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ABSTRACT

Recent Arctic sea ice changes have important societal and economic impacts and may lead to adverse

effects on the Arctic ecosystem, weather, and climate. Understanding the predictability of Arctic sea ice

melting is thus an important task. A vector autoregressive (VAR) model is evaluated for predicting the

summertime (May–September) daily Arctic sea ice concentration on the intraseasonal time scale, using only

the daily sea ice data and without direct information of the atmosphere and ocean. The intraseasonal forecast

skill of Arctic sea ice is assessed using the 1979–2012 satellite data. The cross-validated forecast skill of the

VARmodel is found to be superior to both the anomaly persistence and damped anomaly persistence at lead

times of ;20–60 days, especially over northern Eurasian marginal seas and the Beaufort Sea. The daily

forecast of ice concentration also leads to predictions of ice-free dates and September mean sea ice extent. In

addition to capturing the general seasonal melt of sea ice, the model is also able to capture the interannual

variability of the melting, from partial melt of the marginal sea ice in the beginning of the period to almost a

complete melt in the later years. While the detailed mechanism leading to the high predictability of intra-

seasonal sea ice concentration needs to be further examined, the study reveals for the first time that Arctic sea

ice can be predicted statistically with reasonable skill at the intraseasonal time scales given the small signal-

to-noise ratio of daily data.

1. Introduction

Recent Arctic sea ice changes have important societal

and economical impacts: the accelerated melting of

Arctic sea ice in summer (e.g., Parkinson and Cavalieri

2008; Simmonds 2015) provides new fishery opportuni-

ties and increases the feasibility of trans-Arctic shipping

(e.g., Eicken 2013), yet it may also lead to adverse effects

on the Arctic ecosystem, weather, and climate (e.g.,

Serreze et al. 2007; Yang et al. 2015, submitted to

J. Climate). Past studies have been mainly focused on

the seasonal forecast of sea ice concentration (SIC) and

sea ice extent (SIE), either using coupled dynamical

models (e.g., Sigmond et al. 2013; Wang et al. 2013;

Zhang et al. 2013; Chevallier et al. 2013; Merryfield et al.

2013; Peterson et al. 2015; Msadek et al. 2014) or sta-

tistical models based on past observations of the atmo-

spheric and oceanic states [e.g., Lindsay et al. 2008;

Kapsch et al. 2013; see Guemas et al. (2016) for more

references]. Much less work has been done on the in-

traseasonal predictability of Arctic SIC, particularly for

the summer melting season, which has the potential to

impact the Arctic economy.

A vector autoregressive (VAR) model is evaluated

for predicting summertime [May–September (MJJAS)]

daily Arctic SICs in this study. This type of model has

been used in previous studies to explore the interplay

between atmospheric circulation and the Arctic sea ice

intraseasonal variability. For example, Strong et al.

(2009) analyzed the feedbacks between the North At-

lantic Oscillation (NAO) and the Greenland sea ice di-

pole (GSD) in the winter using a VARmodel. GSD has

SIC anomalies of opposite signs in the Labrador and

Barents Seas. They found that an NAO anomaly can

induce a GSD anomaly in a week or so, while a GSD

anomaly may lead to an NAO anomaly at a few weeks’
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delay. Using a similar approach, Matthewman and

Magnusdottir (2011) revealed positive feedbacks be-

tween the western Pacific pattern (a meridional dipole

over the Bering Strait and the central Pacific in the

midtropospheric geopotential height field; e.g., Wallace

and Gutzler 1981) and the SIC in the Bering Sea during

winter. These studies not only helped us to better un-

derstand the feedbacks between the atmospheric circu-

lation and Arctic SIC but also showed the potential

predictability of sea ice at the intraseasonal time scale.

The usefulness of the VAR model has also been shown

in other regions of the earth’s climate system, for ex-

ample, in predicting tropical Pacific and Atlantic sea

surface temperature anomalies, as well as the Northern

Hemisphere summer atmospheric low-frequency vari-

ability (e.g., Chapman et al. 2015; Lee et al. 2015; Wang

et al. 2015). Similar statistical models, such as theMarkov

model (e.g., Chen and Yuan 2004), have been used ex-

tensively in the seasonal forecast of Antarctic and Arctic

sea ice. The intraseasonal sea ice forecast is most bene-

ficial in summer, when ice melting is at its maximum and

human activities are practical in the Arctic. Therefore, in

this study we focus on the daily sea ice prediction during

the summer (May–September) season. The statistical

modeling of Arctic sea ice has been mostly working with

monthly or weekly data, but we will show in this study

that there exists reasonable statistical forecast skill even

in the much noisier daily SIC time series.

Although Arctic sea ice is considered to be largely

affected by the atmospheric circulation (e.g., Fang and

Wallace 1994; Deser et al. 2000; Serreze et al. 2003;

Strong et al. 2009) on intraseasonal time scales, it has

been found to impact the atmospheric circulation on

time scales ranging from intraseasonal to decadal (e.g.,

Koenigk and Mikolajewicz 2009; Seierstad and Bader

2009; Matthewman and Magnusdottir 2011; Liu et al.

2012; Porter et al. 2012; Screen et al. 2013; Zhang et al.

2013; Henderson et al. 2014; Yang and Yuan 2014; Kim

et al. 2014; Yang et al. 2015, manuscript submitted to

J. Climate). Arctic sea ice is thus an essential component

of the coupled atmosphere–ocean–sea ice system and its

temporal evolution contains information from all com-

ponents of the coupled system. As the first step, our

attention in this study is focused on sea ice concentration

alone to explore its predictability using the VARmodel,

in a similar way as in Kravtsov et al. (2009), Lee et al.

(2015), and Chapman et al. (2015) for the sea surface

temperature predictability.

The data and VAR model used in this study are de-

scribed in the next section, as well as the metrics used to

evaluate forecast skills. The predictions of Arctic sea ice

are presented in section 3, followed by the summary and

discussion of the main findings in section 4.

2. Data and method

The intraseasonal forecast skill of the Arctic SIC on a

daily time scale is assessed using the 1979–2012 satellite

data provided by the National Snow and Ice Data

Center (NSIDC). SIC is the sea ice–covered area rela-

tive to the total at a given location in the ocean and thus

ranges from 0 to 1 (or 0%–100%; corresponding to ice-

free to fully ice-covered conditions). This SIC dataset has

been generated using the bootstrap algorithm (Comiso

2000). The SIC data are available from 26 October 1978

every other day to 31 July 1987 and then daily afterward.

The time series is linearly interpolated into the daily

frequency between 1 January 1979 and 31 July 1987. The

SIC is also resampled from the original 25km3 25km to

the 225km 3 225km grids to reduce the degrees of

freedom (from 28552 to 350) and computational costs.

The reduction in spatial resolution does not affect the

pan-Arctic-averaged SIC variability (mean square root of

variance): 0.1608 for the original grid and 0.1621 for the

coarser grid, and the regional differences in SIC vari-

ability are also not significant. Tests with the original and

reduced resolutions produce very similar results, and

hence we only show the results from the reduced reso-

lution in this study. The empirical orthogonal function

(EOF) analysis is used to further reduce the degrees of

freedom of the summer (May–September) SIC data. The

SIC is bounded within the range between 0 and 1, which

often reaches the upper or lower bound and remains for

an extended period. As a result, the deseasonalized or

detrended SIC time series often contain artificial sharp

changes around the time that SIC reaches the bounds.

Sensitivity tests indicate that VAR models using desea-

sonalized or detrended SICs are dominated by the arti-

ficial sharp changes and are unable to represent well the

physical variability in SICs. The climatological seasonal

cycle and long-term trend of the SIC data are thus re-

tained in the EOF decomposition, in order to avoid these

artificial sharp changes in the SIC data due to summer

melting. The leading (up to 100) principal components

(PCs) are used to make the forecast using the VAR

model, a further reduction in the degrees of freedom, and

the predicted PCs are used to construct the SIC pre-

dictions. The climatological annual cycle is represented

primarily by the first two PCs and the trend is visible in

the first and the third PCs.

A general form of the Lth-order VAR can be written

as follows:

x
i
5 �

L1N21

j5N

A
j
� x

i2j
1 e

i
, (1)

where xi represents the variable x (i.e., leading PCs of

SIC) at the ith time step and depends linearly on its
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states at the previous N to L 1 N 2 1 time steps with a

forecast lead of N time steps. Aj is the coefficient matrix

for the jth time step, and e represents the residual white

noise process that is assumed to have no ‘‘memory.’’

This model is a simplified and implicit form of the vector

autoregressive moving average (VARMA) model (e.g.,

Love et al. 2008), which not only has the computational

efficiency in estimating A using the least squares pro-

cedure but also retains some of the ability of the

VARMA model in resolving long-range dependence in

the time series. For example, the first-order (L 5 1)

VAR model used in this study,

x
i
5A

N
� x

i2N
1 e

i
, (2)

is theoretically equivalent to a classic VARMA model

with autoregressive orderN1 1 andmoving average order

N 1 1. This model further reduces to the Markov model

used in previous studies (e.g., Chen and Yuan 2004) when

N5 1.High-orderVARmodels sometimes are able to use

more temporal information in predictors in order to gain

extra forecast skill than the first-order VAR model at the

cost of higher demand on the sample size of training data

(e.g., Lütkepohl 2005). However, sensitivity tests indicate

that high-order VARmodels do not significantly improve

the SIC forecast skill than the first-order VARmodel (not

shown). Therefore, in this study we show results of the

first-order VAR model with different EOF truncations

(the number of leading PCs to keep); for example, VAR

E12 represents the first-order VARmodel with the first 12

PCs of SIC as both the predictors and predictands.

The VAR model is used to forecast daily SIC with a

lead time N up to 80 days and for the extended summer

season (May–September). The use of this extended pe-

riod is necessary to meet the degree-of-freedom re-

quirements of the VAR model. The number of samples

generally needs to be at least one order larger than the

number of predictors to ensure the robustness and accu-

racy of the estimation of the coefficient matrix A (e.g.,

Johnstone 2001). The forecast is made retrospectively;

that is, the coefficient matrix A in Eq. (2) used to predict

the SICs of a given summer is estimated by the SICs of all

the other 33 summers. Variable AN is estimated using

all the pairs of days that are separated by N days. For a

lead time of 80 days (i.e.,N5 80), the number of available

sample pairs is the total number of days in each summer

(153 for May–September) minus N—that is, 153 2 80 5
73—multiplied by the number of training summers (33

out of 34 summers of 1979–2012), which is 733 335 2409.

Moreover, the extended summer also ensures that the key

period of the sea ice melting processes—that is, August

and September—is always included for the model evalu-

ation for all lead times. For example, the period from

20 July to 30 September is predicted using initial condi-

tions from 1 May to 9 July, for N 5 80. In contrast, only

the last 12 days of September could be predicted for N5
80 if only 3 months (July–September) were included.

The forecast skill of the VARmodel is evaluated by 1)

temporal anomaly correlation (i.e., anomaly autocorre-

lation), 2) root-mean-square error (RMSE), 3) mean ice-

free date error, and 4) September mean sea ice extent

error. For each lead timeN, the SIC is reconstructed from

the predicted PCs for all starting days to form a single

continuous time series (e.g., lumping together from

20 July to 30 September of all years between 1979 and

2012 for N 5 80) to be evaluated with observations. The

predicted SIC is brought back to its physical bound 0 or 1

if exceeding the range of (0, 1). The anomaly correlation

and RMSE are calculated in the standard way, that is,

between the time series of observed and predicted SIC

anomalies at each location (note that the climatological

mean annual cycle is removed to obtain the SICanomalies

for all skill evaluations). The spatially averaged anomaly

correlation is computed via the Fisher’s z transformation

[see Wilks (1995) for details], so that the resulted corre-

lation coefficient is Gaussian distributed and thus directly

additive. The ice-free date is defined as the day during the

melting seasonwhen SIC drops to and remains below 0.15

or 15% (Stammerjohn et al. 2008, 2012). The grid points

where SIC never drops below 0.15 by the end of Sep-

tember are assigned an ice-free date of 1 October. The

SIE is calculated as the number of grid points at which SIC

is at least 0.15 multiplied by the area of each grid box,

225km 3 225km. The VAR model tends to overestimate

the September SIE, similar to other statistical models (e.g.,

Yuan et al. 2015, manuscript submitted to J. Climate), and

thus a bias-correction procedure is used to reduce the

forecast error in the September SIE. This procedure line-

arly fits the daily SIE anomalies (SIEa) to the future SIE

errors or biases (SIEb) at the lead time N, similar to the

autoregressive model:

SIE
b
(t,N)5a

N
[SIE

a
(t2N)]1b , (3)

where the slope of the regression a represents the linear

dependence on SIEa and the intercept b is the constant

bias at zero anomaly. This bias-correction method is con-

structed such that no information beyond the lead time is

required and is thus a forecast method for the SIE residual

that has not been resolved by the predicted SICs. The daily

(uncorrected and corrected) SIEs are averaged over Sep-

tember of each year to obtain the September mean SIEs.

3. Results

The summer Arctic SIC shows pronounced daily vari-

ability over marginal seas, especially in the Beaufort,

15 FEBRUARY 2016 WANG ET AL . 1531



East Siberian, Laptev, Kara, and Barents Seas (Fig. 1a).

At each grid point, the climatological mean seasonal

cycle (the daily climatology of 34-yr SIC) is removed

from the total SIC and the standard deviation of the re-

maining anomaly—that is, the total daily variability of

SIC—is shown in Fig. 1a. The seasonal mean of each

summer can be further removed from the SIC anomaly,

which effectively removes the interannual variability.

The standard deviation of the residual time series rep-

resents the intraseasonal component of the total SIC

daily variability, as shown in Fig. 1b. The difference be-

tween the total and the intraseasonal components gives

the interannual to decadal SIC variability (Fig. 1c). The

total summer SIC variability is dominated by the intra-

seasonal component, while the interannual and decadal

components explain only up to one-quarter of the total

(Figs. 1b,c vs 1a). The regions with total daily variability

less than 0.1 (separated by black contours in Fig. 1a)

mainly consist of a permanently ice-covered area around

the North Pole with SICs close to 1 throughout the year,

FIG. 1. (a) Total, (b) intraseasonal, and (c) total minus intraseasonal daily variability of Arctic SIC of May–September 1979–2012 in

standard deviations. The black contours in (a) indicate variability equal to 0.1.
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and the southern edge of themarginal seas, where sea ice

melts quickly in early summer and does not reemerge

until the next freezing season. The predictability of SIC

in these regions is thus intrinsically very high due to the

small variability. Therefore, in this study we focus on the

regions with total daily variability greater than 0.1 and

refer to these regions as ‘‘pan-Arctic’’ (the warm color–

shaded regions between the black contours in Fig. 1a).

These regions also cover the crucial part for the trans-

Arctic transportation routes (e.g., Serreze et al. 2007).

a. Predicting sea ice concentration

The VAR model is first run with various EOF trun-

cations (1–50 modes, largely reduced from the 350

physical grid points) with lead times of 1–80 days.

Samples of optimal configurations in EOF truncations

(12, 17, 21, 25, 29, 32, and 47 modes) are chosen to il-

lustrate the forecast skill of the VAR model. The cu-

mulative variance captured by these EOF truncations

varies from 46% to 76%, as listed in Table 1, excluding

the first twoEOFmodes representing the seasonal cycle.

In Fig. 2, we show the temporal anomaly correlations

and the root-mean-square errors as a function of lead

time and averaged over the pan-Arctic region. The

cross-validated pan-Arctic mean forecast skill of the

VAR model as measured by anomaly correlation is su-

perior to those of anomaly persistence and damped

anomaly persistence for lead times longer than 20 days

(Fig. 2a). The persistence of anomaly at the starting

date superimposed on top of the daily climatology is a

good indicator of natural predictability in sea ice and can

be used as a reference for evaluating the model skill

(gray solid curve in Fig. 2a). The damped anomaly

persistence (gray dashed curve in Fig. 2a; note that the

anomaly persistence and the damped anomaly persis-

tence curves are almost perfectly on top of each other) is

another useful reference for forecast skill, where the

amplitude of the anomaly is assumed to reduce in time

exponentially at a time scale of the local autocorrelation

time (e.g., Griffies and Bryan 1997). In the limit of long

lead time, the amplitude of the anomaly is damped

toward zero, and therefore the damped anomaly per-

sistence approaches the climatological mean asymptot-

ically. Note that both the anomaly persistence and the

damped anomaly persistence predictions are corrected

as is done for the predicted SICs, if exceeding the

physical range of 0–1. The anomaly correlation is higher

with more EOF modes retained at a lead time shorter

than 3 weeks, whereas at a longer lead time, retaining

fewer EOFs makes the better forecast (color curves in

Fig. 2a). The correlation coefficients are calculated using

daily time series of 34 summers (each summer has

153 days from May to September). The degrees of

freedom range from 5166 (5 152 3 34 2 2) for a 1-day

lead to 2480 (5 73 3 34 2 2) for an 80-day lead. The

anomaly correlations of the VAR model are thus sta-

tistically significant at the 99% level for all lead times

because of the large degrees of freedom. The RMSEs

show similar behavior as the anomaly correlation in that

the VAR model has smaller RMSEs than the anomaly

persistence at a lead time starting from approximately

15 days (Fig. 2b). Although the overall forecast skills are

not very sensitive to the number of EOFmodes retained

in the VAR model, the pan-Arctic skills are slightly

higher when 25 modes were included (green dashed

curves in Fig. 2). Despite this small sensitivity of the pan-

Arctic mean skill, regional skills are much more sensi-

tive to the EOF truncations for long lead times as it will

show in the example of the Kara Sea below. On the

other hand, retaining more modes only improves fore-

cast skills for short lead times (,15 days or so) and de-

grades skills for longer lead times. For example, the

VAR model with 100 EOFs shows better skill (is much

closer to the anomaly persistence) than the other lower

EOF truncations in the first week or so (dark red curves

in Fig. 2).

TABLE 1. The 60-day lead forecast skill of the September monthly mean SIE in terms of the anomaly correlation coefficient r and RMSE.

The subscript c indicates bias correction and the subscript d indicates detrending.

Models

E12 E17 E21 E25 E29 E32 E47

Cumulative variance captured 46% 54% 58% 62% 65% 68% 76%

r 0.88 0.87 0.85 0.86 0.87 0.87 0.85

rc 0.88 0.87 0.85 0.86 0.87 0.87 0.85

RMSE (3106 km2) 1.22 1.22 1.25 1.26 1.26 1.26 1.31

RMSEc (3106 km2) 0.52 0.54 0.57 0.55 0.54 0.54 0.56

rd 0.63 0.59 0.53 0.60 0.60 0.61 0.55

rdc 0.63 0.59 0.53 0.60 0.60 0.61 0.55

RMSEd (3106 km2) 0.59 0.63 0.66 0.67 0.65 0.65 0.66

RMSEdc (3106 km2) 0.58 0.59 0.62 0.58 0.57 0.57 0.59
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For lead times longer than 20 days, the VAR model

shows better forecast skill than the anomaly persistence

in most of the Arctic region, especially over marginal

seas, such as the Chukchi Sea, Kara Sea, and Baffin Bay

(e.g., Figs. 3a–c for a 40-day lead). At these marginal

seas, the model skills measured by correlations increase

by 0.1–0.2 (Fig. 3c), and the RMSE reduces by 0.08–0.1

for the VAR model over the damped anomaly persis-

tence at the 40-day lead (Figs. 3d–f). The most pro-

nounced improvements occur in the Kara and Barents

Seas (Figs. 3c,f). The SICs of the Kara and Barents Seas

have been shown to have pronounced sea ice variability

and strong climate impacts (e.g., Smedsrud et al. 2013;

Scaife et al. 2014; Yang et al. 2015, manuscript submitted

to J. Climate). These two marginal seas are thus chosen

as examples of assessing regional sea ice forecast skills.

The gridded SICs within each region were spatially

averaged to form the SIC time series for evaluation. In

the Barents Sea, the VAR model shows better forecast

skill than the anomaly persistence at lead times of

20–60 days (Fig. 4a). Although the improvements in

anomaly correlation were small, the RMSE is reason-

ably reduced (Fig. 4b). In contrast, the forecast skill

improvements over the anomaly persistence in the Kara

Sea are mainly for the anomaly correlation than for the

RMSE (Figs. 4c,d). It is also worth noting that there

exists a clear monotonic dependence of the forecast skill

on the number of EOFs included in the VARmodel for

the Kara Sea, but the relationship is much less clear in

the Barents Sea, indicating somewhat different physical

processes controlling the sea ice variability in the two

regions. It also suggests that the sea ice in the Barents

Sea is more variable than that in the Kara Sea.

The domain-averaged SIC anomaly time series at the

Barents and Kara Seas are compared to help understand

the physical differences in their predictability. The two

time series (not shown) have very similar ranges of in-

terannual variability, both around 0.04, whereas the

Barents Sea has larger amplitude of intraseasonal vari-

ability in SIC (0.11) than that for the Kara Sea (0.09). A

likely explanation is that the Barents Sea is directly ex-

posed to the warm and salty Norwegian Current, a

poleward extension of the North Atlantic Current, and

thus it has much stronger air–ocean–ice exchanges due

to its significantly lower mean SIC than the Kara Sea. In

the Barents Sea, the heat exchange between the atmo-

sphere and ocean is more active than in the Kara Sea

(e.g., Smedsrud et al. 2013).

b. Predicting the ice-free date

To illustrate sea ice melting behaviors through the

season, we plot domain-averaged SIC time series in the

Barents and Kara Seas as examples (Fig. 5). May SIC

usually starts close to 1 in the Kara Sea, while in the

Barents Sea we see much higher variability in the av-

erage SIC on 1 May, especially in the twenty-first cen-

tury being typically below the climatological mean

(Fig. 5a). This is consistent with the extra heating

FIG. 2. (a) Temporal anomaly correlation coefficient and (b) RMSE averaged over regions withMJJAS SIC variability greater than 0.1

for a lead time;1–80 days for the VARmodel with a sample of a number of EOFs. The anomaly persistence in the observations is plotted

in solid gray and the damped anomaly persistence in dashed gray. The dashed–dotted gray curve in (a) represents the statistical signif-

icance of the correlation coefficient at the 99% level by the Student’s t test.
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imported by the warmer and stronger North Atlantic

Current in recent years (e.g., Polyakov et al. 2012). By

September, the Barents Sea is close to ice free (SIC ,
0.15). In the Kara Sea, on the other hand, the initial

sea ice cover in early May remains rather constant

throughout the study period, and the melting of the sea

ice occurs earlier (Fig. 5b, dashed curves compared with

solid curves) in recent years. September ice minimum

exhibits large variability in the Kara Sea, although it is

close to open water in recent years. Understanding the

melting processes and the ability of predicting SIC

through the season would lead to a prediction of ice-

free dates.

The ice-free date is defined as the date at each grid

point where SIC drops to and stays below 0.15 (15%)

(e.g., Stammerjohn et al. 2008, 2012). For example, in

Fig. 5 the ice-free dates can be estimated as the in-

tersections between the SIC (colored curves) and the

0.15 (15%) threshold (black line). Note that this exam-

ple is just illustrative, as Fig. 5 shows that the spatially

averaged SIC and the ice-free date estimated here are

not equal to the spatially averaged ice-free date of this

region. The melting of the Arctic sea ice is a rapid pro-

cess, which often occurs within a few days to a few weeks

at most locations and is thus not well resolved in the

monthly SIC data. The forecast of the daily SICs made

by the VAR model, however, allows predictions of the

ice-free date. In addition, the ice-free date varies greatly

from year to year (e.g., Fig. 5), which makes it chal-

lenging to predict. At each location and each summer,

the ice-free date is identified from both the observed SIC

and the predicted SIC time series at each lead time

based on the 0.15 threshold. The absolute error (i.e., the

absolute value of the error) in the ice-free date averaged

over all years, or the mean absolute error, is a measure

of how accurately the ice-free date is predicted, re-

gardless of being early or late. The mean absolute error

averaged over the pan-Arctic region increases with lead

time for the anomaly persistence (solid gray curve in

Fig. 6a), the damped anomaly persistence (dashed gray

FIG. 3. The 40-day lead anomaly correlation of (a) the observed damped anomaly persistence, (b) the VAR E25 model, and (c) their

difference. (d)–(f) As in (a)–(c), but for the RMSE.
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curve in Fig. 6a), and the forecasts (blue curve in

Fig. 6a). The VAR model forecasts show a reduction in

mean absolute error compared to the anomaly persis-

tence for lead times longer than 25 days and the largest

improvements (up to 7 days) occur at around the ;50–

60-day lead (blue vs solid gray in Fig. 6a). The VAR

model, however, is only slightly superior to the damped

anomaly persistence for lead times of 25–60 days (blue

vs dashed gray in Fig. 6a). To remove any possible sys-

tematic bias in the VARmodel forecasts, a constant bias

correction is applied to the ice-free date predictions. For

each year and each grid point, the average bias of all the

other 33 years’ dates is subtracted from this year’s pre-

dicted date (i.e., similar to the take-one-year-out cross

validation). The bias-corrected ice-free dates show an

improvement of about 7 days on average for lead times

of 25–60 days (red vs blue in Fig. 6a). On the other

hand, a positive (negative) mean error measures how

late (early) on average the ice-free date is predicted. A

small mean absolute error means accurate prediction of

the ice-free date in most years, while a small mean error

indicates the averaged timing is captured by the forecast

although it might be too early in some years and too late

in other years. The anomaly persistence systematically

produces a later ice-free date for lead times greater than

10 days and the positive error increases with the lead

time (solid gray curve in Fig. 6b), whereas the mean

error of the damped anomaly persistence remains at

FIG. 4. Cross-validated model skills measured by (a) anomaly correlation and (b) RMSE between model predictions and observations of

summer (MJJAS) for Barents Sea SIC as a function of lead times. (c),(d) As in (a),(b), but for the Kara Sea.
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around 5–7 days later for lead times of;10–60 days and

turns to early melt at longer leads (dashed gray curve in

Fig. 6b). The VAR model shows an advantage of 2 days

or so compared with the damped anomaly persistence

for lead times of ;25–60 days (blue vs dashed gray in

Fig. 6b). The bias-corrected VAR model ice-free date

shows near-zero mean error (red curve in Fig. 6b), since

the mean bias is removed. The number of modes in-

cluded in the VARmodel does not seem to significantly

influence the mean absolute error and the mean error

for lead times longer than 30 days (not shown), implying

that the melting processes in the Arctic are likely to be

controlled primarily by several leading modes.

The errors in the ice-free date also vary significantly in

space. The 60-day lead mean absolute error by the

anomaly persistence is greatest in the marginal seas, for

example, up to 40 days at the Bering Sea, Chukchi Sea,

Kara Sea, Baffin Bay, and Hudson Bay (red regions in

FIG. 5. The time series of regionally averaged SIC at the (a) Barents Sea and (b) Kara Sea. Solid curves represent years from 1979 to 1985,

while dashed curves represent years from 2006 to 2012.
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Fig. 7a). The damped anomaly persistence largely re-

duces the mean absolute error in most of the above-

mentioned regions except for the Chukchi Sea (Fig. 7b).

The VAR E25 model further reduces it to about 10–

20 days over the same region (Fig. 7c). On the other

hand, the mean error represents the systematic bias in

the timing of the melting. The mean error by the

anomaly persistence is in general fairly close to themean

absolute error (cf. Figs. 7a,d), implying the anomaly

persistence overestimates the ice-free date (late melt) in

most years. In contrast, the damped anomaly persistence

and the VARmodel with bias correction have less mean

errors than mean absolute errors (Figs. 7b,c vs 7e,f) and

hence have much weaker systematic biases than the

anomaly persistence. On average, the VAR model with

bias correction tends to predict the ice-free date too late

in the northern Barents Sea, the Kara Sea, the western

Beaufort Sea, and the Bering Sea, as well as in part of the

Greenland Sea, while it predicts the melt date too early

in the Hudson Bay, the Laptev Sea, and the southern

Barents Sea (Fig. 7f).

The melting processes in the Barents and Kara Seas

are intricate and their ice-free dates vary significantly

from year to year as shown in Figs. 5 and 8. In the

Barents Sea, there is a linear dependence of ice-free

dates on early May (first 10 days of May) mean SIC:

higher SICs in early May result in later ice-free dates

(Fig. 8). It is likely due to its direct exposure to the

Norwegian Current, since atmospheric circulation

seems not to directly influence the secular trend in the

summer Arctic sea ice (e.g., Deser and Teng 2008). In

the Kara Sea, however, this linear relationship only ex-

ists in recent years, as its early May SIC is very close to 1

(100%) in most years. This indicates that the melting

processes in the Kara Sea have become more influenced

by ocean currents and more coupled to atmospheric

variability recently.

To illustrate the VAR model’s forecast skills in cap-

turing the large interannual variability of sea ice melting

processes in these two regions, we present the scatter-

plots of observed and predicted ice-free dates spatially

averaged in each region in Fig. 9. The damped anomaly

persistence is very close to the climatological mean at

the 60-day lead time and is thus not included in this

comparison. The VAR predictions (circles in Fig. 9) are

generally closer to the diagonal line (representing per-

fect predictions) than the anomaly persistence (squares

in Fig. 9), although both methods tend to overestimate

the ice-free dates (predict late melt) in the Kara Sea for

recent years (hollow symbols in Fig. 9b). The improve-

ments over the anomaly persistence are more pro-

nounced for the Kara Sea (Fig. 9b) than those for the

Barents Sea (Fig. 9a), consistent with the corresponding

improvements in the anomaly correlation of regional

mean SIC (Figs. 4a,c). The ice-free date errors for the

Barents Sea are not very sensitive to the initial (early

May) SICs for both anomaly persistence and VAR

model forecasts. In contrast, the ice-free date errors for

the Kara Sea are much larger for the years with lower

initial SICs (the third numbers in Fig. 9b for VARmodel

predictions and anomaly persistence predictions, re-

spectively), although the interannual variations in the

initial SIC are much smaller in the Kara Sea than those

of Barents Sea (Fig. 8). The contrast in the ice-free date

errors between these two regions implies that the earlier

ice-free dates of theKara Sea in recent years are induced

by external factors, such as ocean currents, atmospheric

heat transport, and coupling to the atmospheric bridge

FIG. 6. The pan-Arctic-averaged (a) mean absolute errors and (b) mean errors in the ice-free date as a function of lead times.
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(e.g., Liu and Alexander 2007), which is not fully re-

solved by the statistical methods that use mainly past sea

ice information to build the prediction operators [such

as A in Eq. (2)] and might be better captured with extra

information from the atmosphere and ocean.

c. Predicting sea ice extent

The Arctic sea ice extent has a distinct annual cycle

withminimum extent in September. The September SIE

minimum is a widely used index in evaluating the fore-

cast models in the Arctic sea ice community (e.g.,

Stroeve et al. 2014) and in quantifying polar amplifica-

tion (e.g., Holland and Bitz 2003). The VAR model

tends to overestimate the September total SIE, for ex-

ample, at a mean bias of around 1.23 106 km2 for 60-day

lead forecasts. The bias is weakly negatively correlated

with themagnitude of the SIE anomaly (Fig. 10a), which

allows us to conduct a bias correction based on the linear

regression of initial SIE anomaly [see Eq. (2)] similar to that

by Yuan et al. (2015, manuscript submitted to J. Climate).

The bias correction is applied to the daily SIE forecasts

and the corrected September daily SIE is then averaged

to obtain the September monthly mean SIE. This bias

correction does not make notable changes on the anomaly

correlation but can significantly improve the RMSE. For

example, the September monthly mean SIE predicted by

the VAR E12 model at the 60-day lead (blue curve in

Fig. 10b) has a bias that is about 0.53 106km2 in the 1980s

and increases to almost 2 3 106km2 in recent years. The

correction removes not only the mean bias but also the

errors in the trend (red curve in Fig. 10b). The RMSE is

reduced by more than half at all lead times (Fig. 10c). On

FIG. 7. The 60-day lead absolute errors in the ice-free date of (a) the observed anomaly persistence, (b) the observed damped anomaly

persistence, and (c) the VAR E25 model with the constant bias correction. (d)–(f) As in (a)–(c), but for the mean errors.
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the other hand, the anomaly correlation remains at 0.88

for the original and bias-corrected September mean SIE

at the 60-day lead. As it can be seen in Fig. 10b, a major

part of the bias comes from the rapid decline trend in

recent decades and therefore we also calculated the

anomaly correlation coefficients and RMESs using the

de-trended SIE time series (i.e., the secular trend in SIE

of each day is removed). Once again the anomaly corre-

lation remains unchanged for the bias correction (rd vs rdc
in Table 1). Without the bias correction, the RMSEs for

the detrended SIE time series are much smaller than

those for the original (RMSE vs RMSEd in Table 1). The

bias correction only slightly reduces the RMSE for the

detrended time series (RMSEd vs RMSEdc in Table 1),

confirming that the SIE bias primarily consists of the

trend component, consistent with the abovementioned

findings in Fig. 10b.

This linear regression–based bias-correction method

is similar to the methods developed by Kharin et al.

(2012) and Fu�ckar et al. (2014) with a few minor dif-

ferences. Kharin et al. (2012) express the trend explicitly

as a linear time-dependent term in the bias correction,

whereas Fu�ckar et al. (2014) replace the trend term by

initial conditions in observations that are temporally

smoothed to avoid impacts from synoptic fluctuations.

Since the total Arctic SIE used in our study is not very

sensitive to synoptic fluctuations, the performance of

our method [i.e., Eq. (2)] is almost identical to that of

Fu�ckar et al. (2014) and is slightly better than that

of Kharin et al. (2012) (not shown).

4. Conclusions and discussion

A data-driven statistical model, the VAR model, has

been evaluated for predicting the summertime (May–

September) daily Arctic sea ice concentration. This

VARmodel is found to be able to well predict theArctic

FIG. 8. The scatterplots of observed ice-free dates and early May

(1–10 May mean) SICs regionally averaged at the Barents Sea

(squares) and the Kara Sea (circles) labeled with the last two digits

of corresponding years. The gray line is the linear fit of Barents

Sea data.

FIG. 9. The scatterplots of predicted (at the 60-day lead time and bias corrected) and observed ice-free dates

regionally averaged at the (a) Barents Sea and (b) Kara Sea. The predictions based on anomaly persistence are

plotted in square symbols, and those based on the VAR model are in circle symbols. The years with initial (1–

10Maymean) SIC above (below) average are plotted in filled (hollow) symbols. The errors are listed in the order of

all years, high initial SIC years, and low initial SIC years.
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daily SIC at lead times of ;20–60 days compared with

the anomaly persistence and damped anomaly persis-

tence, as measured by the temporal anomaly correlation

and root-mean-square error. The daily forecast also

leads to ice-free date prediction and September mean

sea ice extent prediction. The improvements over the

anomaly persistence in the forecast skill are most

marked at the Barents and Kara Seas, a key region for

the Northeast Passage (e.g., Farré et al. 2014) and the

long-range winter outlooks (e.g., Scaife et al. 2014). The

September SIE minimum is also well captured by the

VAR model, with the assistance of a bias-correction

procedure. While the detailed mechanism leading to the

high predictability of intraseasonal sea ice concentration

needs to be further examined, the study reveals for the

first time that Arctic sea ice concentration can be pre-

dicted statistically with reasonable skill on the intra-

seasonal time scales, even without direct information of

the atmosphere and ocean. The intraseasonal forecast

by this model is able to help bridge the gap between the

short-term prediction and seasonal forecast of theArctic

sea ice conditions, a necessary step toward a seamless

prediction system of the northern extratropics (e.g.,

Balmaseda et al. 2010; Tietsche et al. 2014).

As the atmospheric circulation can modulate the

intraseasonal sea ice variability (e.g., Zhang et al. 2013),

it is worthwhile to add the atmospheric variables, such as

surface winds, pressure, air temperature, and cloud in-

formation, in the VAR model in the future to further

improve the forecast skill, especially in the short range.

In addition, the error in ice-free dates is rather large for a

useful prediction product. It is thus an important chal-

lenge to explore further factors that lead to large errors

and the possible improvements. Moreover, the optimal

VAR model for pan-Arctic predictions, VAR E25, may

not provide the best skill for regional sea ice predictions,

as revealed in the examples of the Barents and Kara Seas

(VAR E29 and E12, respectively; Fig. 4). This regional

dependence indicates the underlying physical and dy-

namical differences in the local ice melting processes,

which may be better addressed in regional sea ice forecast

models similar to Matthewman and Magnusdottir (2011).

The same satellite SIC data have also been parallelly

processed with a different algorithm developed by

Cavalieri et al. (1996), commonly known as the ‘‘NASA

team’’ SICdata (to be distinguished from the ‘‘bootstrap’’

data used above). These two datasets are generally in good

agreement but have nonnegligible differences in many as-

pects (e.g., Belchansky andDouglas 2002). TheVARmodel

has been applied to these NASA team SIC data and has

achieved similar forecast skill in general withminor regional

differences (not shown), indicating the forecast skill shown

in this study is fairly robust to observational uncertainties.

FIG. 10. (a) Scatterplot of the 60-day lead forecast error and

anomaly in the SIE. The solid line represents the linear fit of

the data, and the dashed (dotted) curves show the 95% confi-

dence interval of the fit (predicted bias). (b) The 60-day lead

forecast of the September SIE without (blue) and with (red)

bias correction by the VAR E12 model, compared with ob-

servations (black). (c) As in (b), but for the RMSE at various

lead times.
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