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1. Introduction

Kawase (1987) recently presented an enlightening
extension of the celebrated but underutilized Stommel-
Arons model of the deep circulation. The principal
change from that by now classical formulation is the
replacement of a prescribed upwelling at mid-depth
with one parameterized in terms of the layer thickness
determined by the flow. For weak thermal damping
Kawase’s results are similar to Stommel-Arons. How-
ever, he explicitly connects the equatorial region to
higher latitudes, and his principal finding is that for
strong thermal damping the deep western boundary
current emanating from a high latitude source sepa-
rates, turns eastward at the equator, and finally
turns poleward into both hemispheres at the eastern
boundary.

The purpose of the present note is to offer a succinct
and nearly exact solution as a replacement for the ap-
proximate and elaborate mathematical development
in Kawase’s paper. It is hoped that this will make the
original more accessible and more amendable to ad-
ditional applications. The physical formulation and
justification, along with a cogent interpretation of the
results may be found in the original and will not be
reprised here.

2. Mathematical development

We begin with the steady, linear shallow water equa-
tions on an equatorial beta plane, Kawase’s Egs. (3.1)-
(3.3):
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Here H is the equivalent depth for this one mode ocean,
K a Rayleigh friction coefficient and A, the Newtonian
damping, is the consequence of parameterizing mid-
depth upwelling to balance diffusion. The basin is
bounded by meridional walls at x* = 0 and x* = L,
Instead of an explicit deep-water formation region, the
flow is driven by a specified inflow U%(») on the west-
ern boundary at high northern latitudes. Elsewhere on
the boundaries u* = 0.

The asterisks mark dimensional variables; in the ca-
nonical equatorial scaling one defines wave speed,
length and time scales by the relations:

co = (gH)'% Lo = (co/B)'% To=(coB)'/. (4)

Instead, here we will first multiply (3) by K/ so the
Rayleigh damping coefficients in all three equations
appear to have the same value, K, and the equivalent
depth seems to be (X/\) H. Now define the analogous
scales:
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As usual, relate scales for currents U and height
Dby U = gD/c. Applying the scaling (5) transforms
()-(3) to the standard nondimensional form
with nondimensional Rayleigh coefficient K’ = KT
= (K*\)*Ty. If one also wrote K’ = iw the set of
equations would have the form usually used to derive
equatorial waves. By drawing on the extensive body of
literature pertaining to these equations the problem at
hand may be solved relatively painlessly.

We follow Kawase in taking the momentum dissi-
pation K to be small, though with a technical change:
Kawase assumes ¢ = K/8Ly < | while here the more
restrictive, but still realistic assumption is made that
K’ < 1. The low-frequency approximation then applies,

T =(cp)™'". (5a)
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in which case all of the mass flux incident on the west-
ern boundary is returned in an equatorial Kelvin wave
(Cane and Sarachik 1977). The role of the western
boundary current is to provide the equatorward trans-
port which makes this possible. The incident flux con-
sists of the specified input Up together with any addi-
tional generated as part of the solution.

The Kelvin wave leaves the western boundary and
crosses to the east, losing amplitude to dissipation along
the way. Let us say it arrives at x* = Lz with amplitude
A. Cane and Moore (1981) show that the sum of this
wave and its reflection in Rossby waves has the closed
form

.2
{u, v, h] = A(cosh2r{)~!/2 exp(Ty tanh2r§)

X [sinh2r¢, K'y sech2r¢, cosh2r¢] (6)

where { = (Lp — x*)/Lp ranges from 1 to O as the
basin is traversed from west to east. The damping pa-
- rameter r = KLg/c = K'Lg/ L is related to Kawase’s ¢
by r = (K/\)'/%. [Equation (6) is exactly the Cane
and Moore mode with X' substituted for iw; the inter-
ested reader is referred to the derivation in that paper,
which is neither long nor arduous.]

The total solution to Kawase’s problem consists of
three parts: (i) The inflow U?(p) at ¢ = 1; (ii) the
interior flow (6); (iii) the western boundary current.
The as yet unknown constant 4 appearing in (6) is
determined by the previously mentioned condition
(Cane and Sarachik 1977) that exclusive of the bound-
ary current (iii), the net zonal mass flux at the western
boundary must be zero. Using the form of u given by
(6)at {=1:

+o0
0= —f U®B(y)dy + A(cosh2r)~"/? sinh(2r)

+o0 y2
X f exp(— ) tanhzr)dy. )

o

Letting s = y[% tanh2r]'/?,

+00 +o0
0= —f UB(y)dy + A[sinh2r]'/? Vif e~ ds;

+o
A=2~n sinh2r]””2f U(y)dy. (8)
Once A4 is known, the western boundary current is
determined as well (see Cane and Sarachik 1977, p.
404). With u given by (6) its transport ¥ 'is determined
by :

V=fy°°[—UB(y')+u(s“= Ly)ldy.  ©)

It follows immediately from (9) that ¥ =0aty = o
while (7) insures that V"= 0 at y = —o0. For this Ray-
leigh friction model the boundary layer structure is that
of the Stommel model.
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This completes the solution, but two technical points
require comment. The problem has been solved for a
meridionally infinite ocean, where as Kawase (and na-
ture) impose boundaries at |y| = Y, say. If Y is far
from the equator the solution may be amended by
adding a westward flowing boundary layer at Y which
accepts all the poleward mass flux implied by (6) at
that latitude. This well known matching condition was

" proved rigorously by Moore (1968) and is discussed in

many places (e.g., Cane and Patton 1984). The only
change it makes is that boundary current (essentially
a coastal Kelvin wave) is much swifter than the high
latitude Rossby waves it replaces so less mass flux is
dissipated on the journey eastward than implied by
(6). This affects the matching condition (7), but the
percentage of the total flux affected, which goes like
Y 2, is small for large Y.

Second, (6) assumes the long-wave, low frequency
approximation [which amounts to neglecting Kv* in
(2)]. For large enough damping X this does not strictly
hold. However, in this case the flow is trapped to the
equator and eastern boundary, and although (6) is in-
correct in detail, it still captures the large scale features
of interest here (see Figs. 4-7 of Cane and Moore 1981).

The solution (6), (8) is structurally different for dif-
ferent parameter values, as discussed by Kawase. The
parameter exerting primary control is 7 = (K\) /2L g/
co. Here L/ co is the time it takes for a Kelvin wave
to cross the basin, and (K\)~!/? is the harmonic mean
of thermal and momentum damping times. Thus 7 is
a measure of how strongly a wave is damped in crossing
the basin.

If the damping is strong enough so tanhr{ ~ 1 (i.e.
rand r{ = 1) then (6) is approximately

[u,v, h] = r"’z[f Ude] ? eV er1=0)

X [1, 2K'ye™ %, 1]. (10)
The meridional velocity v is small everywhere, and u
and 4 fall off rapidly away from the equator. Dimen-
sionally the e-folding scale,

. )\'32 1/4
=" [KgH]

(11)

depends on the ratio of the damping times as well as
the equivalent depth. Note that u and 4 also weaken
away from the western boundary with dimensional de-
cay scale r~' L.

Even with r 2 1 (10) does not apply near the eastern
boundary where r{ < 1. In this region

-r

[u, v, h] ~ w-'ﬂU Ude] 97 e 2rt, K'y, 11;

(12)
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zonal velocity is small and the meridional velocity is
strong and poleward, but only within a boundary layer
of thickness { ~ (ry?)~'. Dimensionally

— x¥* A~y ﬁ *)—2
Lp—x* ~20M)7, (13)
independent of the momentum damping K. In sum,
for strong damping the flow is a western boundary cur-
rent flowing from the source region to the equator.
There it turns eastward, weakening as it goes. At the
eastern boundary it divides into a poleward flow in
both hemispheres which narrows as the latitude in-
creases. The circulation is neglible outside of these
boundary layers. This is the flow depicted in Fig. 3 of
Kawase.

For weak damping, r < 1, sinh2r ~ 2r, tanh2r¢
~ 2r{, cosh2r{ =~ 1, so (6) is approximately
—-1/2

[u,v, h] = w"/zf Ude-r—E-—e_yz"[er, Ky, 1].

(14)

Define n = y*/ Ly so that, as in Kawase, latitude
and longitude are both scaled by the basin width. Now
rewrite (14) as

[, v, h] ~ r—'ﬂ[ [ UBdn] 57126828, 1]
(15)

where .
5= ABL p*
gH
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is the parameter at the core of Kawase’s analysis. The
angle of the flow from east is tan~'(n/2¢): the flow is
predominantly zonal at low latitudes near the west,
becoming more meridional as both latitude and lon-
gitude increase. The interior flow remains strong out
to a latitude y* ~ L z67'/%; see Kawase, Figs. 4 and 5.
The condition (7) sets the Kelvin wave amplitude
at the western boundary to return all the mass flux
incident there. If the damping is high this is just the
imposed mass flux Ujp [cf. (10) for { = 1]. When the
damping is low, as in (14), then it also includes Rossby
waves generated at the eastern boundary as the reflec-
tion of the Kelvin wave. In the former case these are
damped out before they cross the basin, whereas with:
weak damping the flow must fill the interior in order
to achieve enough dissipation to balance the inflow. It
is interesting that the solution is strongly controlled by
the thermal damping A [viz. (13), (15)], but is almost
indifferent to the momentum damping K [but cf. (11)].
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