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We develop a swamp water mosquito population model that is forced solely by environ-

mental variability. Measured temperature and land surface wetness conditions are used to
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simulate Anopheles walkeri population dynamics in a northern New Jersey habitat. Land sur-

face wetness conditions, which represent oviposition habitat availability, are derived from

simulations using a dynamic hydrology model. Using only these two density-independent

effects, population model simulations of biting Anoph. walkeri correlate significantly with

light trap collections. These results suggest that prediction of mosquito populations and

the diseases they transmit could be better constrained by inclusion of environmental vari-

ability.

© 2005 Elsevier B.V. All rights reserved.

. Introduction

ver the last 50 years, many models describing insect popu-
ation variability have been developed. Many of these mod-
ls have been designed to account for density-dependent
ffects, including predator–prey and host–pathogen interac-
ions. Traditionally, density-independent effects have been
reated either as noise (May, 1986, and its citations) or within
egularly varying theoretical frameworks, such as by using
scillatory equations to represent variable carrying capacity

Nisbet and Gurney, 1976; Cushing, 1986).
The model presented here accounts for two density-

ndependent factors, temperature and the availability of

∗ Corresponding author.
E-mail address: jshaman@coas.oregonstate.edu ( J. Shaman).

mosquito breeding habitats. We examine whether these vari-
ables, when applied to a simple population model, describe
some of the observed mosquito population variability. Fluc-
tuations of habitat availability are determined by modeled
surface wetness as simulated by a dynamic hydrology model.
Previously, such model simulations have been used to describe
the emergence of flood and swamp water mosquitoes in
a New Jersey habitat (Shaman et al., 2002). Here, we cou-
ple these simulations with a mosquito life cycle model. In
doing so, real environmental variability is expressed within
the model through variation in the availability of breeding
habitats. The effects of temperature on mosquito develop-
mental rates are also accounted for. Modeling this way allows
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for complex, realistic treatment of these density-independent
effects for this New Jersey mosquito population. We will
show that these density-independent effects, i.e. environ-
mental variability, can produce modeled mosquito popula-
tion variability consistent with observed mosquito population
dynamics.

2. Methods

The hydrology model employed for this study (Stieglitz et al.,
1997) has been applied to two northern New Jersey water-
sheds, and positive associations of model predicted surface
wetness and mosquito collection abundance have been estab-
lished for both flood and swamp water species (Shaman et al.,
2002). These findings are consistent with the biology of these
mosquito species: with more surface wetness, more breeding
habitats are available such that mosquito reproduction and
larval survival are favored. In effect, increased surface wetness
supports a greater flood and swamp water mosquito popula-
tion.

For this study, we focus on the adult mosquito population
record collected by New Jersey light trap at the Great Swamp
National Wildlife Refuge, Morris County, New Jersey. This 15-
year record from the summer months was collected in an
area without mosquito control and provides a relatively undis-
turbed record of the populations of certain mosquito species.

2.1. Mosquito biology

The life cycle of the mosquito begins as an egg, which given
the right conditions hatches as a larvae. The larvae develop
through several instar stages before entering pupation. After
pupation, the mosquito emerges as an adult. Adults generally
mate within the first few hours of emergence; females then
seek a blood meal to provide a protein source for their eggs.
After biting, the female rests while her eggs develop. Once
fully developed, the female oviposits and then proceeds to find
another blood meal and repeat the gonotrophic cycle.

Temperature and the availability of appropriate aquatic
breeding habitats are the two environmental variables that
most impact the abundance of mosquitoes (Kettle, 1995). Tem-
perature impacts both the survivorship and developmental
rate of mosquitoes; surface wetness, as mentioned above, lim-
its the population size of sub-adult mosquitoes. These two
parameters, temperature and surface wetness, will be used to
force the model mosquito population.

2.2. Model description

For the purposes of this work, the mosquito life cycle will pro-
ceed continuously—no overwinterings, no diapause, no hiber-
nation, no breaks in the reproductive cycle. The system will
presume that eggs are deposited directly on breeding waters
and immediately proceed through development, which is con-
Fig. 1 shows the 15-year record for the swamp water species
Anopheles walkeri.
Fig. 1 – Time series of the June–September 1984–1998 daily New
Swamp National Wildlife Refuge. Note the different scales for dif
sistent with the biology of the swamp water species Anoph.
walkeri. The first three stages of the life cycle—egg, larvae
Jersey light trap collections of Anopheles walkeri in the Great
ferent years.
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and pupae—will be lumped into one aquatic population (also
called larvae). The adult population will be linked but moni-
tored separately. Only female mosquitoes will be modeled.

The model is designed as follows. The mosquitoes are
assumed to live no more than 40 days. A suite of 40 population
cohorts is tracked through real time. Each cohort represents
a group of mosquitoes oviposited on the same day, and each
cohort possesses a development time, distinct from real time,
that determines where in the mosquito life cycle the cohort
resides. The cohort populations diminish through real time
by a temperature-dependent mortality rate (discussed below).
Emergent and reproductive ‘events’ are determined by the
respective times of development (also discussed below). Forty
days of life are monitored, after which all the mosquitoes are
presumed to have died.

2.3. Mortality and survivorship

Survival for both the aquatic and adult populations is assumed
to follow a simple exponential function:

d� (t, t0)
dt

= −r� (t, t0) (1)

dN(t, t0)
dt

= −rN(t, t0)
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where H is the Heaviside function (H(x) = 0 if x ≤ 0; H(x) = 1, if
x > 0).

2.5. Development in the adult population

An identical function then tracks the life cycle of each adult
cohort, such that:

d˚(t, t0)
dt

= T − To

TDDo
(5)

where ˚(t, t0) is the development time of the eggs carried by
the adult cohort born on day, t0, To the minimum temperature
at which the adults can survive and TDDo is the total degree
days for oviposition. When ˚ reaches one, the eggs are lain
and ˚ is reset to zero. The adults can proceed through as many
gonotrophic cycles as time (a maximum of 40 days of life) and
temperature (˚ is a function of temperature) permit. On each
day t the number of eggs oviposited is given by:

� (t, t0) = b ×
∑

{N(t, t0) × H(˚(t, t0) − 1)} (6)

Thus, the number of eggs produced on a given day equals the
total number of adults reaching ˚ = 1 on that day times a repro-
ductive rate, b. More than one cohort of adults may oviposit
on a particular day, as development rates will vary if temper-
ature has varied. A single adult cohort may reproduce more
f t − t0 ≥ 40, then � (t, t0) = N(t, t0) = 0

here � (t, t0) is the cohort of larvae at real time t, born on
ay, t0, N(t, t0) the cohort of adults born on day, t0 and r is
he mortality rate. The mortality rate varies as an empirically
erived function of temperature (Martens, 1997):

= (−4.4 + 1.31 × T − 0.03 × T2)
−1

(2)

here T is the temperature in degrees C, and r−1 is in units of
ime.

.4. Development of the aquatic population

he total development time of a mosquito through its sub-
dult stages varies as a function of temperature, ranging from
to 20 days, depending on the species. Empirical functions

escribing this developmental relationship generally take the
ollowing form (Craig et al., 1999):

d�(t, t0)
dt

= T − Te

TDDe
(3)

here �(t, t0) is the aquatic development time for the cohort of
arvae born on day, t0, T the mean daily temperature in degrees
elsius, Te the minimum temperature at which the larvae can
urvive and TDDe is the total degree days for emergence, i.e.
he number of degrees, measured on a daily basis, required
efore the larvae will be fully developed to the adult stage.
nce an aquatic population reaches a total � of one, the pop-
lation emerges as adults, i.e.:

(t, t0) = � (t, t0) × H(�(t, t0) − 1) (4)
than once in its lifetime; the reproductive cycle is reset for an
adult cohort after oviposition, i.e.:

if ˚(t, t0) ≥ 1, then ˚(t, t0) = 0 (7)

3. Modeling the system

3.1. Testing the model

With a maximum lifespan of 40 days, 40 discrete population
cohorts need to be tracked at any given time (i.e. the mosquito
population that is 2 days old, the mosquito population that is
3 days old, etc.). Thus, the system is 40-coupled ODEs. The
core of this model is the balance of the mortality function
and reproductive growth. For model calibration, we began by
assuming an average time of development of 10 days, a Te and
To of 14 ◦C, and a mean temperature of 24 ◦C. These parame-
ters require a TDDe and TDDo of 100 ◦C. If temperature, T, is
held constant, fixed points – steady-states of equal birth and
death and no change through time of the population struc-
ture – will exist. With T = 24 ◦C, a reproductive rate b = 5.7114
produces such a fixed point solution, i.e. the population nei-
ther increases nor decreases (see Appendix A for details). This
steady-state model solution was used to test the accuracy of
various stepping algorithms for use in running the numeric
model. A fourth-order Runga–Kutta scheme was found to be
stable and is employed here.

3.2. Fluctuations in temperature

The response of the model to variations in temperature was
examined next. A sinusoidal function for temperature with a
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Fig. 2 – (a) Time series from a 120-day run of the model
with T = 24 + 6 × sin(2� × t/6), b = 5.7114. Shown are the total
numbers of adult mosquitoes on each day (sum of all
cohorts), and the number of biting mosquitoes (new
emergents and parous adults that have just oviposited). (b)
Same as (a), but for T = 24 + 6 × sin(2� × t/12). (c) Same as (a),
but for T = 24 + 6 × sin(2� × t/12) + 2 × sin(2� × t/80).

period of 6 days was chosen, T = 24 + 6 × sin(2� × t/6). The time
step used in the integration was 1 h (0.0417 days). The temper-
ature function, while not mimicking weather variability, pro-
vided a mean temperature of 24 ◦C for the duration of the run
and a range of 18–30 ◦C. The mean times of development, � and
˚, remain at 10 days, but individual populations can mature at
faster and slower rates depending on the timing of their birth
in relation to the temperature function. This variability in time
of development was expected to produce convergence of pop-
ulation cohort times of development. In addition, variations in
temperature alter mortality rates, which affects reproduction
rates.

Fig. 2a shows some of the results from a 120-day run of the
model for these conditions. The system does in fact behave
as predicted. Periodicities in the population have been gen-
erated with only a modest steady-state reproductive rate of
5.7114 (well below the 50–75 females an ovipositing adult pro-
duces per brood), and the overall population is in decline. Even
greater variability in the population can be generated simply
by lengthening the period of the temperature function. Fig. 2b
shows such an instance, in which T = 24 + 6 × sin(2� × t/12).
Twelve day cycles are evident in the population, matching the
period of the temperature function. Fig. 2c shows the results
of a run with a more complicated function for temperature,
T = 24 + 6 × sin(2� × t/12) + 2 × sin(2� × t/80). Again, the period
of the temperature function is apparent in the changes of the
total population over the course of the model run.

Fig. 3 – Same as Fig. 2c, but for b = 10.

3.3. A higher birth rate

The reproductive rate, b, was raised to 10, not a more realis-
tic number, but one that changes the steady-state, fixed point
solution. The model was run with this reproductive rate, the
double sinusoid temperature function of Fig. 2c, and the same
initial population structure as previous runs. Since the repro-
ductive rate is much higher, the population was expected to
climb. Fig. 3 shows that indeed a climb in population results;
in fact, the total population swells to enormous numbers;
with a realistic birth rate of 50–75 the population would climb
even faster. Clearly, something must constrain the population
size. Within the model this is where modeled breeding habitat
availability comes into play.

3.4. Environmental capacity—linking the population
to hydrologic variability

Since surface wetness can be modeled in space and time and
a link between surface wetness and mosquito abundance has
been established (Shaman et al., 2002), we wish to include
these effects in the model. It has been shown that with more
surface pooling greater numbers of larvae can survive, and
higher number of adult Anoph. walkeri are likely to be collected
in light traps in northern New Jersey. For the purposes of this
model it will be assumed that the impact of drier conditions is
to reduce the maximum population size of the larval cohorts.
In standard logistic growth, carrying capacity, K, is a
density-dependent modifier of population growth rates. Here,
we instead use environmental variability, i.e. surface wetness,
as a density-independent constraint on total population size.
To avoid any confusion, we therefore define a new variable,
environmental capacity, E, to represent the effect of surface
wetness conditions on total population size. Many functions
could be adopted to account for this constraint—we have used
the following: at the end of each day, the total number of larvae
is tallied; if this number, N, exceeds that day’s environmental
capacity, E, each larval population cohort is reduced by the fac-
tor E/N. This results in a proportional reduction of each cohort;
a cohort comprising 30% of the total larval population before
reduction will comprise 30% of the reduced total larval popu-
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Fig. 4 – Same as Fig. 3, but for E = 1000 + 600 × cos(2� × t/50).

lation. This system is by no means an accurate representation
of the effects of limited habitat availability, but will be used
here as a first approximation.

We first show use of this environmental capacity limitation
in an idealized model run. Fig. 4 shows the results of a model
run with the same conditions as the previously described run
plus the environmental capacity, E = 1000 + 600 cos(2� × t/50).
The population no longer increases without bound but instead
oscillates irregularly. Surgings and crashings of both the total
and host-seeking populations are apparent, in a fashion qual-
itatively similar to some of the collection data (Fig. 1).

Simulations were also performed to test model sensitivity
to initial conditions. With large enough reproductive rates for
a given amplitude E, the model quickly converged to the same
solution.

3.5. Incorporating local hydrologic variability

To employ the hydrologic conditions as simulated at the Great
Swamp, we have to establish an explicit relationship between
local modeled wetness (described and referred to as the index
of local wetness, or ILW, in Shaman et al., 2002) and environ-
mental capacity. In this study, we used polytonomous logistic
regression, as in Shaman et al. (2002), to establish associa-
tions between the ILW and the probability of exceeding 24
discrete populations sizes of Anoph. walkeri. Thus, for each of
the 24 population categories, an empirical model describing
t
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Fig. 5 – Environmental capacity, E, as a function of the index
of local wetness (ILW). The function is a cubic spline fitting
of the discrete values of ILW(pi(0.5)) (ILW corresponding to a
50% probability for mosquito population size i, found by
logistic regression of the mosquito population on the ILW).

the ILW corresponding to a 50% probability for the population
size i and Ei is the discrete environmental capacity value for
a given wetness. The continuous function for envrionmental
capacity, E, was found by cubic interpolation of the discrete
values, Ei, and a bias correction to keep the lowest ILW values
positive. The function is somewhat non-linear. Fig. 5 shows
this function for c = 1.

The scaling constant, c, can be removed from the system of
equations by setting N = cN′, � = c� ′ and E = cE′ and substituting
these into Eqs. (1), (4), (6) and (8) to obtain equations for N′, � ′

and E′. Note that these new equations have exactly the same
form as Eqs. (1), (4), (6) and (8). Therefore, c acts only to scale
the size of the model population.

3.6. Real temperature

Hourly temperature data for the area were assembled from
National Climate Data Center archives for nearby Allentown,
PA. The hourly temperature data ranges from 7 to 38 ◦C with a
mean of approximately 21. These data had also been used in
the forcing of the hydrology model (see Shaman et al., 2002).

4. Results

As constructed, the mosquito population model has five
parameters: mortality (Eq. (2), r(T)); larval development (Eq.
he probability of such a population size given the ILW was
erived. The empirical relationship between ILW and envi-
onmental capacity was then determined from these models.
ogistic regression model probabilities of 50% for all popu-
ation categories were then selected and used to establish
n empirical relationship between increasing wetness and
ncreasing population size (i.e. ILW corresponding to a p(0.5) of
ach population size or greater being collected). These values
ere then scaled linearly, such that

i = c × ILW(pi(0.5)) (8)

here c is a scaling constant, the subscript i denotes one of the
4 population sizes used in the logistic regression, ILW(pi(0.5))
(3), d�/dt); gonotrophic development (Eq. (5), d˚/dt); the repro-
ductive rate (b); and the scheme for inclusion of environmental
capacity (E). Both Eqs. (3) and (5) are themselves the function of
two parameters that determine rates of development, i.e. the
number of temperature degree-days needed for emergence
and ovipositioning, respectively. Specifically, larval develop-
ment (Eq. (3)) is a function of TDDe and Te; gonotrophic devel-
opment (Eq. (5)) is a function of TDDo and To. Either of these
parameters can be varied to lengthen or shorten these rates
of development.
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To test the sensitivity of the model we explored its param-
eter space. We varied b, TDDe and TDDo, running 2250 sim-
ulations, each with a different combination of these parame-
ters. We did not vary the mortality rate, which is empirically
derived, or the scheme for inclusion of E. Birth rates were
varied from 15 to 105; because we only track females, these
numbers provide a biologically realistic range of reproductive
rates. TDDe was varied from 70 to 210, which for a Te held at
7 ◦C represents larval development in 5–15 days (if tempera-
ture were held fixed at 21 ◦C, which it was not). Similarly, TDDo

was varied from 70 to 210, which for a To held at 7 ◦C repre-
sents larval development in 5–15 days (if temperature were
held fixed at 21 ◦C, which it was not). Table 1 presents a list of
the parameter values employed for model simulations.

Fig. 6 presents the results of these model simulations.
These 2250 simulations show that many parameter combina-
tions produce simulations of similar fidelity, and thus demon-
strate some degree of model insensitivity to variations of
TDDe, TDDo and b. In many of the panels of Fig. 6, a pat-
tern emerges equivalent to the contour lines TDDo = −TDDe + a
Fig. 6 – Correlation coefficient and RMS error for the 2250 model
The left two columns show correlation coefficients, the right two
TDDe, varies from 70 to 210 and the y-axis, TDDo, similarly varie
rate, b, as labeled.
simulations with the parameters b, TDDe and TDDo varied.
columns present RMS errors. In each plot, the x-axis,

s from 70 to 210. Each plot presents a different reproductive
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Table 1 – Parameter values employed in model
simulations

Parameter Value

b 15–105
TDDe 70–210
Te 7
TDDo 70–210
To 7

Mortality, r, is drived from Eq. (2); environmental carrying capacity,
E, is derived from Eq. (8); temperature is from the measured record.

constant. This suggests that it is the total time of development
from egg to oviposition (TDDo + TDDe) that is critical for accu-
rate model simulation, but how that time is divided between
the larval and adult stages is not important. Correlations fall
off and RMS errors rise with longer larval and gonotrophic
developmental rates, provided that birth rates remain low.
There is also a peculiar degradation of model behavior along
the line TDDo = TDDe. Fig. 6 indicates that good model perfor-
mance occurs when the birth rate is low but the life cycle fast,
or if the birth rate is high but the life cycle slow.

Table 2 presents the results for the best-fit model sim-
ulations. Shown are the run number, the years of simula-
tion, parameters, the daily correlation with the New Jersey
light trap collection data (representative of the host-seeking
mosquito population), correlation with a 7-day smoothing
applied and the root mean-square (RMS) error with a 7-day
smoothing applied. The correlations for these best-fit simula-
tions are highly statistically significant (p < 0.00001). Compari-
son of Run 1 with Run 2 reveals that the model better captures
collected Anoph. walkeri dynamics for some portions of the
record. These results also suggest that for some periods of time
habitat availability provides a strong constraint on population
dynamics.

Fig. 7 shows the time series of modeled biting adults from
Run 1 and of the collection data, each with a 7-day smoothing.
Over 56% of the measured variance is explained by the popula-
tion model. Generally, more extreme events, both population
l
e
s
1
t

Fig. 7 – (a) Model and measured host-seeking (biting)
Anopheles walkeri. The model simulation is Run 1, as listed
in Table 2. (b) Concurrent mean daily temperature; (c)
environmental capacity, E.

ulations perform less reliably. In particular, the model fails to
capture much of the population dynamics from 1993 onward.

Runs 3 and 4 (Table 2) demonstrate the importance of envi-
ronmental capacity and temperature for producing an accu-
rate model simulation. Changes to these variables (such as
replacement of one with a sinusoid or constant) lead to greatly
reduced correlation with the collected Anoph. walkeri record.
For instance, model simulation with constant E and real T (Run
3) yields a weekly correlation coefficient of r = 0.31 over whole
15-year record and a daily correlation coefficient of r = 0.16.
Similarly, model simulation with E as determined by Eq. (8),
but constant T (Run 4) yields correlation coefficients of r = 0.34
(weekly) r = 0.27 (daily).

quito model

Forcing Correlation (r) 7-Day smoothed
correlation (r)

7-Day smoothed
RMS error

T, E 0.42 0.75 16.93
T, E 0.34 0.56 15.84
T, 1000 0.16 0.31 17.71
24, E 0.27 0.34 17.51

m Eq. (8) or set to 1000 (Run 3); temperature is either from the measured
986–1990. Run 2 is the best-fit model for 1984–1998. Best-fit models are
w Jers
ows, such as the low Anoph. walkeri numbers at the end of
ach season when conditions have dried, and populations
pikes, such as the high Anoph. walkeri numbers during the
989 season, are better represented. Fig. 8 presents a similar
ime series for Run 2. Over this longer period, the model sim-

Table 2 – Results from select runs of the swamp water mos

Run Years TDDe Aquatic Te TDDo Adult To b

1 1986–1990 170 7 100 7 35
2 1984–1998 170 7 100 7 35
3 1984–1998 170 7 100 7 35
4 1984–1998 170 7 100 7 35

Parameter values are listed. Carrying capacity, E, is either derived fro
record or a constant 24 ◦C (Run 4). Run 1 is the best-fit model for 1
established based on correlation and RMS error analysis with the Ne
 ey light trap collection data.
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Fig. 8 – (a) Model and measured host-seeking (biting)
Anopheles walkeri. The model simulation is Run 2, as listed
in Table 2. (b) Concurrent mean daily temperature; (c)
environmental capacity, E.

5. Discussion

We have presented a swamp water mosquito population
model that is driven by habitat availability as simulated by
a dynamic hydrology model and measured temperature. In
doing so, environmental capacity and temperature are not
treated as simple harmonic patterns, but as functions with
true temporal heterogeneity. Mosquito model simulations
were compared to light trap collections of the swamp water
mosquito Anoph. walkeri. Linear correlation of the modeled
and measured populations suggests that some of Anoph. walk-
eri population dynamics are determined by variable environ-
mental capacity, which is a function of hydrologic condi-
tions, and temperature, which affects developmental rates.
Determination of population dynamics by the former effect
is consistent with findings for theoretical populations with
oscillatory carrying capacity and large inherent growth rates
(Cushing, 1986). Mosquitoes have a high reproductive rate and
can rapidly respond to the vagaries of their changing physical
environment. This permits exploitation of these changes and
is also consistent with the argument of McArthur and Wilson
(1967) that strongly varying environments favor r-selected
organisms.

Within the mosquito population model, warmer and wet-
ter conditions favor increased Anoph. walkeri abundance. The
success of the model suggests that a composite index of tem-

Anoph. walkeri population variability. However, simple regres-
sion models using modeled hydrology do not capture the pop-
ulation dynamics of the Great Swamp Anoph. walkeri record
(Shaman et al., 2002) as well as the mosquito population model
presented here, nor does multiple regression with both mod-
eled hydrology and temperature (not shown). A better statisti-
cal model is established with logistic regression, which is able
to estimate likelihoods of high mosquito abundance (but not
actual numbers) using modeled hydrology. This relationship is
the basis for our estimate of mosquito population sensitivity
to hydrologic variability (Eq. (8)).

As presented, the model does fail to capture much of the
collected population dynamics from 1993 to 1998, and in par-
ticular misses the population spike in 1994. These failures may
be due to shortcomings in the population model or could stem
from misrepresentation of surface wetness conditions by the
hydrology model. The latter explanation is a very real pos-
sibility. For instance, while there is a wetting event in 1994
(Fig. 7c), it is not as prolonged as the wetting event occur-
ring in 1989. Wetting of the land surface is highly dependent
on patterns of precipitation. At the New Jersey site, where
the mosquito collections were taken, there was no available
local record of rainfall; instead rainfall data from Allentown,
PA, 80 km west, were used to force the hydrology model (for
details, see Shaman et al., 2002). These Pennsylvania data
should capture regional synoptic rainfall variability at the New
Jersey site, but local summertime convective storms may be
perature and modeled surface wetness might crudely capture
missed. Consequently, local New Jersey wetting events may be
missed or exaggerated, which in turn would lead to mosquito
population misrepresentation. In the future, local rainfall
measurement should be used to force the hydrology model.
Unfortunately, such data were not available for the present
study.

There are many ways in which our mosquito population
model could possibly be improved. The derivation of envi-
ronmental capacity, E, based on the ILW, though logical as
is, could be calculated differently. Alternatively, the effects of
this environmental capacity could be implemented differently
within the model. In this study, E was applied uniformly across
all larval cohorts and once per day. Alternatively, reductions
of population size based on E could be applied to favor cer-
tain larval cohorts should they have a competitive advantage
in limited habitat conditions over their differently aged con-
specifics. To better enable this, the egg, larval and pupal stages
might have to be modeled individually.

Other changes might include use of a different equation
for mortality as a function of temperature (Eq. (4)). In addi-
tion, the present model does not account for overwintering
or mosquito dispersal, nor does it synchronize oviposition in
response to rainfall or humidity fluctuations. These effects
should be incorporated into future modeling efforts.

Within the scope of our current findings, the modeled and
measured populations were statistically significantly corre-
lated. However, because the environment (i.e. breeding habi-
tat availability) is variable and the population itself probably
oscillates, due to density-dependent factors, non-linear inter-
actions could result from this variability (Nisbet and Gurney,
1976). Our analysis of the modeled and observed populations
in the present work has been linear. Future study might ana-
lyze the non-linear dynamics of the measured and modeled
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populations, such as the recent analyses of insect populations
reared in controlled laboratory settings (Costantino et al., 1995,
1998; Dennis et al., 1997).

Our use of simulated breeding habitat availability (a
density-independent effect) does not obviate consideration of
host–pathogen or other density-dependent effects, but rather
offers an additional approach for modeling insect populations.
Recent research has shown that density-dependent effects,
such as host–pathogen interactions, are unlikely to describe
fully the observed variability of insect populations (Vezina
and Peterman, 1985; Bowers et al., 1993; Briggs and Godfray,
1996). Swamp water mosquito population dynamics are most
likely the consequence of a combination of both density-
independent and density-dependent factors, as suggested by
May (1986).

The strategy presented here, which uses environmental
variability to constrain better model population dynamics,
could be incorporated into other population model structures,
including simple and matrix population models (e.g. Jensen
and Miller, 2004; Federico and Canziani, 2005), metapopula-
tion models (Levins, 1969; Keeling and Gilligan, 2000) and
individual-based models (Jaworska et al., 1997; Keeling, 2002;
Ovaskainen and Hanski, 2004). Density-independent effects
need not be restricted to hydrology but could include both
physical and chemical variability, due to climate, weather,
rates of weathering and sedimentation, ocean transport,
etc. The validity of incorporating any of these density-
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In addition, with the parameters TDDe and TDDo set to 100 ◦C,
and Te and To set to 14 ◦C, a temperature of 24 ◦C implies that
all cohorts will emerge as adults on Day 10, reproduce on Days
20 and 30 and die (before reproducing) on Day 40. For these
parameters, the number of new larvae equals the reproductive
rate, b, times the total number of reproducing adults (cohorts
born 20 and 30 days prior), i.e.:

� (t, t0) = b(N(t, t−20) + N(t, t−30)) (A.1)

The number of reproducing adults equals the total number of
larvae born 20 and 30 days prior times the cumulative mortal-
ity, i.e.:

N(t, t−20) = � (t − 20, t−20) × exp(−r × 20)
N(t, t−30) = � (t − 30, t−30) × exp(−r × 30)

(A.2)

For a fixed point solution to exist there must be equal birth
and death such that there is a constant population. We can
substitute (A.2) into (A.1) and use the fact that for a constant
population �(t, t0) = � (t − 20, t−20) = � (t − 30, t−30) so that:

� (t, t0) = b� (t, t0)(exp(−r × 20) + exp(−r × 30)) (A3)

or

1

r

ndependent environmental variabilities into a population
odel structure would depend on the species and system

eing simulated, their sensitivity to environmental variabil-
ty, whether this sensitivity can be accurately quantified, and

hether the environmental variability itself can be accurately
easured or simulated.
A mosquito population model such as the one pre-

ented here might prove effective for simulating and pre-
icting swamp water malarial vectors, such as Anopheles

unestus. It also might be adapted to simulate flood water
pecies, such Aedes vexans or Anopheles gambiae. Other organ-
sms dependent on fresh water habitat availability could
lso be modeled. Ultimately, we would like to combine
his model with a vector-borne disease or epidemiologic

odel.
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ppendix A

e present the derivation of the fixed point solution. With a
onstant temperature of 24 ◦C there is a constant mortality
ate, i.e. Eq. (2) is:

= 1

−4.4 + 1.31 × 24 − 0.03 × 242
= 0.1025
b =
exp(−r × 20) + exp(−r × 30)

(A.4)

For r = −0.1025, b = 5.7114. Thus, with TDDe and TDDo set to
100 ◦C, Te and To set to 14, T = 24 ◦C and b = 5.7114 the popula-
tion exists in steady-state.
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