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•  Skillful decadal forecasts, particularly at regional 
scales (and over land), still lie in the future.  

•  A potentially useful alternative: Synthetic data 
sequences, conditioned by observations and 
including a regional climate change component. 

•  Some considerations in simulation design.  
•  Case Study: Berg River, Western Cape 

province, South Africa. 

In a nutshell… 



  

State-of-the-art initialized precipitation forecasts 

Data courtesy Doug Smith (see Smith et al., Science 2007) 
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RMSE 

Verification: Average of 2-5 yr lead forecasts for annual mean 
precipitation, using GPCC. 

No improvement over unitialized forecasts in southernmost Africa. 



  

Case study: Berg river watershed, W. Cape Province, S. Africa 

• Length: ~300km   

• Catchment: 7715 km2  

• Headwaters in the 
Drakenstein Mts., 
~1000 m.a.s.l.  

• precip, temperature 
gradients with elevation 

• Principal H2O source for 
Cape Town, including 
commercial, industrial 

• Economically significant 
agricultural resource 

• Extant hydrology, 
economic models  

• Availability of data, 
models provides an 
excellent testbed 



  

•  Projection of regional climate change 
–  Estimation of regional response 
–  Implicit role for IPCC models 

•  Identification of systematic signal components 
–  Here, meaning “significantly different from AR(1)” 
–  A key decision: How to represent? One option: “WARM” 

•  Stationarity assumptions 
–  Second moments 
–  Serial autocorrelation (      AR(1) variability) 
–  Seasonal cycle, daily statistics 
–  Local/regional covariation – spatial scale of decadal “footprint” 

•  Description of uncertainty 
–  Arises at many levels: intermodel, scenario, estimation… 
–  Not solely a matter of amplitude, but also temporal behavior 

•  Multivariate model 
–  May be required by downstream modeling framework 
–  Best if training data conforms… 

Simulation design issues 



  

Simulation schematic 

Green arrows: Operator judgment required. 
Cannot be a “black box.” 



  

•  p-value for rejecting H0: 
Residuals are not lag-1 
autocorrelated. 

•  Regression is on the MMM 
global mean temperature. 

•  Annual mean precip (top), 
temperature (below). 

•  NOT screened for filled 
data… 

Where is redness? 



  

•  Multivariate setting: pr, Tmax, Tmin 
•  Obs: 50 yr of daily data (1950-1999) for 171 quinary 

catchments in the Berg (mostly) and Breede WMAs.  
•  Forced trends from IPCC (A1B) 

- For Tmax, Tmin, via 20C regression 
- For pr, via 21C regression 

•  No evidence for systematic low-frequency variation: 
Incorporate trend + stochastic components only. 

•  Precipitation essentially white; temperature exhibits 
some lag-1 autocorrelation. 

•  Low-frequency (annual–multidecadal) variability 
simulated with VAR(1) model. 

•  Subannual variations generated by “block 
resampling” of observations. 

Simulation overview 



  

Regional pr response to global 
mean temperature change: 
Weak in 20c, decidedly 
negative in 21c. 
Because (a) consensus among 
the IPCC models is strong, and 
(b) region lies at the poleward 
margin of the dry subtropics, 
21c sensitivity is utilized. 
Consequence: Simulated 
precipitation decreases by 
about 10% by mid-century 
(annual mean). 

Climate change trends: Which century to trust? 

IPCC, 2007 



  

•  A regular oscillation with 18-yr 
period has been reported for 
precipitation in Southern Africa. 
Wavelet analysis of the 171-
catchment mean (right) does not 
indicate the presence of such a 
signal. The catchment mean is 
used here as the simulation target. 

•  Simulations will then comprise just 
two components: Climate change 
trend and stochastic variations. 
These elements are treated 
independently, then combined. 

What’s the frequency, Kenneth? 



  

Vector autoregressive (VAR) model in brief 

Formally,                          , where 
yt is a three-component vector (pr, Tmax, Tmin) at time t, 

A is a (3 x 3) matrix of coefficients, 

yt-1 is the same vector one time step (year) previous,  

et is a white-noise process with covariance matrix    , 
which may have nonzero off-diagonal elements.  

•  Historically, VAR models have been associated more 
with econometrics than climate, where “linear inverse 
models” (LIMs) have seen considerable deployment. 
Structurally, VAR(1) and LIM appear to be identical. 

•  For our purposes, two data characteristics are of    
primary concern: Intervariable correlation, and          
serial autocorrelation in the individual variables. 
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Intervariable correlation 
 

Observations 
       pr    Tmax   Tmin 
pr    1.000 
Tmax -0.447  1.000 
Tmin  0.068  0.733  1.000  
 
Simulation 
       pr     Tmax  Tmin 
pr    1.000 
Tmax -0.445  1.000 
Tmin  0.068  0.733  1.000 
 

VAR and simulation statistics 

Annualized data (171-station means) 

Serial autocorrelation 

       pr     Tmax  Tmin 

Obs   0.004  0.168  0.297 
Sim  -0.008  0.176  0.303 
 
Tmin significant at 0.05, 
Tmax not quite… 



  

•  Individual station records are 
well-correlated with the 
“regional” signal: Catchment 
behaves coherently (top). 

•  Downscaled to station level via 
linear regression. 

•  Subannual variations taken from 
randomly resampled sequence 
of years in the observations, 
providing spatial coherence. 

•  Simulation can be propagated to 
a single station (bottom), a 
subset or the entire catchment, 
in the latter case producing a 
distributed streamflow scenario. 

•  Large ensemble of simulations 
permits precise specification of 
desired characteristics, useful 
for well-defined follow-on model 
experiments. 

Propagation of simulations to the local level 
Station correlations with regional signal 

Station-level simulation; T trends are local 



  

Some concluding thoughts… 

•  Method can be thought of as a “decadal weather generator” 
incorporating a climate change component. 

•  For the random component a VAR(1) model is utilized; Given the 
potential variety of regional behaviors and available data, other 
models may also prove relevant. 

•  Changepoints, “abrupt” behavior not evident in the observational 
record; no provision made for these in simulations. 

•  Uncertainty owing to differences in model formulation not treated. 
•  Relevant paleodata can augment the instrumental record. 
•  Simulations are presently being run in the first 
“downstream” (hydrology) model: Agricultural Catchments 
Research Unit (ACRU), University of Natal. Stay tuned! 
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