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ABSTRACT

The Zebiak—Cane (ZC) model for simulation of the ElI Nifio-Southern Oscillation is shown to be capable of
producing sequences of variability that exhibit shifts in the time-mean state of the eastern equatorial Pacific that
resemble observations of tropical Pacific decadal variability. The model’s performance in predicting these shifts
is compared to two naive forecasting strategies. It is found that the ZC model consistently outperforms the two
naive forecasts that serve as a null hypothesis in assessing the significance of results. Forecastsinitialized during
anomalously warm and anomalously cold decades are shown to have the highest predictability.

These modeling results suggest that, to a moderate extent, the state of the tropical Pacific in one decade can
predetermine its time-mean state in the following decade. However, even in this idealized context decadal
forecasting skill is modest. Results are discussed in the context of their implications for the ongoing debate

over the origin of decadal variations in the Peacific.

1. Introduction
Pacific decadal variability

Decadal-scale variability in the tropical and North
Pacific Ocean has been documented and analyzed using
both observations and modeling studies (e.g., Trenberth
and Hurrell 1994; Graham 1994; Miller et al. 1994a,b;
Zhang et al. 1997; Guilderson and Schrag 1998; Miller
and Schneider 2000; Karspeck and Cane 2002; Seager
et al. 2004). Much of thiswork has focused on the shift
toward warmer tropical sea surface temperatures and
cooler North Pacific sea surface temperatures that oc-
curred in 1976. But there are other examples of ** shifts”
in the observational record, such as the 1943 shift to-
ward cooler conditions in the tropical Pacific (Zhang et
al. 1997). These have received less attention, at least
partially due to the paucity of observational data avail-
able for the Pacific prior to the late 1970s. Observations
of tropical Pacific sea surface temperatures (SSTs) also
suggest that the descent into a La Nifa following the
1997-98 El Nifio marked another shift in the climate of
the Pacific, although it isimpossibleto foretell how long
these cool conditions will endure. A number of terms
have been coined to describe these long-term climate
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fluctuations [e.g., the Pacific decadal oscillation (PDO),
the North Pacific Oscillation, decadal-ENSO variabil-
ity]. In this study, we will use the more general term
Pacific decadal variability (PDV). PDV has important
implications for the North American climate (Latif and
Barnett 1996) and fisheries productivity off the coast of
Alaskaand the northwestern United States (e.g., Mantua
et a. 1997; Hare et al. 1999).

Although the evidence for these climatic shifts is
plentiful and a variety of mechanisms have been pro-
posed, there does not yet exist a coherent theory that
explains the generation or maintenance of the variabil-
ity; nor is there a clear understanding of the relative
(and possibly interactive) roles of the Tropics and the
higher latitudes. The existing literature has tended to
focus on mechanisms that favor an active role of the
midlatitudes in generating anomalies (e.g., Latif and
Barnett 1996; Gu and Philander 1997; Vimont et al.
2001). Under this paradigm, conditions in the North
Pacific—which could be generated as aremote response
to tropical forcing or through internal variability—are
communicated to the Tropics via an oceanic or atmo-
spheric bridge. The Tropics are posited to respond to
these remotely generated anomalies through modul ation
of the ENSO cycle.

However, PDV that originates and is maintained with-
in the tropical Pacific remains a viable hypothesis. The
delayed oscillator mechanism (Battisti 1988; Suarez and
Schopf 1988), typically used to explain interannual
ENSO, can produce variability at decadal periods
(Chang et al. 1995; Knutson and Manabe 1998). Tim-
mermann and Jin (2002) argue that tropical ocean—at-
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mosphere interactions can modulate the amplitude of
the ENSO cycle on decada time scales. Nonaka et al.
(2002) suggest that modulation of the strength of the
subtropical overturning cell can be driven by off-equa-
torial zonal wind anomalies.

Regardless of the mechanism, decadal variability in
the Tropics can then remotely affect the high latitudes
through the same atmospheric teleconnections that op-
erate on interannual time scales (Lau and Nath 1996;
Lau 1997). Modeling results from Alexander et al.
(2002) suggest that one-quarter to one-half of the var-
iance of the dominant pattern of low-frequency vari-
ability in the North Pacific arises from tropical forcing
via the *‘atmospheric bridge’” (Alexander 1992).

Invoking hypotheses of high-latitude origin have the
attractive by-product of introducing a characteristic
anomaly evolution that operates on time scales on the
order of decades (Latif and Barnett 1996). If midlati-
tude-generated anomalies are assumed to take an oce-
anic path to the Tropics, then there is atravel time from
inception to tropical amplification on the order of a de-
cade (Gu and Philander 1997). This suggests that with
a proper understanding and observation of the system,
it would be possible to predict these climate fluctuations
years in advance (Latif 1998).

But if PDV originates in the Tropics—where the cli-
mate signal is dominated by interannual variability and
the coupled system is possibly chaotic—is prediction of
decadal variability possible?

To help elucidate the question of PDV origin, it would
be desirable to determine if the trigger for an abrupt
shift in the phase of the PDV is present in the tropical
Pacific in the years prior to a shift. In other words, does
the state of the tropical Pacific in one decade predeter-
mine its time-mean state in the following decade?

Unfortunately, the shortness of the observational rec-
ord limits our ability to address this question using data
alone. There are only a small number of ““ shifts” in the
time-mean state evident in the observational record. In
this study, then, we use a synthetic record that contains
many examples of decadal scale shifts, which was gen-
erated by the Zebiak—Cane (ZC) model of the tropical
Pacific ENSO system. As we will show, the model is
capable of producing time sequences of tropical vari-
ability that exhibit shiftlike behavior similar to the hand-
ful that have been observed.

We then address whether the shifts in these modeled
sequences are predictable by the tropical-only ENSO
model some yearsin advance. Which isto say, are there
coherent structures in the tropical ocean—atmosphere
that signal a coming shift in the time-mean state of the
system? Theresult will most likely be an overestimate—
an upper bound on the predictability of the real Pacific:
It neglects all connectivity with higher latitudes as well
as higher frequency tropical noise.

Section 2 introduces the intermediate coupled ENSO
model and the observational data used in this study.
Section 3 presents assessments of the predictability of
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time-mean shifts of the tropical climate using the model.
Sections 4 and 5 compare the model’s predictability with
two naive forecasting strategies (null hypothesis). Sec-
tion 6 concludes our findings.

2. Description of model and observational data

The model we use is an intermediate coupled model
of the ElI Nifio—Southern Oscillation (ENSO) described
in Zebiak and Cane (1987). The ZC model was inte-
grated for 150 000 yr. The average SST anomaly in the
Nifio-3 region (5°S-5°N, 150°-90°W) was retained at
monthly intervals, yielding a time series of 1.8 X 10°
months in length. This model series will henceforth be
referred to as *“ZC-Long.”

Observations of the average SST anomaly in the
Nifio-3 region were computed from the Kaplan optimal
analysis of MOHSST5 SST anomalies (Kaplan et al.
1998) every month from January 1856 to December
1991. We will refer to this series as **Kaplan SST.”

3. Predictability of shiftsin the 15-yr mean of the
Nifio-3 index

From the Kaplan SST, we found three 30-yr segments
that exhibit shifts in the timemean of the two adjacent
15-yr periods: a positive, negative, and neutral shift.
The size of the shift is defined as the differencein means
between the second and the first 15-yr period. The pos-
itive and negative shifting segments were chosen be-
cause they have shifts of the greatest magnitude in the
Kaplan SST record. The segment corresponding to the
neutral shift was chosen because it had a shift size clos-
est to zero. Figure 1 shows the warm shift segment
(hereafter referred to as **W-obs”’; centered at January
1976), the neutral shift segment (hereafter referred to
as‘*N-obs"; centered at January 1903), and the cold shift
segment (hereafter referred to as ** C-obs”’; centered at
January 1943). The segments that shift toward colder/
warmer means each show an absolute difference in
means greater than 0.3°C. The segment with no shift
(N-obs) shows an absolute difference of lessthan 0.1°C.

We then searched ZC-Long for the 30-yr segments
that had the highest correlation with the observed seg-
ments, C-obs, W-obs, and N-obs, and had appropriately
sized shifts in the mean (absolute value of more than
0.3°C for warm and cold shifting segments and less than
+0.1°C for neutral shifting segments). Twenty-four in-
stances (we will refer to these segments as *‘analogs’”)
for each of the three observed segments were retained
(totaling 72). Figure 1 shows the model analogs with
the highest correlation to C-obs, W-obs, and N-obs.
(Correlation and shift size for all 72 model instances
are shown in Table 1.)

There are 93, 10, and 16 analog segments that cor-
relate with W-obs, N-obs, and C-abs, respectively, at an
R value greater than 0.5. This meansthat 30-yr segments
that match the observed shifts occur in the ZC model
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FiG. 1. Observed Nifio-3 averaged SST anomalies (gray line) taken
from Kaplan et al. (1998). A 30-yr segment of Nifio-3 SST anomaly
(blackline) from ZC-Long (150 000-yr integration of ZC model) with
the highest correlation. Correlation values are in Table 1. Observed
shifts in Nifio-3 SSTA between first and second 15-yr segments are
0.35°C for 1976 warm shift, —0.09°C for the 1903 neutral shift, and
—0.33°C for the 1943 cold shift.

about once every 1600 yr for warm shifts, once every
15 000 yr for neutral shifts, and once every 9300 yr for
cold shifts.

The spatial patterns of warm and cool decadal shifts
produced by this model are similar to its interannual
ENSO pattern. The maximum is centered on the equator
within the Nifio-3 region and is meridionally narrow.
The SST anomaly difference patterns in the observed
warm and cool decadal shiftsisqualitatively similar, but
with a more meridionally broad signal. The observed
1976 warm shift has an additional maximum just west
of the date line, although the 1943 warm shift does not.
The absence of the broad structure in the model decadal
shifts could be attributed to insufficient communication
between the mixed layer and the thermocline or the
neglect of other terms such as wind speed and cloud-
cover variations in the model net surface heat flux. Ha-
zeleger et al. (2004) show that the meridional breadth
of the decadal ENSO pattern can also be affected by
variations in the strength of the Indonesian Through-
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TaBLE 1. The correlation coefficients (R) between W-obs, N-obs,
and C-obs, and the 30-yr model-generated analog segments (from
ZC-Long). Also, the size (in °C) of the difference in the means of
the second and first 15-yr segments of the analog.

Warm shift Neutral shift Cold shift
R  Shift size R Shift size R  Shift size
1 0.64 0.41 0.63 0.09 0.59 —0.36
2 064 0.37 0.58 —0.06 056 —0.39
3 0.63 0.48 0.57 0.07 0.56 -0.37
4 0.63 0.36 056 —0.06 055 —0.33
5 0.62 0.30 0.55 —0.06 0.55 —-0.32
6 061 0.43 0.54 0.03 054 —-031
7 061 0.38 0.53 —0.03 0.54 —-0.54
8 061 0.31 0.53 0.01 054 —0.59
9 0.60 0.32 0.51 0.02 0.54 —0.40
10 0.59 0.39 0.50 —0.002 054 —0.49
11 059 0.36 0.50 0.05 0.53 -0.31
12 0.58 0.45 0.50 0.04 053 —042
13 0.58 0.47 0.49 —0.08 0.53 —0.45
14 0.58 0.51 049 —0.06 052 —-041
15 0.58 0.48 0.49 —0.09 0.51 —-0.64
16 0.58 0.37 049 —0.07 050 —0.51
17 0.58 0.39 0.48 0.04 0.50 -0.37
18 0.58 0.40 048 —0.07 050 —0.32
19 057 0.40 0.49 —0.05 0.50 —-0.33
20 057 0.36 048 —0.06 050 —0.40
21 057 0.44 0.47 —-0.04 0.50 —0.36
22 056 0.43 047 —0.06 049 —-044
23 0.56 0.35 0.47 0.02 0.48 —0.45
24  0.56 0.56 047  —0.005 048 —0.38

flow, which varies in response to the phase of ENSO.
This process is not resolved in our intermediate model.

We postulate, then, that the decadal shifts in tropical
Pacific climate in the last century may possibly be op-
erating with the basic physics of internal tropical var-
iability as modeled by ZC.

Given that the temporal pattern of observed shiftscan
be reproduced by the ZC model, our objective is to
assess their predictability in the presence of initial con-
dition noise. For each of the 72 model analog series, a
suite of 100 forecasts was performed with the ZC model.
Each ensemble member was initialized in the month of
January, 5 yr prior to the shift point and integrated for-
ward for 20 yr. Since we are forecasting from a state
along a known ZC model trajectory, the initialization
procedure is a straightforward insertion of the model
state. The initial condition of each member of the en-
semble differed only by the addition of a perturbation
to the model SST field. The perturbation at each grid
point was sampled randomly from a zero mean uniform
distribution. The ZC model’s SST standard deviation at
each grid point was used to determine the standard de-
viation of the perturbation to the corresponding grid
point.

Thisgenerates ensembleinitial conditionsthat deviate
from the true initial conditions by a spatially uncorre-
lated pattern. Thus, the model must glean its predict-
ability from the large-scale, coherent ocean/atmosphere
structures that are not destroyed by the application of
noise.
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Fic. 2. Distribution of shifts in means of adjacent 15-yr segments
of Nifio-3 SSTA (in °C) from 150 000-yr integration of ZC model.
Quintiles marked in solid black lines.

We present the predictability in two ways. 1) as a
function of the sense of the shift (i.e., warm, neutral,
or cold shift) and 2) as a function of the mean SST
anomaly in the Nifio-3 area in the 10-yr period leading
up to the forecast initialization. The latter is based on
the pragmatic notion that in an operational forecast sys-
tem the most useful classification of predictability is
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based on the available observations, that is, the current
and past state of the system.

For each of the 100 perturbed initial states it is de-
termined whether the model could properly forecast the
shift. In order to quantify the definition of a shift in the
model space, we consider a probability distribution of
differences in the mean of sequential 15-yr segments.
These are derived, again, from ZC-Long. This distri-
bution is divided into quintiles, with equal likelihood
of occurrence in each bin (Fig. 2).

For the 24 warm shift analogs, the forecast is ‘‘ cor-
rect” if theshiftisin thefifth (highest) quintile, ““ weakly
correct” if it is off by only one quintile (i.e., in the
fourth quintile), and *‘wrong” if it is off by more than
one quintile. Similar definitions apply to cold and neu-
tral shifts as illustrated in Fig. 3.

Table 2 (left side) shows the relative frequencies of
correct, weakly correct, and wrong forecasts. These are
the raw counts divided by the total sample size, ex-
pressed as a percentage. The results are presented as a
function of the sense of the shift (either warm, neutral,
or cold). Warm shifts are shown to be predictable almost
60% of the time, far more than either cold or neutral
shifts.

Next, we present the predictability as a function of
the initial decadal mean SST anomaly. Every 10-yr pe-
riod in ZC-Long is classified as either a “warm”
‘““cold,” or “'neutral”’ decade, with these classes defined
such that there is equal probability of being in each of

Warm Shift

" Neutral Shift

correct

correct

correct

Cold Shift

-2 -.06

.06 .21

degree C

FiG. 3. For warm, neutral, and cold shifting analog series, the range of shift sizes that are
designated as correct, weakly correct, and wrong.
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TABLE 2. Performance of the dynamical model and two naive forecasting strategies presented as a function of the sense of the shift (warm,
neutral, or cold). Results for the dynamical model are based on 100 member ensembles for each of the 72 analog series (24 each of warm,

neutral, and cold shifts). Ensembles of size 500 000 were used for the naive forecasts.

Naive reference forecasts

ZC dynamical forecasts ZC-Long AR (2)
Correct (%) Weak (%) Wrong (%) Correct (%) Weak (%) Wrong (%) Correct (%) Weak (%) Wrong (%)
Warm shift 59 23 18 42 26 32 47 16 37
Neutral shift 21 45 34 18 39 43 14 30 56
Cold shift 41 23 36 30 22 48 34 14 52

these states. Figure 4 shows the distribution of 10-yr
mean Nifio-3 SST anomaly values from ZC-Long. Ter-
ciles have been marked with solid black lines. The small
bias in the model SST fields has been removed. Any
decade with a mean less than —0.11°C is by definition
cold, between —0.11° and 0.10°C is deemed neutral,
and greater than 0.10°C is defined as warm. Each of the
72 analogs are sorted by their initial 10-yr state (warm,
neutral, or cold).

Table 3 (left side) shows the relative frequencies of
correct, weakly correct, and wrong forecasts as a func-
tion of the 10-yr mean SST anomaly leading up to the
initialization. Forecasts that were initialized during
warm and cold decades are shown to be correct 46%
and 43% of the time, respectively, while neutral starts
are correct only about one-third of the time. The near
symmetry of this result is worth noting. It can be in-
terpreted as the model’s tendency toward greater long-
term stability (to perturbations) during anomalously
warm or cold decades. Alternatively, decades with a
mean closer to zero can be considered to be more un-
stable to perturbations (on decadal time scales) and
hence more susceptible to errors in forecast initializa-
tion.

FiG. 4. Distribution of 10-yr means of Nifio-3 SSTA (in °C) from
ZC-Long (150 000-yr integration of ZC model). Terciles marked in
solid black lines.

4. Comparison to naive forecast strategies

When assessing forecast performance, it is common
to think in terms of relative accuracy, or accuracy com-
pared to some reference forecast. We have chosen two
empirical strategies, which we call our *‘naive fore-
casts.”” They are each variations on the following idea:
If we have no meaningful understanding of the dynamics
of the system, then our best guess is to forecast from
an empirical distribution of possible model states. This
means that any skill that the naive forecasts may have
will stem from having anomalous initial states. Statis-
tically extreme initial states will most often result in an
appreciable shift in the decadal means because the naive
forecast always tends toward a statistical medium (the
mode of the distribution). We would not wish to impute
skill to the dynamical forecasts if al they are able to
capture is the tendency to shift away from the extreme
states.

These “naive’” schemes will be used as null hypoth-
eses against which to measure the skill of the ZC dy-
namical forecasts. As in the dynamical forecasts, we
initialize each forecast in the month of January, 5 yr
prior to the shift point. The following two subsections
describe each of the naive forecasting strategies.

a. Null 1: Forecasting from a decadal distribution of
ZC-Long

From ZC-Long, we constructed a population X, the
elements of which are given by the following summa-

tions:
1 j+59
180(2} ')

Here, x; are the sequential values of ZC-Long and j is
indexed through them. The second term in (1) represents
the time average of a 15-yr segment of the ZC-Long
series. The first term is the weighted sum of the pre-
ceding 5 yr in ZC-Long. We make our naive forecasts
from the distribution of X.

For each of the 72 analog time series, we calculated
the statistic Y = —(1/180)(31 vy,), where y; are the
monthly elements of the analog time series for the 10
yr prior to the forecast initialization point. Adding the
Y value to a sample from X gives the difference in the

X(j) =

i=j+60

1 [0
+ ﬁ( 2 Xi)' (1)
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TaBLE 3. Asin Table 2 except that performance results are presented as a function of the SST in the decade of initialization. Results for
the dynamical model are based on 100-member ensembles for each of the 72 analog series. Ensembles of size 500 000 were used for the
naive forecasts. There were 17, 18, and 37 warm, neutral, and cold initial starts, respectively.

Naive reference forecasts

ZC dynamical forecasts ZC-Long AR (2)
Correct (%) Weak (%) Wrong (%) Correct (%) Weak (%) Wrong (%) Correct (%) Weak (%) Wrong (%)
Warm start 46 24 30 37 23 40 37 17 46
Neutral start 32 31 37 19 28 53 22 21 57
Cold start 43 31 26 35 32 33 33 23 44

time average of the second and first 15-yr segments, that
is, the shift size. A schematic illustration of thisisshown
in Fig. 5.

To get an ensemble of shift sizes for each analog, we
generated 500 000 random samples from the population
X and added them to the Y value. This procedure is
equivalent to forecasting the 20 yr after theinitialization
point by randomly choosing 20-yr segments from ZC-
Long and then computing the shift size by taking the
difference in means between the second and first 15-yr
segments. This method of forecasting is meant to cap-
ture the statistical behavior of the model’s decadal mean
states. As such, it contains information about any re-
gime-type behavior intrinsic to the model.

The prediction skill is assessed in a manner identical
to that described in section 3. Tables 2 and 3 show the
relative frequencies of correct, weakly correct, and
wrong forecasts as a function of the state of the decade
preceding the shift and the sense of the shift.

b. Null 2: Forecasting with a monthly AR(2) model

Next we construct a second-order autoregressive
[AR(2)] approximation of the ZC model using values
from ZC-Long. We use AR(2) as our null hypothesis
rather than the more usual AR(1) because an AR(1)
model cannot capture an oscillation; unlike ENSO, it
would lack aspectral peak. The seasonality of the model
is taken into account by constructing separate AR(2)
coefficients for each calendar month. The size of the
noise term is determined such that the variance of the
AR(2) model is equal to the variance of the ZC model.

(forecast initialization)

A V)

The mean of the AR(2) model is also adjusted to be
equal to the mean of the ZC model.

The monthly AR(2) model is fundamentally different
from the statistical forecast presented in the preceding
subsection because it is designed to capture the inter-
annual variahility of the model. Any regimelike behav-
ior of the AR(2) model results from the integration of
continuously applied white noise.

This AR(2) model is used to forecast for 20 yr after
the initialization point in each of the analog time series.
The uniqueness of each AR(2) forecast resultsfrom gen-
erating a different noise series for each ensemble mem-
ber. The shift size for each of the 500 000 ensemble
members is calculated as in the previous section. Pre-
diction skill is assessed as in section 3. Tables 2 and 3
summarize the results.

5. Quantifying the ZC model performance in
relation to the naive forecasts

We choose the commonly used ranked probability
score (RPS; Epstein 1969) as a single metric to assess
the forecast skill of each of our methods. The RPSisa
type of squared error score that is sensitive to distance,
where the score penalty for incorrect forecast proba-
bilities increases for categories further from the actual
event outcome. This is achieved by computing the
squared errors with respect to the cumulative probabil-
ities of each category. In terms of the categorical prob-
abilities for the forecasts and ““true”” outcome (f; and
0;), the RPS can be written:

v

J
(from analog segments)

0 years 10 years

1st decadal period

( shift' point)
15 years

CAZ

(from ZC Long/AR 2)

30 years

2nd decadal period

Fic. 5. Schematic of naive forecasting strategies.
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Fic. 6. Bootstrapped distribution of ranked probability score (RPS) for ZC-Long (black) and
AR(2) (gray) naive forecasting stategy, presented as afunction of the sense of the shift. Distribution
is based on 5000 RPS values, each computed from a 100 member ensemble of forecasts. The ZC
model dynamical forecast RPS is marked with a bold, dashed black line.

J m m K

RPS = 3 g f;) - (E q)a, @)
m=1 j=1 j=1 0

where J = 3 isthe number of forecast categories, [** cor-
rect” ““weakly correct” ‘“‘incorrect’’]. The true outcome
(0,) isalways correct and isequal to [1 0 0] in all cases.
The internal summationsin (2) represent the cumulative
probabilities. Note that a perfect forecast has an RPS
of 0, and the worst possible scoreis (J — 1), or 2.

As a means of assessing how likely it would be for
the naive forecast skill scores to differ from the dynam-
ical forecast skill score by chance alone, we** bootstrap™
distributions of RPS values for each of our naive fore-
casting strategies. For each of the 72 initializations, 100
member ensembles of the null forecasts were remade
5000 times (for comparison to the 100 dynamical en-
semble members). The RPS was calculated for each set
of 100. The distributions for forecasts of warm, cold,
and neutral shifts are plotted in Fig. 6. The distributions
of forecasts initialized in warm, neutral, and cold de-
cades are shown in Fig. 7. None of the 5000 RPS values
for the naive forecasts fall below the dynamical forecast
RPS value. This suggests that the extent to which the
skill of the dynamical forecasts outperforms both of our
statistical naive forecasting strategies cannot be attri-
buted to chance.

A notable feature of Fig. 6 is that for neutral shifts

the AR(2) model does appreciably worse than the ZC-
Long statistical forecasts. To understand this feature, it
isnecessary to consider the starting state of the majority
of the neutral shifts. Seventeen of the 24 neutral fore-
casts start out in a ‘‘cold decade.” In order for their
forecasts to be deemed correct, they would have had to
stay within 0.06°C of the original state, which would
mean remaining in a cold state for 20 yr. It would be
very unusual for an AR(2) model to do this: it exhibits
much less regimelike behavior than the dynamical mod-
el (and thus the ZC-Long statistical forecast). A distri-
bution of 10-yr means for the AR(2) model would be
more narrow than that of the ZC model. This discrep-
ancy is also evident in the ‘‘cold starts” in Fig. 7.

6. Results and conclusions

The ZC dynamical model outperforms both naive
forecasting strategies. This is evident from the relative
frequency of correct shifts (Tables 2 and 3) and from
the ranked probability score values in Figs. 6 and 7.
This suggests that the model has some predictability
beyond a simple tendency to drift toward its own gross
statistical behavior. Warm shifts forecasted with the ZC
dynamical model have the greatest predictability. How-
ever even the naive forecasts perform well for warm
shifts. Starting decades that are classified as warm and
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FiG. 7. Bootstrapped distribution of RPS for ZC-Long (black) and AR-2 (gray) naive forecasting
stategy, presented as a function of the mean SST in the decade of initialization. Distribution is
based on 5000 RPS values, each computed from a 100-member ensemble of forecasts. The ZC
model dynamical forecast RPS is marked with a bold, dashed black line.

cold have greater predictability than neutral starts. The
dynamical model forecasts initiated in neutral decades
actually produce a “wrong’’ shift more often than a
“weak’ or ‘‘correct” shift, although not as often asthe
naive forecasts.

The results presented here suggest that the absolute
predictability of this dynamical model is marginal.
However it is intriguing to see that the ZC model con-
sistently outperforms the naive forecasts, leading us to
speculate that the state of the Tropics 5 yr prior to a
shift in the PDV may contain the informational seed
that drives the shift a half decade later. The extent to
which a tropical-only model can mimic observed de-
cadal shifts in tropical Pacific climate lends a modest
amount of support to the paradigm of PDV driven from
within the Tropics.

The mechanism of decadal variability in the ZC mod-
el was investigated by Timmermann and Jin (2002).
They argue that decadal modulation of the ENSO cycle
in the ZC model results from the nonlinear interaction
between the strength of the anomalous zonal SST ad-
vection and the dynamical adjustment time of the ther-
mocline to wind-forced Rossby waves.

When we discuss the assessment of model predict-
ability, it is useful to keep in mind the difference be-
tween examining sources of error growth in a model
and measuring amodel’s skill at forecasting reality (i.e.,
how well the model dynamics are able to reproduce the

observations). For predictability, the perfect forecast, or
“truth,” is a trgjectory that the model is capable of
reproducing exactly (given the proper initial condi-
tions). The assessment of predictability, in this case, is
quantifying the extent to which small errorsin theinitial
conditions can grow in time and eventually cause the
model to stray from its true trajectory. The work that
we are presenting in this study focuses on this type of
predictability assessment. It is one means of testing
whether or not there are large-scale, coherent patterns
that can evolve consistently, even in the presence of
initialization noise.

In the practical case of forecasting reality, we no lon-
ger assume that the model is perfect or capable of evolv-
ing along the true trajectory. The truth is defined by the
natural system that the model dynamics were designed
to emulate. The extent to which the model is able to
follow an observed tragjectory is the true measure of its
skill. Of course the true test of the utility of the ZC
model for decadal predictions of tropical climate shifts
would be its application to retrospective forecasts (such
as retrospectively forecasting the 1976 shift). The pri-
mary problem with this undertaking is the lack of re-
liable oceanic and atmospheric data available to ini-
tialize the forecasting model. The fields that are avail-
ableinthe early 1970s are analysis productsthat contain
very little observed data. Uncertainty in the initial con-
ditions would plague an interpretation of the results of
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aforecast. If it holds true that the sign of the PDV has
in fact shifted as of 1998, that shift could turn out to
be a reasonable candidate for assessing the ZC model’s
skill at operational forecasts of decadal climate shifts.
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