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ABSTRACT

A dynamic sea ice model based on granular material rheology is presented. The sea ice model is coupled to
both a mixed layer ocean model and a one-layer thermodynamic atmospheric model, which allows for an ice
albedo feedback. Land is represented by a 6-m thick layer with a constant base temperature. A 10-year integration
including both thermodynamic and dynamic effects and incorporating prescribed climatological wind stress and
ocean current data was performed in order for the model to reach a stable periodic seasonal cycle. The commonly
observed lead complexes, along which sliding and opening of adjacent ice floes occur in the Arctic sea ice
cover, are well reproduced in this simulation. In particular, shear lines extending from the western Canadian
Archipelago toward the central Arctic, often observed in winter satellite images, are present. The ice edge is
well positioned both in winter and summer using this thermodynamically coupled ocean–ice–atmosphere model.
The results also yield a sea ice circulation and thickness distribution over the Arctic, which are in good agreement
with observations. The model also produces an increase in ice formation associated with the dilatation of the
ice medium along sliding lines. In this model, incident energy absorbed by the ocean melts ice laterally and
warms the mixed layer, causing a smaller ice retreat in the summer. This cures a problem common to many
existing thermodynamic–dynamic sea ice models.

1. Introduction

The presence of sea ice in polar regions has a sub-
stantial influence on the global climate. First, sea ice
is highly reflective and substantially reduces the
amount of solar radiation absorbed by the surface.
Second, it acts as an insulator, reducing the amount
of heat, moisture, and momentum flux between the
ocean and the atmosphere. Third, the release/ab-
sorption of heat during ice formation/melt is an im-
portant factor in the atmospheric energy budget. Fi-
nally, the transport of ice from one region to another
constitutes a flux of freshwater, which strongly in-
fluences the circulation in the Arctic Ocean and sur-
rounding seas (e.g., bottom water formation in the
North Atlantic).

Since the difficulties in making extensive measure-
ments in ice-covered waters are enormous, our knowl-
edge of the Arctic and Antarctic relies heavily on
numerical modeling. To model the ice behavior ac-
curately, it is now recognized that both thermody-
namic and dynamic processes are important factors to
consider. For example, the ridging of ice in a con-
vergence zone and lead opening in a region of di-
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vergence strongly influence the distribution of heat
lost from the ocean to the atmosphere, and therefore
should be properly included in climate model studies
of the Arctic. Further, in the Arctic, where the motion
is confined on the periphery by continents, strong in-
teractions between ice floes take place and influence
the basinwide ice circulation. Consequently, a good
understanding of the interactions between the floes
during deformation is of primary importance. As a
first step, assumptions about the nature of the material
must be made. Past approaches have included mod-
eling the ice as a cavitating fluid (Doronin 1970; Ni-
kiforov et al. 1970; Flato and Hibler 1992), where the
ice is assumed to have no shear or tensile strength,
or as an elastic plastic or viscous plastic material
(Coon et al. 1974; Hibler 1979), based on the obser-
vation that the work done in deforming the ice field
is rate independent (Coon et al. 1974). In the cavi-
tating fluid approach, the mathematical formulation
and implementation is simple. However, the ice ve-
locity tends to be too high due to the absence of fric-
tional forces between the floes. The two plastic ap-
proaches yielded a more successful simulation of the
ice velocity field and thickness distribution. However,
in the elastic-plastic approach (Coon et al. 1974), the
history of the state of strain of the ice must be stored
since elastic strain is reversible, making the numerical
treatment of the resulting set of dynamical equations
very complicated (it usually requires a Lagrangian
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approach). This problem is cured in the viscous-plas-
tic approach (Hibler 1979), where small elastic de-
formation is approximated by creeping flow (Hibler
1977). However, the choice of yield curve and flow
rule used in this study can lead to unphysical effects.

In the present paper, we consider the ice to be a slowly
deforming granular material (a collection of ice floes)
and use a simplified version of the double sliding model
developed by Balendran and Nemat-Nasser (1993). This
is motivated by observations of the Arctic sea ice cover,
which show a distinct lead pattern at various scales that
is typical for that type of material (Erlingsson 1988).
This model incorporates some features of the previous
ice models (Coon et al. 1974; Hibler 1979) but invokes
a more general treatment of the deformation rule. In
particular, the opening of leads associated with shearing
deformation (Stern et al. 1995; Pritchard 1981) follows
naturally from the present formulation and eliminates
the need for its parameterization as proposed by Stern
et al. If we ignore this effect, the present formulation
becomes identical to the cavitating fluid model including
shear strength, briefly described in Flato and Hibler
(1992).

In most previous studies (Hibler and Walsh 1982;
Holland et al. 1993), sea ice models and coupled sea
ice–ocean models were run with prescribed atmo-
spheric temperature and humidity distribution. This
boundary condition on temperature largely deter-
mines, a priori, the ice thickness distribution and ice
edge position (the air temperature has a strong ice-
cover signature; that is, the air is warm over water
and much cooler over ice-covered seas). In the present
study, the sea ice model is coupled thermodynami-
cally to a mixed layer ocean and an atmosphere model,
which allows for an ice albedo feedback. This is a
more stringent test on the validity of the full sea ice
model. Also, the energy exchange between the ocean
mixed-layer and the ice is done through sensible heat
transfer. Consequently, the mixed layer is allowed to
warm even when ice is present in the vicinity (Maykut
and Perovitch 1987). This will have an influence on
the ice retreat in the warm season.

The next section presents supporting evidence for us-
ing the present sea ice rheological model, along with
the complete description of the model equations for the
sea ice, ocean, and land. In section 3, the numerical
scheme is described. In section 4, the model results at
the end of a 10-year integration are compared with sat-
ellite observations and submarine sonar data. The main
conclusions drawn from the simulation results are sum-
marized in section 5.

2. Governing equations

a. Sea ice momentum, continuity, and energy
equations

The governing equations for sea ice, derived from
conservation principles, are presented in this section

along with appropriate boundary conditions. The mo-
mentum balance for the two-dimensional horizontal
motion of sea ice can be written as

2r h f k 3 u 1 A(t 2 t )i i a w

1 = ·s 2 r hg=H 5 0, (1)i d

where ri is the sea ice density, h the mean ice thickness,
f the Coriolis parameter, k a unit vector normal to the
ice surface, ui the ice velocity, A the ice concentration
(percentage of a grid cell covered by ice), ta the wind
shear stress on the top ice surface, tw the ocean drag
on the sea ice flow, s (sij) the vertically integrated
internal ice stress (normal or shear) acting on a plane
perpendicular to the i axis and in the j direction, g the
gravitational acceleration, and Hd the sea surface dy-
namic height. Following Gray and Morland (1994), the
wind stress and water drag are multiplied by the ice
concentration to account for the fact that water may
be present in a grid cell. This, however, has a minor
effect on the results. A scaling analysis of the mo-
mentum equations show that both the advection and
acceleration terms can be neglected for sea ice simu-
lation over the whole Arctic using monthly averaged
climatological wind stress (Thorndike 1986). The air
(ta) and water (t)w stresses are obtained from a simple
quadratic law with constant turning angle (McPhee
1975):

g g gt 5 r C |u | (u cosu 1 k 3 u sinu ) (2)a a da a a a a a
| |
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where ra and rw are the air and water densities, Cda and
Cdw the air and water drag coefficient, and theg gu ua w

geostrophic wind and ocean current, and ua and uw the
wind and water turning angles. In the above equation
for the wind shear stress, the ice speed is considered
small compared to the wind speed and is therefore ne-
glected.

The ice strength in this model is a function of both
the mean ice thickness h and ice concentration A (per-
centage of a grid cell covered by ice). For this reason,
a conservation law for both quantities, derived by av-
eraging the two-dimensional continuity equation, is nec-
essary:

]h
21 = · (hu ) 5 S 1 K ¹ h (4)i h h]t

]A
21 = · (Au ) 5 S 1 K ¹ A, (5)i A A]t

where Kh and KA are the diffusion coefficients for ice
thickness and concentration, and Sh and SA are the
thermodynamic source terms given by
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FIG. 1. Heat fluxes over a grid cell. Ocean–atmosphere, ice–atmosphere, land–atmosphere, and
ocean–ice heat fluxes are defined positive upward. Note that the shortwave energy absorbed by
the surface depends on the surface albedo. The terms Qadv for the atmosphere and ocean are given
in Eqs. (11) and (12).

where L f is the latent heat of fusion; Qia and Qoa the
net ice and oceanic heat fluxes to the atmosphere due
to longwave (Qlw-up, Qlw-down), sensible (Qsens), latent heat-
ing (Qlat), and shortwave radiation Qsw (see Fig. 1); (Qoi)
the sensible heat flux from the water to the ice; h0 a
fixed demarcation thickness between thin and thick ice
(Hibler 1979); and To and To f the temperature and freez-
ing point temperature of the ocean. In Eq. (5), the ice
concentration is restricted to lie between zero and one
using a mechanical sink term.

In most existing ice thermodynamic models, incident
energy absorbed by the ocean mixes horizontally and
melts ice until no ice is present in a grid box. In this
manner, the ocean temperature can only rise above the
freezing point after all ice is melted. In the present model
the ocean is allowed to warm up even though ice is
present in a grid cell. The transfer of heat between the
ocean and the ice is achieved through sensible heating
in a similar manner as between the ice and the atmo-
sphere. Under winter growth conditions, the formation
of ice due to Qoa will only occur once the ocean tem-
perature reaches the freezing point. During the melting
period, incident energy absorbed by the ocean will partly
warm up the mixed layer and partly be used to melt ice.
Measurements by Maykut and Perovich (1987) suggest
that 80% of the incident energy on the ocean will warm
up the mixed layer. This will give a more realistic ice
retreat during the melting season.

For the case of ice–atmosphere heat transfer, the var-
ious heat fluxes are defined as

Q 5 Q (1 2 a )(1 2 a )(1 2 a )sw 0 a a i

Q 5 r C |u |C (T 2 T ),sens a sens a pa i a

Q 5 r C |u |L (q 2 q )lat a lat a s i a

4 4Q 5 e sT , Q 5 e sT ,lw-down a a lw-up i i

6 (8)

where Q0 is the daily averaged flux of solar radiation
(Zillman 1972), aa and ai the atmospheric and ice al-
bedo, aa the atmospheric absorptivity to shortwave ra-
diation, Csens and Clat the sensible and latent heat transfer
coefficients, ea and ei the atmospheric and ice emissiv-
ities, s the Stefan–Boltzmann constant, Cpa the specific
heat of air, Ls the latent heat of sublimation, Ta and Ti

the air and ice temperature, and qi and qa the ice surface
(assumed saturated) and atmospheric specific humidities
given by

0.622esatq 5 q 5 , q 5 0.8q , (9)i s a sP 2 0.378es sat

where
A (T 2273.13)/(T 2A )1 s s 2e 5 611 3 10sat

and Ps is the sea level pressure (considered constant).
In Eq. (9), the relative humidity of the atmosphere is
considered constant (80%), and the dependence of A1
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and A2 on ice concentration is ignored. Similar expres-
sions [Eqs. (8) and (9)] are used for the ocean–atmo-
sphere and ocean–ice heat transfers.

Up to this point, the momentum and continuity equa-
tions have been presented. A thermodynamic equation
for the ice is also needed to determine the ice surface
temperature. The steady-state energy equation for the
ice takes the form

2] TiK 5 0, (10)i 2]z

where Ki is the ice thermal conductivity. For ice thick-
nesses less than 2 m, the time-dependent term involving
the thermal capacitance of the ice can be neglected in
the energy equation. This approximation is valid for a
large part of the Arctic. However, in some regions, the
ice can be as thick as 6 m, and this simplification is
expected to result in a slight shift in the phase of the
seasonal cycle (Holland 1993).

b. Atmosphere, ocean, and land models

The sea ice model is coupled above to a one-layer
thermodynamic model of the atmosphere and below to
an ocean mixed layer. Also, the continents are repre-
sented by a 6-m-thick layer of conducting material with
constant base temperature. The relevant conservation of
energy equations are used to compute the temperature
of the atmosphere (Ta), ocean (To), and land (Tl); these
take the form

gr C H = · (u T ) 5 l[(12A)Q 1AQ ]a pa a a a oa ia

1 (1 2 l)Qla

22 Q 1 K ¹ T , (11)lw-out a a

]To gr C H 1= · (u T ) 5 2(1 2 A)Q 2 AQw pw o w o oa oi1 2]t
21 Q 1 K ¹ T , (12)upwelling o o

2] TlK 5 0, (13)l 2]z

where Cpw is the specific heat capacity for water; Ha and
Ho the atmosphere scale height and the ocean mixed-
layer depth; l a land mask parameter (equal to 0 over
land and to 1 otherwise); Qla the energy flux to the
atmosphere from the land due to longwave, sensible,
latent heating and shortwave radiation; Qlw-out the long-
wave radiation lost to space; Qupwelling the energy flux
into the mixed layer from the upwelling of warm water
from the deep ocean; Ka and Ko the atmosphere and
ocean diffusion coefficients; Kl the land thermal con-
ductivity; and Tl the land temperature. In the above
equations, the advective terms are represented as Qadv

in Fig. 1. The response time of the atmosphere is short
due to its low heat capacity; consequently, the time-

dependent term in the energy equation for the atmo-
sphere will be neglected. Physically this implies that the
atmosphere is always in equilibrium with the ocean or
land. To calculate Qupwelling, it is assumed that when ice
forms it rejects all of its salt; for a salinity and tem-
perature difference of 5 ppt and 28C between the deeper
ocean and surface waters, this results in heat flux into
the mixed layer approximately equal to 10% of the latent
heat flux released during ice formation.

c. Sea ice rheology

In order to close the system of equations, the stresses
(s) must be written in terms of the basic variables de-
scribing the ice behavior. In mathematical form this is
written as follows:

skl 5 fkl(ui,j, h, A, Ti),

where ui,j 5 ]ui/]xj is the velocity gradient consisting
of a symmetric part 5 (ui,j 1 uj,i)/2, the stretchingėij

(strain rate) tensor, and an antisymmetric part 5 (ui,jV̇i,j

2 uj,i)/2, the spin (angular velocity) tensor, and Ti is the
ice temperature. In the model proposed here, the de-
pendence of the stresses on and ice temperature willV̇i,j

be ignored. These equations are called the constitutive
relations and are material dependent. Thus, assumptions
about the type of material and its behavior in defor-
mation must first be postulated.

The sea ice cover consists of many floes and is as-
sumed to be a large-scale granular material in slow con-
tinuous deformation. A granular material is a collection
of a large number of discrete solid grains (e.g., ice floes)
with accompanying interparticle voids. These voids are
usually filled with fluid such as air or water and, strictly
speaking, the flow of a granular mass is a multiphase
flow. However, for closely packed material or when the
density of the interstitial fluid is small compared to the
particle density, the transfer of momentum is done main-
ly by the particles and the flow can be considered as a
dispersed single-phase flow rather than a two-phase
flow. The flow of sea ice is considered to fall in the
former category.

Depending on the local stress conditions, sea ice can
behave as an elastic solid, a plastic solid, or a fluid.
During its elastic-solid behavior, sea ice can resist large
forces induced by winds and ocean currents in the pres-
ence of boundaries, with relatively small deformation
(compared to plastic deformation). However, much of
this resistence occurs at frictional bonds between the
floes, and as such the ice strength is limited by the loads
those bonds can take. When the force transmitted across
intergranular contact points exceeds certain critical val-
ues for compressive, shear, and tensile loads (failure
criterion), the structure collapses and it starts to flow.
When the compressive load limit is reached, the floes
override one another forming a ridge (Hopkins 1994);
when the tensile load limit is reached (equal to zero, no
cohesion) the floes drift freely without interacting with
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FIG. 2. (a) Photograph of the Arctic pack ice taken at an altitude of 6.1 km (reproduced from Coon et al. 1974).
(b) Satellite picture of the pack ice north of Greenland and Ellesmere Island (reproduced from Kozo et al. 1992).
(c) SMM/I brightness temperature of the Arctic (NSIDC data). The full scale is about 20 km for (a), 1000 km for
(b), and 2500 km for (c).

one another; and when the shear load limit is reached,
the failure consists of a group of several floes sliding
or rolling relative to one another along sliding lines
roughly aligned with the stress characteristics in the
material. Examples of such sliding lines are shown in
Fig. 2 for different length scales. Earlier work by Marko
and Thompson (1977) explained the presence of those
features by brittle material fracture. Later, Pritchard
(1988) demonstrated that plastic models used for sea
ice modeling can explain the presence of such lead pat-
terns. For sea ice, the relative ice speed across sliding
lines is small, and the different floes remain in contact
during deformation, allowing friction to act. This is
termed the quasi-static flow regime [see Babic et al.
(1990) for a detailed classification]. In the rapid flow
regime, the interactions between the floes are modeled
as inelastic collision. This type of approach has been
used in the ice margin region where the floe speeds are
typically larger (Shen et al. 1986). For a review on high
speed granular flow, see Campbell (1990) and Hutter
and Rajagopal (1994).

From the above considerations, we derive macro-
scopic constitutive relations, based on the microscopic
behavior of the floes, that model the large-scale motion

of sea ice. The model presented here is based on the
double sliding model of Balendran and Nemat-Nasser
(1993), in which inelastic deformation is assumed to
consist of two superimposed shear deformations along
sliding lines obtained from the Mohr-Coulomb failure
criterion, or ridging when the average normal stress at
a point exceeds the ice strength in compression. How-
ever, the elastic deformation, the dependence of the
stresses on the rotation tensor, and the variable internal
angle of friction are neglected (the deformation history
of the material is ignored). These simplifications make
this model suitable for climate studies, which involve
longer timescales.

Consider the stresses acting on an ice element, as
shown in Fig. 3a (compressive stresses are defined as
negative). Since the stress tensor is symmetric, it will
always be possible to diagonalize it with a pure rotation
of the coordinate axes (see Fig. 3b). The stresses acting
on the rotated element are the maximum and minimum
normal stresses acting at a point and are called the prin-
cipal stresses (s1 and s2); the shear stresses acting on
the rotated element vanish identically. The principal
stresses can also be interpreted as the eigenvalues of the
stress tensor matrix, and the angle of rotation c between
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FIG. 2. (Continued)
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FIG. 3. State of stress at a point in model coordinates (a) and prin-
cipal stress coordinates (b).

FIG. 4. The orientation of the sliding lines (dashed) with respect
to the x–y and s1–s2 coordinate systems. The second sliding line is
shown as a double dashed line for the sake of clarity.

the two coordinate systems can be deduced from the
rotation matrix composed of the two normalized eigen-
vectors. These new coordinate axes will provide a useful
reference to determine the failure criterion of a given
material. Mathematically, they can be written in terms
of the two stress invariants, the average normal stress
(or pressure) p, and the maximum shear stress q, as
follows:

s 5 2p 1 q, s 5 2p 2 q,1 2

where

1/2
s s9sii ij ijp 5 2 , q 5 , s9 5 s 1 pd ,ij ij ij1 22 2

and the angle c between the x–y and the principal stress
axes satisfies the following relation:

2s12tan2c 5 . (14)
s 2 s11 22

Similar expressions can also be derived for the strain
rate tensor . The strain rate invariants, and , canė ė ė1 2

be physically interpreted as the divergence and the max-
imum shear strain rate at a point [see Ukita and Moritz
(1995) for a review].

1) FAILURE CRITERION

In the following, we consider the planar deformation
of sea ice (two-dimensional horizontal flow of cylin-
drical ice floes), with occasional overriding of adjacent
ice floes. First, a failure criterion is required to specify
the transition between elastic-solid and plastic-solid/flu-
id behavior. This will lead us into section 2c(3), where
constitutive relations that model the resulting defor-
mation are given.

For sea ice deformation along a sliding line, the fail-
ure criterion, based on Coulomb’s friction law, can be
written as follows:

ts 5 2ss tanf, (15)

where f is the effective angle of friction and ts and ss

are the shear and normal stresses acting on the sliding
plane (see Fig. 4). The above expression is exactly
equivalent to dynamic friction between two dry surfaces

where the frictional force is proportional to the normal
force; the constant of proportionality is the coefficient
of friction (tan f). For stress ratios t/(2s) less than
tanf, sea ice behaves as an elastic solid and, when the
stress ratio is equal to tan f, it flows like a fluid. There
are two planes on which this stress ratio reaches its
maximum value and they are situated symmetrically
about the principal stress axis s2 at angles of 6(p/4 2
f/2) (Fig. 4). Writing the stresses ss and ts in terms of
the stress invariants, the sliding criterion [Eq. (15)] can
be rewritten as

q 5 p sinf, (16)

with

ts 5 q cosf ss 5 2(p 2 q sinf). (17)

In the above equation, the pressure p is limited to a
maximum value Pmax, which is a function of the local
ice thickness and concentration. This can be parame-
terized as follows (Hibler 1979):

Pmax 5 P*h exp[2C(1 2 A)],

where P* is the ice strength per meter ice thickness and
C is the ice concentration parameter. Note that for typ-
ical values of C, Pmax can be considered equal to zero
for A equal to zero. When p reaches this maximum
value, the ice can no longer support the compressive
load and the floes override each other—that is, a ridge
forms. The failure (yield) criterion described above [Eq.
(16)] is shown in Fig. 5a in stress-invariant space and
in Fig. 5b in principal stress space. This yield curve is
equivalent to the straight portion of the ice-cream-cone
yield curve, favored by Coon (1974) (Fig. 5b). The
elliptical yield curve used by Hibler (1979) was chosen
in an attempt to represent the ice-cream-cone yield curve
of Coon while maintaining mathematical simplicity.
Note, however, that the ellipse lies in part in the positive
principal stress quadrants and therefore has some tensile
strength (cohesion).

The failure criterion marks the boundary between
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FIG. 5. Mohr–Coulomb failure criteria in stress invariant space (a), in principal stress
space (b), and the ice-cream-cone and elliptical yield curve in principal stress space
(b). Note that the principal stress axes are orientated at 458 from the stress invariant
axes. Also, when there is no rotation, the principal axes of strain coincide with the
principal axes of stress.

elastic and inelastic (plastic) behavior of sea ice. When
the stresses lie within the yield curve, sea ice behaves
as an elastic solid and negligibly small deformation oc-
curs; when the stresses lie on the yield curve, there are
three possible motions: 1) sliding can take place along
a sliding line (solid line in Fig. 5a), 2) ridging can occur
when the maximum pressure is reached (dashed line in
figure 5a) or 3) free drift can occur when all stresses
are zero. From equation 16, the stress tensor in the x–y
coordinate system can be written in terms of p and c
as follows:

2(p 2 p sin f cos 2c) p sin f sin 2c
s 5 .[ p sin f sin 2c 2(p 1 p sin f cos 2c ]

(18)

It remains to relate the angle c to the strain rate tensor
and to propose a closure scheme to solve for theė

pressure p. It should be appreciated that shear defor-
mation along sliding lines leads to a rearrangement of
the ice floes, and consequently, to a redistribution of the
contact normal between individual floes. This causes a
change in the material’s resistance to shear deformation
(a change in f) and may lead to densification or dila-
tation (larger or smaller ice concentration) of the ma-
terial, depending on the orientation of the contact nor-
mals. The next subsection discusses the link between
the effective angle of friction (f), the dilatation, and
the resulting deformation in the ice field.

2) DILATATION

Deformation of a granular mass comes from the rel-
ative displacement of individual granules along planes
tangent to the ice floes at an active contact normal (see
dashed lines in Fig. 6). The angle between those planes
(microscopic plane of motion) and the macroscopic slid-
ing plane is called the angle of dilatancy and is denoted
by d. Normal forces at contacting points with positive

angle of dilatancy (Fig. 6a) tend to oppose relative mo-
tion and contribute to the overall resistance of the ma-
terial to shear deformation, and those with negative an-
gle of dilatancy (Fig. 6b) tend to assist motion and re-
duce the resistance of the material to shear motion. Also,
from the orientation of the microscopic plane of motion
and the macroscopic sliding plane, we note that a pos-
itive angle of dilatancy leads to a dilatation of the ma-
terial (shear 1 divergence) whereas a negative angle of
dilatancy leads to a densification of the material (shear
1 convergence). Therefore, the macroscopic angle of
friction of a granular material (or its resistance to shear
motion) depends not only on the type of material but
also on the distribution of the contact normal, and is
closely related to dilatation/densification; however, the
microscopic angle of friction (m) between two distinct
floes is considered a constant property of the material.

A relationship between the effective angle of friction
(f), the ensemble average angle of dilatancy over a grid
cell (d), and the microscopic angle of friction (m) is
presented. For d . 0, the forces on the microscopic
plane (R, F) can be written in terms of the forces in the
macroscopic plane (N, T) as follows:

F 5 T cos d 2 N sin d, R 5 T sin d 1 N cos d,
(19)

where T 5 Asts, N 5 Asss and As is the area of the
sliding plane. Similar relations can be written for a neg-
ative angle of dilatation. When sliding occurs, the fric-
tional force F is related to the normal force R by (as in
Eq. 15)

F 5 R tan m. (20)

From Eqs. (17), (19), and (20), the macroscopic angle
of friction (f) can be related to the angle of dilatancy
d and the microscopic angle of friction (m) by

f 5 d 1 m.

In the initial stage of deformation, more and more con-
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FIG. 6. Forces acting on ice floes for positive (a) and negative (b) angle of dilatancy. The contact
points between various floes are shown as dots.

tact normals with positive angles of dilatancy are
formed, while contact normals with negative angle of
dilatancy are continually lost. This leads to an initial
dilatation of the material (opening of leads) and an as-
sociated increase of resistance to shear motion (f). With
time, positive contact normals are eroded and the overall
angle of dilatancy and macroscopic angle of friction
remain constant. The possibility to detect leads from
SSM/I brightness temperature data with a 10 km res-
olution (Fig. 2) shows that adjacent ice floes not only
slide on one another along leads but also move apart,
uncovering warm ocean water underneath. Sea ice di-
vergence calculated from synthetic aperture radar (SAR)
images (Stern et al. 1995) clearly indicate that opening
and closing of leads is present during shear deformation.
In this model, this effect comes naturally from consid-
ering the microscopic behavior of sea ice in shear de-
formation and does not rely on parameterization. Other

sea ice models using different rheologies have also in-
cluded the effect of dilatation associated with shear de-
formation; see, for example, Pritchard (1981) and Flato
and Hibler (1991).

To close the problem, an evolution equation for the
effective angle of friction f is required. Examples of
evolution equations for various types of material are
given in Balendran and Nemat-Nasser (1993). For this
application, the effective angle of friction is assumed
to have reached its saturation value and therefore it will
be considered constant. This constant is set at 30 deg,
based on observation made by Overland and Pease
(1988).

3) CONSTITUTIVE RELATIONS

In this subsection, the constitutive equations relating
the stresses (s) to the strain rates ( ) are presented. Theė
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strain rate can be separated into a plastic and an elastic
part ( 5 1 ). In the model proposed here, onlyp eė ė ė
the plastic deformations are kept since the elastic de-
formations are typically much smaller.

It is assumed that the plastic deformation is due to
shearing along the sliding lines and that the rate of shear-
ing is denoted by Note that the rate of shearing isġ.
the same on both sliding lines; this follows from the no
rotation assumption 5 o (see beginning of sectionV̇
2c above). Axial strain rate is also present on the sliding
lines due to the dilatation/densification of the material.
The resulting strain rate tensor, in a coordinate system
aligned along a sliding line (a 5 1, 2), takes the fol-
lowing form:

0 ġ
aė 5 a 5 1, 2. (21)[ ]ġ ġ tand

The strain rate tensor ( ) in the x–y coordinate systemė
is the sum of the , a 5 1, 2, rotated by an angle ofaė
c 6 (p/4 2 f/2), respectively. The following relation-
ships can be derived from , expressed in the x–y co-ė
ordinate system:

ė 5 2ġ tand (22)kk

cos(f 2 d)
ė 2 ė 5 2ġ cos2c (23)11 22 cosd

cos(f 2 d)
2ė 5 2ġ sin2c. (24)12 cosd

From Eqs. (23) and (24), the angle c can be written in
terms of the deformation field in the following manner:

2ė12tan2c 5 . (25)
ė 2 ė11 22

This ratio of strain rates also measures the angle between
the principal axes of strain rate and the x–y coordinate
axes (see section 2c). This indicates that the principal
stress axes coincide with the principal strain rate axes;
that is, the extreme values of axial strain rates ( , )ė ė1 2

will occur where the extreme normal stresses (s1, s2)
are acting. This is not precisely the case in practice, but
follows from the no-rotation argument 5 o.V̇

In the present approach, the deformation varies from
pure shear deformation (d 5 0) to shear deformation
with divergence (d . 0) or convergence (d , 0), de-
pending on the chosen value of d [see Eqs. (21) and
(22)]. For d 5 0, the deformation is represented graph-
ically in Fig. 5b (#1); in this case, the orientation of the
arrow (458) is such that the principal strains are equal
in magnitude but opposite in sign (nondivergent flow,

1 5 0). In comparison, when the normal flow ruleė ė1 2

(Fig. 5b, #2) is used in conjunction with the ice-cream-
cone or Mohr–Coulomb yield curve (as in Coon et al.
1974), excessive dilatation results (Spencer 1964), with

positive and larger in magnitude than ( 1 .ė ė ė ė1 2 1 2

0, divergent flow). When used with the elliptical yield

curve (as in Hibler 1979), strong divergent flow results
whenever the stress state lies in the first half of the
ellipse, where the normal to the yield curve projects
onto one or both positive principal strain axes (Fig. 5b
#3). This situation is not realistic and is avoided in the
present model. It is also interesting to note that the
divergence associated with shearing motion is in effect
a new thermodynamic source term in both continuity
equations and provides a means to form thicker ice with-
out the need to ridge thick multiyear ice.

Finally, Eq. (22) can be used to close the system of
equations and solve for p:

ė 5 2ġ tand, when 0 , p , P . (26)kk max

In the above equation, is taken as the maximum shearġ
strain acting at a point [equal to half the denominator
in Eq. (27)]. For d 5 0, the above equation reduces to
the closure scheme proposed by Flato and Hibler (1992).
Substituting (25) into (18), the final constitutive equa-
tions are obtained:

s 5 2pd 2 hė d 1 2hė ,ij ij kk ij i, j

where

p sinf
h 5 min ,h . (27)max1 22 2Ï(ė 2 ė ) 1 4ė11 22 12

For small deformation ( , ), the coefficient of frictionė ė1 2

is constant (h 5 hmax) and sea ice behaves as a very
viscous fluid.

3. Numerical scheme

The numerical scheme used to solve the governing
equations for the thermodynamics of the atmosphere,
ice, ocean, and land is presented in this section. Since
the time-dependent terms in the ice momentum equation
and the atmospheric energy equation are neglected, the
ice field and the atmosphere are always in balance with
the external forcing. In addition, the coupling between
the atmosphere, ice, and ocean model components is
only through the thermodynamic equations as the wind
and ocean currents are prescribed quantities. These re-
strictions greatly simplify the solution procedure. The
ice thickness, concentration, and ocean temperature
fields are first calculated by time stepping the continuity
equations (4) and (5) and the ocean energy equation
(12). Given the h and A fields, the ice velocity field
satisfying the momentum equations (1) can be calcu-
lated. The ice surface, land surface, and atmospheric
temperature are obtained in a similar manner from the
new To field. The grid used in this model is the Arakawa
C-grid, where all the scalar quantities are positioned in
the center and the vector quantities on the sides (see
Fig. 7a). This allows the conservation of mass equation
to be solved using a mass-conserving numerical scheme.
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FIG. 7. Location of the scalar and vector quantities on the Arakawa
C-grid (a) and B-grid (b): C can represent the ice thickness (h),
concentration (A), temperature (T ), and pressure ( p).

a. Momentum equation

The description of the numerical solution for the mo-
mentum equation parallels the one used in Flato and Hib-
ler (1992). The ice thickness and concentration used in
the solution of the momentum equation are first calcu-
lated from Eqs. (4) and (5) using a simple forward-in-
time, upwind finite-difference scheme. Neglecting the ac-
celeration term and expressing the sea surface tilt in terms
of the geostrophic ocean current ( f 5 gk 3 =Hd), theguw

momentum equation (1) can be written as follows:

g 9A(u 2 u ) 5 R 2 =p 1 = ·s , (28)i w

where R is the wind-forcing term and 2=p 1 = ·s9
the ice interaction term. The matrix and vectors can be
written as follows:

C9 cosu 2r hf 2 C9 sinudw w i dw wA 5 1 2r hf 1 C9 sinu C9 cosui dw w dw w

C9 (u cosu 2 y sinu )da a a a aR 5 1 2C9 (y cosu 1 u sinu )da a a a a

] ]u ]y ] ]u ]y
h 2 1 h 11 2 1 2[ ] [ ]]x ]x ]y ]y ]y ]x

F 5 ,
] ]u ]y ] ]u ]y1 2h 1 2 h 21 2 1 2[ ] [ ]]x ]y ]x ]y ]x ]y

where F 5 = ·s9. We now seek an ice velocity field
satisfying Eq. (28), subjected to the restrictions on the
pressure field [Eq. (26)]. This is done in three steps.
First, the free drift velocities1 are calculated, andfdui

then used as an initial approximation to the solution of
the momentum equation (28). Second, the free drift ve-
locities and associated pressure field (p 5 0, every-
where) are corrected using Eq. (26) and considering the
term = ·s9 a constant. Finally, the friction term is con-
sidered and the velocity field is calculated considering

1 The solution of (28) without the ice interaction term included.

the pressure to be known. The resulting velocity field
will not necessarily satisfy the restriction on pressure,
and iteration between the second and the third step is
therefore necessary.

The free drift velocity can be calculated analytically
using the B-grid (Fig. 7b), where both components of
the ice velocity are collocated, with knowledge of the
wind and ocean currents at each node of the domain.
In addition, the part of the forcing that is independent
of the ice velocities can be calculated from the free drift
velocities in the following manner:

R9 5 R 1 5 .g fdAu Auw i

Then R9 and are interpolated onto the C-grid forfdui

subsequent use in the numerical scheme. The momen-
tum equations now take the form

Aui 5 R9 2 =p 1 = ·s9. (29)

As a second step, the free drift solution is modified
to satisfy both the equation of motion (29) and the re-
striction equation (26). More generally, any initial guess
(ui and p) satisfying Eq. (29) can be used as a starting
point. Substituting the corrected fields (ui 5 ui 1 u9i
and p 5 p 1 p9) into the equation of motion (29) and
subtracting the basic state, the equation for the velocity
correction can be written as

=p9
Au9 5 2=p9 or u9 5 2 . (30)i i C9 cosudw w

The frictional term (= ·s9) and the off-diagonal terms
of matrix A are considered temporarily constant and
therefore are not part of the perturbed solution. Their
effect will be considered later in the solution. Upon
substituting (30) into (26), the pressure field can be
calculated by solving

=p9
= · 5 = ·u 2 2ġ tand.i1 2C9 cosudw w

For a simplified situation where d is set equal to zero,
this scheme will adjust the pressure p in order to obtain
a nondivergent velocity field. In the limit where the ice
is infinitely strong in tension and compression, the final
solution would be nondivergent. In practice, the ice has
a finite strength in compression and little or no resistance
in tension; for these reasons, regions of convergence
and divergence will exist in the solution domain. If dil-
atation is considered (d ± 0), the flow field can be
divergent and the pressure still positive. This would be
observed when shearing occurs along sliding lines due
to the rearrangement of the floes. In finite-difference
form, the left-hand side of the above equation is written
in the following manner:

=p9 1 p9 2 p9 p9 2 p9i11, j i, j i, j i21, j= · 5 2 (31)
2 x x1 2 [C9 cosu D z zdw w i11, j i, j

p9 2 p9 p9 2 p9i, j11 i, j i, j i, j211 2 , (32)
y y ]z zi, j11 i, j
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where D is the grid size and (5 cosu) and thex yz C9 zi,j dw i,j

diagonal components of the matrix A evaluated on the
vertical and horizontal side of the grid, respectively.
This equation is solved using a Gauss–Seidel relaxation
technique where the pressure p is considered zero except
at the point of interest (i, j). Approximately 20 iterations
are required to obtain the desired accuracy; the solution
of this equation takes roughly 15% of the total CPU
time. From these considerations, the correction on pi,j

can be written as follows:

2p9 5 D (2= ·u 1 2ġ tand)i, j i

211 1 1 1
3 1 1 1 .

x x y y1 2z z z zi11, j i, j i, j11 i, j

The correction on the velocities follows from Eq. (30):

1 p9 1 p9i, j i, ju9 5 2 , u9 5 ,i, j i11,jx xz D z Di, j i11, j

1 p9 1 p9i, j i, jy9 5 2 , y9 5 .i, j i, j11y yz D z Di, j i, j11

In the above expressions the subscript i for ice was
omitted to make the notation clearer.

The current value of pressure p or velocity ui is the
sum of the initial value and the correction p9 or .u9i
However, certain restrictions must be imposed on the
pressure p [see Eq. (26)]. If the pressure exceeds the
maximum value in compression (Pmax), the correction
must be set equal to Pmax 2 p to avoid exceeding the
maximum allowable value. This will result in conver-
gence in that grid cell. If the pressure p becomes neg-
ative (tensile stress), the correction must be set equal
to 2p, resulting in a zero final pressure and divergence
in that grid cell. Note that the friction term was not
considered in the computation of the pressure or velocity
fields. Consequently, a new correction to the velocity
field is required to account for the newly computed pres-
sure field. This is done using the following finite-dif-
ference form of the ice interaction term. For instance,
the two terms in the x component of the F term can be
written as follows:

1 u 2 u y 2 yi11, j i, j i, j11 i, jcF 5 h 21 i, j1 2[D D D

u 2 u y 2yi, j i21, j i21, j11 i21, jc2h 2i21, j1 2]D D

1 u 2 u y 2 yi, j11 i, j i, j11 i21, j11nF 5 h 12 i, j111 2[D D D

u 2 u y 2 yi, j i, j21 i, j i21, jn2h 1 ,i, j1 2]D D

where hc and hn are the coefficients of friction evaluated

at the center of the grid cell and the node, respectively.
Similar expressions can be derived for the Fy compo-
nent. Writing the complete momentum equation in fi-
nite-difference form, the velocity field can be calculated
from the following:

ui,jA 5 R0,1 2y i, j

where R0 comprises all the forcing terms and the off-
diagonal velocity terms independent of ui,j. Again, this is
solved using a Gauss–Seidel relaxation technique on the
above equation. Typically, 30 iterations are needed to ob-
tain the desired accuracy; the solution of this equation
takes approximately 25% of the total CPU time. Since the
resulting velocity field will not satisfy the restriction on
pressure imposed by the closure scheme given by Eq. (26),
it is necessary to iterate a few times (about 4 or 5) between
the two algorithms.

b. Energy equations

The ocean temperature is updated from the various
atmosphere–ocean and ice–ocean heat fluxes using a
simple forward-in-time finite-difference method. The at-
mosphere and ice surface temperatures are then calcu-
lated using the new ocean temperature field. The forcing
terms for the atmosphere are linearized about their val-
ues at the previous time step and can all be written in
terms of the atmospheric temperature Ta, the ocean tem-
perature To, the ice and land surface temperatures Ti and
Tl, and the ice base temperature Tib. In the following,
the ice base temperature is assumed to be equal to the
ocean temperature. As a result, sensible heat transfer
between the ice and the ocean only occurs when the
ocean temperature rises above the ice melting point.
Furthermore, the ice surface temperature can be ex-
pressed in terms of the atmospheric temperature as fol-
lows [see Eq. (10)]:

T 2 Ti o2K 5 Q 5 a 1 a T 2 a T ,i ia o 1 i 2 ah /A

2a 1 a T 1 K AT /ho 2 a i oT 5 . (33)i K A /h 1 ai 1

A similar expression can be derived for the land surface
temperature. The atmosphere energy equation now con-
stitutes a linear advection–diffusion equation in Ta of
the form:

ATa 5 R-,

where R- represents the total heat fluxes from the surface
to the atmosphere. This equation is solved using the al-
ternating direction implicit (ADI) method [see Press et al.
(1990)]. In the first substep, we solve for the temperatures
in the even rows (x direction) of the physical domain
assuming the odd row temperatures are known. The same
approach is then used for the odd row, even column, and
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FIG. 8. Computational grid used in the simulation.

odd column temperatures. The advantage of this method
is that each substep requires only the solution of a tridi-
agonal matrix, which can be solved easily by standard
techniques. After a few iterations (4 or 5), the solution
converged to the required accuracy. Once the atmospheric
temperature is known, the ice and land surface temperature
can be easily calculated [e.g., see Eq. (33)].

4. Results

Results from a simulation of the sea ice cover over
a seasonal cycle in the Arctic Ocean and surrounding
seas, using this model, are presented in this section. A
Cartesian mesh with a grid resolution of 111 km is used
on a polar stereographic projection of the physical do-
main (see Fig. 8). At high latitudes, the variation of the
Coriolis parameter with latitude is small and the f-plane
approximation is used. The model is forced with pre-
scribed climatological monthly mean wind stresses, ob-
tained from the 1959–89 National Meteorological Cen-
ter (NMC, now known as the National Centers for En-
vironmental Prediction) sea level pressure analysis.
These stresses are assumed to represent the midmonth
situation. The wind stress field at a particular day is
calculated from a linear interpolation of the two closest
midmonth values. Spatially varying, but steady ocean
currents were calculated from a single layer reduced-
gravity model, appropriate for large-scale flows, in
which the acceleration term in the momentum equation
is ignored, friction is represented using a linear drag
law, and the normal velocity component is specified at
open boundaries. In the Bering Strait, the normal ve-
locity was chosen so as to obtain a constant inflow of
1 Sv (Sv [ 106 m3 s21) into the Arctic, and the velocity
field in the North Atlantic was specified from Levitus

sea surface elevation data and scaled in such a way as
to obtain no accumulation of water in the Arctic domain.
Finally, the solar forcing is the daily averaged value
corrected for an 80% cloud cover (Laevastu 1960).

The boundary conditions for the ice dynamic equa-
tions are zero normal and tangential velocity at a solid
boundary and free outflow (p 5 0) at an open boundary
(Hibler 1979). For the atmospheric thermodynamic
equations, the temperature at the boundary is specified
from monthly climatology. The temperature on a given
day is calculated as a weighted average of the midmonth
climatological values. These temperatures were calcu-
lated from the NMC 850-mb height and temperature
fields, assuming a linear temperature profile from the
1013-mb and 850-mb levels. For the ocean, the tem-
peratures at open boundaries are also specified from
monthly climatologies extracted from the Levitus data.
At continental boundaries, the ocean heat flux is con-
sidered zero (a continent is regarded as a perfect in-
sulator). The initial conditions for the ice model, used
in all simulations, are 1-m ice thickness and 80% ice
concentration. For the ocean, the temperature is set at
the freezing point temperature (21.88C) of Arctic Ocean
surface waters everywhere.

In this study, an attempt was made to include the effect
of surface roughness in the drag coefficients. Quadratic
drag coefficients ranging from 1 to 6 3 1023 were mea-
sured in the last 30 years with the more recent measure-
ments being at the upper end of this range. This is ex-
plained by the fact that the measurements have been made
over increasingly rough surfaces and perhaps under in-
creasingly unstable stratifications conditions (Smith 1990).
Since the surface roughness depends on ridging intensity,
which in turn influences ice thickness, both the air–ice and
ocean–ice drag coefficients are assumed to vary linearly
with ice thickness in the range between 1 and 5 m (Trem-
blay and Mysak 1997). A list of all the physical parameters
and constants used in the simulations are given in Table
1. Finally, the internal angle of friction is considered con-
stant and equal to 30 deg.

The model was integrated for 10 years to reach a
stable seasonal cycle using a 1-day time step and a zero
angle of dilatation. The results shown are the simulated
March lead pattern, the annual mean climatological ice
velocity field, and the midmonth March and September
ice thickness distributions, which also include the ice
edge position for these months. The effect of including
dilatation, associated with shearing deformation, on ice
thickness distribution is also discussed for the mid-
March results. Calculated atmosphere and ocean mid-
March temperature fields are also presented. The model
results are compared with sonar data for ice thickness,
buoy data for ice velocity fields, satellite data for ice
extent, NMC data for the atmosphere temperature, and
Levitus data for the ocean temperature.

a. Lead pattern and ice velocity field
In the continuum approach used here, we do not keep

track of the exact position of each ice floe for all time;
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TABLE 1. Physical parameters and constants used in the simulation.

Variable Symbol Value

Atmospheric albedo
Ice albedo
Land albedo
Ocean albedo
Angle of dilatancy
Atmospheric emissivity
Ice emissivity
Land emissivity
Ocean emissivity

aa

ai

al

ao

d
ea

ei

el

eo

0.26
0.70
0.20
0.17
10 deg
0.88
0.97
0.90
0.96

Planetary emissivity
Internal angle of friction
Maximum ice viscosity
Air density
Ice density
Water density
Stefan–Boltzmann constant
Air and water turning angle

ep

f
hm

ra

ri

rw

s
ua, uw

0.50
30 deg
1 3 1012 kg m21 s21

1.3 kg m23

900 kg m23

103 kg m23

5.67 3 1028 W (m2 K4)21

25 deg
Saturation vapor pressure constants
Ice strength parameter
Air drag coefficient (h 5 1 m)
Water drag coefficient (h 5 1 m)
Latent heat transfer coefficient
Specific heat of air
Specific heat of ice
Specific heat of land
Specific heat of water
Sensible heat coefficient
Atmospheric scale height

A1, A2

C
Cda

Cdw

Clat

Cpa

Cpi

Cpl

Cpw

Csens

Ha

7.5, 35.86
20
1.2 3 1023

5.5 3 1023

1 3 1023

1 3 103 J (kg K)21

2 3 103 J (kg K)21

0.7 3 103 J (kg K)21

4 3 103 J (kg K)21

1 3 1023

7 3 103 m
Land thickness
Ocean mixed layer depth
Diffusion coefficient for A
Atmospheric diffusion coefficient
Diffusion coefficient for h
Ice thermal conductivity
Land thermal conductivity
Ocean diffusion coefficient
Latent heat of evaporation
Latent heat of fusion
Latent heat of sublimation

Hl

H0

KA

Ka

Kh

Ki

Kl

Ko

Le

Lf

Ls

6 m
60 m
50 m2 s21

5 3 1012 m2 s21

50 m2 s21

2 W (m2K)2121

2 W (m2K)2121

1 3 1010 m2 s21

2.50 3 106 J kg21

3.30 3 105 J kg21

2.83 3 106 J kg21

Ice strength in compression
Sea level pressure
Ocean freezing point
Freshwater freezing point
Land base temperature
Atmospheric absorptivity
Coriolis parameter
Gravitational acceleration
Demarcation thickness between thick and thin ice

Pmax

Ps

Tfp

Tfi

Tlb

aa

f
g
h0

7 3 103 (N m22)21

101.3 3 103 Pa
21.88C
08C
6.08C
0.25
1.5 3 1024 s21

9.81 m s22

0.5 m

consequently, the exact position of leads and sliding of
groups of floes relative to one another cannot be resolved.
Instead leads will appear as regions where large shear
strain rates are present. In order to evaluate the ability of
the model to reproduce the large-scale lead patterns often
observed. (e.g., Fig. 2c), a shear strain rate map is shown
in Fig. 9 for mid-March. Of particular interest is the shear
band extending from the western Canadian Arctic Archi-
pelago (Prince Patrick Island) to the North Pole. This mod-
eled feature agrees well with the observed lead seen in
the SSMI satellite observations (Fig. 2c). North of Green-
land, no shear lines are observed. There, the flow is un-
bounded to the east and the shear force required to induce
sliding motion is much smaller. For this reason, it does

not show up as a distinct feature in the observations. Other
high shear regions (not shown here) are also present ad-
jacent to coastlines; however, in these regions, the ice
pressure is typically much smaller.

The simulated annual-mean velocity field is shown
in Fig. 10a, along with an annual climatological velocity
pattern derived from buoy drift measurements from the
Arctic Buoy Program (Fig. 10b). Qualitatively speaking,
the Beaufort gyre and the Transpolar Drift Stream are
well simulated; however, with the center of the gyre
positioned slightly westward from its climatological lo-
cation. Model results obtained with the Bering Strait
closed (not shown here) depict the Beaufort gyre center
to be quite westward of its observed position. The open-
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FIG. 9. Shear strain rate [denominator of Eq. (27)] color map.
Regions of high shear strain rate are indicated by the warm colors.
Note that the shear strain rate is scaled by the internal ice pressure
to focus attention on places where the ice interactions are significant.

ing of the Bering Strait significantly improves the sim-
ulation and plays an important role in determining the
velocity field in the east Siberian side of the gyre. It is
important to note that the model produces a wedge of
very slowly moving ice at the dividing line between the
ice caught in the Beaufort gyre and that leaving the
Arctic through Fram Strait. In this region, we often have
creeping flow, which occurs when only small defor-
mations in the ice field are present. In this figure, the
region of high shear strain rate is also apparent at the
interface between the relatively fast moving ice of the
Beaufort gyre and the relatively still ice north of Green-
land. The ice velocity in the gyre is of the order of 2–
3 cm s21, in agreement with measurements by Colony
and Thorndike (1984), who quote an average value of
about 2.5 cm s21. The ice coming out of the Arctic
through Fram Strait has a typical velocity of 5 cm s21,
which is also in good agreement with observations.

b. March ice thickness and concentration fields

Figure 11 shows the simulated mid-March thickness
distribution in the Arctic, which can be compared with the
sonar measurements reported by Bourke and Garrett
(1987). The ice edge position, defined as the 5-tenths ice
concentration contour, is also included in these figures.
Before discussing Fig. 11, it is useful to review the model
results without ice dynamics. Runs with a thermodynamic-
only model (not shown here) show thickness contours
more or less concentric about the North Pole, with a bias
of thicker ice toward the Canadian Arctic Islands, where
the coldest temperatures are registered. Also, the heat
transported by the North Atlantic Drift distorts the model

thickness contours in the GIN (Greenland–Iceland–Nor-
wegian) Seas, keeping the Norwegian and a good part of
the Barent Sea clear of ice. Finally, in a model without
ice dynamics, the maximum ice thickness in the central
Arctic is thinner than the observed values due to the ab-
sence of mechanically ridged ice. As can be seen, (cf.
Figs. 11a and 11b), the inclusion of ice dynamics signif-
icantly improves the solution. The ice thickness contour
patterns reproduce the observations well, including the
double-humped distribution poleward of the northern Ca-
nadian islands, where there is a maximum ice thickness
of 7 m. One-meter ice thicknesses are also present in the
model near the Asian continent except in the Laptev and
Siberian Sea where thicker than observed ice is present.
The modeled ice free region in the North Atlantic now
extends over the whole Norwegian and Barents Seas due
to the prevailing wind blowing ice eastward. In the winter,
whether the Bering Strait is open or closed has a strong
influence on the ice thickness distribution in the Chukchi
Sea. When open, the prescribed ocean velocity profile pro-
duces significantly thicker ice poleward of Bering Strait.
However, the temperature of water entering the domain is
very close to the freezing point and does not have a sig-
nificant influence on the growth of ice in this region.

In the Barent Sea, the ice margin is very well repro-
duced; however, in the Greenland Sea the ice edge is too
far east. This is due to the nature of the prescribed ocean
currents, which are characterized by a weak recirculation
of water in the Greenland Sea. This discrepancy can also
be seen by comparing the model and observed ocean tem-
perature patterns (Fig. 12) where colder temperatures are
generally present south of Svalbard, in the Greenland Sea.
The generally well-positioned ice edge in the model is
remarkable, given that the atmospheric and ocean tem-
peratures are calculated rather than prescribed. For the
atmosphere, the model and observed temperatures for the
month of March are shown on Fig. 13. The model air
temperature in the central Arctic (Fig. 13a) is slightly too
cold due to the thicker ice present in the Laptev and East
Siberian Seas. However, the model temperature contours
are in very good agreement with the NMC analysis in the
Barent, Norwegian, and Greenland Seas where a tongue
of warm water keeps the region ice free and the overlying
air warm.

c. March ice thickness distribution with dilatation

A key quantity to be able to predict in climate studies
at high latitudes is the heat lost by the ocean to the at-
mosphere. To obtain a good estimate of this quantity, both
a realistic ice thickness distribution and a good represen-
tation of the lead distribution is necessary. Although the
lead area represents a very small fraction of the total Arctic
domain (typically 1% or 2%), the amount of heat lost
through the leads is of the same order of magnitude as
the heat lost through the ice by conduction. Observations
of the Arctic cover show that regions of open water are
always present even in the central Arctic and far inside
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FIG. 10. Simulated (a) and observed (reproduced from Colony and Thorndike 1984) (b) annual mean velocity field.

FIG. 11. Simulated March ice thickness distribution in meters (a) and observed ice thickness from sonar data (reproduced from Bourke
and Garrett 1987) (b). The broad dark line denotes the ice edge.

the ice margin. In some previous modeling studies, the
ice concentration was capped to 99% to account for this
fact in an ad hoc manner. In this study a constant angle
of dilatancy of 10 deg is used, to account for the opening
of leads along sliding lines. In reality, when a lead is
formed, large heat loss from the ocean is present and thin
ice reforms rapidly. This thin ice is very weak in com-
pression and will ridge easily once it is subjected to com-
pression. In this manner ice thickness can build up easily
even in regions where thick multiyear ice is present. In
this model, this is simulated by shear deformation with a

small amount of divergence. This will cause the ice con-
centration to drop below 100% and will result in an in-
creased heat loss to the atmosphere. Finally, the reduction
in ice concentration will result in a smaller ice strength in
compression, which will make it easier to ridge. Figure
14 shows the mid-March ice thickness difference field with
and without dilatation after a 2-month integration starting
from the mid-January dilatation-free results. We observe
that the ice thickness is larger in the high-shear region
north of the Canadian Islands when dilatation is consid-
ered. After a 2-month integration, differences of 20 cm in
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FIG. 12. Simulated March ocean temperature distribution (degrees Celsius) (a) and observed ocean temperature distribution from Levitus (b).

FIG. 13. Simulated March atmosphere temperature distribution (degrees Celsius) (a), and NMC derived atmosphere temperature distribu-
tion (b).

ice thickness are obtained. The effect of dilatation will
play a larger role poleward of the Canadian Islands, where
observations show high lead activity, and in coastal regions
where shear deformations are induced by the presence of
boundaries.

d. September ice thickness and concentration fields

Figures 15a and 15b show the simulated and observed
ice thickness distribution for the month of September.
Again the ice edge is indicated in these figures. The
calculated ice thicknesses are in reasonably good agree-

ment with the measurements. However, the ice thickness
peak is too far west, being north of the Canadian Ar-
chipelago instead of north of Greenland. The climato-
logical wind pattern reverses in the summer (McLaren
et al. 1987) and is partly responsible for the observed
shift; this seems to be underrepresented in the model
results. In the summer, the open boundary condition at
the Bering Strait has an influence on the ice thickness
distribution in the Chukchi Sea, both through the ad-
vection of warm waters from the North Pacific and the
different ocean current pattern beneath the ice.

Simulated results from a thermodynamic only model
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FIG. 14. Ice thickness difference field with and without dilatation
(in meters).

FIG. 15. Simulated average September ice thickness field in meters (a) and observed ice thickness (reproduced from Bourke and Garrett
1987) (b). The heavy dark line denotes the ice edge.

(not shown here) show an ice edge position in the Bar-
ents Sea, which is slightly too far south, and all of the
Kara, Laptev, and East Siberian sea remain ice covered,
unlike in the observations. The Beaufort and Chukchi
seas are partly ice free but the ice edge is not well
positioned. Including ice dynamics in the model yields
a much improved modeled ice edge position. In the
North Atlantic, much less ice accumulates in the winter
due to the prevailing southwesterly winds present in the
cold months. Consequently, the whole Barents Sea be-
comes ice free in the summer, as shown in Fig. 15a.

Moreover, the Kara and Laptev Seas are ice free, and
the ice edge position at the edge of the Beaufort Sea
agrees very well with observations. The position of this
ice edge coincides with the demarcation line between
first year and multiyear ice at the edge of the Beaufort
Sea. As a result, the Beaufort Sea fills with first year
ice in the winter, which melts away in the summer.
Finally, the East Siberian Sea remains ice covered in
the summer unlike in the observations. The details of
the ocean current pattern are believed to play a large
role in the position of the ice edge in this area.

5. Conclusions

In the present model, sea ice is considered as a large-
scale granular material, that is, a collection of ice floes.
The deformation in the ice field is considered slow enough
that the floes remain in contact during deformation, al-
lowing frictional forces to act and retard the sea ice drift.
At a point, this frictional force is considered proportional
to the normal force keeping the floes together. This situ-
ation is analogous to the case of dynamic friction between
two dry surfaces. The model also allows for a variable
internal angle of friction and a certain amount of dilatation
in the granular media, which depends on the distribution
of the ice floes and the deformation history. This dilatation
causes leads to open and consequently always allows a
small percentage of the ocean surface to be ice free, which
is commonly observed in the Arctic. This behavior arises
naturally from simple considerations based on the behavior
of sea ice at the microscopic level, and eliminates the need
to rely on the parameterization of lead opening. In this
study, the angle of friction is considered constant and the
amount of dilatation is proportional to the shear defor-
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mation. The drag coefficients used in this study are pro-
portional to ice thickness in order to account for the fact
that thick ice is formed by ridging and is usually rougher.

A long-term (10-year) integration of the thermody-
namically coupled ocean–ice–atmosphere model could
reproduce many observed features of the Arctic sea ice
cover, both in winter and in summer. Regions of large-
scale sliding observed along leads extending from the
Beaufort Sea to the central Arctic are well reproduced
by the model. In addition, the observed opening of leads
associated with this shear deformation is well simulated.
The ice thickness distribution over the entire Arctic
agrees quite well with sonar measurements, for both
winter and summer, with maximum and minimum ice
thicknesses of 7 and 1 m, respectively. This is partly
due to the linear dependence of the drag coefficients on
ice thickness (Tremblay and Mysak 1997). The ice edge
position in summer also agrees well with satellite ob-
servation. In particular, the model produces ice free
regions in the marginal seas during this season.
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