the optimal
solution is given by the minimum of the misfit function

S(6a)=[(Mda— dq)'C~!(Mda — 6q) + 6a’C;'a]/2
(11)
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with C = C; + C,, where C, is the error covariance
matrix of the observations dq, and the covariance ma-
trix C, describes the a priori uncertainty of éa. The
solution is

sa=(M'C'M+C;")"'M'C'4q. (12)

Blumenthal and Cane followed this formalism, assum- -
ing for simplicity that the observational noise only af-
fected the model matrix M, and the modeling error
only the heat flux correction éq. On the basis of order
of magnitude estimates, they used constant rms errors
of 10 and 35 W m~2 with a simple exponential decay
for the modeling and total error, respectively.

There are a number of simplifications in BC’s ap-
proach: 1) As shown by (8), both éq and M depend
on the input data (e.g., the surface wind stress affects

both the heat exchanges and the ocean dynamics),
hence they are both affected by the data uncertainties
and the modeling errors. The errors in éq and M are
thus not statistically independent, and the model matrix
really is a stochastic regression matrix. Unfortunately,
ordinary and generalized least-squares estimators are
in general not consistent in this case of nonlinear cou-
pling between model and data errors (e.g., Mardia et
al. 1979; Judge et al. 1988). Alternative estimating
procedures that will give consistent estimators have
been used in econometrics but they are not general
and are hard to apply to the present problem. 2) The
error models used by BC are highly idealized and could
be improved. Since the results of the tuning are sensitive
to the assumed error models, we adopt a more elaborate
* strategy to achieve a refined estimate.
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b. The adaptive procedure

The correlation scales of the model response errors
due to forcing and SST uncertainties are large and
complex, hence difficult to represent a priori. However,
they can be estimated by performing the optimization
on the mean seasonal cycle, which is least noisy, and
using the dispersion of the model seasonal responses
as independent information to construct a more real-
istic model for the observational errors.

Assuming that the parameters do not vary in time,
we can write for each year ¢ (here ¢ = 1, 22) and for
each forcing i (here i = 1, 5), denoted by the upper
index, that the linear model (9) holds

LE(TS) + ME(Th)a, + 8¢ = 0. (13)

Denoting long-term sample means by an overbar and
the mean over the different forcing by an angle brace,
we write relation (8) under the form

(E(T,)) + (M(T,) Ya, + (3¢) = 0.  (14)

The errorsin (13) and ( 14) are due to forcing and SST
uncertainties, and to mode! inadequacies. Since the
nonsystematic errors associated with data uncertainties
should decrease with averaging, they will be smaller in
(14) than in (13). On the other hand, the systematic
errors, primarily due to model deficiencies, should re-
main practically unchanged.

Let us write the parameter estimation as the linear
statistical model

(8g) = (M)da + (&), (15)

where (&) represents the random errors, assumed to
be Gaussian, with zero mean and unknown true co-
variance matrix C. Because of the statistical dependence
between (5q) and (M), an estimate of a is required
before one may estimate the random errors from the
sample. Thus, an adaptive approach is used, where the
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estimates of the observational error covariance and the
model parameters are updated as part of an iterative
procedure. If we have a first estimate of da, say dao,
which we will take equal to zero, then we can estimate
for each year ¢ the mean error over the different forcing,

(ei), by
{ef) = {0q") — (M) éao. (16)
A first sample estimate of the error covariance matrix

associated with the random wind, cloud, and SST errors
is

S, = 21 22 Z (<el> <e,>)(<e > <el>) >
(17)

where we have assumed for simplicity that observations
are independent at yearly intervals. We can also esti-
mate for each forcing i the long-term mean error, e,
by

el =6q' — M'éa (18)

and a first sample estimate of the error covariance ma-

trix associated with the drag coefficient uncertainties .

is

1 3 — =
425 > (ef —{&))(el —(er)). (19)
i=1
A first estimate of the error covariance associated with
the observational uncertainties, say S,;, can then be
obtained by

_sol =S, + Sfl

and it can be used to compute an estimated generalized
least-squares estimate of da, say éa,. As in (12), we
incorporate the modeling errors and our a priori
knowledge on the model parameters;

oa, = (M’ST'M + C;)M’'S '4q, (20)

with
Sl = Sol + CT. . (21)

The procedure is repeated by using da, in (16) to get
an improved estimate S,, leading to the parameter
correction éa,, and so on. If the initial estimate éag
represents a reasonable first guess and the inverses in
(20) are well conditioned, the procedure should con-
verge rapidly. The end result is a data error structure
consistent with the multiyear model run, and thus pre-
sumably a better parameter estimation.

The error model S, represents most of the nonsys-
tematic data and model errors; it also includes such
data errors as artificial trends in wind and SST data.
The true interannual variability is not treated as an
error since it appears in both éq‘ and M’ in (16). The
weighting in the least-squares fit is therefore based on
data noise and uncertainties and it takes into account,
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at least approximately, the lack of independence be-
tween M and 6q. On the other hand, the weighting is
not affected by the systematic errors that recur every
year. Model deficiencies or systematic data biases must
be dealt with explicitly.

Because of the limited sample, the error covariance
‘matrix S, is of strongly reduced rank and the inverse
of 8§, dominated by unreliable information. Hence, the
problem is ill conditioned. To circumvent the difficulty,
we reduce the dimension of the fields and tune the
model in a highly truncated space, using furthermore
a singular value decomposition to perform some of the
matrix inversions. The construction of the reduced base
is more difficult than in FDC as both_the heat flux
correction {dq(x, ¢)) and the model (M(x, 7)) must
be properly represented. There are several ways to de-
fine the basis vectors of the truncated space, and we
found them to yield rather similar results as long as
the problem remains well conditioned. Also, we verified
(on a small domain) that tuning in reduced space is
very similar, but not identical, to tuning in gridpoint
space.

The iterative method is implemented in reduced
space: for each forcing, each individual year is projected
onto the reduced base, thereby defining a reduced heat
flux correction and a reduced model matrix. By pro-
jection, a reduced modeling error matrix is also con-
structed. The sample error covariance matrix associated
with the observational uncertainties and the optimal
parameter corrections are then directly calculated in
reduced space, so that the computational costs are very
limited.

As discussed in Tarantola (1987), the probable er-
rors in the parameter estimates are described by the a
posteriori covariance operator

C,=(M'S;'M+C;H)y. (22)

The diagonal terms give the variance of the a posteriori
parameters, and the off-diagonal terms their covari-
ances. The correlation matrix shows whether the pos-
terior uncertainties are uncorrelated. A small correla-
tion indicates that two parameters have been resolved
independently by the dataset; a large one that only some
linear combination of the parameters is resolved. A
resolution operator given by

R=1-C,Ca! (23)

can also be calculated; it shows the relative contribu-
tions of the dataset and the a priori information in
resolving the parameters.

¢. Model testing

For simplicity, BC based their assessment of model
validity on the sole basis of visual comparisons: if the
residual errors were of the order of the a priori ones
(35 W m™2, as mentioned before), the SST model was
judged to be valid; if that figure was exceeded, it was
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concluded that the SST model had larger errors than
assumed. Such “univariate” approach ignores useful
information on correlation scales; if the residuals had
large space /time patterns, they would not be consistent
with the error models assumed by BC and the SST
model might not be acceptable, even though it would
appear so in univariate tests.

To take the multidimensional aspects of the fields
into account, we generalize a multivariate test derived
by Tarantola (1987). For true error covariance matrix
C, the minimum of the misfit function (11) is given
by

S(sa) = 6q'(MC,M’ + C)~'5q (24)

and it should have a x? distribution with degrees of
freedom 7 given by the dimension of the reduced data
space (because the rank of the operator M equals the
dimension of the parameter space). Hence, (24) can
be compared to the critical X2 values at a given level
of significance. If it is too large, then some of the as-
sumptions are unlikely to be acceptable.

The test is generalized to our model-tuning proce-
dure by replacing the true error covariance C in (24)
by the sample estimate S, = S, + C+. The null hy-
pothesis that the only errors besides the observational
ones are the modeling errors can be tested since the
test statistic (24) is then distributed as Hotelling’s 7
with degrees of freedom # (the reduced dimension)
and 7 (the equivalent degrees of freedom of S,). If
(24) exceeds the critical value, the errors are under-
estimated. The most likely interpretation is that the
modeling errors have been underestimated, since, ex-
cept for possible biases, the observational uncertainties
are represented by an error model which is, by con-
struction, consistent with the available observations.
This is a statistical model-testing procedure analogous
to that of FDC, but more general, as model tuning is
included in the test. By separating model testing and
tuning, FDC ignored the possible influence of model
tuning on the statistics, which can be an oversimpli-
fication.

Since the multivariate character of the fields is rep-
resented in our method, we expect the test to be more
stringent than the comparison done by BC. Model flaws
should thus be more apparent, opening the way to fur-
ther model improvement.

4. Tuning the tropical Atlantic SST model
a. Results of the adaptive procedure

The monthly values of 8q*' and M*' are first spatially
smoothed with a 5° X 5° running average. The fit is
then done in the region between 10°S and 20°N by
consicering January, April, July, and October, which
are representative of the various SST regimes. The data
dimension pis 322 (number of grid points) X 4 (num-
ber of months) = 1288. _

The mean heat flux correction {éq) is represented
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in Fig. 3a. The rms value is large (70 W m~2), and
negative values in excess of —100 W m™2 are found off
Africa and in the Gulf of Guinea, mostly where the
largest SST differences are observed, although there is
no one-to-one correspondence between the two fields.
The tuning can be viewed as determining the best fit
of the mean heat flux correction vector in Fig, 3a by
the seven column vectors of (M(T,) >, which are rep-
resented in Figs. 3b-f, taking their errors into account.
To facilitate the interpretation, the amplitudes of the
latter are given in W m™2 by using the results of the
inverse calculation [i.e., each structure has been mul-
tiplied by (a, + da,)]. The “upwelling pattern” (Fig.
3b) has a large signal in the Gulf of Guinea peaking
near 2°S, 0°, with maximum amplitude during the
upwelling season in July; a smaller signal is also seen
in the ITCZ with maximum amplitude off Africa, ex-
cept in April where the peak is near 22°W. As the
observed SST fields of Servain et al. (1985) are rela-
tively smooth (see Fig. 1b), the meridional scale of the
“diffusion pattern” (Fig. 3c) is only slightly smaller
than that of upwelling, with maximum amplitude off
the African coast and, in July, along the equator. The
“cloud pattern” (Fig. 3d) has broader scales and larger
amplitudes, and its seasonal changes reflect those of
(o and C. The “evaporation pattern” (Fig. 3f) has
equally large amplitudes, a large meridional scale, and
strong zonal gradients. Additional patterns are the “in-
solation pattern” (Fig. 3e), a constant, and the observed
SST pattern, with small amplitudes.

The data compression is done by working in the
space defined by orthonormalizing the eight vectors
consisting of {éq) and the seven column vectors of
(M. As the dimension 7 of the subspace is the number
of adjustable parameters plus one (8 in the present
case), the inverse problem remains formally overde-
termined. As described in section 3, 6q” and M"’ are
projected onto the reduced base for each year ¢, and
the sample error covariance matrix S, directly esti-
mated in reduced space at each iteration ». Since S,
has limited degrees of freedom, its elements are inac-
curately known (large sampling errors) and the con-
dition number of the matrix is very large. Lacking pre-
cise information on the modeling errors, we use BC’s
model (Gaussian noise with short correlation scales),
but double the rms error to 20 W m™2, which seems
more appropriate to the simplicity of the SST and heat
flux models. This modeling error matrix is not sufficient
to insure good conditioning, so a singular value de-
composition is used to invert S, in (20). In practice,
we apply a taper to the error covariance matrices (17)
and (19), which is an estimate of the sampling uncer-
tainty of their elements (taken to be the trace divided
by the matrix dimension) derived from the X ? distri-
bution. As the other inverses in the calculation are well
conditioned, the results are not too sensitive to the ta-
pering.
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For simplicity, we use zero for the initial parameter
correction, 6ap = 0, but the results are similar when
using a different initial value. Convergence is reached
in two or three iterations, with the largest changes oc-
curring after the first iteration. Figure 4 shows the a
priori and a posteriori values of the adjustable param-
eters with twice their standard deviation (an approxi-
mation to the 95% confidence interval). Two param-
eters undergo large changes and reach values largely
outside their expected range (Fig. 4): the upwelling
efficiency +v, which strongly decreases, and the hori-
zontal diffusion that remains positive, but not signifi-
cantly different from zero at the 5% level. Both param-
eters are well resolved by the dataset (Table 3) and
independently resolved (uncorrelated ), so their changes
- provide useful information on the model physics. The
reason for the large changes is apparent in the flux
patterns. In the upwelling zone off Africa, the model
is too warm and cooling is needed in the first part of
the year (Fig. 3a), but horizontal mixing heats the off-
shore waters (Fig. 3c) and it thus tends to be decreased
by the fit. At the same time, cooling by upwelling takes
place too far south and offshore to provide the required
cooling, particularly in April. In the Gulf of Guinea,
horizontal mixing is strong in July but again out of
phase with the heat flux correction, while the upwelling
flux is alternatively in (January, April, July) and out
(October) of phase, and too far east at its maximum
in July, so it also tends to be reduced. The fit in the
two upwelling regions thus inhibits the upwelling-in-
duced SST cooling, as shown by the small magnitude
of the upwelling flux in Fig. 3b. Note that horizontal
diffusion is a coarse parameterization that represents
a variety of local phenomena (including the Reynolds’
heat flux during the instability wave season), so that
its small tuned value remains acceptable, while the
strong decrease in upwelling efficiency is more puzzling.
Although the changes in the cloud factor a. and the
latent heat flux a,, are also well resolved by the dataset,
they are not statistically significant at the 5% level,
which suggests that the a priori choices were good,
needing only little adjustment. Moreover, these changes
are difficult to interpret as the two parameters are not
independently resolved and are anticorrelated, and
correlated with the three remaining parameters, a,, ar
and ar7,. The latter are poorly resolved by the dataset,
and their changes are small (significant for a;T,). The
total number of parameters resolved by the dataset,
given by the trace of the resolution matrix, is 4, while
3 remain determined by the a priori choice. Of interest
is that the trace of S,, decreases by 22% during the
iterations, so that the interannual variance of the heat
flux correction is reduced by the optimization, sug-
gesting indeed some model improvement.

Figure 5a shows the heat flux correction (10) after
tuning. The amplitudes are smaller than in Fig. 3a: the
rms value has dropped from 70 to 32 W m™ and the
space-time average to —8 W m™2 (Table 4), suggesting
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that the warm SST bias seen in Fig. 1a should be some-
what corrected, but that the tuning may be unable to
do more. Heat flux corrections larger than 100 W m™2
can still be seen off the North African coast during
winter and in the equatorial upwelling region during
summer, which seems much too large to be explainable
by the assumed modeling errors and the data uncer-
tainties. Blumenthal and Cane noted that the model
does not work well near the African coasts, in part
because the simplification of the coastal geometry limits
the accuracy of surface currents and coastal upwelling
and because the parameterization for the interior tem-
perature 7, is based on equatorial data; also, the pa-
rameterization of latent heat flux assumes that the air
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TABLE 3. Value of the adjustable parameters before and after tuning. Bold characters indicate parameters that change significantly at the

5% level. The resolution is derived from the

diagonal terms of the resolution operator (23).

Resolution by

Parameter
Observations A priori info

A priori value After tuning (%) (%)
Upwelling efficiency 0.5 0.2 62 38
Cloudiness 0.62 0.56 91 9
Latitude dependence 1.9 x 1073 1.3 X 1073 31 69
Latent heat flux 0.23 0.27 88 12
SST negative feedback 1.5 2.1 19 81
Constant flux 0 -16 8 92
Horizontal diffusion 2 X 108 0.3 X 108 85 15

temperature has equilibrated with the SST, which is
unlikely near the African coast. These model flaws seem
correctable, but the large heat flux correction in the
equatorial upwelling region is more perturbing since
the model was designed to simulate the equatorial
variability.

To verify the consistency of the inverse calculation,
we apply the statistical test of section 3¢c. Although the
critical value of the test statistic (24) is difficult to es-
tablish as the total error covariance is the sum of a
sample one and an (assumed to be) true one, upper
and lower bounds can easily be found. For true co-
variances, the critical value, given by the X2 distribution
with 8 degrees of freedom (the dimension of the re-
duced space), would be 16 at the 5% level (lower
bound). For sample covariance matrices, it would be
given by Hotelling’s 72 and equal to 32 (upper bound).
The test value is 336, which largely exceeds both critical
values. It must be concluded that the modeling errors
have been strongly underestimated. In particular, there
are large modeling biases, not only random modeling
errors as assumed.

Since the tuning minimizes the heat flux correction
(more precisely a weighted form of it), it is of interest
to verify whether the SST predictions have been im-
proved by the parameter changes. The tuned model
was thus run with the same forcing fields as before. As
expected, a more realistic SST field is obtained (Fig.
5b), although model-observation differences of a few
degrees can still be seen in the upwelling region off
Africa during the first part of the year and in the Gulf
of Guinea during the second part (Fig. 5¢). Table 1
(center) suggests that the model improvements are
limited to a strong decrease of the warm SST bias, even
though it still averages to 1.1°C. Although the mean
bias can be reduced further to 0.4°C by performing
the fit on the annual means only (not shown), it may
reflect the lack of statistical independence between dq
and M, which leads to biased estimators, as mentioned
above. The mean seasonal variability seems slightly
less realistic, and modeled and observed SST anomalies
rematn largely uncorrelated (the reduction in upwelling
efficiency has even increased the areas with negative

correlations, as seen in Fig. 2, bottom). The more ac-
curate multivariate statistical test (Table 2) confirms
the improved model ability at simulating the yearly
mean and shows that the model performances for the
mean seasonal variability have in fact been improved,
although not significantly. The multivariate test also
indicates that the SST model remains largely incon-
sistent with the observations: the tuning is unable to
compensate the model shortcomings.

The sensitivity of the tuning results to various factors
has been investigated. The dependence on the details
of the procedure (tapering, data reduction) is relatively
small, as long as the problem remains well conditioned.
When the fit is done on the annual mean or on a par-
ticular month only, the tuning results are similar (i.e.,
within the error bars), except for the upwelling effi-
ciency and, to a lesser extent, horizontal diffusion, al-
though a decrease is found in all cases. The decrease
in upwelling efficiency is particularly noteworthy, as
the values for the four individual months fail to bracket
that for the four months together (Fig. 6). Rather, the
decrease is a nearly linear function of the resolution by
the dataset. The upwelling flux is even nearly cancelled
when no a priori constraint is prescribed (but several
parameters then take unacceptable values). The ob-
servations are thus inconsistent with the predicted up-
welling flux and clearly stress the inadequacy of the
model representation of SST cooling by upwelling.

The consistency of the adaptive tuning procedure
has also been investigated, using a set of artificial data:
the “observed” SST was simply taken as the averaged
SST predicted by the tuned model when it was forced
by the five wind stress fields. The tuning was then per-
formed for various choices of the a priori parameters
a,, to evaluate how well the adaptive procedure would
recover the original parameters, and whether the results
depended on the a priori choices. As illustrated in Fig.
7, the true value of the parameters was in all well-re-
solved cases (including the upwelling efficiency) within
the error bars of the tuned values, and the latter were
insensitive to the a priori choice, except for the hori-
zontal diffusion «. The latter is well-resolved by the
dataset and (nearly) independently resolved, yet its es-
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timates are strongly constrained by the a priori choice,
which is puzzling. Nevertheless, the consistency of the
results is altogether satisfactory, in view of the nonlin-
earity of the inverse problem.

b. Adaptive tuning in the equatorial zone

Since the poor model performances off Africa are in
part linked to the inadequacy of the latent heating for-
mulation near the coasts and the use of equatorial data
to estimate T, even in off-equatorial areas (section
2a), a tuning only based on the equatorial zone (4°S-
4°N) was also performed. The results are similar, but
the horizontal diffusion only decreases to (0.8
+0.4)10® m? s! and the upwelling efficiency to 0.36.
However, the latter is then less resolved by the dataset
(48%), so it remains in line in Fig. 6: the upwelling

parameterization is not unambiguously better adapted
to the equatorial zone. The test (24) still largely exceeds
the critical values, although being smaller (158) than
for the larger domain. When the model was rerun with
the optimal parameters, the performances were similar
to the case above, even when considered over the
20°N-10°S region [ see Sennéchael-Scoffier (1994 ) for
details].

¢. Comparison with BC’s solution

For comparison, BC’s best-fit procedure was applied
to the average of the five simulations with different
bulk formulas, using our improved parameterization
of SST cooling by upwelling (section 2a). The tuning
is done in full space in the 20°N-10°S region, using
BC’s error models. The results differ from BC’s, how-
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TABLE 4. Rms value (in W m™2) of the corrective heat flux for the
yearly mean and the mean seasonal variability. The annual mean
difference is given in italic.

Rms of the corrective flux Before tuning After tuning
Long-term annual mean 63 17
(mean bias) (—61) (—8)
Seasonal variability 31 26

ever, because of differences in the data sources: BC
used the climatological wind stress of Hellerman and
Rosenstein (1983 ) and SST of Reynolds (1982). Also,
BC considered that the drag coefficient for the wind
stress was an additional adjustable parameter. For the
grid size of the atmospheric forcing and the SST ob-
servations used in the present paper, the “effective”
number of degrees of freedom in the inversion is v
= 53 (see BC, appendix B).

The tuning results are different from those of the
adaptive tuning procedure, with less resolution by the
dataset (only 1.9 parameters in total) and thus smaller
parameter changes. Only one parameter changes sig-
nificantly at the 5% level, a,,, which increases to 0.39
%+ 0.07; this parameter is mostly resolved by the dataset
(60%) and is correlated with all of the other parameters
but 8v, o, and da,. The upwelling efficiency is uncor-
related and only decreases to 0.48 =+ 0.18, but is little
resolved by the dataset (13%), so it remains in line in
Fig. 6. The horizontal diffusion is little resolved (26% )
and decreases to (1.4 +0.7) 108 m® s~!. To verify that
these differences are due to differences in the obser-
vational error models, the fit was also performed in
reduced space, with nearly identical results.

Since lesser weight is given to the dataset, it seems
that BC overestimated the observational errors, thereby
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increasing the influence of the a priori information.
BC assumed an rms observational error of 34 W m™2,
which does not seem unrealistic for the monthly time-
scale. Indeed, we find that the rms sample uncertainty
in monthly variations due to interannual variability is
37 W m~2. However, as the interannual variability af-
fects nearly randomly each realization of the seasonal
cycle, the corresponding errors over the 22-year mean
are strongly reduced by averaging. A similar argument
can be made for the drag coefficient uncertainties, and
in both cases our sample value for the mean seasonal
cycle reduces to only 8 W m™2, Blumenthal and Cane’s
choice thus leads to an overestimation, in particular
since its form was shown to be equivalent to prescribing
uncorrelated observational errors with rms as large as
264 W m™2.
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The sensitivity of the tuning results to the observa-
tional error model and to the particular dataset being
used supports our contention that it is crucial to ac-
curately take into account the observational uncer-
tainties. However, running the SST model with the
parameters estimated with BC’s method leads to per-
formances that are not significantly different from the
case of adaptive tuning (Table 1 and 2). Thus, the
better representation of the errors provided by the
adaptive procedure does not produce better SST sim-
ulations. What the more complex procedure does do
is better reveal the magnitude and the nature of the
model errors, thus pointing the way to improvement.
Thus, it is to be expected that the superiority for tuning
of the more refined adaptive method will become more
apparent with a more realistic model.

5. A discussion of the SST model

An assessment of the dynamical model ability at
simulating surface currents in the tropical Atlantic has
been given in FDC and in Duchéne and Frankignoul
(1990), who used as observational basis the mean sur-
face currents derived from ship drifts. Perhaps in part
because the model predicts only averaged currents for
the mixed layer, it was not very successful at simulating
the yearly mean conditions: the surface current was
strongly underestimated along the equator, and the
westward jet observed a few degrees north of the equa-
tor was not reproduced. The mean seasonal variability
was better simulated, although many discrepancies re-
mained. Duchéne and Frankignoul (1991) tested the
model ability at reproducing the seasonal cycle of the
surface dynamic topography, estimated by the 0/400
db dynamic height. The model performed better than
for the surface currents, and also simulated the seasonal
variations better than the annual mean. However, the
discrepancies with the observations remained too large
to be explainable by the data uncertainties, and more
sophisticated models performed significantly better
(Février 1993).

The evolution of the 20°C isotherm depth during
the 1982-84 FOCAL/SEQUAL experiment was con-
sidered in Braconnot and Frankignoul (1993). There
were differences for the 3-year mean; in particular, the
equatorial slope was less pronounced in the model,
and the meridional gradients near 6°S strongly under-
estimated. The linear model simulated successfully
many features of the thermocline depth variability.
Discrepancies with the observations were mainly as-
sociated with an unrealistic representation of the ver-
tical displacement associated with equatorial upwelling,
and the model failed to properly represent the eastward
progression of the thermocline shallowing that is ob-
served in the Gulf of Guinea during summer. Also, the
model underestimated the interannual variability of
the thermocline depth.

In these papers, the optimal number of vertical
modes was searched. For surface currents, the linear
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model worked best with one vertical mode, although
the differences with versions using three or more modes
were not statistically significant. Surface dynamic to-
pography was better simulated with a multimode ver-
sion, and the FOCAL/SEQUAL data showed that the
three-mode version was significantly better than the
two-mode one. The five-mode version used in BC and
the present paper is equally good, although more time
consuming,.

The thermodynamic version of the model was dis-
cussed by BC, who showed that it did not perform as
well in the tropical Atlantic as in the tropical Pacific,
in part because the Atlantic basin is smaller and more
influenced by the boundaries, which are poorly rep-
resented. Blumenthal and Cane also stressed other rea-
sons why the model could not realistically represent
the SST off the North African coast: the parameteriza-
tion of the temperature of the entrained water is
adapted to the equator but not to off-equatorial up~
welling, and the latent heat flux parameterization
should only be applicable far from the coasts.

The present analysis confirms that the model cannot
satisfactorily simulate SST off Africa, partly because
the maximum cooling by coastal upwelling occurs too
far south and offshore (see Fig. 3b). It also shows that
the model does not properly simulate summer SST
cooling by equatorial upwelling, even though it takes
place away from the coast and the parameterization of
entrained water should be well-adapted: neither the
timing nor the geographical location of the-equatorial
upwelling flux is correct, so that the upwelling efficiency
needs to be reduced. As a consequence, the model abil-
ity at representing SST anomalies in the Gulf of Guinea
is decreased (Fig. 2, bottom). These flaws correspond
to the inability of the model to correctly represent the
evolution of the thermocline in the Gulf of Guinea
(Braconnot and Frankignoul 1993) and seem linked
both to an underestimation of westward advection by
the equatorial currents (FDC) and a poor represen-
tation of vertical mixing. Experiments with general cir-
culation models have stressed the need to correctly dis-
tribute the vertical momentum over depth to satisfac-
torily simulate the thermocline variability in this region
(Blanke and Delecluse 1993). Our analysis also points
to weaknesses in BC’s parameterization of the tem-
perature of the entrained water, which should probably
be defined locally rather than for the whole basin.

The need to reduce the upwelling efficiency may
seem at odds with the results of Miller et al. (1993),
who found that, in the tropical Pacific, the SST anom-
alies in the model of Zebiak and Cane (1987) were
best (and well) represented near the eastern equatorial
boundary, where upwelling and vertical mixing pri-
marily control the SST variability. However, Zebiak
and Cane (1987) used a simpler parameterization of
the temperature of the entrained water and only one
vertical mode, so the increased complexity of BC’s ver-
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sion of the model may well have led to a decrease in
model skill.

This discussion suggests that the model flaws are in
part associated with the oversimplifications of the
model dynamics and geometry, which introduce sys-
tematic biases that are modulated seasonally rather
than random errors as assumed here for the modeling
errors, and in part with the simplified representation
of the surface heat exchanges. As the model has not
demonstrated any skill in predicting SST anomalies in
the tropical Atlantic, its usefulness is debatable for this
ocean basin, except as a handy tool for methodological
development. However, as pointed out by BC, the
tropical SST model works much better in the larger
Pacific Ocean, presumably because of its larger size.

6. Conclusions

We have developed an adaptive inverse method to
tune the adjustable parameters of a tropical SST model
in a way that optimally takes into account the large
uncertainties of the atmospheric forcing and the
oceanic data, the expected modeling errors, and our a
priori knowledge of the parameter values. This is
achieved by performing the model optimization for
the mean seasonal SST cycle and using the dispersion
of the model responses for each year and (equally
plausible) forcing field as independent information to
construct a sample estimate of the observational error
covariance matrix. The procedure is more refined than
that of BC in that the nonlinear nature of the inverse
problem is partly taken into account and the large cor-
relation scales of the forcing uncertainties are repre-
sented realistically. The method is general as long as
the parameters enter the SST equation linearly, and it
could be extended to the nonlinear case by using an
iterative approach. Since the optimization is performed
in a strongly reduced space, the computational cost is
limited. However, a proper estimation of the obser-
vational errors requires that several multiyear model
runs be available.

The method has been applied to tuning the SST
model of BC in the tropical Atlantic. The optimization
reduces the warm SST bias of the model, but brings
no significant improvement in its ability at representing
the seasonal or interannual SST fluctuations. A statis-
tical test of the correctness of the assumptions in the
inverse calculation shows that the modeling errors are
much larger than assumed. In particular, the tuning
procedure clearly reveals that there are model biases
linked to its rudimentary geometry, to the simplifica-
tions in the latent heat formulation, and to its inability
at properly representing SST cooling by upwelling. As
the tuning is unable to improve the representation of
SST changes, it is concluded that a more sophisticated
model is needed to simulate SST variability in the
tropical Atlantic. A different conclusion is likely to hold
for the larger tropical Pacific, where the SST model is
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more realistic (BC) and has demonstrated significant
skill in SST predictions (Cane et al. 1986).

The present study stresses that modeling errors are
substantial in this SST model, and this is likely to re-
main true for more sophisticated ones. A proper rep-
resentation of the modeling errors is thus needed to
achieve an optimal model tuning, as a best fit should
properly weight observations and simulations. The
need to properly weight observational and modeling
errors also holds for data assimilation methods, and
not too much faith should be given to model recon-
stituted fields based on methods that do not properly
represent the modeling errors.

Finally, the adaptive tuning procedure provides an
alternative to imposing the “flux correction” that is
often needed to avoid climate drift when coupling an
SST model to an atmospheric model. Indeed, the de-
crease in mean SST bias should decrease climate drift
in the coupled mode without introducing the draw-
backs of the flux correction method (see Latif et al.
1993), since the correction more properly takes place
via model parameters, without altering the SST dy-
namics.
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APPENDIX
Data Compression for the SST Model Testing

To test the simulations of the long-term mean SST,
denoted by the superscript y, we work in the (normal-
ized) space of the yearly mean temperature dif-
ference ({(T”) — T}). Mean differences between yearly
mean observations and model response to the five
forcing fields are projected in this space for each of the
22 years. Their sample average (over the 22 years and
the five forcings) is tested for zero mean (null hypoth-
esis). As the test statistic 72 then reduces the square
of a ¢ variable, the latter is used in Table 2, using a
one-sided distribution to calculate the critical value.

To test the simulations of the mean seasonal vari-
ability, denoted by the superscript s, a time com-
pression is first performed on the mean monthly dif-
ferences ((T*) — T}) by considering four seasons
(weighted averages, /4 1/2 /4, centered on January,
April, July, and October) instead of 12 months. A data
compression is then performed in the spatial domain,
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FIG. Al. (Left) EOFs of the SST differences used in the multivariate test for the mean seasonal variability (tuned model).
(Right) Corresponding principal components (continuous line) with 95% error bars (dotted line).

using principal component analysis, which provides
three basis vectors (EOFs) that represent 100% of the
variance (the annual mean is not included). This ef-
ficient method leads to more precise model intercom-
parisons than in the previous uses of the model testing
method, since there is no truncation during the spatial
reduction, and recent results have shown that the
method is sensitive to the level of truncation (Senné-
chael-Scoffier 1994). Figure Al illustrates the data
compression for the tuned model by representing the
three spatial EOFs of the seasonal model-observation
differences (left), and the corresponding principal
components together with univariate 95% confidence
intervals derived from the square root of the diagonal
elements of the error covariance matrix in reduced
space, using the ¢ distribution (right). The model-ob-
servation differences have large space-time correlation
scales, with a primarily annual component, and are

much larger than expected from the data uncertainties
considered. The misfit 72 is computed in a 12-dimen-
sional space.
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