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ABSTRACT

A linear model best fit to the Zebiak and Cane (1987) ENSO forecast model (ZC) is used to
study the model’s prediction skill. Multivariate empirical orthogonal functions (MEOFs)
obtained from the sea surface temperature anomaly, sea level and wind stress anomaly fields in
a suite of 3-year forecast runs of ZC starting from the monthly initial conditions in the period
January 1970 to December 1991, are used to construct a series of seasonally varying linear
Markov models. It is found that the model with 18 MEOF:s fits the original nonlinear model
reasonably well and has comparable or better forecast skill. Assimilating the observed SST into
the initial conditions further improves forecast skill at short lead times ( <9 months). The trans-
ient initial error growth in the model’s prediction is attributed to the non-self-adjoint property
as in Farrell and Blumenthal. Initial error grows fastest starting from spring and slowest starting
from late summer and is sensitive to the initial error structures. Two singular vectors (SVs) of
the linear evolution operator have significant transient growth dominating the total error
growth. Since the optimal perturbation (fastest SV) has mostly high MEOF components, the
error growth tends to be larger when there are more high mode components in the initial error
fields. This result suggests a way to filter the initial condition fields: the MEOFs higher than the
18th in the initial fields are mostly noise and removing them improves prediction skill. The
forecasts starting from late summer have the best predictability because the fastest growth season
(summer) is just avoided. The well known, very rapid decline in forecast skill in the boreal spring
(the “spring barrier”) is here attributed to the smallness of the signal to be forecast: the standard
deviation of the NINO3 SST anomaly is smallest in spring.

1. Introduction

ENSO, the strongest interannual signal in the
tropics, has a significant impact on global climate
including killing drought in Australia, prolific
rainfall on desert lands in Peru and catastrophic
failures of the Indian monsoon. Prediction of
ENSO is valuable both for scientific interests and
economic benefits. Several prediction schemes are
now used routinely for ENSO prediction. Among
them, the non-linear anomaly model of Zebiak

* Contribution Number 5209 of Lamont-Doherty
Earth Observatory of Columbia University.
! Corresponding author.

and Cane (1987) (referred to as ZC hereafter)
has been recognized as among the most successful.
ZC is an anomaly model having all climatological
fields specified. This tremendous simplification
avoids the difficulties in simulating the correct
climatological field, which constitutes a serious
problem in many models, including GCMs.
However, studies with coupled GCMs are begin-
ning to show good prediction skill (Latif et al.,
1993). The statistical models, challenging the
numerical models, are best represented by the
Canonical Correlation Analysis (CCA) procedure
(Barnett et al., 1988; Graham et al, 1987a, b;
Barnston and Ropelewski, 1992). The ZC forecasts
have been reported (Cane et al., 1986; Barnett
et al., 1988; Cane, 1991) in terms of the NINO3
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index (the averaged SST anomaly in the region
5°N-5°S and 90°W-150°W) with demonstrated
skill at 1 to 2 years lead time. The CCA scheme can
predict ENSO events 3 seasons ahead.

Many efforts have been devoted to understand-
ing ENSO forecast skill and to improving the
predictions (Cane et al, 1986; Cane, 1991;
Graham et al., 1992; Barnett etal., 1993; Latif
et al., 1993; Webster and Yang, 1992). The surpris-
ing successes in ENSO prediction by both simple
numerical and statistical models are believed
attributable to the low frequency characteristics
of ENSO. The skill of the simple anomaly
model (ZC) suggests that ENSO system is well
approximated as an internal oscillation about the
climatological mean state in the tropical Pacific.
Thus far, additional errors introduced by coupled
GCMs hurt more than the added complexity
helps.

The useful forecast skill in ZC in terms of the
NINO3 index is 1 year to 2 years and is seasonally
varying. An important feature is the rapid decline
in forecast skill in the spring. Although the ZC
forecast skill is better than most ENSO prediction
models at long lead times, its short term skill is
relatively poor because of the poor initialization
procedure.

With increasing numbers of ENSO forecasts,
the seasonality of predictability (ENSO is least
predictable in spring and most predictable in
winter) has become well established. Cane et al.
(1986) suggested that initial noise could be rapidly
amplified in the summer to lead to a poor forecast;
but in the winter, it may be readily dispersed by
wave motions to lead to a good forecast. They
attributed the phenomenon to the seasonally
varying stability of the coupled ocean-atmosphere
system in the tropical Pacific: the system is most
unstable in summer and stable in winter. Webster
and Yang (1992) focus on the rapid decline in
forecast skills in the boreal spring, the so-called
“spring barrier”, and view ENSO as an inter-
active system with the monsoon circulation. They
point out that the summer monsoon circulation
develops fastest from April to May, at the same
time the Walker circulation is the weakest and
most susceptible to external noise. They go on to
argue that since the difference between strong and
weak summer monsoons has a significant compo-
nent in the trade wind system, it forms a source of
noise and possibly modulates the coupled system

Tellus 46A (1994), 4

513

through changes in the annual cycle. Thus the
monsoon is thought to play an important role at
this special season for the ENSO cycle.

Error growth is a key feature in all model fore-
casts and has been studied thoroughly in numeri-
cal weather prediction (Lacarra and Talagrand,
1988; Farrell, 1989; Molteni and Palmer, 1993). It
is found that if a system is not self-adjoint there is
a possibility of transient growth in a mode which
is not a growing normal mode of classical stability
analysis. These modes are the singular vectors of
the evolution operator and their transient growth
rate are given by the singular values (Molteni and
Palmer, 1993). Since the growth of the fastest
transient mode is often more rapid than the
growth of the fastest growing normal mode, it
becomes the greatest concern for weather fore-
casting models. Molteni and Palmer (1993) point
out that the normal mode growth rate could not
explain the observed value of about 2 days for the
doubling-time of small errors in numerical weather
predictions. In contrast, the transient mode can
double in less than 12 h. Using the growing trans-
ient modes as the initial perturbations, ensemble
prediction is being done on sophisticated numeri-
cal weather prediction models (Mureau et al,
1993).

Similar transient modes are found in a linear
Markov model best fit to ZC (Blumenthal, 1991).
It is suspected that the growing transient modes
due to the non-self-adjoint property are the
candidates causing the fast initial error growth in
ZC. As the correlation between the NINO3 indices
in the linear Markov model and ZC is as high as
0.8 even after 2 years of integration (Blumenthal
et al.,, 1991), we use the linear Markov model as a
tool to understand the predictability of ZC. The
questions we will address are: how well does a low
order linear model fit the high order nonlinear
model (ZC)? What controls the initial error
growth in ZC? Can we understand the ZC ENSO
forecast skill better and improve its predictions?
What factors cause the “spring barrier” in ENSO
prediction?

Section 2, describes the construction of the
Markov model. In Section 3, the divergence
between the lincar and. the nonlinear model is
briefly discussed. Section4 shows the ENSO
prediction skill of a series of linear Markov models
with variable dimensions. Section 5 deals with the
non-self-adjoint transient initial error growth and



514

Section 6 with predictability. An improved forecast
with SST assimilation in the initial conditions is
presented in Section 7. Section 8 contains a sum-
mary and conclusions.

2. Model

2.1. Model created data

Most theories of ENSO suggest that sea surface
temperature (SST), sea level (4) and surface wind
stress (t) are the 3 key fields for sustaining the
ENSO cycle. These three fields from the real
forecast runs of ZC are taken to be a sufficient
description of the model evolution. The oceanic
initial condition in each forecast run is from the
ocean model component, which is driven by the
FSU wind stress anomaly (Goldenberg and
O’Brien, 1981) continuously from January 1964 to
the time when the coupled model forecast starts.
The atmospheric initial conditions are obtained by
running the atmospheric model with the SST
anomalies taken from the ocean model simulation.
Starting from the initial conditions for each month
between January 1970 and December 1991, ZC
was integrated for 3 years, yielding a data set with
22x12x37 monthly values.

2.2. Space reduction

For each of the 3 key fields in ZC, the number of
grid points is O(10°). It is essential to reduce the
state space first. Empirical orthogonal function
(EOF) analysis is applied here to represent the
model physical fields by the first few EOFs,
which maximize the variance representation. For
example, a physical field represented by vector v(#)
is decomposed into EOFs e; and principle com-
ponents (PCs) a;(¢) and filtered by truncating at
the Jth EOF,

J

(i)=Y a;t)e,. (1)

j=1

In the present context, 20, 40 and 10 EOFs
account for 97.4 %, 97.6 % and 96.3 % of variance
in the SST, h and r fields, respectively. It is prob-
able that some of the retained EOFs mostly repre-
sent noise as pointed out by Graham et al. (1992).
We return to this issue in Section 4 where trunca-
tion is discussed in terms of ENSO prediction skill.

Y. XUEET AL.

The variance distributions among the retained
EOFs for the initial and overall (initial conditions
plus coupled model forecast) SST, / and 7 fields
are presented in Fig. 1. It is seen that the first EOF
accounts for 81% and 75% of variance in the
overall SST and 7 fields, respectively, while in the
overall sea level field the first and second EOFs
account for 58% and 15% of variance. These
variance distributions follow from the fact that the
SST and 1 fields are mostly stationary and the A
field is propagating because of oceanic wave
dynamics. Cane (1991) pointed out that the model
initial conditions differ from the coupled model
forecasts because the model winds differ from the
FSU winds. The difference is clearly visible in the
variance distributions among the retained EOFs
(Fig. 1), with the major difference being in the sea
level field. The 1st, 5th and 6th EOFs account for
14%, 14% and 10% of the variance in the initial
sea level field, which is in contrast to the first two
dominant EOFs in the overall sea level fields. In
order to build a Markov model suitable for ENSO
prediction studies, both the initial states and
forecast states must be well represented in the
reduced EOF space. As about 90 % of the variance
in the initial SST, sea level and wind stress fields
are retained by 20, 40 and 10 EOFs, respectively,
this reduced EOF space is sufficient for the current
purpose.

In order to reduce the space further and to have
a consistent multivariate basis, a second EOF
analysis is conducted. A vector of dimension 70 is
constructed from the PCs of SST, 4 and 7. Each of
the 3 fields is given equal weight:

a} aj ai a} a} a7
2 3
b= —...—= —... 2 ... 2| 2)
6, 0,06, 0,0, 0,

Here, a;, a} and a; are the PCs for SST, / and =
with dimensions J, =20, J,=40 and J, = 10; o2,
o3 and o3 are the total variance described by each
set of PCs.

Jy

;=% Yl  v=123 3)
=1 ¢

Then b is decomposed into a set of space com-

ponents f; and time components d;(¢) and filtered
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by truncating at the Kth multivariate EOF
(MEOF),

b(t)= 3 f;d,(1). (4)

j=1

30 MEOFs account for 96 %, 94% and 94 % of
variance in the total SST, 4 and t fields, respec-
tively. The time components d,(1), j=1,2, .., 30,
represent all 3 physical fields in the phase space
spanned by the retained MEOFs. As in the EOF
space, it is useful to see the different variance dis-
tributions of the initial and overall fields in the
MEOF space. Fig. 2 shows that the first, the eighth
and fourteenth MEOFs account for 21 %, 8 % and
8% of variance in the initial sea level field, while
the first and second MEOF account for 46 % and
20% of variance in the overall sea level field. The
multivariate EOF analysis is essential to the space
reduction and helpful in combining the model
SST, h and t fields together physically. The
retained 30 MEOFs are sufficient for ENSO
prediction studies, as shown in Section 4.

2.3. Markov model

The Markov model is computed as in
Blumenthal (1991). Blumenthal noted that the
seasonal model fits the original ZC model much
better than the nonseasonal model. The impor-
tance of including seasonality in ENSO modeling
has been much discussed in the literature (e.g.,
Cane et al., 1986; Barnett et al., 1993). Thus we
construct 12 Markov models, representing the
monthly transition from each calendar month. The
suite of 3-year runs starting from each of the
monthly initial conditions for the period January
1970 to December 1991 are concatenated to form
a long series. Then the data set is grouped into 12
subsets, one for each calendar month. So each sub-
set has 814 data points. The data in subset i and
i+ 1 are used to calculate the monthly transition
matrix from calendar month i to the next month
i+ 1. Denoting the data in subset i by d;, the
formula is:

d, =4 +e, (5)

where A is the transition matrix and e; is the
residue. Multiplying by the transpose of vector d;

Y. XUEET AL.

on both sides of (5), then averaging on all samples
gives:

(di 1 d]y=A"dd]> + {ed] D, (6)

where ( --- ) means the average over all samples
in subset i (except those at the end of each 3 year
run). For the best fit model 4, ¢, does not
correlate with d;, so

A= (d,, dTy{ddT> ' =C,D]"; (7)

here C; is the lag one covariance matrix, while D,
the autocovariance matrix.

We are not interested in the eigenvectors of
any single monthly transition; rather we want an
analysis that encompasses all the behaviors of the
model. One way is to do the eigenanalysis of the
yearly transition matrix Y (cf,, Blumenthal, 1991),

Y“’=A“2)o~A(2)A“),

(3)
YD = AD40D . 4@
etc., i.e., Y is the transition matrix from month i
in the current year to month i in the next year. The
eigenvalues of the Y do not depend on month i,
since if

Y""e}” = Aje}“, 9)
then

i+ ) D)) = Oy, — (Dt
YDAy = 4Dy D = ) (4VeD),  (10)
so that for all i, we get a single set of eigenvalues 4;,
where the eigenvectors for different months are
related by

(Npli) — (D gli+1)
AVe) = aie’ ). (11)
a{” is such that e, is properly normalized, ie.,
lle;l =1 and its phase is adjusted so that the real
and imaginary parts are orthogonal and the norm
of the real part is larger than that of the imaginary
part. Then this implies

— 2 .
L=alP . (12)
here, ||4;/ <1 because the yearly transition matrix
is a best fit to the data. The eigenvector e; evolves
from month to month by (11) and [|«{”| gives the
amplitude change for the mode from month i to
month i+ 1. Although the eigenvector e; decays
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after a year, the amplitudes of some of the e; do
grow in summer and fall; cf., Fig. 4 of Blumenthal
(1991). The consequences of these seasonal varia-
tion of the stability will be discussed later.

The eigenvectors e, are often called the principle
oscillation patterns (POPs) (Hasselman, 1988).
Since the matrices are not symmetric, the eigen-
values and eigenvectors may be complex and the
eigenvectors are not necessarily orthogonal. So the
adjoint of any POP, which is orthogonal to all
other POPs, is not parallel to the POP itself
(non-self-adjoint). The fast transient error growth
possible in this non-self-adjoint system will be
discussed in Section 5.

Xu and von Storch (1989) used a single POP
model to predict ENSO events. There are several
possible criteria to select the POP, often called the
ENSO POP. It might be chosen by its period and
by having a long decay time (see Table 1). It might
be chosen by variance explained. Note, however,
that since the POPs are not orthogonal, their com-
bined variance will be larger than 100%. A useful
measure due to Xu and von Storch (1989) is
defined as u=1—|d—d||*/||d||>, where d is the
original field and d is the field represented by a
single POP and the norm includes the average
over all time. A value of 1 means the field is fully

Table 1. The eigenvalues of the yearly transition
matrix in MKI8 (Markov model with 18 retained
MEOQOFs) expressed by period and decay time
(Ist 2 columns), measure p by a single POP
(3rd column), the correlation between the real com-
ponent of each POP’s time series (4th column) and
the NINO3 index and the correlation between the
imaginary component of each POP’s time series
(5th column) and the NINO3 index

Period Decay p  Correlation Correlation
(years) (years) (%) (real-NINO3) (image-NINO3)

1 31 2.7 32 0.7 —04
2 68 4.0 19 0.6 0.3
3 48 L5 -1 -02 -0.1
4 21 1.2 -2 0.2 —0.2
5 37 06 =5 —0.1 -0.1
6 o 10 -6 —02 0.1
7 6.1 09 -8 0.0 —0.1
8 20 —12 0.0 —-0.0
9 234 1.7 —-14 -0.0 —0.1
100 29 08 -17 0.3 0.0
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represented by the POP and a value <0 means it
is poorly represented. Table 1 shows that only the
first two POP pairs project strongly on the data,
with the first POP pair having the largest value of
u. The real component of the POP with period of
3.1 years simulates an ENSO mature phase while
the small imaginary component represents a trans-
ition phase (not shown; see Blumenthal (1991)).
The real component of this POP’s time series
correlates with the NINO3 index at 0.69, so it is
the ENSO POP. However, it is not guaranteed
that a single ENSO POP can explain all dynamic
characteristics. We find that the POP pair with
period of 6.8 years is also very important in predic-
tions. Penland and Magorian (1993) also noticed
that some POP time series in their Markov model
are highly correlated and probably represent
related physical processes. They concluded that
the SST field can not be described by a single pair
of POPs. We found that each individual eigenvec-
tor (POP) of the yearly transition matrix is very
sensitive to the number of MEOFs retained and
each individual POP does not necessarily repre-
sent a physical pattern, but all of them together are
able to describe the ENSO cycle reasonably well.
So the whole set of POPs is used to do prediction.
Still, we have to decide how many MEQFs are
retained when the Markov model is constructed.

3. Divergence between linear Markov models
and ZC

A series of linear Markov models are con-
structed by retaining different numbers K of
MEQFs. They are initialized with the same
monthly initial conditions in the period January
1970 to December 1991 as in the ZC runs but trun-
cated with the corresponding K MEOFs. Each
model is integrated for 3 years, and the correla-
tions between each linear model NINO3 and the
ZC NINO3 are calculated. The correlations look
quite similar for the linear models with K=35 to
K =30. As an example, the correlation of the linear
Markov model with 18 MEOFs (MK 18 hereafter)
is presented in Fig. 3. MK18 can not follow ZC
forever because of the decaying of the Markov
model and the absence of nonlinearities. However
for lead times up to about one year, which is about
the limit of the useful predictability in ZC, MK18
is a good approximation to ZC.
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Fig. 3. MK18-ZC NINO3 correlation as a function of
start months and lead months. Each correlation is on a
sample of 22 (all years from 1970 to 1991).

4. Forecast results: the effects of MEOF
truncation

When the Markov models are tested against
observations the verification data is not the data
used to construct them, so the forecast skills
obtained should be reliable. Fig. 4 shows the
monthly averaged prediction-observation correla-
tion for the models with 5, 16, 18, 20 and 30
retained MEOFs. The observed NINO3 anomaly
in the period January 1970 to December 1991
from the Climate Analysis Center SST product
(Reynolds, 1988) is used as verification. It is seen
that the forecast skills of models with different
dimensions are different and that of the model with
18 MEOFs (MK 18) is the best. With either fewer
or more MEOFs, the model’s forecast skill gets
worse. For typical statistical models skill always
increases as the number of model parameters
increase. That this does not happen here is because
no observed fields are used directly in constructing
the transition matrixes in the Markov models.
Only the initial conditions (taken from the ocean
model driven by the observed winds) are related
with the observations indirectly. So there is little
artificial skill in the Markov models. In order to
confirm this point, another Markov model with 18
MEOFs (MK 18’) is constructed using only half of

0 5 10 15 20 25 30 35
Lead time in months

Fig. 4. Prediction-observation =~ NINO3 correlations
versus lead months, based on 228 individual forecasts (all
starting months from January 1970 to December 1988).
The line labels represent the dimensions of the different
Markov models.

the data (all the 3 year runs from each of the
monthly initial conditions from January 1970 to
December 1980) and the observed NINO3 from
January 1981 to December 1991 is used to test the
model. When ZC, MK 18 and MK 18’ are verified
against the same observations, we find that their
forecast skills are similar (not shown).

A way to understand the difference in the predic-
tions of the models with different dimensions is to
run them with identical initial conditions. Here the
models with 18, 25 and 30 dimensions (MK18,
MK25 and MK30) are initialized by the truncated
initial conditions: d;,=4d;(0), j=1,2,..,18 and
d;=0, j=19,..,30. It is seen that the forecast
skills are quite similar (Fig. 5). Since the forecast
by MK30 has been improved after its initial con-
ditions are truncated at the 18th MEOF, the
MEOFs higher than the 18th in the initial condi-
tions do more harm than good. It is seen in Fig. 2
that the variance in the MEOFs higher than the
18th are all very small in both the initial and over-
all fields. It appears that the high MEOFs (> 18)
in the initial conditions are largely noise. No mat-
ter what the dimension of the models, the forecast
skill has been largely determined by the initial
conditions. When the high MEOFs (>18) are
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Fig. 5. Same as Fig. 4 except the solid line is for MK 18,
the dotted line for MK2S$ and the dashed line for MK30
(MKnn are Markov models with nn dimensions). The
same initial conditions truncated at the 18th MEOF are
used for all models.

kept in the initial conditions, the main effect is to
cause fast error growth.

Fig. 6 shows that MK 18 has a forecast skill even
better than ZC (though the difference can not be
said to be statistically significant). Both ZC and
MK18 overtake the persistence forecast at lead
times beyond 5 months. Figs. 7a, b show that the

10 FTT T T T T T T L=
\-.
“"' 4
N — ZC i
08 | :
k = MK18-T1
[ vl e MK18
L - --- Persistence

14
o
T

Correlation Coefficient
o
=
T

02

00 by v v vy e e T
25 30 35

15 20
Lead time in months

Fig. 6. Same as Fig. 4 except the solid line for ZC, short
dashed line for MK18, long dashed line for persistence
forecast and dotted line for MK 18 with SST assimilation
(MK18-T1, see text for details).

monthly forecast skills by ZC and MK 18 are quiet
similar in overall structure. Both the plateau at
lead time 13 months and the sharp drops of
forecast skill in April in ZC are very well preserved
in MK18. The smoother structure and higher
correlation at the long lead times are due to the
fact that MK 18 is less noisy than ZC.

Jan

Jul

Starting month

May

T T T T T Ty
L 0,10,7\/5 0 0\\
L 0.
06
0.5

!

T
4 Q
0.

T
1
2

0.2 /\
Mar \/ .3
Jan | //\ N 0; N A i
P SR ST EF R AT S EPETTES RSV E S ST S S i 1 | il 1 TR L)
0 5 10 20 25 30 35 0 5 10 25 30 35

15
Lead time in months

15 20
Lead time in months

Fig. 7. Prediction-observation NINO3 correlation as functions of start months and lead months, by (a) ZC and
(b) MK 18. Each correlation is on a sample of 19 (all years from 1970 to 1988).
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5. Imitial error growth in MK18

Since MK 18 simulates ZC well up to one year
lead time (Fig.3), presumably the initial error
growth in MKI18 would represent that in ZC.
Blumenthal (1991) points out that the error evolu-
tion is a combination of 2 factors: the evolution of
the initial error under the model dynamics, and the
introduction of error at each time step due to
the model being an approximate representation to
the true dynamics. It is clear that both ZC and
MK 18 are only approximate representations of the
ENSO system. However, the results given below
indicate that the initial error growth in ZC due to
the very poor initial conditions is the dominant
source of error in short lead time forecasts. Only
the initial error growth is studied here. Neglecting
the added error at each time, the error vector in
MK18 evolves as
rio=Ar,. (13)
Hence the error covariance R;= {r;r] > evolution
is described by the formula

Ri+l=AiRiA;‘r' (14)

The error norm, defined by ||r||> =r"r, equals the

Y. XUEET AL.

trace of the error covariance. The residue &2 (cf.,
Blumenthal, 1991) is used to describe the initial
error growth.

> lrl?  trace(R.)

© T rel R trace(R,)

(15)

Since we have little knowledge of the initial error
structures, an uniform error ball in the MEOF
space is assumed first. Physically, it means that the
initial error is uniformly distributed among all
MEOFs and uncorrelated. The residue growth
shown in Fig. 8a has a similar seasonal dependence
to that in Fig. 12 of Blumenthal (1991). For
February starts, the error grows slowly to May,
then grows rapidly in summer and fall and reaches
a plateau in November; for May starts, the error
grows very rapidly all the way to November and
then grows slowly to a maximum in February. The
equivalent e-folding times are 10 and 6 months
respectively. The integration starting from August,
on the other hand, shows a much slower error
growth, with a peak value that does not occur until
the following November. The equivalent e-folding
time is 18 months. The error growth for November
starts is similar to February starts with an
e-folding time of 10 months. The e-folding times

Residue
=
T

Feb Aug Feb Aug Feb
0 1 2 3

— Feb. v May

---- Nov.

L
Feb Aug Feb Aug Feb Aug Feb Aug
0 1 2 3

—— Fab. e May ---- Nov.

Fig. 8. Residue (initial error growth in MK 18) versus verification months. Curves are noted by the starting months.
(a) Uniform initial error ball; (b) initial error covariance proportional to signal covariance.
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found by Blumenthal (1991) are 6 months for
February and May starts and 12 months for
August and November starts. In Blumenthal
(1991) the Markov model is constructed from a
long climatology run of ZC keeping only 5 EOFs
for each of the SST, sea level and wind stress
anomaly fields. As discussed above, the rate of
error growth is sensitive to the number of MEOFs
retained. However, the different initial error
growth starting from different seasons is better
resolved by our monthly model.

The error growth is sensitive to the initial error
structures. When the initial error covariance is
proportional to the signal covariance (diagonal,
with the most variance distributed in the first
MEOF), the error growth is much smaller
(Fig. 8b). However, the seasonal variations have
more or less the same pattern as before.

The error covariance evolution (14) also
describes how the error ellipse evolves. Let the
eigenvalues of R, be 4;, j=1, ..., 18. Then \/}Tj are
the lengths of the axes of the 18-dimensional error
ellipse. Fig.9 shows that the evolution of the
lengths of the longest five axes of the error ellipse
starting from May with an uniform error ball. The
error along one axis expands very rapidly and
dominates the initial error growth. The longest
axis of the error ellipse after nine months of
integration is 11, which corresponds to a residue

Length of axis of error ellipse

May Nov May Nov May Nov May
0 1 2 3

Fig. 9. Evolution of length of the longest five axes of the
error ellipse in MK 18 starting from May with an uniform
error ball. Note that only 2 axes expand significantly.
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112/18 =6.7, almost the total residue value in
Fig. 8a. It is interesting that only the errors along
the two axes have significant growth. When R, is
the identity matrix, R, = A, AT, where 4,(z) is the
evolution operator at lead time t starting from
month ¢. So for an uniform initial error, \/4; are
the singular values of A,. The largest singular
value gives the optimal growth rate and the corre-
sponding singular vector (SV) is the optimal per-
turbation (cf.,, Molteni and Palmer, 1993). The two
growing singular vectors in Fig. 9 make a subspace
of optimal perturbations, i.e., they maximize the
error at lead time 7. The SVs of the 6 months
evolution operators starting from other calendar
month are calculated. We found that the structure
of the fastest growing SV does not change much
with start seasons and has mostly high MEOF
(>2) components. Similarly only two singular
vectors grow rapidly. The fastest growing SV
of the 6 month evolution operator staring from
May evolves into a mature phase of ENSO in
November (Fig. 10). The starting state has been
scaled to give a SST anomaly 3—4°C in the eastern
Pacific in November. A very small perturbation in
May can quickly develop into a mature phase of
ENSO in 6 months. When the initial perturbation
has this structure, energy can be most efficiently
drawn from the basic state to support a quick
development of ENSO. For a November start, the
fastest growing SV of the 6-month evolution
operator and its final state in May are similar to
those in Fig. 10. It seems that for any start season
the fastest growing SV evolves into a mature phase
of ENSO in about 6 months.

Sensitivity to the initial error structure can be
more clearly shown in the singular vector space.
Decompose an initial error vector r, into a set of
singular vectors (SVs) S, of 4,. If ro=Sa, then
{aa") =S"R,S. The error at time 1 is 4,.Sa and
the residue is:

lr.l> a"ST4TA4.Sa

2 _
Trol?T a"STSa
0

a'Aa

a'a

—ilaf"'j.za%'i' T +213af8

(16)
aj+a3+ - +al

When R, is the identity, {aa”) is the identity
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Fig. 11. Growth of root mean square error (RMSE) NINO3 starting from (a) an uniform initial error ball and
(b) an initial error covariance in proportional to the signal covariance versus verification months. Curves are noted
by the starting months and the initial error variance is 10% of the total signal variance.

too. The residue is reduced to &*=3; A,/18.
Initially the error is equally distributed on all
singular vectors, but soon after it is dominated by
the fastest growing SV (Fig.9). When R,=0aD,
where D is the signal covariance and o is constant,
the diagonal elements of <{aa™ ) will not be equal.
If the SVs of the 6 months evolution operator star-
ting from May are ordered by their corresponding
singular values, all the diagonal elements of (aa™ »
are very small except the 16th (a,4). Since only the
first two SVs grow, the error growth (Fig. 8b) is
much smaller than that for the uniform initial error
(Fig. 8a).

Fig. 11 shows the growth of root mean square
error (RMSE) of NINO3, the most widely used
prediction index. Fig. 11a starts from an uniform
initial error ball and Fig. 11b from an initial error
covariance proportional to the signal covariance.
In both cases the total initial error variance is
chosen to be 10 % of the total signal variance, but
the different distributions of error covariance
result in different initial RMSEs of NINO3. In
Fig. 11a, the initial RMSE of NINO3 for May
starts is only 0.18 but grows rapidly to the maxi-
mum value 1.3 in November; while in Fig. 11b, the
initial RMSE of NINO3 for May starts is 0.42 but
grows slowly to the maximum value 0.63 in
November. The reason is that the fastest growing
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SV does not include the first two MEOFs, but
these two contribute the most to NINO3.

Clearly, the growth of the RMSE of NINO3 has
no single relationship with its starting value but
depends on the initial error structure. If the error
growth rates are measured by e-folding time as in
Goswami and Shukla (1991), they are 3.6, 2, 5
and 4 months for February, May, August and
November starts from an uniform initial error.
They are much faster than those measured by
residue, which measures the sum of error growth
in all fields. It was found that the residue is
dominated by the error growth in the SST and
wind stress fields and the error growth in the sea
level field is much slower. So those two indices give
consistent results. The e-folding time of error
growth estimated by Goswami and Shukla is 6.7
months. Since the e-folding time should be longer
when the initial field is perturbed with non-white
noise, the e-folding time in Goswami and Shukla is
in reasonable agreement with our results.

6. Seasonal dependency of predictability
The ZC prediction skill (Fig. 7a) shows a sharp

decline in the boreal spring (hereafter just
“spring”). This is true of MK18 (Fig.7b), in
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common with other prediction schemes (cf., Latif
et al., 1993; Barnston and Ropelewski, 1992). It
has been noticed that nature has a similar charac-
teristic, as seen from the rapid drop in the auto
correlation of observed NINO?3 in spring (Fig. 12).
This feature implies that the ENSO signal before
the spring season does not correlate well with that
after the spring season. It seems that both the
models and reality are experiencing a similar
process, which changes the ENSO cycle every year
in spring.

The mean square error (MSE) between two
variables f; and f, is MSE=<{(f;—/f2)*>=
202 —2{f, - f>, where o, the standard deviation,
is assumed the same for both. Then the correlation

of 1 and f is
_SNife> . MSE
p= 7 —=1-

o 2¢%

(17)

Since the observed variance of NINO3 is
seasonally dependent, smallest in spring and
largest in winter, it contributes to the seasonality
of predictability as measured by p. If the MSE
between the model and observed NINO3 is
roughly the same for each month, the correlation
will be low in spring and high in winter because of
the seasonally varying NINO3 variance.

Y. XUEET AL.

However, the MSE between the ZC forecast and
observed NINO3 is seasonally varying. For all
start months it grows from April and reaches a
maximum in December and then decays dramati-
cally in late winter, going to a minimum in March.
Thus the seasonal cycle of MSE is almost in phase
with the seasonal cycle of 262 Fig. 13 illustrates
for a January start (in Fig. 13: the MSE was
calculated after the raw ZC output was rescaled to
have the same variance as the observations in
order to comply with the assumptions of (17)).
When the MSE and 207 are comparable, there is
no forecast skill. Fig. 13 shows this condition is
approached in April, although the MSE is small.
We propose that the rapid drop of correlation in
spring is a consequence of the low variance at that
time and thus is characteristic of the ENSO cycle.
As long as model error exists, a rapid decline of
correlation in spring is to be expected, even when,
as with ZC, the MSE is lowest then.

Knowledge of the patterns of initial error
growth is helpful in understanding the seasonal
predictability of ZC. For late summer starts the
initial error actually decays, so predictions are able
to survive through the next spring barrier (Fig. 7a)
and gain some skill in the following winter when
the NINO3 variance is again high. For spring
starts, the initial error grows rapidly through the

Jan -

Sep |-

Jul -

Starting month

May

3.0 - -

NINO3 SST °C2

SRR N DU WS SN NN S SR S R S|

0OFy oy 4

1 n
5 10 15

0 25 30 35

20
Month
Fig. 12. Autocorrelation of the monthly observed
NINO3 from January 1970 to December 1991 as func-
tions of starting months and lead months. Notice the
rapid correlation drops around April.

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct
0 1 2 3

Fig. 13. Mean square error (MSE) (dotted) between the
scaled ZC NINO3 and observed NINO3 for January
start and the observed NINO3 variance multiplied by 2
(solid) versus verification months.
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Fig. 14. The observed (solid), ZC (dashed) and MK18-T1 (dotted) composite NINO3 by the forecasts initiated in 6
consecutive months in the period January 1970 to November 1992 at lead months 3, 6 and 9 months. MK 18-T1
referred to the 18 MEOFs model with SST assimilation in the initial conditions.

summer and the NINO3 variance increases all the
way to December. If only the initial error growth
mattered, the predictions would degrade rapidly.
However the increase of the NINO3 variance
keeps the prediction skill useful until the next
spring barrier (Fig. 7a).

7. Assimilation of SST into initial conditions

One way to increase the predictability is to
reduce the initial error. It has been mentioned that
the initial conditions have significant errors in the
low MEOFs, evident in the low correlation
between the model initial NINO3 and observed
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NINO3. These systematic errors can be partially
corrected by assimilating the observed SST into
the initial conditions. The observed sea surface
temperature anomalies in the Pacific basin in the
period January 1970 to December 1991 from the
Climate Analysis Center (Reynolds, 1988) are
decomposed by the EOFs e; from before as in (1).
The first EOF accounts for 41% of the total
variance; the next 19 EOFs account for 27% of
the variance. Even if only one EOF is kept, the
represented NINO3 correlates with the total
observed NINO3 at 0.97. Vector b is constructed
by replacing the model initial SST PCs a} (0) by
the observed SST PCs a(°**(0) and leaving the sea
level and wind components a?(0) and a;(0) as
before in (2). Then the new initial state vector
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d°* in the MEOF space is calculated by decom-
posing b as in (4). By trying several truncations on
a!°**)(0), we found that when only the first EOF is
retained in aj‘."bs’(O) and the rest are set to zero
(referred to as MK18-T1 hereafter) the forecast
had the best skill. The monthly averaged predic-
tion-observation correlation versus lead time is
shown in Fig. 6, together with ZC, MK18 and
persistence forecasts. It is seen that MK18-T1 is
superior to persistence after about 2 months lead
and superior to ZC up to 10 months lead. The skill
is a little lower than ZC for lead times 11-13
months and higher again for lead times longer
than 13 months. The seasonal dependence of fore-
cast skill is similar to that in Figs. 7a, b, except that
there is much higher correlation at short lead times
in MK 18-T1 than that in ZC and MK18.

Since MK 18-T1 has better forecast skill than ZC
at short lead times, it is useful to show the
retrospective forecasts for the period January 1970
to November 1992. To make the comparison with
the ZC forecasts easier, the composites by the
forecasts initiated in 6 consecutive months (see
Cane et al. (1986) for details) in MK18-T1 are
calculated and shown with the observed and
ZC NINO3 in Fig. 14. The 3- and 6-month lead
forecasts are better than the ZC’s but the forecasts
with lead times beyond 9 months are not obviously
superior to ZC. The recent 91-92 El Nifio is well
predicted for lead time up to 12 months.

An obvious question to ask is whether the 18
MEOFs model is still the best one when the
observed SST is assimilated. As we have done
before (Fig. 4), the Markov models with 5, 16, 18,
20 and 30 MEOFs initialized by the initial condi-
tions with SST assimilation were compared (not
shown). We found that the model with 18 MEOFs
is still the best one and the sequence in terms of
forecast skill is the same as in Fig. 4.

The SST assimilation in the initial conditions
only helps forecasts at short lead times (<6
months), while the forecasts at long lead times
remain the same. We propose that the forecast skill
at long lead times is largely determined by the
initial set up of the oceanic heat content. So
improvement in the initial oceanic heat content is
expected to help forecasts at longer lead times. By
improving the ocean model, using better winds to
force it, or incorporating the ocean heat content
information directly, a better forecast skill than
MK18-T1 is potentially possible.

Y. XUE ET AL.

8. Summary and conclusions

Based on the assumption that the ENSO is a
low order, mainly linear and low frequency system,
a seasonally varying first order auto regressive
model (Markov model) is constructed from an
ensemble of forecast data generated by ZC. The
data is made up of a suite of 3-year coupled
model forecasts starting from each of the monthly
initial conditions for the period January 1970 to
December 1991. These initial conditions are
generated by forcing the ocean component alone
with the observed wind stress (FSU) beginning
with January 1964 and then forcing the atmo-
sphere component alone with the hindcast SSTs.
The SST anomaly, sea level anomaly (4) and sur-
face wind stress anomaly (z) fields which charac-
terize the model state space are combined into a
reduced state space by finding multivariate EOFs
(MEOFs). Eventually 30 MEOFs are kept.

Various Markov models utilizing between 5 and
30 MEOFs all simulate ZC quite well for one year.
When the observed NINO3 is the reference, the
model with 18 MEOFs (MK18) has the best
forecast skill, comparable with that of ZC. It is
demonstrated that the Markov model has little
artificial skill; this is to be expected, since the
model is fit to ZC not observational data. The
truncation of the initial conditions is responsible
for the increased forecast skill of the 18 MEOF
model compared to those with more MEOFs,
which suggests that the MEOFs higher than the
18th in the initial conditions are mostly noise.
When the observed SST is assimilated into the
initial conditions, the forecast skill is improved at
short lead times ( <6 months).

Analysis of MK 18 shows that its eigenmodes
(POPs) are non-self-adjoint, which could lead to a
fast transient initial error growth as in Farrell
(1989) and Blumenthal (1991). It is found that the
initial error growth is fastest starting from spring
and slowest starting from late summer and is sen-
sitive to the initial error structures. Two singular
vectors (SVs) of the linear evolution operator have
significant transient growth dominating the total
error growth. Since the fastest growing SV has
mostly high MEOF (>2) components, the error
growth tends to be larger when there are more high
components in the initial error fields. Removing
them improves prediction skill. Since the singular
vectors control the error growth, in future work we

Tellus 46A (1994), 4



ON THE PREDICTION OF ENSO

plan to use knowledge of them to filter the initial
conditions. We were not able to use the POPs to
filter the initial conditions because we did not find
a good way to differentiate them for truncation.
The fastest growing SV has components on all
POPs and its fast growth lies in the collective
action of all the POPs. Blumenthal (1991) has
vividly demonstrated it in a 2-dimension system.
The relationship between the singular vectors and
POPs in MK18 is more difficult to demonstrate
and understand. More analyses are necessary.

The seasonal variation of the initial error
growth due to the non-self-adjoint property,
fastest starting from spring and slowest starting
from late summer, is consistent with the seasonally
varying stability of the coupled ocean-atmosphere
system as established by linear stability analysis
(Battisti and Hirst, 1989). It is found that the
coupled system is the most unstable in summer
and least unstable in winter. However the singular
vectors in a non-self-adjoint system are different
from the normal modes in linear stability analysis.
The normal modes have fixed spatial structures
and fixed growth rate while the structures and the
growth rate of singular vectors change with evolu-
tion time. The optimal growth rate of singular
vectors can be much faster than the fastest growing
normal mode. For an example, the optimal growth
of amplitude of the normal modes (POPs) is
1.2 from May to November in MK18, while the
optimal growth of singular vectors is 10.2. This
thansient growth is the greatest concern in short
term ENSO prediction.

The seasonality of predictability is characteristic
of ENSO. The observed standard deviation of
NINO3 is variable with season, smallest in
(northern) spring and biggest in winter. Since
the NINO3 variance is the smallest in spring, the
correlation is especially sensitive to the change of
mean square error (MSE) in this season. This
sensitivity causes the correlation lines to squeeze
together, indicating a fast decline in forecast skills.
This phenomenon is expected to be common with
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all ENSO forecast models, since it depends on a
property of nature, the low variance in spring.
Webster and Yang (1992) attribute this special
feature in spring to the influence of the summer
monsoon circulation. Their argument has 2 fac-
tors: one is that an increase in external noise causes
the spring barrier and another one is that the
strong monsoon circulation could modulate
the weak Walker circulation at spring to make the
system especially sensitive to external noise. The
1st could be checked form data, but it is not
straightforward to do so. The 2nd is partly
addressed by us since the climatological monsoon
is included in the ZC background state. We see
that spring is not an especially favorable time;
summer is. We can not now address just how the
anomalous monsoon may modulate the back-
ground state. Our point is that, even assuming the
system noise is unaffected by the monsoon and
noise levels are the same for spring as for other
seasons, the spring barrier would nonetheless
occur due to the smallness of NINO3 variance.

The seasonal variations analyzed here, including
the spring barrier, are characteristic of ENSO and
so effect all model predictions. Predictability will
vary from model to model because of different
non-self-adjointness and different initializations.
The rapid error growth through the summer
season imposes an upper limit on predictability,
but more sophisticated models and better initial-
ization procedures may well achieve better forecast
skills than those obtained to date.
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