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ABSTARCT

In this model study the authors explore the possibility that the internal component of the Atlantic multi-
decadal oscillation (AMO) sea surface temperature (SST) signal is indistinguishable from the response to white
noise forcing from the atmosphere and ocean. Here, complex models are compared without externally varying
forcing with a one-dimensional noise-drivenmodel for SST. General analytic expressions are obtained for both
unfiltered and low-pass filtered lead–lag correlations. It is shown that this simple model reproduces many of the
simulated lead–lag relationships among temperature, rate of change of temperature, and surface heat flux. It is
concluded that the finding that at low frequencies the ocean loses heat to the atmosphere when the temperature
is warm, which has been interpreted as showing that the ocean circulation drives the AMO, is a necessary
consequence of the fact that at long periods the net heat flux (ocean plus atmosphere) is zero to a good ap-
proximation. It does not distinguish between the atmosphere and ocean as the source of the AMO and is
consistent with the hypothesis that theAMO is driven bywhite noise heat fluxes. It is shown that some results in
the literature are artifacts of low-pass filtering, which creates spurious low-frequency signals when the un-
derlying data are white or red noise. It is concluded that in the absence of external forcing the AMO in most
GCMs is consistent with being driven by white noise, primarily from the atmosphere.

1. Introduction

Our working hypothesis in this paper is that in CMIP
preindustrial (PI) simulations and, more generally, in
the absence of variable external forcing, the Atlantic
multidecadal oscillation (AMO) sea surface tempera-
ture (SST) is a response to white noise forcing reddened
by the heat capacity of the ocean mixed layer. The noise
source may be the atmosphere or the ocean. The North
Atlantic Oscillation (NAO) is a well-known source of
atmospheric noise, but it is not the only atmospheric
noise the ocean feels. Ocean noise includes the varia-
tions in the mixed layer, which are largely induced from
wind and buoyancy forcing from above, along with high-
frequency fluctuations in heat transport convergences
into the mixed layer that may be forced by the wind

stress as well as by internal ocean fluctuations, such as
eddies. It will turn out that most of the white noise
forcing appears to come from the atmosphere. The im-
portant finding is that the forcing may all be noise. No
systematic long-period influence from the ocean circu-
lation is needed.
Our hypothesis ismotivated by findings in Clement et al.

(2015, hereafter C15). C15 showed that CMIP3 atmo-
spheric GCMs coupled to slab oceans produce the same
spatial patterns of the AMO SST as fully coupled models
and that both do a reasonable job of simulating the ob-
served pattern. The slab ocean configuration does not have
an active ocean circulation; the only ‘‘ocean circulation’’ is
the unvarying climatological q flux that maintains the SST
climatology. Beyond that, the slab models have a specified
mixed layer depth and do not include the physics to vary
the mixed layer depth or allow mixing from below.
The temporal behavior of the AMO in models also

motivates our noise-driven hypothesis. The spectra in
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Fig. 1 look like red noise and do not show any pro-
nounced multidecadal peaks. The spectra in C15’s
Figs. 2 and 3 include the multimodel mean (MMM) and
individual CMIP3 models, showing that the featureless
spectra in our Fig. 1 are not an idiosyncrasy of the one
model shown here, CESM1(CAM5). Additional exam-
ples of red noise drawn from CMIP5 PI runs appear in
Fig. 2 of Ba et al. (2014) and Fig. 2 of Peings et al.
(2016).1 In addition, the spectra in C15 and in Fig. 1 show
no structural difference between the AMO in the cou-
pled models and that in the slab ocean model. Since the
atmospheric forcing in these PI runs is more or less white
in the atmosphere, and since adding an active ocean
makes no essential difference, it suggests that whatever
forcing comes from the ocean is also more or less white
noise. On the basis of these results, C15 concluded that
the ocean circulation is not an essential driver of
the AMO.
The experimental protocol that leads to this conclu-

sion is in the mold of the classic model-based attribution
study: in one set of numerical experiments we include
factorX, and in the other set we exclude it. Features that
are the same in the two sets are not attributable to X.
This sort of counterfactual test of causality goes back at
least to David Hume in the 18th century: Y is caused
by X if and only if X was not to occur, then Y would
not occur (Hannart et al. 2016). In the present case

Y 5 ‘‘AMO-like variability’’ and X 5 ‘‘ocean circula-
tion together with most of mixed layer physics.’’ In the
slab ocean model experiments, X does not occur, but Y
does occur, so we conclude that ocean circulation (X) is
not the cause of AMO-like variability (Y). Perhaps the
real world is different, but this is what the models tell us
in the absence of time varying external forcing.
Nonetheless, in reality and in the fully coupledmodels

there surely is an ocean circulation and mixed layer
physics that influence the SSTs in the North Atlantic.
Thus, it is a given that the heat budgets determining SST
cannot be exactly the same in the slab models as they are
in the coupled models, but this need not mean that the
AMO mechanism differs in an essential way from the
suggestion in C15 that the AMO is driven by atmo-
spheric white noise. In their model studies of decadal
variability in the Atlantic, Fan and Schneider (2012) and
Schneider and Fan (2012) conclude that the primary
forcing is atmospheric noise, though they leave open a
possible role for the ocean circulation. Others go further
in their advocacy for the idea that the low-frequency
ocean circulation, most prominently the Atlantic me-
ridional overturning circulation (AMOC), is an essential
player in multidecadal Atlantic SST variability, an idea
with august beginnings in Bjerknes (1964) and Kushnir
(1994), continuing to Zhang et al. (2016) and O’Reilly
et al. (2016).2 This does not go so far as to eliminate a
role for the atmosphere, but it does anoint low-
frequency heat convergence organized by the ocean

FIG. 1. Spectra for 500 yr from the fully coupled PI simulation of CESM1(CAM5) (blue) and 500 yr fromCAM5-
SOM (red) of (a) the AMO temperature index (all of the North Atlantic from 08 to 558N) and (b) AMOmid, the
average SST over the region 408–558N, 208–608W.

1 In Peings et al. (2016), 2 of the 23 PI CMIP5 models do have
significant multidecadal peaks. These models may have important
ocean circulation features, though in the context of examining so
many models and so many spectral bands without an a priori hy-
pothesis, the significance of these peaks may be questioned.

2 For a fuller set of references, see the review by Buckley and
Marshall (2016).
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circulation as the key driver of the AMO. Advocates
often point to a negative relationship between surface
heat flux and SST at long periods. They interpret this as
showing the atmosphere responding to SST changes that
must be driven by ocean heat flux convergence that is
low frequency, which implies that this convergence is
organized by low-frequency variations in ocean circu-
lation. Recent examples include Gulev et al. (2013),
Brown et al. (2016), Zhang et al. (2016), O’Reilly et al.
(2016), and Drews and Greatbatch (2016). All these
analyses are based on low-pass filtered data. We will
show below that these low-passed results admit other
interpretations, ones that do not require any nonrandom
or dominant influence from the ocean circulation.
We are less certain that the observed AMO is red

noise. There may be a real multidecadal peak, as was
argued by Schlesinger and Ramankutty (1994), for
example, but the record is too short to be certain. Even
if real, a peak need not be a sign of internal variability
since the instrumental period of observations has been
marked by external forcing due to volcanic eruptions,
solar variability, anthropogenic aerosol, and green-
house gases. Models run with historical forcing have
more power at low frequencies than preindustrial runs.
This may be seen in C15 (cf. their Fig. 2c with their
Figs. 2a,b) for multimodel means and Fig. 2 of Peings
et al. 2016 for individual models. Our hypothesis, pur-
sued further in Murphy et al. (2017) and Bellomo et al.
(2017), is that the observations are best explained as
largely a response to external forcing from aerosol and
greenhouse gases. We will return to this issue in the
discussion section, but throughout the rest of the paper
we will concern ourselves with variability generated
within the models’ climate system in PI and slab ocean
model (SOM) runs.
We begin in section 2 with the simple point model for

sea surface temperature T that contains only a damping
term and white noise forcing from both atmosphere and
ocean. Such a model and its application to SST have a
more or less unbroken 40-yr lineage going back to
Hasselmann (1976) and Frankignoul and Hasselmann
(1977). Among the long line of papers that follow, we
single out Frankignoul et al. (1998) for its derivation of
the simple model in Eq. (1) from a complete heat
equation and for its derivation of some of the co-
variances in Eqs. (A2) and (A3). In this simple model,
the damping term arises from the tendency of surface
fluxes, especially the turbulent latent and sensible heat
fluxes, to adjust to remove departures from the equi-
librium value of T at zero total heat flux. It is generally
accepted that the atmospheric forcing is white in time or
nearly so (Wunsch1999; Stephenson et al. 2000; and see
Fig. 2). The oceanic heat flux also appears to be nearly

white in time, though this is less widely appreciated.
Figure 2 shows the spectrum of oceanic heat flux de-
rived from a PI run of the fully coupled model
CESM1(CAM5) along with spectra of the surface flux
Qs, the surface temperature T, and the temperature
tendency dT/dt, all for the AMOmid region (208–608W,
408–558N).3 As in many other calculations of oceanic
heat flux (e.g., Zhang et al. 2016), it is actually the re-
sidual rCphdT/dt2Qs, the difference between the rate
of change of SST and the surface heat exchange with the
atmosphere (h is mixed layer depth taken as 50m).
Figure 2 shows it to be approximately white. (The figure
also shows that at low frequencies the ocean and at-
mospheric heat fluxes have the same power. At low
frequencies, the temperature tendency is very small.
Consequently, these fluxes must sum to near zero and so

FIG. 2. (a) Spectra from a PI run of the CESM1(CAM5) coupled
mode for quantities averaged over the AMOmid region. The
AMOmid index is the blue curve. Also shown are temperature
tendency dT/dt (green), surface heat fluxQs (red), and ocean heat
flux (black). As in many other presentations of ocean heat flux, it is
actually the residual rCphdT/dt2Qs, the difference between the
rate of change of SST and the surface heat exchange with the at-
mosphere. In addition to heat convergence associated with the
ocean circulation, it includes the heating due to mixed layer pro-
cesses and computational error.

3 O’Reilly et al. (2016) used a region with the same limits, except
that theirs goes to 608N; we stop at 558N to reduce the confounding
influence of sea ice in winter. Gulev et al. (2013) used the average
over the region east–west across the Atlantic from 358 to 508N.
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are equal and opposite. The implications of this will be
considered below.). Recent observational results show
that the ocean has power at all observed frequencies
(Lozier 2012), though these series are not long enough
to say whether or not the spectrum is truly white out to
multidecadal periods.
We put the simple model forward as a way of un-

derstanding the complex model simulations. In sec-
tion 2, after defining the model, we spend some time
on the properties of low-pass filters, especially when
applied to white or red noise. Analytic results for the
unfiltered and low-pass (LP) filtered correlations that
appear in the figures are derived in the appendix.
These results are summarized and discussed at the end
of section 2. In section 3, we first see if this simple
model can account for properties of the coupled and slab
models, particularly correlations involving SST and heat
fluxes. We then consider results in the literature that are
held up as evidence that the ocean driving is important for
the AMO in order to see if our analysis of the simple red
noiseTmodel can account for them.We close this section
with a consideration of low-frequency forcing that is
distinct from white noise. A discussion section that in-
cludes some consideration of the twentieth-century ob-
servational record follows in section 4.
WeusemonthlyCMIP5data (found at http://cmip-pcmdi.

llnl.gov/cmip5/data_portal.html). The CESM1(CAM5)
monthly averages areavailableonline (http://www.cesm.ucar.
edu/projects/community-projects/LENS/data-sets.html). The
models used and the length of each simulation are reported
in Table 1. The surface flux Qs is smoothed with a 1–2–1
filter and derivatives are approximated by centered
second-order differences. For most purposes, we focus on
the CMIP5 MMM. We single out the CESM1(CAM5)
coupledmodel because very long simulations are available
and, most relevant here, it is the only CMIP5 model for
which we have access to a long SOM simulation. The
CAM5-SOMsimulation takes themixed layer depths to be
the mean seasonally varying depths in the corresponding
coupled model, CESM1(CAM5). CESM1(CAM5) is
generally similar to the CMIP5 MMM, but it does have a
lower variance than some of the other models (Table 1).
An account of this model’s performance in the North At-
lantic is given by Danabasoglu et al. (2012).

2. Noise-forced model

a. The model

We will work with the simple red noise model:

dT

dt
52aT1 q

T
, (1)

where T is temperature, a21 is the damping time, and
qT 5 qa 1 qo is the total noise forcing, with qa being the
atmospheric and qo the oceanic contribution. Here and
throughout, we adopt the convention that heat fluxes
into the ocean mixed layer (downward in the atmo-
sphere) are positive. The net surface heat flux is

Q
s
52aT1 q

a
. (2)

Note that in such a simple model the only distinction
between qa and qo is that the former is included inQs and
the latter is not. Usually we mean Qs to be the total
surface heat exchange, but in some literatureQs is just the
turbulent (latent and sensible) components, excluding the
radiative contributions. In this interpretation,2aT is the
feedback from changes in surface temperature and qa

accounts for all other influences on turbulent fluxes, such
as changing wind speed or relative humidity or cloud
cover. In our version, qa also includes radiative changes
due to varying cloud cover, aerosol influences, and solar
variability. We assume that qa and qo are uncorrelated
white noise of amplitudes a and b. Denoting expected
value of the covariance of x, y by Efx, yg,

Efq
a
(t1)qa

(t2)g5 a2d(t1 2 t2),Efqo
(t1)qo

(t2)g

5 b2d(t1 2 t2),Efqa
(t1)qo

(t2)g5 0, (3)

where d is theDirac delta function and t1, t2 are arbitrary
times. Consequently

Efq
T
(t1)qT

(t2)g5 (a2 1 b2)d(t1 2 t2) .

The assumption in Eq. (3) that qa and qo are un-
correlatedmakes themodel as simple as possible and yet
distinguishes atmosphere from ocean. Since the atmo-
sphere term qa is composed of radiative effects and in-
fluences on turbulent fluxes, such as changing wind
speed or relative humidity or cloud cover, it is hard to
see a direct connection with ocean circulation that is not
mediated by surface temperature. In this model, any-
thing that works through the surface temperature is ac-
counted for by the temperature feedback term. There
are also wind effects that influence both heat exchange
at the surface and the ocean circulation, but the con-
nection involves time lags (e.g., Czaja and Marshall
2000), and we leave this for future work. For the present,
we are trying to see how much of the unforced model
behavior can be captured by the simple model [Eqs. (1)–
(3)], equations that deliberately do not include any time
delayedmechanism thatmight be due toocean circulation.4

4 In the appendix, we briefly explore the case where
Efqa(t1)qo(t2)g 6¼ 0 if t1 5 t2.
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For the present, our goal is to make a very simple
model and note where it fails convincingly enough to
demand the addition of other processes. That it lacks
the verisimilitude one hopes for in a GCM is obvious.
The question is whether such simple and transparent
physics is adequate to account for much of the behavior
of complex models.
Returning to Eq. (1), it is convenient to scale time by

a21 (the only time scale in this model) to obtain

dT

dt
52T1 q

T
52T1 q

a
1 q

o
; (4)

T(t)5T(t
0
)e2(t2t0) 1

ðt

t0

e2(t2t0)q
T
(t0) dt0 . (5)

We also scale the heat fluxes so that a2 1 b2 5 1, which
means that the division between ocean and atmosphere
is determined by a single parameter (a or b), and, re-
gardless of the division, the expected value of the total
noise forcing is fixed: Efq2

Tg5 1. Thus, a2(b2) is the
percentage of the total noise variance attributable to the
atmosphere (ocean).
We will want to compare various correlations in-

volving temperature and heat fluxes in the noise forced
model [Eq. (1)] with results from GCMs. Rather than

TABLE 1. Coupled models included here in the CMIP5 MMM. The second column gives the length of the available PI simulation for
eachmodel. The next column is the number of (nonindependent) 140-yr-long samples used in correlation statistics here and in Fig. 8. (For
MIROC5, we delete the first 85 yr when the model is still spinning up.) All statistics are for the AMOmid index, the average SST over the
region 208–608W, 408–558N. Var T0 is the variance of AMOmid. Correlations r are the low-pass correlations between temperature and
the surface heat flux rLP(T, Qs). The ‘‘all’’ correlation is over the length of the simulation with the first and last 10 yr omitted to preserve
the order of the filter. Mean, median, max, and min are taken over the set of 140-yr-long samples for each model.

Model name Length (yr)
No. of
samples Var T0 r all r mean r median r max r min r2 all r2 mean r2 median

ACCESS1.0 500 340 0.29 20.35 20.38 20.35 20.21 20.59 0.13 0.14 0.12
ACCESS1.3 500 340 0.23 20.01 0.02 0.01 0.59 20.66 0.00 0.00 0.00
CanESM2 996 836 0.23 20.23 20.23 20.26 0.63 20.72 0.05 0.05 0.07
CCSM4 501 341 0.17 20.16 20.22 20.15 0.45 20.64 0.03 0.05 0.02
CESM1(CAM5) 1801 1641 0.16 20.28 20.28 20.31 0.31 20.78 0.08 0.08 0.10
CMCC-CM 330 170 0.29 20.59 20.64 20.64 20.57 20.74 0.35 0.41 0.41
CMCC-CMS 500 340 0.29 20.70 20.64 20.66 20.50 20.80 0.49 0.41 0.44
CMCC-CESM 277 117 0.38 20.67 20.67 20.67 20.56 20.84 0.45 0.45 0.45
CNRM-CM5–2 359 199 0.49 20.29 20.25 20.24 0.35 20.59 0.09 0.06 0.06
CNRM-CM5 850 690 0.32 20.41 20.28 20.35 0.45 20.77 0.17 0.08 0.12
CSIRO Mk3.6.0 500 340 0.24 20.28 20.28 20.25 0.23 20.70 0.08 0.08 0.06
FGOALS-s2 500 340 0.32 20.70 20.73 20.73 20.34 20.89 0.50 0.53 0.53
GFDL CM3 500 340 0.24 20.36 20.24 20.34 0.26 20.54 0.13 0.06 0.12
GFDL-ESM2G 500 340 0.31 20.31 20.41 20.44 20.16 20.62 0.10 0.17 0.20
GFDL-ESM2M 500 340 0.14 20.20 20.11 20.13 0.33 20.62 0.04 0.01 0.02
GISS-E2-H 780 620 0.12 0.00 20.10 20.05 0.37 20.53 0.00 0.01 0.00
GISS-E2-H-CC 251 91 0.17 20.71 20.68 20.69 20.50 20.75 0.50 0.46 0.48
HadGEM2-CC 190 30 0.54 0.11 20.09 20.11 0.05 20.14 20.01 0.01 0.01
INM-CM4.0 500 340 0.18 20.66 20.52 20.59 0.14 20.79 0.44 0.27 0.35
IPSL-CM5A-LR 430 270 0.61 20.76 20.72 20.71 20.62 20.85 0.58 0.52 0.51
IPSL-CM5A-MR 300 140 0.34 20.71 20.67 20.70 20.43 20.77 0.51 0.45 0.49
IPSL-CM5B-LR 300 140 0.62 20.27 20.21 20.20 0.00 20.40 0.07 0.04 0.04
MIROC5 670 425 0.23 20.68 20.64 20.66 20.45 20.76 0.46 0.41 0.43
MIROC-ESM 630 470 0.20 20.53 20.47 20.52 0.03 20.82 0.28 0.22 0.27
MPI-ESM-LR 1000 840 0.28 20.67 20.60 20.63 20.20 20.81 0.44 0.36 0.39
MPI-ESM-MR 1000 840 0.27 20.69 20.66 20.68 20.38 20.84 0.47 0.43 0.46
MPI-ESM-P 1156 996 0.27 20.60 20.58 20.65 20.07 20.84 0.35 0.34 0.42
MRI-CGCM3 500 340 0.64 20.19 20.11 20.12 0.17 20.37 0.04 0.01 0.01
NorESM1-M 501 341 0.11 20.14 20.10 20.10 0.18 20.36 0.02 0.01 0.01
NorESM1-ME 252 92 0.13 20.16 20.29 20.30 20.07 20.45 0.03 0.08 0.09
CMIP5 MMM
Mean 586 423 0.29 20.41 20.39 20.41 20.02 20.67 0.23 0.21 0.22
Median 500 340 0.27 20.36 20.33 20.35 0.01 20.73 0.13 0.11 0.12
Std dev 337 337 0.15 0.26 0.23 0.24 0.38 0.18 0.21 0.19 0.20
Min 190 30 0.11 20.76 20.73 20.73 20.62 20.89 20.01 0.00 0.00
Max 1801 1641 0.64 0.11 0.02 0.01 0.63 20.14 0.58 0.53 0.53
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just find these by numerical simulations of the model
equation, we derive analytic results for expected values
for correlations of unfiltered variables in section a of
the appendix. In keeping with the fact that the forcing
introduces no special time scales, all of these correla-
tions are substantially different from zero only for leads
and lags within a few e-folding time scales of 1/a (i.e., less
than a year). Some are delta functions at zero lag but
smoothedover theminimal time resolution of the data.We
will see in the figures to follow that the unfiltered corre-
lations from the CMIP5MMMand fromCESM1(CAM5)
also have appreciable correlations only at small lags and
that some of the correlations resemble delta functions in
being very localized at zero lag.

b. Low-pass linear filtering

Literature on the AMO almost always involves some
LP linear filter on the data used to calculate correla-
tions and examine the lead–lag relationships among
multidecadal variables, such as temperature and heat
fluxes. Hence, we will examine the impact of LP fil-
tering on the conclusions drawn in this literature. We
begin by calculating the correlations that result from
low-pass filtering the variables in the red noise model
[Eq. (1)]. A linear filter L applied to a time series f (t)
may be written

L[f (t)][
ð1‘

2‘
L(t)f (t2 t) dt , (6)

where, with a slight abuse of notation, we use L to
denote both the operator L[ f ] on the time series and
the function L(t) that specifies the filter weights. The
general idea of a low-pass filter is to divide the signal
spectrally into a low-frequency passband and a
higher-frequency stopband. ‘‘Low’’ and ‘‘high’’
frequencies are separated by a filter parameter ~vc

with dimensions of frequency. For a Butterworth
filter, ~vc is taken as the half power point, while for an
n-yr running mean ~vc is (n years)21. In our context,
‘‘low pass’’ means that the cutoff period is long
compared to the damping time. We formalize this
condition as ~v2

c " a2; nondimensionally v2
c " 1,

where vc [ ~vc/a.
Write L̂ for the Fourier transform of the low-pass filter

L. Then R̂5 L̂L̂*5 jL̂j2 is the power spectrum of the
transfer function of L(t). Using the notation

Eff (t1 t0)g(t0)g[
ð1‘

2‘
f (t1 t0)g(t0) dt0 (7)

for the expected value of the lagged covariance of f and
g, we define notation for the low-pass covariance by

E
LP
ff, gg[ EfL[f (t1 t)]L[g(t)]g5 1

2p

ð1‘

2‘
L̂[ f̂ (v)]fL̂[ĝ(v)]g*e2ivt dv5

1

2p

ð1‘

2‘
[L̂(v)L̂(v)*][ f̂ (v)ĝ(v)*]e2ivt dv ;

ELPff, gg5
1

2p

ð1‘

2‘
R̂(v)[f̂ (v)ĝ(v)*]e2ivt dv5

ð1‘

2‘
R(t2 t)Eff (t1 t0)g(t0)g dt .

(8)

We made use of the fact that R̂ is real so R̂5 R̂* to
obtain the convolution in the last integral, which says
that the low-pass covariance of functions f , g is the
convolution of R with their unfiltered covariance
[Eq. (7)]. The inverse transform of R̂(v), R(t), is de-
fined by

R(t)[
1

2p

ð1‘

2‘
R̂(v)e2ivt dv

5
1

2p

ð1‘

2‘
L̂(v)L̂(v)*e2ivt dv5

ð1‘

2‘
L(t1 t)L(t) dt ,

(9)

which shows that R is the autocovariance function for
the filter L(t). It follows that R is real and an even
function [R(t)5R(2t)], and therefore so is R̂(v).

To calculate the low-pass covariances, we will make
use of the fact that in LP filters L(t) the time argument
t appears only in the combination s5vct. For example,
for an n-month running mean filter vc 5 1/(nmonths)
and

L5v
c
H(12 2jv

c
tj)5v

c
H(12 2jsj) , (10)

where H is the Heaviside function [H(x)5 1 if
x. 0, H(x)5 0 if x, 0]. In common with other filters,
one changes the time of the cutoff period by changing
the parameter vc without changing the functional
form. Therefore, we may write R5R(s) with s5vct.
Hence dR(s)/dt5vcRs(s). One advantage to using
low-pass time s as the argument instead of t is that Rs

and Rss are O(R) while Rt and Rtt are O(vcR) and
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O(v2
cR), respectively, so using smakes the size of terms

more transparent. The transform function corresponding to
R(s) is R̂(v/vc). The combinations vct and v/vc are both
dimensionless andhave the samevalueswhether thevariables
are taken as dimensional or dimensionless.
The low-pass correlations we need follow from the

low-pass covariances derived in section b of the appen-
dix. To the leading two orders in vc they are

rLP(T,T)5R(s)/R(0), (11a)

r
LP
(T

t
,T)5R

s
(s)/[2R

ss
(0)R(0)]1/2 , (11b)

rLP(Qs
,T)52[b2R(s)2v

c
a2R

s
(s)]/[R(0)Q0]

1/2

’2bR(s)/R(0) , (11c)

r
LP
(T

t
,Q

s
)52[b2R

s
(s)1v

c
a2R

ss
(s)]/[2R

ss
(0)Q

0
]1/2

’2bR
s
(s)/[2R
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where Q0 5s2(Qs)5 b2R(0)2v2
c(a

2 2 b2)Rss(0). The
approximations shown in Eqs. (11c) and (11d) hold if
b2 # vca2. For b5 0, the leading-order terms in
Eqs. (11c) and (11d) and Q0 drop out, and
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so that the structure of the correlations involvingQs is
drastically different with no ocean forcing, the noise-
forced model (NFM) analog of a slab ocean model.
Thus there is a striking difference in these correlations
between the case with some ocean forcing [that is, with
bmerely small (i.e. b2 " a2 but b2 .vca2), and almost no
ocean forcing [b very close to zero (b2 " vca2)]. A no-
table feature is that the zero lag correlation between
temperature and the total atmospheric forcing (i.e., the
surface heat flux Qs) is zero if and only if there is no
forcing from the ocean. Beyond that, Eq. (11c) shows that
the strength of this correlation between SST and the at-
mospheric heat flux measures the amplitude b5 jqoj of
the ocean forcing. At the same time, this correlation tells
us nothing about the impact of the ocean on SST; Eqs.
(11a) and (11b) show that the presence or absence of
ocean forcing makes no difference to the autocorrelation
structure of the SST itself. The figures belowwill illustrate
these general points. Section c of the appendix extends
these results with a consideration of how the correlations
change if the atmospheric heat flux qa covaries with the
ocean heat flux qo.

c. Summary of analytic results for the NFM

The model presented in this section is quite simple:
a one-dimensional temperature [Eq. (1)] forced bywhite
noise from the atmosphere qa and ocean qo and damped
by a linear feedback with time scale a21. Consequently,
the temperatureT has a red spectrum;(a2 1v2)21. The
only distinguished time scale in such a model is the
damping time a21. Observational estimates for a21 are
less than one year, so it is well separated from multi-
decadal time scales. We find that unfiltered lag co-
variances and correlations die off exponentially with
decay time a21. There are no significant relationships at
long time scales, though such relationships can be cre-
ated by low-pass filtering. [The appendix of Trenary and
DelSole (2016) has a nice example of how LP filtering
can create what is not in the data; in their example,
it falsely exaggerates predictability times. Foukal and
Lozier (2016) show how LP filtering falsely creates a
propagating anomaly in SST observations.]
A low-pass filter divides the signal spectrally into a

low-frequency passband and a higher-frequency stop-
band. ‘‘Low’’ and ‘‘high’’ frequencies are separated by a
filter parameter ~vc with dimensions of frequency. The
nondimensional cutoff is vc 5 ~vc/a and t5at is non-
dimensional time. An important variable in our analysis
is low-pass time s5 ~vct5vct, which is the same in
terms of dimensional or nondimensional variables. The
key equation of our low-pass analysis is Eq. (8), which
says that the low-pass covariance of any two variables
u, y is the convolution of the autocovariance of the
filter with the unfiltered covariance of u, y. Using this
equation we are able to derive generic formulas for
low-pass covariances [Eq. (A11)] and correlations
[Eq. (11)] that are independent of the specific type of
filter. The most striking thing about these low-pass
formulas is their strong dependence on the filter auto-
covariance R(s)5R(vct) and its derivatives. The
structure of the unfiltered solution is almost entirely
lost. This should be expected. The filtering is being
applied to either white noise (as in the forcing) or red
noise (as for T). The former just returns the filter au-
tocovariance since the Fourier transform of white
noise5 1 [viz., Eq. (8)]. If red noise is involved, the fact
that the filter is low pass means that a2 # ~v2

c (1 # vc)
so that, for frequencies ~v below the cutoff ~vc, we have,
for a red noise spectrum f with amplitude A,

jf̂ j2 5 jAj2

a2 1 ~v2
’

jAj2

a2
, (13)

which means that the part of the spectrum that is passed
by the low-pass filter is nearly white. Hence, in all cases
the covariance that appears in Eq. (8) convolved with R
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is essentially white noise, and the filtering returns the
autocovariance of the filter or its derivatives. In partic-
ular, the lagged correlation of T with itself ;R(s), and
that of dT/dt and T;Rs(s), illustrate that the LP filter
has created long lead correlations not found in the un-
filtered model data. The more complicated correlations
involving heat fluxes will be discussed in context in the
next section.
Figure 3 displays the autocovariance R(s5vct) and

its first two derivatives for a fourth-order 20-yr Butter-
worth filter. These are calculated by filtering a monthly
white noise series, then finding the lagged covariance
and taking its derivatives numerically in the usual way.
We have scaled R, Rs, Rss as in Eqs. (11a), (11b), and
(A11f) to make the three panels comparable to low-
pass lead–lag correlations (T , T), (dT/dt, T), and

(dT/dt, dT/dt). The following features are evident in
Fig. 3. Since R is an even function, R(0) is an extremum
and Rs(0)5 0. Since we expect a maximum correlation
at t5 0, the extremum is a maximum so that Rss(0), 0.5

Since we are dealing with low-pass filters, we expect that
R(s) will be fairly smooth in a sizable neighborhood
around t5 0. In more detail, since Rs(s5 0)5 0, we
expect R(s) to vary slowly for s& 1; in terms of di-
mensional variables, this neighborhood is jtj& ~v21

c .
Hence, in this neighborhood we expect R, which is an
even function, to be positive and relatively large, and Rs

to be positive for t, 0 and negative for t. 0. These are

FIG. 3. (a) The autocorrelation function R(t)/R(0) (magenta) for the fourth-order 20-yr
Butterworth filter. Also shown is the autocorrelation of temperature filtered by the same
Butterworth filter in the AMOmid region in the coupled model CESM1(CAM5) (green) and in
the CMIP5 MMM (blue). (b) The dR(t)/dt/[2d2R(0)/dt2R(0)]1/2 [see Eq.(11b)] and the lead–
lag correlations r(dT/dt, T) in the two coupled models. (c) The d2R(t)/dt2/d2R(0)/dt2 and the
lead–lag correlations r(dT/dt, (dT/dt) in the two coupledmodels. The autocorrelation function
R is calculated by applying the same filter software used throughout to a white noise sequence.
The agreement among the curves is predicted by Eqs. (11a), (11b), and (A11f) if the temper-
ature in the coupled models is red noise.

5We do not digress to discuss what happens if R or Rs is
discontinuous.
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generic expectations for all low-pass filters and suggest
that these low-pass correlations will not be very sensitive
to the form of the filter (Hamming, Lanczos, etc.). They
will, however, be quite sensitive to the cutoff ~vc since the
lag t where maxima, minima, and zeros occur depends
on s5 ~vct and hence inversely on the cutoff frequency
~vc or linearly on the cutoff period.
The effect of changing the filter cutoff is illustrated in

Fig. 4. The top panel shows the correlation of dT/dt and
T when T(t) is red noise [e.g., if T is generated from
Eq. (1)]. The different curves are for filter cutoff periods

of 5, 10, 20, and 30 yr. The lead or lag where the extrema
occur move linearly with the cutoff period, as expected
for red or white noise. The middle panel of Fig. 4
shows the correlation for a low-frequency signal
T5 sin(2pt/60 yr) with the same set of 5-, 10-, 20-, and
30-yr filters. With a true low-frequency signal—any low-
frequency signal, not just the simple sinusoid—the dif-
ferent filters leave the signal unchanged so the different
curves all lie on top of one another. In particular, the
well-known quadrature between dT/dt and T, which
gives a peak when the tendency leads by a quarter

FIG. 4. (top) The correlation r(dT/dt, T) for T(t) a low-pass filtered time series of monthly
white noise. The different curves are the fourth-order LP Butterworth filter with half-power
periods of 5, 10, 20, and 30 yr. Themovement of the peak is linear with the period, as expected for
white noise. (middle) The same correlation filtered in the same ways but applied to a time series
T5 sin(2pt/60 yr). In this case, the curves for different cutoff periods lie on top of one another,
and, as expected, for a true low-frequency sinusoidal signal the peak holds fast at 15 yr, a quarter
cycle. (bottom) Correlation of dT/dt and T for the AMOmid index in the CMIP5 MMM.
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period (15 yr in this example) is a robust feature and
does not change when the filter length changes. In con-
trast, if the peak does move when the filter length
changes, as in the top panel of Fig. 4, then this is in-
dicative of white or red noise, and the peak is an artifact
of the filter. Such movement may be used as a diagnostic
to distinguish noise from a true low-frequency signal.

3. Comparison of the white noise–forced model
with GCM and observational results

a. Is the white noise–forced model relevant
for GCMs?

Our first task is to establish that the white noise–
forced model (NFM hereafter) presented in the pre-
vious section is relevant for interpreting the GCM

results. We focus on lead–lag correlations involving
temperature and heat fluxes, which appear often in the
literature. The right side of Fig. 5 shows the CAM5-
SOM lead–lag correlations for the unfiltered results in
blue and the low-pass results in red. For comparison, the
left side of Fig. 5 shows the correlations from the NFM
when a5 1 so that all the forcing is from heat exchanges
with the atmosphere, as for SOM. The SOM figures are
based on an index AMOmid, the average SST over the
region 208–608W, 408–558N. The NFM figures are com-
puted from data taken from a long run of the simple
model [Eq. (1)]. All the filtered results were obtained
using a fourth-order 20-yr low-pass Butterworth filter.
Other choices for an LP filter would make no important
qualitative changes, though, as noted above, changing
the frequency cutoff does create significant differences.
We estimated a value of the damping time a21 from the

FIG. 5. Lead–lag correlations for (top)–(bottom) r(T, T), r(Tt , T), r(Tt , Qs), and r(Qs, T). (left) The simple
NFM with parameters a5 1, b5 0, a5 13Wm22 K21 5 (0.5 yr)21 for a 50-m mixed layer. (right) The CAM5-
SOM for the AMOmid region. In both models, all the forcing comes from the atmosphere. Correlations for un-
filtered (blue) and low-pass filtered (20-yr fourth-order Butterworth; red) data are shown. The shading indicates the
65% confidence limits based on 1000 simple model runs of 140 yr each.
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unfiltered autocorrelation of temperature in SOM
(Fig. 5, top). The value obtained is 0.5 yr, corresponding
to a heat flux per degree of 13Wm22K21 for a 50-m
deep mixed layer, which is close to but smaller than the
values estimated by Park et al. (2005) and Frankignoul
and Kestenare (2002) from observed data using the
methods devised by Frankignoul et al. (1998).
The similarities between the corresponding curves in

the SOMand theNFMwith a5 1 are compelling, as also
found by O’Reilly et al. (2016). Starting at the top, the
unfiltered (blue) curves for r(T, T) are identical as far as
the eye can tell. Both have the form predicted by
Eq. (A7a). The implication is that, for SOM as for NFM,
the temperature behaves like damped white noise: a red
spectrum;(a2 1v2)21. The LP filtered correlation (red
curve), which is the same for SOM and NFM, is pre-
dicted by Eq. (11a) to be the autocorrelation function of
the filter. We verify this in the top panel of Fig. 3, which
shows the autocorrelation for the same Butterworth

filter used for Fig. 5. The correlations r(Tt, T) in the
second panels from the top are again quite similar.
The SOM r(Tt, T) is otherwise indistinguishable from
the NFM. As expected from Eq. (11b), the LP filtered
correlation (red curve) is just the scaled first derivative
Rs of the filter autocovariance (viz., Fig. 3).
The right side of Fig. 6 is as the right side of Fig. 5, but

for the coupled model CESM1(CAM5) and the CMIP5
MMM for the models in Table 1. We estimate a to be
20Wm22K21, which is comparable to observed values
(Frankignoul et al. 1998; Park et al. 2005) and slightly
higher than for the slab ocean. For a 50-m mixed layer
this corresponds to a damping time of 0.325 years or
slightly less than 4 months. The NFM case in Fig. 6 we
show as comparable has a2 5 85% of the forcing vari-
ance coming from the atmosphere and only 15% from
the ocean. (Taking a2 5 95% yields qualitatively similar
results.) Note that Eqs. (A7a) and (11a) show that, for
the NFM, the temperature correlations r(T , T) and

FIG. 6. As in Fig. 5, but for (left) the simple model with parameters a2 5 0:85, b2 5 0:15, a5 20 Wm22 K21 5
(4 months)21 for a 50-m mixed layer; and (right) the CESM1(CAM5) fully coupled model and the CMIP5 MMM.
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r(Tt, T) are independent of a. As with the SOM results
in the top two panels of Fig. 5 and the NFM results in
Fig. 5, we find that the fully coupled model results for
temperature agree quite well with the white noise–
forced model. Thus, as with the SOM, the temporal
structure of temperature T in CESM and in the MMM
are consistent with a damped response to white noise
forcing. Both the unfiltered and LP filtered T (top panel
of Fig. 6) have the same structure as the comparable
SOM (Fig. 5) or the NFM (in either Fig. 5 or Fig. 6). As
suggested by the analysis in section 2, given that the
unfiltered T from the coupled model looks like red noise
with a damping time short compared to themultidecadal
time scales of interest for the AMO, the LP filtered
correlation r(T, T) (red, top panel of Fig. 6) is just the
filter autocovariance R, while the LP r(Tt, T) is the first
derivative ofR. TheMMM looks to be the same. The red
noise structure of the unfiltered data has been bleached
by the filtering.
Zhang et al. (2016) interpret the LP lagged correla-

tions between T and Tt as meaningful, but in view of the
dependence of this on the filter [Fig. 3; Eq. (11b)], this is
questionable. The bottom panel of Fig. 4 clearly shows
that in the CMIP5 MMM the midlatitude temperature
AMOmid behaves like the white noise in the top panel.
(This is also true of the CESM; not shown.) The same
conclusion applies to the ensemble mean of 10 coupled
models studied by Zhang et al. (2016). They state that
the maximum of rLP(dAMO/dt, AMO) is at 4 yr for a
10-yr low-pass filter (LF),6 while ‘‘with 20- or 30-year
LF, the multi-model mean correlation between
dAMO/dt and the AMOpeaks at longer lead times (8 or
10 to 11 years, respectively) due to the broad AMO
spectra in CGCM’’ (Zhang et al. 2016, p. 1527-a). Our
theory predicts a linear increase with the cutoff period—
the peak at 4, 8, and 12 yr for cutoffs of 10, 20, and
30 yr—if theAMO is approximatelywhite in the passband.
With the correlation r(Tt, Qs) shown in the middle

panels of Figs. 5 and 6, we come to a quantity that does
depend on the percentage of the total forcing attributed
to the atmosphere a2. In both of the NFM cases and the
coupled and SOM GCM runs, the unfiltered results
show the delta function behavior at zero lag expected for
the NFM from Eq. (A7d). The SOM and NFM with
a5 1 (Fig. 5) show the symmetry about t5 0 for both
the unfiltered and filtered curves expected from Eqs.
(A7d) and (12) when there is no forcing from the ocean
(b5 0). The unfiltered results for CESM and the CMIP5
MMM (Fig. 6) have the positive spike at t5 0 but differ

from the b5 0 cases of Fig. 5 in having a negative dip for
small positive t. TheNFM a2 5 0:85 case (Fig. 6, left) has
similar behavior, and, for both the coupled models and
the NFM, the filtered correlation is somewhat asym-
metric. This requires that there be some ocean forcing
(b 6¼ 0) but also a high value of a so the symmetric term
Rss in Eq. (11d) is evident despite being at a lower order
in vc than the antisymmetric term Rs. The NFM case
with 85% of the forcing coming from the atmosphere
and 15% from the ocean resembles the MMM and
CESM LP correlations more than cases with stronger
ocean forcing (not shown).
Thus, there is nothing so far to rule out the hypothesis

that the coupled model SST response is primarily a re-
sponse to white noise forcing from the atmosphere with
additional random forcing from the ocean. The ocean
need not do anything systematic and need not be the
dominant forcing. However, there is a considerable lit-
erature offering arguments that the AMO is forced by
ocean circulation. We next review some of that litera-
ture with the aid of the simple noise-forced model.

b. SST changes and surface heat flux

Zhang et al. (2016) studied the relation between Tt

and Qs in a different way by regressing both LP filtered
terms on T, the AMO index. They then looked at these
two regressed variables at a 4-yr lead, picked because it
is where r(Tt, T) is a maximum for the 10-yr LP filter
they use. (As shown in Fig. 4, the peak time changes with
the filter cutoff; it is an artifact of the LP filter and is not
robust or physical.) At a 4-yr lead over T, they find that
in the multimodel mean of a set of CMIP3 coupled
models the LP tendency Tt and the LP surface heat flux
Qs have opposite sign. They interpret this to mean that
the (negative) surface flux is not the cause of the (posi-
tive) temperature change. They contrast this with the
SOM case, where Tt and Qs at a 4-yr lead are both
positive. One can see the same thing in Figs. 5 and 6
here. When dT/dt leads T by 4 yr in the SOM case and
the coupled case (Figs. 5 and 6, second panel from the
top; lag524 yr) it is positive, for both the GCMand the
NFM. The bottom panels show that at the same leadQs

is positive in the SOM case of Fig. 5 but negative in the
coupled case of Fig. 6. TheNFM is forced bywhite noise,
and there is no long-period ocean circulation to account
for this behavior. None is needed.
As noted by Clement et al. (2016), it is evident from

Fig. 1 of Zhang et al. (2016) that in both the SOM and
coupled simulations the temperature tendency Tt is
small relative to the coupled model surface heat flux Qs

or ocean heat flux qo (which is actually computed as the
residual rCphTt 2Qs and so in addition to convergence
of ocean heat transport comprises ocean mixed layer

6 The type of filter used is not stated, but the analysis in section 2c
is robust to filter type as long as it is low pass.
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processes and computational error). Figure 1 in Zhang
et al. (2016) shows that the atmospheric forcing and the
ocean forcing are approximately in balance in the cou-
pled case, while, in the SOM case, the only forcing, the
one from the atmosphere, is approximately zero.
This must be so. Consider the dimensional Eq. (1),

which is generic enough to apply to the GCMs as well as
the simple model if we do not restrict the atmospheric
forcing qa and ocean forcing qo to be white noise. It is
still valid to write part of the surface flux forcing as a
temperature-dependent negative feedback term 2aT
since this is true of the turbulent transfer terms (the
latent and sensible heat fluxes). Since all variables are
low-pass filtered, Tt is solely low frequency relative
to the damping time; that is, Tt " aT, so the lhs of
Eq. (1)maybeneglected: 0’Qs 1 qo 5 (2aT1 qa)1qo.
Therefore,
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In the special case that the ocean forcing qo is white
noise, then according to Eqs. (15b) and (A11d),
ELPfQs, Tg52b2R(s), consistent with the leading-
order term of Eq. (A11g). However, the relations in
Eqs. (14) and (15) do not require white noise forcing.
The derivation of Eq. (14) assumes only that variables
are low frequency, which is guaranteed—imposed, in
fact—by the low-pass filtering. Equation (15a) then
follows from Eq. (14), though the final step in Eq. (15b)
also assumes that qa and qo are uncorrelated. If they are
correlated, Eq. (15a) still holds, soELPfQs, Tgwill again
be negative unless the temperature and ocean forcing
are negatively correlated; that is, unless the temperature
moves systematically opposite to the ocean heat flux so
that, for example, when the ocean provides more heat
the surface temperature goes down. This is not anyone’s
idea of what is meant by the ocean driving the temper-
ature. Moreover, what evidence there is (viz., Brown
et al. 2016; Bellomo et al. 2016) suggests that a conver-
gence of ocean heat results in a positive radiative feed-
back (i.e., that qa and qo covary positively). The
appendix (section c) contains a brief account of how our
results are altered when the two heat fluxes are white
noise but covary.
Equation (15)means that, as long as there is any ocean

forcing (qo 6¼ 0) to leading order, the LP relation be-
tween T and Qs will be negative for a range of lags and

leads around zero. It also must be that ELPfTt, Tg. 0
for Tt leading T. There is nothing physical about this:
as discussed in section 2c, it is a mathematical conse-
quence of the fact that the autocorrelation of T—or any
variable—is an even function of lag with a maximum at
zero lag. SoTt andQs necessarily have opposite signs for
Tt leading (e.g., by 4 years). If instead one had taken Tt

lagging by 4 yr, one could be tempted to conclude that,
since the surface heat flux has the same sign as the
temperature tendency, it must be the atmosphere that is
the driver for the surface temperature, not the ocean.
The same holds for the multimodel mean presented in
Zhang et al. (2016) if one looks at the regressions withTt

lagging T. This was shown in Fig. 1 of Clement et al.
(2016) and is evident in Fig. 6 here, for both the coupled
model and the NFM. The arbitrary choice of lead or lag
dictates the interpretation.
Neither interpretation is justified. The low-frequency

relations say there is an approximate balance between
heating from the atmosphere and heating from the
ocean, a near equilibrium. One cannot infer causality
from the sign of the correlations; they tell what the
balance is at equilibrium but not what was responsible
for creating the equilibrium state. Causality is no more
revealed by this balance than geostrophic balance tells
whether the state was achieved by the pressure adjusting
to the winds or the winds adjusting to the pressure. The
NFM case in Fig. 6 is an illustration. The atmospheric
forcing is 6 times the ocean forcing, and yet the LP
correlation between temperature and surface heating is
negative at and near zero lag. The correlation remains
negative even when the forcing is overwhelmingly from
the surface (e.g., 95% atmosphere and only 5% ocean).
The atmosphere-only (SOM) case is singular in that

the surface heat flux Qs by itself must be approximately
zero. Figure 1d of Zhang et al. (2016) shows that this
holds for the CMIP3-SOM multimodel mean. Equation
(12) shows that, if there is no ocean flux (b5 0), then the
correlations depend on lower-order terms. More di-
rectly, if there is no contribution from the ocean, then
Tt 5Qs, so r(Qs, T)5 r(Tt, T) [cf. Eqs. (11b) and (12)].
In particular, the correlations are zero at zero lag, neg-
ative when T leads, and positive when T lags, unlike the
situation when the ocean flux is nonzero. Without
question, the oceans do something in both the real
coupled system and the coupled models. The issue is
whether or not that something is essential for the AMO.
A diagnosis of the quasi-equilibrium state does not
speak to this issue.
In an important and influential paper, Gulev et al.

(2013) examined the relation between SST and surface
heat flux in observational data. Their intent was to ex-
amine the Bjerknes (1964) hypothesis that at short time
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scales the atmosphere drives the ocean, whereas at
multidecadal time scales the ocean is the driver. The
‘‘surface heat flux’’ data they use are an estimate of the
turbulent fluxes only; they omit the radiative compo-
nents of atmospheric fluxes, such as variations in cloud
cover (Bellomo et al. 2016). After the data were low
passed by applying an 11-yr running mean, they found
that the correlation at zero lag between T andQs is such
that warmer temperatures mean the ocean loses heat (a
negative correlation using our convention that heat into
the ocean is positive).7 They interpret this to mean that
the ocean is forcing the atmosphere at the low fre-
quencies passed by the filter. In contrast, when the data
are high-pass filtered, they find that the correlation is
positive, which is interpreted to mean that the atmo-
sphere is forcing the ocean. They conclude that this is
evidence in support of the Bjerknes hypothesis.
We have already seen that the sign of the correlation

ofT andQs at low frequencies cannot tell us whether the
forcing resides in the ocean or the atmosphere. In Fig. 7,
we plot the low-pass correlation of T andQs in the white
noise–forced model as a function of the atmospheric
forcing variance a2. The LP correlation is given by
Eq. (11c); at zero lag, rLP(T, Qs)52b independent of

the form of the filter. Thus, rLP(T, Qs), 0 if the ocean
forcing is nonzero. We conclude that the low-frequency
result in Gulev et al. (2013) cannot be taken as evidence
for the Bjerknes hypothesis. Nor is it evidence against it.
As above, it is uninformative about the nature of the
forcing.
We may make further use of the low-pass relation

[Eq. (11c)] shown in Fig. 7 to estimate the relative
magnitudes of the ocean and atmospheric forcing.
O’Reilly et al. (2016) found that the low-pass correla-
tion rLP(T, Qs) is ’0:4 for the multimodel mean of
CMIP5 models. From Eq. (11c), this means b 5
rLP(T, Qs)’ 0:4, so b2, which is the fraction of the
forcing variance from the ocean,’16%. Such a low value
for the ocean forcing is consistent with the Clement et al.
(2015) finding for the CMIP3 MMM that removing the
ocean circulation (as in the slabmodel) had little effect on
the solution for SST.
Figure 8a shows the range of values of the correlation

rLP(T, Qs) for the 30 different CMIP5 coupled models
in Table 1. For most (16 of 30) b2 5 r2LP , 0:15 [i.e., ac-
cording to Eq. (11c), the ocean forcing is less than 15%
of the total]. The CMIP5 MMM value is 16% (as in
O’Reilly et al. 2016), and the median value is 13%. In
only 2 of 30 models does this measure suggest that the
ocean forcing is greater than half the total. In summary,
the MMM and most of the individual models appear to
be largely forced by the atmosphere, but there are some
exceptions. It is intriguing that seemingly similar models
(e.g., GISS-E2-H and GISS-E2-H-CC; IPSL-CM5A-LR
and IPSL-CM5B-LR) fall at opposite ends of the dis-
tribution of correlation coefficients, but exploring this
further is beyond the scope of the present study.8

Figure 8a shows distributions of values in box-and-
whisker format. The distributions were created from all
subsamples 140 years long, the approximate length of
the observational record and one allowing at least a few
tens of samples for all models. The spreads are quite
large, but even accounting for sampling issues the cor-
relations are almost always negative, consistent with
Eq. (15). Again, while this further demonstrates consis-
tency with the white noise forcing hypothesis, it does not
rule out other possible explanations. Moreover, even if
the NFM assumptions (including qa and qo being un-
correlated) are completely satisfied, this sampling varia-
tion creates considerable uncertainty in estimating the
ocean forcing b2 from a sample correlation. Figure 8b is in
the same format as Fig. 8a, but for 500-yr runs of the
NFM. The different box and whiskers are for different

FIG. 7. The unfiltered [blue curve; Eq. (A7c)] and low-pass fil-
tered [magenta curve; Eq.(11c)] correlation r(Qs, T) at zero lag for
the simple noise-forcedmodel as a function of a2, the fraction of the
forcing variance coming from the atmosphere. Note that the two
curves have opposite sign for a2 . 0:5 or, equivalently, a2 .b2 (i.e.,
when the atmospheric forcing is greater than the ocean forcing).

7 Gulev et al’s (2013) sign convention is the opposite of ours in
that a positive heat flux is out of the ocean. In what follows, we
describe their results using our sign convention: heat flux is positive
into the ocean.

8 In other words, a look at the documentation for these differ-
ences did not bring enlightenment to us.
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specified values of the ocean forcing b2. The spreads are
large, and an ‘‘observed’’ sample value of rLP 5 1/

ffiffiffi
2

p
—the

green line—has a chance of being found when the ocean
forcing is anywhere from 5% to 75%, though if we insist
the chance be as high as 1 in 4, then the range narrows to
35%–60%, which is still broad. The NFM plot suggests
that the small correlation coefficients above the magenta
line (the CMIP5 MMM) found in the majority of CMIP5
coupled models are not likely unless the ocean forcing is
less than 20%. This of course does not rule out the
possibility that one of the models in the more strongly
ocean-forced minority is closer to the truth.
The high-pass data are computed as the difference of

the unfiltered and the low-pass data. High-pass co-
variances are approximately equal to the unfiltered co-
variance for the NFM since the LP covariance is
typically lower orderO(vc). The high-pass correlation is
complicated by the fact that the unfiltered covariance
[Eq. (A3c)] and the correlation r(Qs, T) [Eq. (A7c)] are
discontinuous at zero lag, with different values at lags of
02, 0, and 01. In Fig. 7, we plot the unfiltered correlation
for the NFMat 02, that is, withQs infinitesimally leading
T. This choice is consistent with the understanding that
at short time scales the heating is driving the tempera-
ture and also with the explicit time differencing used in
models. It is the choice that agrees with Gulev et al.
(2013) in finding a positive correlation, but here the

correlation is positive only if a2 . 1/2. Only if the greater
share of the forcing comes from the atmosphere does the
NFM meet the criteria that were interpreted as support
for the Bjerknes hypothesis. Note that in the NFM there
is no change in the relative forcing of the atmosphere
and ocean as the frequency changes. The difference
between high- and low-pass behavior is created by
the filter.
Our need to choose one of the several disparate values

of the unfiltered correlation at and near zero lag is a sign
that the high-pass correlation is problematic. In a valu-
able study, O’ Reilly et al. (2016) extended Gulev et al.
(2013) by calculating the same quantities in CMIP
models. They found the same LP correlation between T
and turbulent surface fluxes in observationally based
estimates and in models but remark on the inability of
the multimodel mean to reproduce the positive relation
that they and Gulev et al. (2013) find in the fluxes esti-
mated from observations. Cayan (1992) studied the re-
lation between turbulent fluxes and temperature
tendency and found that, for unfiltered monthly data in
midlatitudes, the relation typically shows the atmo-
sphere to be heating the ocean. Perhaps this is closer to
what Bjerknes (1964) had in mind than the relation of
fluxes to temperature. Figure 6 shows that we find the
same positive relation between dT/dt and Qs as Cayan
(1992) in the coupled model and in the NFM, and Fig. 5

FIG. 8. (a) Low-pass correlation of surface heat flux Qs and temperature for CMIP5 model PI simulations. The
box and whiskers give the median (magenta lines in the boxes), upper and lower quartiles (boxes), and range for
samples of 140 yr. (See Table 1 for the number of samples; the first and last 10 yr of each simulation are left off to
accommodate the LP filter.) (b) Similar plots, but for the simple NFM. Samples are drawn from 500-yr simulations
(the median length of the CMIP PI runs). Each box-and-whiskers plot is for a different value of the percent of
forcing from the ocean. The horizontal red lines are at the CMIPMMM; the horizontal green lines mark the values
where the correlation indicates that the ocean is one-half of the total forcing (rLP 5 1/

ffiffiffi
2

p
).
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shows that this is also true of the SOM. Yu et al. (2011)
considered the covariability of T and surface heat fluxes
in reanalyses and CMIP3 models. (Their Qs includes
radiative as well as turbulent fluxes.) For the North
Atlantic (308–608W, 308–508N) at zero lag, they find a
positive relation in the ERA-40 reanalysis, but a zero
covariance for the NCEP-2 reanalysis (see their Fig. 6).
The multimodel mean has negative covariance at zero
lag, with individual models being both positive and
negative. They do find a positive relation for all models
and both reanalyses when the surface flux leads tem-
perature by one month. O’Reilly et al. (2016) have the
same result for Qs leading by a month. We conclude
that, while the zero lead relation found by Gulev et al.
(2013) is not robust across other observational products
or models, the idea of the atmospheric flux forcing the
ocean at short time scales is confirmed by other
diagnostics.
Gulev et al. (2013) identify a spectral peak in the

observations for the 128 years 1880–2007 at a 50–70-yr
period. They find the peak to be significant at the 95%
level, and, while other spectral methods do not yield the
same significance (e.g., viz., Fig. 2 in Ba et al. 2014 or
Fig. 2 of Peings et al. 2016), we believe the peak is more
likely than not to be real (for reasons discussed below).
A low-frequency peak raises the question of whether
our NFM is as relevant to the observations as it ap-
pears to be for the models. To address this concern, we
add a low-frequency periodic forcing F5 c sinft with
f,vc " 1 to Eq. (4), the nondimensional version of
Eq. (1). O’Reilly et al. (2016) studied a similar model.
We do not assert that this is the right form of forcing; we
are just exploring the effects of low-frequency (e.g.,
multidecadal) forcing, and, as so often done, we use a
single frequency as an example. Equation (4) is now

dT

dt
52T1 q

a
1 q

o
1 c sin(ft) . (16)

Since the noise variance Ef(qa 1 qo)
2g5 1 and the var-

iance of sin(ft)5 1/2, we interpret c2/2 as the signal-to-
noise (S/N) ratio. The appendix gives the solution and
mathematical expressions for relevant covariances and
correlations. Because LP filtering leaves the low-
frequency signal almost unchanged from the unfiltered
version, the high-pass signal, which is the difference of
the two, is not affected by the inclusion of a low-
frequency forcing.9 Equation (15) tells us immediately
that adding F as ocean forcing strengthens the

conclusion that at zero lag ELPfQs, Tg, 0 because it
increases ELPfqo, qog. In short, it does not matter
whether the ocean forcing is noise or signal: as long as it
does something—anything—the LP filtered surface flux
will be out of the ocean when temperature is high.
Further, if the surface flux Qs includes only turbulent
fluxes as in Gulev et at (2013), then leaving the atmo-
spheric radiative fluxes out of Qs ensures that
ELPfQs, Tg, 0 even if the ocean does nothing. The case
of low-frequency forcing is illustrated in Fig. 9. For this
example, we took the ocean to contribute only 15% to
the noise forcing (b2 5 0:15) and the S/N ratio,
c2/25 0:05. The top panel shows that the temperature
has the signal imposed by the periodic forcing plus noise
and that the LP filtered temperature is almost all peri-
odic signal. In the next panel, the correlation of Tt and T
is a maximum at a quarter-wavelength lead (15 yr). In
contrast to the noise-only case (dotted line), the loca-
tions of the extrema do not change if the cutoff of the LP
filter changes. The third panel shows that the correlation
of Qs and T at zero lag is negative, as expected from
Eq. (15) and the appendix.
The more interesting case where the periodic forcing

is added to the atmosphere—to the surface heat flux—
is also illustrated in Fig. 9. The top two panels are the
same as for the ocean forcing; the temperature does not
care where the heat comes from and carries no telltale
saying ‘‘atmosphere’’ or ‘‘ocean.’’ In this simple model,
the difference between the two cases lies only in our
bookkeeping, in whether the periodic forcing is coun-
ted as part of the surface heat flux or the ocean heat
flux. The bottom panel of Fig. 9 shows that the LP
correlation between T and Qs is again negative at zero
lag, as it must be according to Eq. (15). Clearly, this
relationship is not proof that the ocean is driving the
temperature since it is obvious from the time series of
T(t) (top panel of Fig. 9) that the periodic atmospheric
forcing is the driver.
However, the correlation is more negative when the

periodic signal is in the ocean rather than the atmo-
sphere. The context here is a very long time series
generated by a model with a simple structure. In reality
and in complex models, the low-frequency signal (if
any) is not simply periodic, the other forcings are not as
simple as those in our NFM, and the time series are
short. There is only a distant prospect of using this
difference in correlation strength to detect the source
of the signal in a more complex setting with many
processes and a time series short compared to the signal
periods.
O’Reilly et al. (2016) introduced a simplemodel much

like ours, but the only ocean forcing they consider is a
periodic low-frequency signal; that is, their model is our

9 This is not quite true for a running mean filter, which alters the
signal even at frequencies deep into the passband.
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Eq. (16) with qo 5 0. They use an S/N ratio of 0.08, a
period of 60 yr, and a damping time of a21 5 4 yr, jus-
tifying such a large value by appealing to the re-
emergencemechanism for oceanmixed layer anomalies.
We do not agree that reemergence is properly viewed
as a damping, but the long damping time is an incidental
issue here. Because the only ocean forcing they consider
is low frequency, they overlook the possibility that any
ocean forcing, including white noise, is sufficient to
make the LP correlation of surface flux and temperature
negative when the flux leads. The conclusion that ‘‘these
relationships . . . rely crucially on low-frequency forcing
of SST’’ is too specific (O’Reilly et al. 2016, p. 2810). All
that is needed from the ocean is a modicum of
white noise.

4. Summary and discussion

We have used the simple damped noise-forced model
(NFM) of Eq. (1) to help us interpret some results found
in the literature that are often cited as evidence that the
ocean is driving the AMO. In addition to a damping
term that is linearly proportional to temperature, this
model’s temperature tendency is driven by white noise
forcings in the atmosphere and ocean that are in-
dependent of one another. The analytic solutions we
derived for both unfiltered and low-pass filtered corre-
lations (e.g., of temperature and temperature tendency
and of heat fluxes and temperature) provide some ge-
neric results that hold for all low-pass filters. We com-
pare the correlations in this model to those for

FIG. 9. Correlations in the simple NFM with a periodic forcing added. Equation (16) with
a2 5 0:85,b2 5 0:15, and c2 5 0:10, so the S/N ratio is 0.05. Compare to Figs. 5 and 6. (a) The
r(T, T); (b) r(Tt , T). The dashed curve is the correlation without the periodic forcing. (c) The
r(Qs, T) with the periodic forcing in the ocean; (d) the r(Qs, T) with the periodic forcing in
the atmosphere. Note that (a) and (b) are the same regardless of where the periodic forcing is.
The temperature does not care where the heat comes from.
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preindustrial (i.e., constant external forcing) runs of a
coupled GCM [CESM1(CAM5)], those for the CMIP5
MMM, and for an atmospheric model (CAM5) coupled
to a slab ocean model (SOM).
We find that the unfiltered correlations fall off rapidly

since the e-folding time is just the damping time, which is
less than a year. This is physical, but after applying an LP
filter, the structure depends on the filter, not the physics.
The low-pass correlations for this model depend on the
autocorrelation function of the LP filter, and their lead–
lag structures depend on the cutoff period used in the
filter. For example, if the peak value of the LP correla-
tion between dT/dt andT is found at 4 yr for a 10-yr filter
cutoff, then it will be at 8 yr for a 20-yr filter and 12 yr
for a 30-yr filter (see Fig. 4). While the location of the
peak does vary somewhat with the type of filter (e.g.,
Butterworth, Hamming, and running mean), the linear
variation of the peak and other properties with the pe-
riod of the filter is a general result for all low-pass filters.
(Judging by the many papers that do not specify what
type of filter is used, our literature seems to have taken
to heart the notion that the type of filter does not
matter.)
We find that the autocorrelation in the coupled

and SOMmodels of temperature for the AMOmid index
(the average temperature over the region 208–608W,
408–558N) is exceedingly similar to that of the noise-
forced model (viz., Figs. 5, 6). This holds for both the
unfiltered and the LP correlations, suggesting that in
these complex models the temperature is also deter-
mined by white noise forcing. This behavior is a robust
property of red noise, and Figs. 2 and 3 of C15, Fig. 2 inBa
et al. (2014), and Fig. 2 of Peings et al. (2016) show that
many models have this red spectrum. Moreover, the
correlation of dT/dt and T in the CESM1 and the SOM
are also indistinguishable from the NFM (Figs. 5, 6). We
also note that Zhang et al. (2016) report that, for this
correlation in themultimodel mean of 10 CMIP3models,
the peak correlation moves as in the NFM, a behavior
that distinguishes the response to white noise forcing from
the response to a true low-frequency forcing. A caveat is
that not all CMIP models have unfiltered correlations in
such good agreement with the NFM. Some do not exhibit
the simple exponential decay in the autocorrelation of
T(t) that we see here (Fig. 6) for CCSM and the CMIP5
multimodel mean as well as for the NFM. These differ-
ences will be the subject of future investigations.
We have seen that, when the underlying record is

white or red noise, the LP filter will create long-period
lead–lag structures constructed from the autocovariance
of the filter and its derivatives. It would be good practice
to check and see if there is a distinct low-frequency
signal before applying a low-pass filter. The obvious

check is to see if the spectrum is statistically in-
distinguishable from red or white noise. Another is to
see if there is the tendency for the peak lag correlation
(e.g., between dT/dt and T) or the lag at which a cor-
relation crosses zero to move when the filter cutoff
period is changed. It would be generally useful to try
different filter time scales to see which features are
robust. Another caution is that low-pass filters greatly
reduce the effective sample size, so the resulting cor-
relation estimates may be quite uncertain, as shown
in Fig. 8.
A negative LP correlation between sea surface tem-

perature T and surface heat flux into the ocean Qs at or
near zero lag has been interpreted as meaning that since
this is the surface heating responding to T, it must be the
ocean that is driving the AMO variations. This in-
terpretation has been applied to observations (Gulev
et al. 2013; O’Reilly et al. 2016) and models (O’Reilly
et al. 2016; Zhang et al. 2016; Drews and Greatbatch
2016). Here we show that this negative correlation is a
necessary consequence of the surface heat balance at
long time scales being in near equilibrium: that is, a state
where the temperature tendency is small compared to
the components of the heat fluxes that individually
would induce large temperature changes. It is dictated
by the negative temperature feedback associated with
turbulent surface fluxes acting rapidly to balance the
other heat fluxes. It tells us only that the net ocean plus
atmosphere heat flux is near zero, but it is uninformative
as to how the temperature got to be what it is. We show
examples in Figs. 6 and 9 where the temperature is
strongly driven by the atmosphere and yet the correla-
tion between T and Qs is negative at and near-zero lag.
All that is needed is some forcing from the ocean; any-
thing will do. In our model, the ocean forcing is white
noise and provides no systematic signal. That is all it
takes to make rLP(T , Qs), 0. It does not take much
ocean forcing either: we find that white noise forcing
that is 85% atmosphere and only 15% ocean is a good fit
to the CMIP5 MMM and to most individual CMIP5
models. The negative LP correlation of T and Qs is
consistent with the forcing being all white noise, coming
mostly from the atmosphere. The negative correlation
does not demonstrate that the AMO must be driven by
the ocean, as is often claimed.
It does imply that the ocean does something to SST. If

the ocean did absolutely nothing then rLP(T, Qs)’ 0
because the surface fluxQs, being the only flux, must be
approximately zero since the temperature tendency is
small. As shown by Eq. (12), the case of no ocean forcing
whatsoever is singular in that it eliminates leading-order
terms, changing the structure of the lead–lag correla-
tions betweenQs and T or dT/dt. The ocean forcing has
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to be very small indeed for this to happen. For example,
with a 10-yr running mean filter and a feedback of
20Wm22K21 it follows from Eq. (12) that the ocean
heating variance would have to be&2% of that from the
atmosphere.
Of course, there is no doubt that there is an ocean

in both reality and coupled models. Here, we are
saying that 1) the sign of this correlation cannot tell
us whether the ocean or the atmosphere is driving
the AMO; and 2) the lead–lag correlations of
(T, T), (dT/dt, T), (Qs, dT/dt), (Qs, T) in the coupled
model are consistent with the idea that the driving is
primarily atmospheric white noise with a small addition
of white noise from the ocean. The ocean contribution
is not needed to explain the temperature structure in
the models, but it is needed to explain the rLP(T, Qs)
diagnostic that has incorrectly been taken as indicating
that the ocean drives the AMO.
Our thinking is along the lines of the paradigm in

Barsugli and Battisti (1998): the AMO pattern is a re-
sponse to the atmospheric forcing that least damps that
forcing. The surface heat exchange between ocean and
atmosphere adjusts to what the ocean imposes in order
to create or maintain that pattern. In some regions, the
ocean heat convergence is helpful, in others harmful, but
the surface heat exchange adjusts to do what is needed.
We do not prove this hypothesis in this paper but men-
tion it here as a suggestion of how the atmospheric
driving of the AMO can carry the day in the context of
an active ocean circulation.
While there is a traditional idea that the ocean is

most active at long periods, recent observations show
clearly that the ocean has power at all frequencies.
Figure 2 shows that the ocean forcing in the pre-
industrial CGCM is indistinguishable from white noise.
We do not have a long enough observational dataset to
know if this is true of the real ocean, but recent ob-
servations from the Atlantic, such as those from the
Rapid Climate Change programme (RAPID) support
the idea that the ocean circulation has considerable
power at all observed frequencies (e.g., Lozier 2012;
McCarthy et al. 2015; Zhao and Johns 2014). At pres-
ent, we have no direct observational evidence to say
whether or not the heat flux convergence in the North
Atlantic Ocean has more power at multidecadal time
scales than expected from white noise. As noted above,
however, the instrumental record of SST does exhibit
greater power in the unfiltered AMO (or AMOmid)
index at periods of about 70 yr, at least in some analyses
(Gulev et al. 2013; Zhang and Wang 2013). In Murphy
et al. (2017) and Bellomo et al. (2017), we add model-
based evidence to a variety of other studies (Mann and
Emanuel 2006; Otterå et al. 2010; Booth et al. 2012),

suggesting that this long-period variability seen in
the ;140 yr of instrumental data is externally forced
by volcanic and anthropogenic aerosols, greenhouse
gases, and variations in solar radiance, none of which
are present in the PI models analyzed in this paper.
Perhaps ocean dynamics influences the SST response to
external forcing, but this has not yet been demon-
strated, and it may be that ocean dynamics is not re-
quired for a plausible explanation of twentieth-century
variability in North Atlantic average SST.
Understanding the AMO will be greatly helped by

analysis of mechanisms in observations and coupled
models, as recommended by Zhang et al. (2016). One of
the few examples in the literature is Fig. 7 of Buckley
and Marshall (2016), a heat budget analysis based on an
analysis of the ECCO v4 ocean state estimate that is
limited by being only a few decades long. It shows that
over most of the North Atlantic the variance of ocean
heat convergences is small compared to the local at-
mospheric heating, but the opposite is true along the
western boundary, where the Gulf Stream turns off-
shore, and in parts of the subpolar gyre around Green-
land and Iceland in particular. Overall, this is consistent
with the idea that the SST is largely driven by the at-
mosphere, but it challenges us to accommodate the re-
gions where ocean heat convergence is dominant.
The unanswered question revised by our work here is

‘‘just what is the role of the ocean in the AMO?’’ Un-
questionably, the ocean is active. It would help to clarify
what is meant by the claim that ‘‘the ocean drives the
AMO.’’ Does it mean that ocean physics amplifies at-
mospheric forcing, as suggested, for example, by
Delworth et al. (2016)? Would a time varying atmo-
spheric forcing produce a stronger AMO than the same
run with a slab ocean? Clement et al. (2016) indicate
otherwise. Does it mean that the ocean does not amplify
atmospheric noise such as the NAO but does amplify
low-frequency external forcings, for example, from
aerosols and greenhouse gases? Does ‘‘the ocean drives
the AMO’’ mean that variability entirely internal to the
ocean does it? At the extreme, does an ocean model
generate an AMO if coupled to a climatological
atmosphere, a setup that would exclude atmospheric
variability? To our knowledge, no such experiment has
been done with the recent generations of models. If so,
we would have to conclude that the ocean alone is suf-
ficient for theAMO, just as we concluded in C15 that the
atmosphere alone is sufficient. There may be more than
one way to generate the AMO. We are unaware of any
recent advocacy for the proposal that the ocean alone is
sufficient, though much of the thinking about Atlantic
variability stems from the seminal box model papers of
Stommel (1961) and Rooth (1982) and the early coupled
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models in which regular multidecadal oscillations were
attributed to the ocean circulation (e.g., Delworth
et al. 1993).
It is well to remember that the models are all imper-

fect, particularly in the North Atlantic, where the mean
state in models has a cold bias (Wang et al. 2014). In a
higher-resolution coupled model, Siqueria and Kirtman
(2016) showed that interactions with the mean state
produced decadal time scale variability in the North
Atlantic that is absent in a version of that model with a
lower resolution, one comparable to the CMIP models
presented in all prior work cited here. Recently, Drews
and Greatbatch (2016) showed that these surface flux
diagnostics were different in a model with a corrected
mean state, suggesting that improvements to the model
may change the influence of the ocean. However, in
that study the only evidence for the change in behavior
was in the correlation of surface fluxes with tempera-
ture. As we have shown here, the correct interpretation
of that diagnostic is that the ocean is doing something,
but not that it is important to the simulation of the
climate variability as represented by the surface tem-
perature. A simpler and more straightforward test that
an ocean circulation is essential for the model’s sur-
face temperature response is to obtain a different SST
when the active ocean is removed and replaced by a
slab ocean.
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APPENDIX

Mathematical Derivations

a. Unfiltered covariances and correlations

We will need to calculate various covariances (or
correlations) to compare with the results from the
coupled and slab models. One could compute co-
variances from the solution [Eq. (5)] for T(t), but it is
easier to use the convolution theorem to compute ex-
pected values:

Eff (t1 t)g(t)g5
ð1‘

2‘
f (t1 t)g(t) dt

5
1

2p

ð1‘

2‘
f̂ (v)ĝ*(v)e2ivt dv ,

where a hat denotes the Fourier transform and an as-
terisk the complex conjugate. We first take the Fourier
transform of Eq. (4),

2ivT̂52T̂1 q̂
T
52T̂1 q̂

a
1 q̂

o
;

T̂5
q̂
T

12 iv
. (A1)

We can now calculate the various lagged covariances
we will need.10 In the formulas below sgn, H, and d are
the standard sign, Heaviside, and impulse (Dirac delta)
functions, respectively. Only a few require the inversion
of the Fourier integrals:

EfT(t1 t)T(t)g5 1

2p

ð1‘

2‘

q̂
T
q̂
T
*

11v2
e2ivtdv

5
1

2p

ð1‘

2‘

1

11v2
e2ivtdv5

1

2
e2jtj ,

(A2a)

EfT(t1 t)q
a
(t)g5 a2

1

2p

ð1‘

2‘

1

12 iv
e2ivtdv

5 a2e2jtjH(t), and (A2b)

EfT(t1 t)q
o
(t)g5 b2 1

2p

ð1‘

2‘

1

12 iv
e2ivtdv

5 b2e2jtjH(t) . (A2c)

There is ambiguity in the definition of H(t) at t5 0.
Evaluation of the integrals in Eqs. (A2b) and (A2c)
at t5 0 shows that the appropriate interpretation
here is H(0)5 1/2. Using Eq. (A2), the other re-
lationships we need may be derived with a bit of
algebra and the substitution of 2T1 qT for Tt [viz.
Eq. (4)]. We adopt the shorthand notation Eff , gg for
Eff (t1 t)g(t)g:

EfT
t
(t1 t)T(t)g5Ef2T1 q

T
,Tg

52
1

2
e2jtj 1 e2jtjH(t)52

1

2
sgn(t)e2jtj ,

(A3a)

10 Frankignoul et al. (1998) give a different derivation of some of
these results.
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EfT(t1 t)Q
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52
1
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and
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To compute correlations involving f (t), we will need
s2( f )5Eff (t)2g:

s2(T)5
1

2
; s2(T

t
)5 d(t)2

1

2
; s2(Q

s
)

5

%
1

2
2 a2

&
1 a2d(t); s2(q

o
)5b2d(t) . (A4)

The presence of delta functions in these formulas is in-
dicative of a mismatch between the continuous time
formulation used here and the finite time steps necessary
for computer models like GCMs or even for the numer-
ical integration of the simple red noise model [Eq. (1)]. In
the finite time difference models, the noise term must be
constant for at least the duration of a time step, in con-
trast to the idealized noise that is uncorrelated from in-
stant to instant [viz. Eq.(3)]. The continuous results above
have to be adjusted before they can be compared to the
finite difference models. One approach would be to redo
the above with noise of finite duration: for example,
having the noise stay constant over each time interval of
length « and solving Eq. (5) accordingly (as in Miller and
Cane 1989). However, this greatly complicates the cal-
culation, and we are addicted to the efficacy of the dif-
ferential calculus. Instead, it is sufficient to average the
solutions over a (small) time interval (2«, 1«):

f (t)5
1

2«

ð1«

2«

f (t1 t0) dt0 . (A5)

For small « and absent a d function this averaging makes
little difference: f ’ f . If there is a d function (which is
nonzero only at t5 0), then the term with the d function
dominates, and, with f (t)5 d(t),

f (t)5
1

2«

ð1«

2«

d(t1 t0) dt0 5 (2«)21d
«
(t) , (A6)

so the function d«(t)5 1 if jtj, « and d«(t)5 0 other-
wise. The averaging means we replace d(t) with
(2«)21d«(t) in all formulas. This averaging procedure
introduces a new parameter, the averaging interval «,
but it is effectively chosen by the model we are trying to
emulate. If we have model output for each time step Dt,
then we could take «5Dt, but if all that is available is
monthly data, then the averaging interval might as well
be one month.
We can now compute the correlations corresponding

to what is shown in the figures. We will write all vari-
ables without the bar, but in fact all should be un-
derstood as the averages defined in Eqs. (A5) and
(A6). Writing r( f , g) for the correlation between
f (t1 t) and g(t),

r(T,T)5 e2jtj , (A7a)

r(T
t
,T)5

2
1

2
sgn(t)e2jtj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

#
(2«)21 2

1

2

$s 52

ffiffiffiffiffiffiffiffiffiffiffi
«

12 «

r
sgn(t)e2jtj ,

(A7b)

r(Q
s
,T)5

ffiffiffi
«

p
[2a2H(2t)2 1]

[a2 1 «(b2 2 a2)]1/2
e2jtj

’

ffiffiffi
«

p
[2a2H(2t)2 1]e2jtj

a
, (A7c)

r(T
t
,Q

s
)5

a2d
«
(t)1 «[sgn(t)2 2a2H(t)]e2jtj

f(12 «)[a2 1 «(b2 2 a2)]g1/2
’ ad

«
(t) ,

(A7d)

and

r(q
o
,T)5 2

ffiffiffi
«

p
be2jtjH(2t) . (A7e)

The two approximate formulas require a 6¼ 0; if a5 0,
then b5 1 and

r(Q
s
,T)52e2jtj; r(T

t
,Q

s
)5

ffiffiffiffiffiffiffiffiffiffiffi
«

12 «

r
sgn(t)e2jtj .

(A8)
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b. Covariances after low-pass linear filtering

We begin by rewriting Eq. (8) for the low-pass co-
variance ELPff , gg in terms of the low-pass time s5vct:

E
LP
ff , gg5v21

c

ð1‘

2‘
R(s0 2 s)Eff (v21

c s0 1 t0)g(t0)gds0.

(A9)

The unfiltered covariance E in Eq. (A9) is a function of
t5v21

c s. Inspection of Eqs. (A3) and (A2) shows that
all the covariances listed can be constructed as linear
combinations of just three functions: d(t), H(1t)e2jtj,
andH(2t)e2jtj. In view of Eq. (A9), we can build all LP
covariances from the three integrals

P0 5v21
c

ð1‘

2‘
R(s0 2 s)d(s0/v

c
) ds0 5R(2s)5R(s) ,

(A10a)

P1 5v21
c

ð‘

0

R(s0 2 s)e2s0/vc ds0 ; !
‘

n50
vn
cR

(n)(2s)

5 !
‘

n50
(21)nvn

cR
(n)(s), and

(A10b)

P2 5v21
c

ð0

2‘
R(s0 2 s)e2js0/vcj ds0

5v21
c

ð‘

0

R(2s0 2 s)e2js0/vcj ds0

5v21
c

ð‘

0

R(s0 1 s)e2s0/vc ds0 ; !
‘

n50
vn

cR
(n)(s), (A10c)

where R(n) [ dnR/dsn. We used Watson’s Lemma to
obtain the sums in the last two equations, exploiting the
fact that 1/vc # 1. We also made liberal use of the fact
that R is an even function so R(2s)5R(s) and
R(n)(2s)5 (21)nR(n)(s).
We use the integrals [Eq. (A10)] and the unfiltered

covariances [Eqs. (A3) and (A2)] in Eq. (A9) to obtain
the LP covariances:

E
LP
fT ,Tg5 1

2
(P1 1P2)5R(s)1O(v2

c) , (A11a)

ELPfT,qa
g5 a2P1 5 a2R(s)2 a2v

c
R

s
(s)1O(v2

c) ,

(A11b)

E
LP
fT, q

o
g5 b2P1 5 b2R(s)2b2v

c
R

s
(s)1O(v2

c) ,

(A11c)

ELPfqa
,q

a
g5 a2P0 5 a2R(s); ELPfqo

,q
o
g5 b2R(s) ,

(A11d)

ELPfTt
,Tg52

1

2
(P1 2P2)5v

c
R

s
(s)1O(v3

c) ,

(A11e)

ELPfTt
,T

t
g5P0 2

1

2
(P1 1P2)52v2

cRss
(s)1O(v4

c) ,

(A11f)

E
LP
fT,Q

s
g52

1

2
(P1 1P2)1 a2P152b2R(s)

2 a2v
c
R

s
(s)1O(v2

c) , (A11g)

ELPfTt
,Q

s
g5 1

2
(P1 2P2)2 a2P1 1 a2P0

52b2v
c
R

s
(s)2 a2v2

cRss
(s)1O(v3

c), and

(A11h)

ELPfQs
,Q

s
g5

%
1

2
2 a2

&
(P1 1P2)1 a2P 0

5 b2R(s)2 (a2 2 b2)v2
cRss

(s)1O(v4
c) .

(A11i)

In all cases, we include only the two highest-order terms
in vc, but the expression for ELPfQs, Qsg is taken to a
higher order to avoid a degeneracy when b5 0.

c. If qa and qo covary

Weassumed inEq. (3) that qa and qo are uncorrelated.
Now suppose that they covary:

Efq
a
, q

o
g5m~g2 , (A12)

where m561 to allow covariances to be positive or
negative. We set

q
a
5 ~az1 1 ~gz2; q

o
5 ~bz3 1m~gz2 , (A13)

where the z’s are white in time-independent random
numbers with zero mean and unit variance:
Efzig5 0;Efzi, zjg5 di,j. Hence, with qT [ qa 1 qo 5
~az1 1 (11m)~gz2 1 ~bz3,

jq
a
j2 5 ~a2 1 ~g2 , (A14a)

jq
o
j2 5 ~b2 1 ~g2, and (A14b)

jq
T
j2 5 ~a2 1 ~b2 1 (11m)2~g2 5 ~a2 1 ~b2 1 2(11m)~g2 .

(A14c)

As before, we will normalize so that q2
T 5 1. Note that

now jqT j2 6¼ jqaj2 1 jqoj2. Define

a2 5 ~a2 1 (11m)~g2, b2 5 ~b2 1 (11m)~g2 . (A15)

Then a2 1 b2 5 q2
T 5 1. In the main text where qa and qo

are uncorrelated, we had jqaj2 5 a2 and jqoj2 5 b2.
Comparison of Eqs. (A14a) and (A14b) with Eq. (A15)
shows this is not true here (for ~g 6¼ 0).
Working through the algebra shows that, with the differ-

ent definitions of Eq. (A15) used here for a and b, the un-
filtered covariances look exactly the same as Eqs. (A2) and
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(A3), but in Eq. (A3e) the last term is now jqaj2d(t) instead
of a2d(t). Similarly, the low-pass filtered covariances have
the same form as in Eq. (A11), but for Eq. (A11i) for
ELPfQs, Qsg, in which b2R(s) is replaced by jqoj2R(s).
Consequently,Q0, which appears in the denominator of the
correlations in Eqs. (11c) and (11d), changes to

Q
0
5s2(Q

s
)5 jq

o
j2R(0)2v2

c(a
2 2 b2) , (A16)

and in the approximate forms of Eqs. (11c) and (11d), the
correlations involving Qs, b is replaced by b2/jqoj5
jqoj1m~g2/jqoj. In the main text, we used the correlation
rLP(Qs, T) to estimate b5 jqoj. Here we see that this LP
correlation overestimates jqoj if qa and qo covary positively
(m511) and underestimates it if they covary negatively
(m521).However, interpretation of jqoj2 as the fractional
contribution of the ocean heat flux is no longer clear cut. If
qa andqo covary negatively, thenEq. (A14c) shows that the
common variance ~g2 cancels out of the total variance qT

even asEq. (A14b) (correctly) counts it as part of the ocean
heat flux variance. Thus, jqaj2 1 jqoj2 . jqT j2. If they co-
vary positively, then Eq. (A14) shows that jqaj2 1
jqoj2 , jqT j2, so this time the separate heat fluxes fall shy of
the total. So perhaps a and b are better measures of the at-
mosphere andocean contributions.Aswith jqoj, rLP(Qs, T)
overestimates b if m511 and underestimates it if m521.
We have limited discussion to the case where qa and

qo have a simultaneous correlation rather than one
with a time delay as, for example, in Czaja and Marshall
(2000). Time delays allow a rich class of models that
need careful constraint from observations and are be-
yond the scope of the present paper.

d. Low-frequency periodic forcing

Here we develop solutions for Eq. (16), the noise
model with an added low period forcing. Since the
equation is linear, we can add solutions for the different
forcing terms. After the initial conditions are forgotten,
the solution to Eq. (16) with qa 5 qo 5 0 is

T(t)5 c sin(ft1 f̂); f̂5 arctan(f)’f . (A17)

Hence,

ELPfT,Tg5EfT(t),T(t2 t)g

5 c2Efsinf(t2 1), sinf(t2 t2 1)g5 c2

2
cosft,

(A18a)

ELPfc sinft,Tg5Efc sinft,T(t2 t)g

5 c2Efsinft, sinf(t2 t2 1)g

5
c2

2
cosf(t1 1), and (A18b)

ELPfTt
,Tg5 d

dt
EfT(t1 t),T(t)g52

c2

2
f sinft .

(A18c)

We may also add the covariance of the periodic solu-
tion [Eq. (A18)] to that for the noise-driven solution
[Eq. (A11g)]. If the periodic forcing is in the ocean,

ELPfQs
,Tg52b2R(s)1 a2v

c
R

s
(s)2

c2

2
cosft ; (A19)

if it is in the atmosphere,

ELPfQs
,Tg52b2R(s)1 a2v

c
R

s
(s)1

c2

2
[2cosft1 cosf(t1 1)]

52b2R(s)1 a2v
c
R

s
(s)1

c2

2
(2cosft1 cosft cosf2 sinft sinf)

52b2R(s)1 a2v
c
R

s
(s)2

c2

2

#
f sinft1

f2

2
cosft1O(f3)

$
. (A20)

Correlations also involve

s2(T)5R(0)1
c2

2
5v

c
1
c2

2
; s2(T

t
)’2v2

cRss
(0)1

c2

2
f4 5v3

cr2 1
c2

2
f4 ;

s2(Q
s
)5 b2R(0)2 (2a2 2 1)v2

cRss
(0)1

c2

2
5 b2v

c
1 (2a2 2 1)v3

cr2 1
c2

2
(ocean);

s2(Q
s
)5b2R(0)2 (2a2 2 1)v2

cRss
(0)1

c2f2

4
5 b2v

c
1 (2a2 2 1)v3

cr2 1
c2f2

4
(atmosphere),
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where r2 52Rss(0)/vc is &O(1) and we have taken
R(0)5vc [which is true for the running mean; for the
general LP filter, R(0)5O(vc)].
When the periodic forcing is in the ocean, then at

t5 0, ELPfQs, Tg52b2vc 2 c2/2, which is negative
unless there is no forcing from the ocean whatsoever.
If it is in the atmosphere, then at t5 0, ELPfQs, Tg5
2b2vc 2 c2f2/4. This too is negative.
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