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ABSTRACT

To determine the value of the adjustable parameters of an ocean model required to optimally fit the observations,
an adaptive inverse method is developed and applied to a sea surface temperature (SST) model of the tropical
Atlantic. The best-fit calculation is performed by minimizing a misfit between observed and simulated data,
which depends on the observational and the modeling errors. An adaptive procedure is designed in which the
model being tuned is also used to construct a model of the observational errors. This is done by performing the
optimization on the mean seasonal cycle and using the SST anomalies obtained for different years and plausible
forcing fields as additional information to construct a sample estimate of the observational error covariance
matrix. Assuming idealized modeling errors, the procedure is applied to the SST model of Blumenthal and
Cane, yielding refined estimates for several models and heat flux parameters. The simulation of the mean annual
SST is improved, but not the simulation of seasonal and interannual variability. The model-observation dis-
crepancies remain too large 10 be solely attributed to atmospheric and oceanic data uncertainties and are linked
to the model’s rudimentary geometry and its incorrect representation of SST cooling by upwelling. The existence
of larger model deficicncies than was originally assumed in the model errors is confirmed by a statistical test of
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the correctness of the assumptions in the inverse calculation.

1. Introduction

All oceanic models contain parameterizations of
such physical processes as convection, near-surface
mixing, and horizontal mixing due to subgrid-scale
motions. Parameterizations are based on physical ideas
but typically yield forms that contain parameters whose
values are not known precisely from theory. When a
parameter is model dependent (e.g., mixing is a func-
tion of grid spacing), parameter tuning will be in part
model dependent. Surface forcing also depends on
poorly known parameters. Even in data-rich regions
where random measurement and sampling errors are
small, the fluxes are poorly known because of system-
atic data biases and bulk formulation uncertainties.
Modeling these quantities may be considered part of
the problem of creating an oceanic model (Seager et
al. 1988). In view of their inherent imprecision, the
uncertain parameters should be tuned against observed
data. At the same time, models should be consistent
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with known physics to within the tolerances allowed
by the approximations made.

Particularly in the tropics where observations are
sparse, both forcing and verification data are impre-
cisely known. Hence, the accuracy to be expected in
model simulations is limited, even if the physics is per-
fectly represented, and data uncertainties should be
taken into account in parameter tuning. Frankignoul
et al. (1989) developed a multivariate model testing
procedure that provides an objective measure of the
fit between ocean model simulations and observations,
taking into account the data uncertainties. Using a trial
and error approach, the method can be used for model
tuning. This is illustrated by Duchéne and Frankignoul
(1991) and Braconnot and Frankignoul (1993), who
determined the vertical resolution of the linear model
of Cane (1984), which provided an optimal fit to ob-
servations of surface currents and thermocline depth
in the tropical Atlantic. However, this approach re-
quires that the number of adjustable parameters be
small.

A more efficient tuning approach is that of Blumen-
thal and Cane (1989), who used inverse modeling pro-
cedures to determine the parameter values required to
optimally fit sea surface temperature (SST) in a sim-
plified SST model. A priori knowledge constraining
the parameter range was included in the calculation,
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but only a highly idealized model was used for the data
errors. The error model enters the measure of the misfit
between observed and predicted data which is mini-
mized in the best-fit calculation. Thus, the atmospheric
forcing uncertainties need to be properly represented,
as they introduce large uncertainties in SST model re-
sponse {e.g., Harrison et al. 1990).

As the forcing uncertainties have large and poorly
known correlation scales, the error estimates are best
derived from direct simulations. We have thus devel-
oped an adaptive tuning procedure, where the model
that is being tuned is also used to construct the obser-
vational error model for the best-fit calculation. The
tuned model is then tested against observations and if
it agrees with the data to within expected errors, it will
be judged adequate. Such an adaptive technique com-
bines the model tuning of Blumenthal and Cane ( 1989)
and the model testing of Frankignoul et al. (1989).
Although the procedure is developed in the context of
the simplified SST model of Blumenthal and Cane
(1989), it is general as long as the parameter depen-
dence is linear, and is readily applicable to more com-
plex models. The adaptive procedure requires little
computation and programming, and is much simpler
to implement than the adjoint method. However, since
the effective degree of freedom of the error estimates
is limited by the length of the sample, the number of
parameters that can be tuned is limited.

The paper is organized as follows. In section 2, the
physical model is presented and applied to a simulation
of the tropical Atlantic SST from 1965 .to 1986; the
mean seasonal cycle is then validated using a multi-
variate approach. Section 3 presents the adaptive tuning
procedure in a general way applicable to models with
a linear parameter dependence. Several technical issues
are addressed: construction of the error models, design
of a data adaptive inverse technique, statistical uncer-
tainties in parameter estimation, and model testing. In
section 4, the adaptive procedure is applied to improve
the SST model. The performance of the tuned model
is discussed in section 5.

2. Modeling sea surface temperature variations
a. Ocean model and surface heat flux

The ocean model is that of Blumenthal and Cane
(1989, hereafter BC) and has three major parts: a wind-
driven model for velocity and pressure fields (Cane
1984), an advective/diffusive SST equation (Zebiak
and Cane 1987), and a parameterization for surface
heat fluxes (Seager et al. 1988, henceforth SZC). The
dynamical variables are predicted with a linear, mul-
timode equatorial beta-plane model with a surface
mixed layer of constant depth 2 = 35 m, which adds
a direct Ekman flow to the modal currents. The model
has five vertical modes that are characteristic of mean
tropical Atlantic conditions and have gravity wave
speed of 2.36, 1.38, 0.89, 0.69, and 0.53 m s™!, re-
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spectively. The model basin extends from 30°N to 20°S
and has a simplified geometry; its resolution is 1° in
longitude and 0.5° in latitude and the time step is one
week. The equations are solved in the longwave ap-
proximation, making the model inappropriate for sim-
ulation of currents near the western boundary. In the
following, we only consider the domain in Fig. 1, which
should not be affected by the model’s artificial bound-
aries.

The SST is determined from a nonlinear advective
equation. The temperature is assumed to be uniform
in the mixed layer, and determined from the net bal-
ance of horizontal advection, upwelling, horizontal dif-
fusion, and surface heat exchanges:

&T + ud T + vd,T + yw(T — Ta)/ h

= k(Oxx + 8,,)T + Q/pCph, (1)
where w is the vertical velocity at the mixed layer base
in the case of entrainment, and zero otherwise; T is
the temperature below the mixed layer, « a horizontal
diffusion coefhicient; and Q the surface heat flux into
the mixed layer, positive downward. Note that the up-
welling term is usually written as w(T — T,), where
T. is the temperature of the water entrained into the
mixed layer, but the two forms are equivalent if
T.=(1 =v)T+ T, (2)
The “entrainment efficiency” v is an adjustable pa-
rameter that should be less than unity, as T, is some-
where between T and 7. As in SZC and BC, the pa-
rameterization of 7; is done in two parts: first the ob-
served temperature at the mixed layer base is fit to the
depth of the 20°C isotherm in the equatorial zone using
the Levitus (1982) data, then the 20°C isotherm depth
is fit to the model prediction of the thermocline depth
(the latter fit is sensitive to the wind stress and has been
adapted to each of the wind stress products below).
During the course of this study, it was noticed that this
simple parameterization could lead to temperature in-
versions, hence to a mixed layer warming by upwelling.
Thus, the upwelling flux is set to zero when T, is larger
than 7', which slightly improves the model perfor-
mances (cf. the results reported in Frankignoul et al.
1993). Note that Zebiak and Cane (1987) and Cane
et al. (1986) use a simpler parameterization of 7.
The surface heat flux parameterization is that of
SZC, which was designed to avoid using either the
(poorly measured) air-sea temperature differences
found in the bulk formulas or the artificial feedback
to a prescribed climatological air temperature often
imposed in ocean simulations. This parameterization
solely includes effects that are externally imposed on
the SST: the only measured variables used are wind
speed v¢ and fractional cloud cover C. The air tem-
perature, to a large extent, is fixed by the SST and so
has been eliminated. The heat flux is written as
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F1G. 1. (2) Mean SST (in °C) during January, April, July, and October as predicted by the multimode model using the a priori values
of the parameters for the period 1965-1986. (b) Corresponding SST as derived from the observations by Servain et al. (1985). (¢) Differences

between simulations and observations.

Q =094 Qy(1 — aC + a,x)

= pCelvayg(T) — ar(T = T;).  (3)

The first term is the usual shortwave radiation formula,
where Qp is the clear sky solar flux reduced at the sur-
face by the effects of a constant surface albedo (0.06)
and by the absorption and reflection of the atmosphere,
which depends on cloud amount C and solar angle .
The second term represents the latent heat flux, com-
puted from the standard bulk formula using a fixed
percentage a,, of the saturation humidity ¢,(T') as the
evaporation potential g,(7) — gs( T, ); this assumes
that the. moisture content of the air has equilibrated
with the ocean temperature, which is a reasonable as-
sumption sufficiently far from the coasts. To compen-
sate for the loss of variability in using monthly winds,
the wind velocity v®is not allowed to fall below 4 m s ™.
The smaller sensible heat flux and back radiation are
simply modeled together in the last term as being pro-

portional to 7" minus a constant reference temperature
T,. This formulation gives reasonable results in the
tropics (SZC) but should not be used in midlatitudes
(Liu and Niiler 1990).

In the SST equation and the heat flux formulation,
there are a number of parameters not precisely
known, but which were assigned a “reasonable’ value
by SZC. Here we assume that seven parameters are
adjustable within reasonable ranges: the entrainment
efficiency v, the horizontal diffusion k, and the heat
flux parameters a,, d., a4, ar, and arT,in (3), which
we represent below by the seven-dimensional vector
a. The a priori values of the tunable parameters, de-
noted by a,, are those of SZC for the tropical Pacific,
namely v = 0.5, k = 2 108 m?s™!, a. = 0.62, a,
= 0.0019, a,, = 0.3, ar = 1.5 Wm™2 K™, and T,
= 273.15 K. The drag coefficient for the wind stress
is not allowed to vary as in BC, since its uncertainty
is simulated explicitly. ’
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b. Simulation of the tropical Atlantic SST
climatology

After spinup, the model is forced by a monthly wind
stress derived from ship reports for the period 1964-
1986. As described in Frankignoul et al. (1989, hence-
forth FDC), the wind stress was constructed by inter-
polating and smoothing monthly averaged fields of
pseudo wind stress provided on a 2° X 5° grid by J.
Servain. To simulate the drag coefficient uncertainty,
we follow the Monte Carlo approach of Braconnot and
Frankignoul (1993) and use five different, equally
plausible drag coefhicients in the bulk formula. They
are calculated by prescribing a relative humidity of 80%
and using either a constant air-sea temperature differ-
ence of —1°C (as in FDC), or a climatological monthly
air-sea temperature difference derived from the
COADS data [ for the parameterizations of Large and
Pond (1981), Liu et al. (1979), Smith (1988), and
Isemer and Hasse (1987)]. To avoid smoothing, the
monthly mean wind stresses were corrected to insure
that linear interpolation on the model time step would
not alter the original means (Duchéne 1989). Cloud-
iness data are of poorer quality, so that cloud cover is
prescribed from the monthly climatology of Esbensen
and Kushnir (1981), with an added normal noise of
0.1 standard deviation to crudely simulate its short
space-time scale variability.

Ignoring the first year to eliminate the effects of the
unknown initial conditions, we have 5 X 22 simulations
of the SST annual cycle whose dispersion is represen-
tative of both the interannual variability and the drag
coefficient uncertainty. The mean cycle of simulated
SST is warmer than the observations, as illustrated in
Fig. 1 for January, April, July, and October by a com-
parison with the mean SST over the same period cal-
culated from the data of Servain et al. (1985).

The differences between the SST predictions and the
observations are due to (i) errors in the atmospheric
data (wind stress, cloud) and the SST observations;
(ii) model shortcomings due to oversimplification of
the physics; and (iii) poor choice of the model param-
eters. To assess the validity of the SST model, we must
take (i) into account and minimize (iii) by an optimal
tuning; remaining discrepancies should then point to
the model deficiencies (ii).

Root-mean-square SST differences between the
mean model response and observations on the 2°
X 2° grid of the latter are given in Table 1 (left col-
umn), where we distinguish between annual mean,
mean seasonal variations around the annual mean
(hereafter the mean seasonal variability), and SST
anomalies. The model-observation differences are large
for the long-term mean, which is strongly affected by
a 3.9°C mean bias. The mean seasonal variability seems
better reproduced, with differences (rms 0.7°C) small
compared to the amplitude of the observed signal (rms
1.3°C). On the other hand, the SST anomaly differ-
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TABLE 1. Rms difference (in °C) between detrended observed and
modeled (averaged response) SST for the yearly mean, the mean
seasonal variability, and SST anomalies for various model versions
in the 10°S-20°N region. The annual mean difference and the
correlation between detrended observed and simulated monthly
anomalies during 1965-1986 are given in italic.

Before After After tuning
(SSTmoa — SSTews) tuning tuning (BC)
Annual mean 4.0 1.4 1.0
(mean bias) (3.9) (1.1) (0.5)
Seasonal variability 0.69 0.75 0.74
Anomalies 0.67 0.65 0.64
(anomaly correlation) (0.26) (0.23) (0.26)

ences (after removing a linear trend to reduce the in-
fluence of artificial trends in the wind measurements—
e.g., Cardone et al. 1990) are comparable (rms 0.7°C)
to the observed anomalies (rms 0.5°C), with no sig-
nificant correlation between observations and simu-
lations, except north of 10°N (Fig. 2, top). These results
underestimate the model skill, however, as they do not
take data errors into account. For instance, the forcing
uncertainties alone create an rms SST anomaly un-
certainty of 0.5°C. Furthermore, the SST data of Ser-
vain et al. (1985), solely based on ship observations
transmitted in real time, are noisy; the rms differences
with the SST anomalies in the more elaborate but
smoother SST product of Reynolds (1988 ), which also
uses satellite data, are more than 0.3°C for the 1979-
1988 period. This, however, is not sufficient to explain
the poor model performance.

A more quantitative estimation of the model per-
formances taking into account some of the uncertain-
ties in the oceanic observations and the atmospheric
forcing, as well as their space-time correlations, has
been made for the mean seasonal cycle. Following the
multivariate approach of FDC, we calculate the misfit
(signal-to-noise ratio)

T? = ((T) - T,)'D'(T) — To), (4)

where { T') and T, describe the mean seasonal cycle of
modeled and observed SST, respectively, the vector
space including all grid points (on the observational
grid) and the 12 months. The overbar denotes the 22-
year mean and angle brackets the average over the five
22-year runs; the prime indicates vector transpose, and
D is the error covariance matrix of ((T) — T,).

To estimate D, we use the five 22-year samples. A
first contribution to D arises from the uncertainties in
the mean seasonal variations that are due to interan-
nual variability and nonsystematic observational errors
of SST, wind, and cloud cover, which affect randomly
each realization of the observed and modeled seasonal
cycles. Assuming for simplicity that each year, denoted
by the superscript ¢, is statistically independent, which
is acceptable for the tropical Atlantic, these uncertain-
ties are estimated by
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FI1G. 2. Correlation coefficient between detrended observed and modeled SST anomalies
over the 1965-1986 period for the initial (top) and the tuned (bottom) model. The 5%

significance level is approximately 0.3.

1 z t t TN T
mz [T) = T5) = ({T) — T,)]

X[((TY =Ty = ({Ty = T,)I" (5)
with 21 degrees of freedom. Another contribution to

D represents the drag coefficient uncertainty and is es-
timated by :

5 |
D, = 7z T (T' = (TN = (T)  (6)
i=1

with 4 degrees of freedom if we assume that the re-
sponses to the different forcing, denoted by the super-
script i, are statistically independent. Since the two
sources of errors are independent, D = D, + D,, with
approximate degrees of freedom v (for instance, v
=~ 24 in the case of the seasonal variations below).
Not represented in D are systematic observational er-
rors (e.g., incorrect Beaufort scale, SST biases), lack
of high-frequency variability, and limited resolution of
the wind stress curl.

Since the dimension of the SST field is much larger
than the degrees of freedom of D, the misfit (4) is cal-
culated in a truncated space that is sufficiently small
to calculate D reliably while representing the main
space-time patterns of (<T> — T,). As described in
appendix A, the annual mean is appraised in a one-
dimensional space and the mean seasonal variability
in a 12-dimensional space. '

If the SST fields are multinormal, the null hypothesis
that the model response to the true forcing is equal to
the true SST (no model errors) can be tested as the
test statistic (4) is then Hotelling’s single-sample T2
statistic with dimension p (the dimension of the space)
and approximate degrees of freedom v. Its distribution
is related to the F-distribution with pand » + 1 — p
degrees of freedom by 7% = vp/(v + 1 — p) F (eg.,
see Morrison 1976). The results, given in Table 2 (left),
show that 7 is much larger than the critical value at
the 5% level (right) and the null hypothesis rejected.
They confirm that the model performances are rather
poor. Although systematic observational errors in SST, -
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TABLE 2. Misfit between model and observations for the yearly
mean (7-value) and the mean seasonal variability in the 20°N-10°S
region, before and after tuning. The tuning is done in the 10°S-20°N
region. The critical values for rejecting the null hypothesis of no
model error are also given.

After Critical
Before After tuning value
Misfit tuning tuning (BC) (5% level)
Long-term annual
mean 15.2 7.4 7.0 2
Seasonal variability 1751 1636 1666 35

cloud cover, and wind stress have not been considered
in the test, the data uncertainties are likely to be in-
sufficient to explain the model-observation discrep-
ancies, which must be mainly attributed to model
shortcomings and poor parameter tuning.

3. An adaptive procedure for model tuning
a. Linear model corrections

To see how the tunable parameters enter the cal-
culation of the SST in the numerical model, it is con-
venient to write Eq. (1) in matrix form

L(T) + M(T)a, = 0, (7)

where the vector T represents temperature at all the
points in space and time where a model solution has
been obtained, a, = (v, «, @, Ga, Gm, ar, arT,) is the
vector of a priori parameter values, M(T) and L(T)
are linear operators determined at all space/time points
by retaining the terms of the model equations (1) and
(3) that are and are not affected by parameter changes,
respectively. Specifically, the ith row of L(T ) includes
the contribution at space/time point i from

8T + ud T + v3,T — 0.94Q,,

while the ith row of M(T ) correspondingly represents
the transpose of the terms

"~ W(T—T)/h ]
_(axx + ayy) T
0.940,C
~0.94Qpcx
—pCeLv?q(T)
T
-1

Both L and M depend on the atmospheric forcing,
which is imperfectly known, so even if the model was
perfect and the uncertain parameters optimally chosen,
the model predictions would differ from the observa-
tions.

Since SST is a relatively well-measured variable, we
follow BC and estimate the “corrective heat flux” éq
that, for the a priori values of the uncertain model
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parameters, would be needed to make the model SST
match the observed SST exactly. To do so, we run the
model again, using the observed SST, denoted by T,
instead of the calculated one, after interpolation on the
model grid. Equation (7) is then only satisfied by add-
ing a “‘heat flux correction” éq:

L(T,) + M(T,)a, + 6q = 0. (8)

As expected from the limited SST agreement, the heat
flux correction is rather large, showing that additional
cooling would be needed for realistic simulations
(Fig. 3a).

Since 6q depends linearly on the tunable model pa-
rameters, the estimation of their optimal value can be
formulated as an inverse problem

éq = M(T,)éa, (9)

where éa = (8, 0Ok, . .., dayT,) represents the param-
eter changes that minimize the heat flux correction dq,
yielding

(0Q)min = 0q — M(T,)0a. (10)

A good estimator of the parameter correction éa must
take errors into account, as well as our knowledge of
the expected parameter range.

There are many sources of errors in the estimates
appearing in (9). The wind stress and cloud data used
to force the model haveé significant errors, resulting in
model response uncertainties with large correlation
scales, particularly in the equatorial waveguide. The
observed SST is noisy as well, although to a lesser ex-
tent. When the best-fit calculation is based on a mean
seasonal cycle as in this paper, there are also sampling
errors that reflect the interannual variability and have
large correlation scales. Finally, there are “irreducible”
modeling errors inherent in the ocean model formu-
lation, for example, errors due to subgrid-scale phe-
nomena, or to the oversimplification of the ocean dy-
namics and the air-sea fluxes. These cannot be ex-
pected to be reduced by model tuning. The modeling
errors (called system errors in the Kalman filter liter-
ature) thus represent the errors that would exist if there
were no observational errors and the uncertain param-
eters were at their true value.

Tarantola (1987 ) discusses the general inverse prob-
lem in the case of an inaccurate theory, using a Bayesian
viewpoint. When the forward problem is linear as in
(8) and there are Gaussian modeling errors in M, de-
scribed by the covariance Cr, the solution of the inverse
problem takes a simple form if the observational errors
in 6q are Gaussian and statistically independent of the
modeling errors. If the a priori value of the parameter
correction éa is zero, as in the present case, the optimal
solution is given by the minimum of the misfit function

S(6a)=[(Mda— dq)'C~!(Mda — 6q) + 6a’C;'a]/2
(11)
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with C = C; + C,, where C, is the error covariance
matrix of the observations dq, and the covariance ma-
trix C, describes the a priori uncertainty of éa. The
solution is

sa=(M'C'M+C;")"'M'C'4q. (12)

Blumenthal and Cane followed this formalism, assum- -
ing for simplicity that the observational noise only af-
fected the model matrix M, and the modeling error
only the heat flux correction éq. On the basis of order
of magnitude estimates, they used constant rms errors
of 10 and 35 W m~2 with a simple exponential decay
for the modeling and total error, respectively.

There are a number of simplifications in BC’s ap-
proach: 1) As shown by (8), both éq and M depend
on the input data (e.g., the surface wind stress affects

both the heat exchanges and the ocean dynamics),
hence they are both affected by the data uncertainties
and the modeling errors. The errors in éq and M are
thus not statistically independent, and the model matrix
really is a stochastic regression matrix. Unfortunately,
ordinary and generalized least-squares estimators are
in general not consistent in this case of nonlinear cou-
pling between model and data errors (e.g., Mardia et
al. 1979; Judge et al. 1988). Alternative estimating
procedures that will give consistent estimators have
been used in econometrics but they are not general
and are hard to apply to the present problem. 2) The
error models used by BC are highly idealized and could
be improved. Since the results of the tuning are sensitive
to the assumed error models, we adopt a more elaborate
* strategy to achieve a refined estimate.
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b. The adaptive procedure

The correlation scales of the model response errors
due to forcing and SST uncertainties are large and
complex, hence difficult to represent a priori. However,
they can be estimated by performing the optimization
on the mean seasonal cycle, which is least noisy, and
using the dispersion of the model seasonal responses
as independent information to construct a more real-
istic model for the observational errors.

Assuming that the parameters do not vary in time,
we can write for each year ¢ (here ¢ = 1, 22) and for
each forcing i (here i = 1, 5), denoted by the upper
index, that the linear model (9) holds

LE(TS) + ME(Th)a, + 8¢ = 0. (13)

Denoting long-term sample means by an overbar and
the mean over the different forcing by an angle brace,
we write relation (8) under the form

(E(T,)) + (M(T,) Ya, + (3¢) = 0.  (14)

The errorsin (13) and ( 14) are due to forcing and SST
uncertainties, and to mode! inadequacies. Since the
nonsystematic errors associated with data uncertainties
should decrease with averaging, they will be smaller in
(14) than in (13). On the other hand, the systematic
errors, primarily due to model deficiencies, should re-
main practically unchanged.

Let us write the parameter estimation as the linear
statistical model

(8g) = (M)da + (&), (15)

where (&) represents the random errors, assumed to
be Gaussian, with zero mean and unknown true co-
variance matrix C. Because of the statistical dependence
between (5q) and (M), an estimate of a is required
before one may estimate the random errors from the
sample. Thus, an adaptive approach is used, where the







