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ABSTRACT

The authors investigate a sea surface temperature anomaly (SSTA)-only vector autoregressive (VAR)

model for prediction of El Niño–Southern Oscillation (ENSO). VAR generalizes the linear inverse method

(LIM) framework to incorporate an extended state vector including many months of recent prior SSTA in

addition to the present state. An SSTA-only VARmodel implicitly captures subsurface forcing observable in

the LIM residual as red noise. Optimal skill is achieved using a state vector of order 14–17 months in an

exhaustive 120-yr cross-validated hindcast assessment. It is found that VAR outperforms LIM, increasing

forecast skill by 3 months, in a 30-yr retrospective forecast experiment.

1. Introduction

Linear El Niño–Southern Oscillation (ENSO) fore-

casting models of low dimensionality have proven to be

useful tools for prediction, analysis, and improved

physical understanding. Because of their simplicity and

forecast skill, the study and improvement of linear

ENSO forecasting models remains an important area of

research (Blumenthal 1991; Penland and Magorian

1993; Barnston et al. 1994; Penland and Sardeshmukh

1995; Jin 1997a,b; Xue et al. 2000; Newman et al. 2011;

Barnston et al. 2012). A popular framework in ocean

and climate sciences is the linear inverse method

(LIM), a first-order approximation to a dynamical sys-

tem in which the evolution operator is reduced to a

matrix product plus white Gaussian noise (Penland and

Magorian 1993; Penland and Sardeshmukh 1995). As

the linear term dominates the evolution of tropical

SSTA at interseasonal time scales, the LIM framework

exhibits useful skill (Barnston et al. 1994; Penland and

Magorian 1993; Penland and Sardeshmukh 1995).

Although capable of predicting El Niño, the SSTA-

only LIM is not ideal, because it ignores the vital role of

the subsurface ocean (Wyrtki 1975; Cane et al. 1986).

More sophisticated methods and/or additional variables

are necessary to capture the subsurface interaction, be-

cause western Pacific heat content is not solely related to

the present SSTA. To resolve this limitation, the LIM

must be extended, either explicitly or implicitly, to in-

clude additional variables that take the subsurface ocean

into account.

Themost straightforwardway to improve uponLIM is

to include subsurface information explicitly into the

model (Xue et al. 2000; Newman et al. 2011). Xue et al.

(2000) report that the forecast skill of linear Markov

(i.e., LIM) models can be dramatically improved if sea

level information and wind stress is incorporated into

the state vector. Similarly, Newman et al. (2011) showed

that forecast skill of LIM greatly improves if it is ex-

tended to include additional terms of thermocline depth

and zonal wind stress. By including subsurface in-

formation explicitly (or sea level as a proxy), the ap-

proaches of Xue et al. (2000) and Newman et al. (2011)

provide a much more realistic linear approximation to

the true dynamical system.

It has also been demonstrated that the surface–

subsurface interaction can be represented without ex-

plicitly resolving the subsurface. Rather, much of the

subsurface forcing in the tropical Pacific can be modeled

using only SSTA as a predictor. As SST is one of the

earliest oceanographic variables to be recorded, SST-

only models are valuable for long-term and historical

studies of ENSO variability. The empirical model re-

duction (EMR) algorithm of Kondrashov et al. (2005),
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further refined by Kravtsov et al. (2010), was capable

of extracting the signal of the subsurface ocean im-

plicitly from the residual of LIM forecasts, which is

only possible because the residual of LIM, while un-

correlated with SSTA in the same time step, is not

entirely white. Rather, the persistence of subsurface

forcing leaves a discernable red noise autocorrelation

in the LIM residual. Thus, EMR constructs a hierarchy

of LIM models to this red-tinted noise signal and ex-

tends the state vector of LIM to include these addi-

tional linear models. By whitening the residual, EMR

extracts meaningful information about the surface-

subsurface interaction, which markedly improves the

forecast skill.

The vector autoregressive (VAR) model described by

this paper is an extension of LIM to include many

months of recent history as a predictor. We will show

that doing so captures the linear interaction between

surface and subsurface using only SSTA. The extension

of ENSO forecasting models to include recent historical

SSTA in initial conditions is not a new idea. Barnston

and Ropelewski (1992) was the first to do so for a ca-

nonical correlation analysis (CCA) model, by using four

seasons of past and present SSTA in addition to present

sea level pressure (SLP) conditions. It was found that

the inclusion of one year of recent SSTA greatly im-

proves forecast skill, although the rationale was not fully

understood at the time. Van den Dool (2006) in the

context of construct analog (CA) models, justifies such

an approach as follows: ‘‘We are forecasting a single

variable from a single variable in a world where many

variables are interrelated’’ (p. 106) and that ‘‘In effect

we use the initial conditions [to substitute] for the first,

second, third derivative at recent times’’ (p. 106). Al-

though this is true in general, it is of particular utility to

the ENSO problem due to the integrated response of

western Pacific heat content to tropical SSTA history.

We show in the discussion section that (in the univariate

case) such a relationship arises naturally from a recharge

oscillator framework.

A further justification for the use of a VAR model

comes from its equivalence to EMR as proven in the

appendix. We show that the VAR and EMR (in its lin-

ear version with the quadratic term omitted) are alge-

braically equivalent, differing only in their algebraic

form. We may conclude that like EMR, VAR can be

interpreted as extracting subsurface information from

the redness (autocorrelation) of the LIM residual.

Moreover, the redness of the LIM residual extracted by

EMR must be a linear combination of the prior months

of SSTA included in VAR. Although the VAR and

EMR are theoretically equivalent, there are practical

reasons why one might prefer to implement a VAR

model. The VAR is a classical time series analysis

technique that carries with it a substantial body of lit-

erature, particularly for financial and economic fore-

casting (Yule 1927; Zellner 1962; Stock and Watson

2001; Box et al. 2008). Furthermore, being less general

than EMR, it is a conceptually simpler model with a

more compact definition.

2. VAR model

The VAR(L) model is a linear–stochastic time se-

ries model for causal stationary processes. The model

is ‘‘vector’’ in that it assumes a multivariate state

vector x, and it is ‘‘autoregressive’’ in that the next

state is determined by regression against L levels of

the present and recent past state. The VAR model is

denoted as

x
t
5 �

L

i51

A
i
x
t2i

1 � . (1)

As we are working with monthly average time series

anomalies, we assume that the next month’s forecast is a

linear function of the present anomaly as well as L 2
1 months of prior anomaly. In our case, the multivariate

state vector x represents an empirical orthogonal func-

tion (EOF) decomposition of the monthly mean

anomaly of SSTA. The EOF decomposition is employed

to reduce dimensionality. Each Ai is an M 3 M square

matrix of autoregression coefficients, and � is stochastic

random forcing, modeled by spatially correlated but

temporally white Gaussian noise.

The VAR model approximates the class of causal

linear–stochastic processes that are stationary (i.e., the

covariance between any two time steps does not depend

on time but is only a function of lead l). Thus, the co-

variancematrix separating states by a lead of l is equal to

the autocovariance matrix as follows:

G
l
5X

t
XT
t2l , (2)

where Xt denotes the matrix time series of state vector x

centered around time step t. Model parameters are es-

timated using the Yule–Walker equations (Yule 1927;

Box et al. 2008) that relate autoregression coefficientsAl

to the autocovariance matrices Gl:

G
l
5 �

L

i51

G
l2i
AT

i for l5 1, 2, . . . . (3)

The LIM, also known as the linear Markov model is a

special case of the VAR model in which the change in

state as a function of time is considered to be linearly

proportional to its present state anomaly as follows:
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dx

dt
5Ax1 � . (4)

LIM is typically implemented as a discrete time series

model in which the temporal derivative is approximated

by the change in state from one time step to the next.

The LIM is equivalent to the following VAR(1) process:

x
t
5 (I1DtA)x

t21
1 �Dt . (5)

3. Data and parameter selection

We use the Kaplan et al. (1998) historical monthly

mean SST data gridded at 58 3 58 resolution. (Kaplan

SST data is available for access and download from the

IRI data library http://iridl.ldeo.columbia.edu/.)

We restricted the data to the tropical latitudes of

208S–208N and separated it temporally into two pieces:

a 120-yr calibration period of 1861–1980 and a 30-yr

verification period of 1981–2010. A relatively long 120-yr

calibration period was selected to increase the chance

that the fitting of the VAR and LIM models are not

biased toward the regime behavior of any particular

decade. The skill of the VAR model is sensitive to the

dimensionality of its state vector xt, which represents the

retained part of monthly mean SSTA of present condi-

tions and L 2 1 months prior. The total number of co-

efficients for a VAR model is the product of the square

of the number of principal components (PCs) of SSTA

M2 and the number of monthly temporal levels L. The

purpose of this calibration procedure is to determine the

most suitableVARandLIMmodels for further analysis.

We need to determine values that are in some sense

optimal for the number of retained EOF modes M and

the number of time levels L. We choose as our skill

benchmark the correlation coefficient of the predicted

Niño-3.4 index with the observed one at a 9-month lead

(Fig. 1b). We compute the correlation for the 120 years

(1861–1980) with a leave 10-yr-out cross validation. That

is, each nonoverlapping 10-yr period (1861–70, . . .,

1971–80) is left out of themodel calibration step, and the

resultant model is verified on the left-out period. The

average of these 12 correlation coefficients are displayed

in Fig. 1. As there are 12 independent decades, we also

refer to this procedure as a ‘‘12-fold cross validation.’’

Cross validation is used here to ensure that artificial skill

is not a factor in choosing optimal values for M and L

since an in-sample measure is expected to show artifi-

cially increased skill as the number of predictors is

increased.

Figure 1b exhibits two bull’s-eye regions of high fore-

cast skill greater than 0.54 correlation. The first is a region

of lower complexity with parameters 10 # M # 12 and

14 # L # 17. The second is a higher-complexity model,

with M 5 19 and L 5 14. Interestingly, the lower-

complexity bull’s eye overlaps a region of greatest skill

at lead 6 months (Fig. 1a) above 0.71 correlation,

whereas the higher-complexity bull’s eye overlaps a re-

gion of greatest skill at lead 12 months (Fig. 1c) above

0.36 correlation. Although the models in both regions

demonstrate comparable forecast skill, the model with

M 5 19 and L 5 14 requires the fitting of 5054 co-

efficients as opposed to 1400–2448 for the 10 # M # 12

bull’s eye. Thus, we selected for further analysis the

model withM5 11 andL5 15 [i.e., VAR(15)–11] at the

center of the lower-complexity bull’s eye.

Since the LIM is the special case of VAR for L 5 1,

the left edge of Fig. 1b shows the best LIM models ac-

cording to this cross-validated criteria. Figure 1b shows

that the best LIM models achieve Niño-3.4 correlation

skill between 0.46 and 0.48 at a 9-month lead in the

yellow shaded region of 19#M# 27. This is lower than

the 0.54–0.56 correlation skill achieved by the best VAR

models. While the complexity of the best LIM models

(361–729 coefficients) is considerably lower than the

complexity of the best VAR models (1400–2448) co-

efficients, these LIM models require many more EOF

spatial patterns. Although LIM does not have the tem-

poral memory to explain western Pacific heat content

as a delayed response, the teleconnections of ENSO

contain some indirect information of SSTA several

months prior.

Irrespective of the number of levels, we see in Figs.

1a–c, skill increases rapidly from 4 to 6 modes whereas

skill improvements with greater than 6 modes are more

gradual. Recall that the EOFs span the global tropical

oceans and that the modes are ordered by variance

explained over this global domain. A visual inspection

of the EOF structures shows that EOF 4 contains in-

formation about tropical North Atlantic (TNA) vari-

ability, whereas EOFs 5 and 6 contain information

about the northern and southern subtropical Pacific

variability.

For most choices of L, we also see a gradual increase

in skill as we approach 11 EOF modes. For the models

with less than a year of SSTA history, the best skill is

achieved when the number of levels L is equal to

5 months; adding months up to 12 adds only artificial

skill that is removed via cross validation. However,

much greater skill is achieved when the number of levels

L is greater than 12 months and even more so between

14 and 17 months. As the recharge (La Niña) phase can

last up to or in excess of a year, the VAR model must

observe this recharge phase for many months in order to

estimate the western Pacific heat content as a linear

combination of past and present SSTA.
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4. Goodness of fit

We wish to consider and to compare the fitness of the

15-level 11-mode VAR model [VAR(15)–11] against

the 23-mode LIM model (LIM–23) because of their

strong performance over the 120-yr cross-validated as-

sessment. We begin by regressing both models onto the

120-yr calibration over the 1861–1980 period in order to

evaluate their goodness of fit.

Amajor consideration of the goodness of fit of a linear

regression model is the model’s ability to capture all

causal linear relationships of the observed variables.

For a linear stationary process, the noise forcing is as-

sumed to be spatially correlated but temporally white

Gaussian noise. We find that the residuals after re-

gression are well approximated by a Gaussian distribu-

tion. Histograms of the residual for the first principal

component are shown in Fig. 2 for the VAR(15)–11

model and the LIM–23model.We visually inspected the

histograms of the residuals for all other principal com-

ponents (not shown) and found that none appeared to

deviate substantially from a Gaussian distribution for

either the VAR(15)–11 model or the LIM–23 model.

Ideally, the residual between model fit and observa-

tion would be temporally uncorrelated. However, the

mathematics of linear regression guarantee only that the

residual will be uncorrelated with the state vector. It is

possible for the residual to contain a small autocorre-

lation if there exists a physical process not linearly re-

lated to the state vector. In this case, the process would

not be adequately captured by the model and would

persist in the residual as correlated (red) noise.

In Fig. 3 we compare the autocorrelation of the

leading principal component of the VAR(15)–11 model

FIG. 1. Model selection by means of cross-validated hindcast procedure of Niño-3.4 correlation skill on the 120-yr calibration interval

1861–1980. Correlation skill is shown for (a) lead 6, (b) lead 9, and (c) lead 12 months.
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versus the LIM–23 model over the years 1861–1980 with

12-fold cross validation. A true white noise time series

would exhibit no significant autocorrelation at any lead

(except trivially at lead 0). We find that the PC1 residual

autocorrelation for the VAR(15)–11 model is statisti-

cally indistinguishable from white noise, but the PC1

residual for the LIM–23 model contains a significant

autocorrelation detectable at a variety of leads, most

notably lead 1 month. For a true white noise process, the

confidence intervals of autocorrelation are proportional

to the inverse square of sample size. For a sample size of

1440 months, the size of a 2s interval is a 60.05 corre-

lation for any temporal displacement, whereas the PC1

residual autocorrelation for LIM–23 is 0.10 for a

1-month displacement. We conclude that the VAR(15)–

11 model is a better statistical fit to the leading principal

component of global SST than the LIM–23model due to

its significantly whiter residual.

5. Retrospective forecast (1981–2010)

We evaluate the retrospective forecast skill of VAR

(15)–11 and LIM–23 on the 30-yr verification period of

1981–2010. No data from this period was used to con-

struct any of the models. Correlation and root-mean-

square error (RMSE) are shown in Figs. 4a,b. VAR

(15)–11 shows a marked improvement relative to LIM–

23 in correlation skill (Fig. 4a). A horizontal line is

drawn at a correlation coefficient of 0.5, which we con-

sider to be a lower bound for useful prediction skill. The

yellow dashed line represents the skill of a persistence

forecast from initial conditions. VAR(15)–11 achieves

skill above 0.5 correlation up to a 9-month lead, as op-

posed to a 6-month lead for LIM. Beyond 6 months, the

forecast skill of LIM–23 continues to decline at a nearly

linear rate. This improvement in lead time is also

apparent when the VAR and LIMmodels are compared

in terms of RMSE (Fig. 4b). VAR forecasts up to lead

9 months achieve RMSE less than 0.88C, whereas all

LIM forecasts greater than lead 6months exhibit RMSE

greater than 0.88C. It is clear that the 15-level VAR

delivers improved forecast skill over LIM on the 30-yr

retrospective forecast period considered.

Figures 4c,d shows similar correlation and RMSE skill

graphs over the cross-validated 120-yr historical period

of 1861–1980.We see that VAR(15)–11 achieves amuch

moremodest improvement of a 1-month lead over LIM–

23 over this longer period. It is also worth noting that

RMSE errors of the historical period (Fig. 4d) are across

the board lower than that of 1981–2010 (Fig. 4b), sug-

gesting that the historical period of 1861–1980 was more

predictable than the recent period of 1981–2010. How-

ever, despite cross validation, it is not clear to what ex-

tent this increased predictability might be an artifact of

FIG. 2. Probability density function of PC1 residual (bars) in comparison with a Gaussian distribution (bell curve)

for (a) the VAR(15)–11 model and the (b) LIM–23 model.

FIG. 3. Autocorrelation of the PC1 residual for VAR(15)–11

model (blue) and LIM–23 model (red) over the cross-validated

1861–1980 calibration period. Green dotted lines show the 2s con-

fidence interval for which autocorrelation is indistinguishable from

white noise.
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our testing procedures, as our models were tuned for

optimal skill over this historical period.

The seasonal variation in forecast skill as a function of

lead time is shown in Fig. 5 for the VAR(15)–11 (right)

and LIM–23 (left) over the verification period 1981–

2010. We divide the calendar year into 12 overlapping 3-

month target periods.We estimatemonthlymean values

for Niño-3.4 from between 1 and 12 months prior, and

plot the correlation skill of all monthly forecasts within

each respective target period from a given lead prior.

We see in Fig. 5 that the forecast skill of the VAR

(15)–11 and LIM–23 models is highly seasonally de-

pendent, with the strongest predictability occurring in

the late boreal winter to early spring months, and the

weakest predictability occurring during the summer

months. This behavior is a classical spring predictability

barrier, and is typical for most dynamical and statistical

ENSO forecasting models to demonstrate such a curve

(Barnston et al. 2012). The autocorrelation of Niño-3.4

variability is similar (Barnston et al. 2012), indicating

that much of the spring predictability barrier may be due

to seasonal variation in persistence skill.

The October–December (OND) forecast is of oper-

ational importance, because it is the time period in

which El Niño events typically begin to reach their peak.

We see in Fig. 5 that the VAR(15)–11 model achieves a

skill of 0.5 OND correlation up to a 10-month lead,

whereas the LIM–23 achieves 0.5 OND correlation be-

tween 6 and 7 months.

The greatest skill for both models in Fig. 5 is achieved

during the late winter–early springmonths. During these

months, both El Niño and La Niña events are often en

route to decay into more neutral conditions. This season

is more predictable because both El Niño and La Niña
events often persist, albeit damped, into these months.

Thus, the OND forecast is a major clue as to the con-

ditions in late winter–early spring. The February–April

(FMA) season achieves 0.5 correlation skill up to the full

FIG. 4. (a),(c) Correlation and (b),(d) root-mean-square error forecast skill over (a),(b) 1981–2010 and (c),(d)

1861–1980 for the 11-mode VAR(15) model (red diamond) compared against the 23-mode LIM model (blue

square) and persistence (yellow dashed).
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12-month lead using the VAR(15)–11 model as opposed

to the 9-month lead using the LIM–23 model.

The most difficult period to predict is the summer

months of June–August (JJA). This is a period of rela-

tively low amplitude in SSTA, so the correlation is rel-

atively more sensitive to high-frequency atmospheric

noise in May. The strongest El Niño events are usually

triggered by westerly wind bursts in May instigating

Kelvin waves advecting warm surface water to the east.

It is likely that this triggering mechanism would be un-

derestimated by models that assume linear–stochastic

forcing includingVAR (An 2009). Nevertheless, most of

the predictability of JJA at longer leads still comes from

improving estimates of the precursor ocean conditions.

As shown in Fig. 5, the JJA season achieves 0.5 corre-

lation skill between 6 and 7 months with the VAR(15)–

11 as compared to 4 months with the LIM.

Figure 6 shows the forecast time series of the LIM–23

and VAR(15)–11 models over the 1981–2010 verifica-

tion period. For each month over this 30-yr period a red

and blue streamline is drawn showing the 9-month

forecast trajectory for the VAR(15)–11 and LIM–23

models, respectively. Under most circumstances the

VAR(15)–11 model is more skillful than the LIM–23

model, although there is a great deal of variation in

prediction accuracy on an event-to-event basis.

We observe a general tendency for the VAR and LIM

models to err on the side of caution. The models do not

appear prone to overpredicting themagnitude of events.

Rather, they are more likely to underpredict growth,

and in certain circumstances overpredict persistence.

This behavior is not unusual for linear statistical ENSO

forecast models, which are known to produce more

conservative forecasts than their dynamical counter-

parts. In a study of the nonlinear processes that influence

ENSO, An (2009) points out that the westerly wind

burst signal plays a role in the sudden onset of ENSO

events, and that nonlinear convective heating plays a

role in their sudden decay. A linear framework such as

VAR or LIM cannot capture these nonlinearities, and

can at best approximate them by the first-order linear

term. This may lead to the linear model predicting

slower growth and decay than a dynamical model or a

nonlinear statistical model.

6. Discussion

Use of SSTA history as a linear proxy for western

Pacific thermocline depth can be derived from the re-

charge oscillator framework of Jin (1997a,b). In this

section we discuss the theoretical relation between

western Pacific thermocline depth and the history of

SSTA PC1. We include a regression experiment be-

tween thermocline depth and SSTA history to help

support our argument.

The western Pacific thermocline depth is forced by

zonal wind stress. The recharge oscillator model also

includes an ocean-adjustment term to slowly draw

western Pacific thermocline depth back toward its cli-

matological mean:

Dh
w
’2at2 rh

w
, (6)

where hw is the thermocline depth at the west, t is wind

stress, Dhw is the change of hw in one month, and a and r

are constant coefficients.

Zonal wind stress includes a stochastic high-frequency

term that we assume to be white Gaussian noise, as well

as a predictable low-frequency term that is part of the

Walker circulation. The Walker circulation is driven by

FIG. 5. Temporal correlation skill of (right) VAR(15)–11 and (left) LIM–23models for running 3-month seasons, as

predicted from conditions ‘‘lag’’ months prior. A black line is drawn at 0.5 correlation skill.
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pressure gradients in the western and eastern Pacific

and proportional to the east minus west temperature

gradient. This temperature gradient resembles the

shape pattern of SSTA EOF1. Zonal wind stress thus

becomes

t’ b(T
e
2T

w
)1 �5 bPC

1
1 � . (7)

Substituting Eq. (7) for t into Eq. (6) we arrive at

western Pacific thermocline depth written as an infinite

sum of prior time steps of the dominant mode of

monthly SSTA:

h
w,t11

’2ab lim
L/‘

�
L

i51

(12 r)i21PC
1,t2i

1 � . (8)

As this infinite sum decays exponentially as a function

time, it is sufficient to use a finite number of monthly

time steps of SSTA history L as employed by VAR.

Thermocline depth is thus approximated as a function of

the recent history of SSTA PC1.

The derivation of Eq. (8) suggests that it is reasonable

to employ a linear combination of the history of SSTA

PC1 as a proxy for hw in the event that subsurface in-

formation is not available. On the other hand, it is well

known that the shallower eastern Pacific thermocline

depth he exhibits a much larger signature in the present

SSTA patterns. As such, one might expect a linear model

unaware of SST history to have a much greater ability to

estimate he than hw.

In support of this reasoning we have included an ex-

periment in which we attempt to explain the present

thermocline depth anomaly using linear regression

from SSTA principal components. In this experiment

we approximate thermocline depth data using the 208C
isotherm of the Simple Ocean Data Assimilation

(SODA), version 2.4.2, from 1951 to 2010. In Fig. 7, we

calculate grid cell by grid cell the percent of variance of

thermocline depth explained by using M principal

components and L time steps of SSTA history for se-

lected values ofM and L. The 10-fold cross validation is

employed, and the percent variance explained is defined

to be 100 times the coefficient of determination r2.

It can be seen in Fig. 7a that both the eastern and

western thermocline depths share a trivial zeroth-order

phase relationship to the SSTA PC1. Linear regression

from 23 PCs of SSTA, as in Fig. 7b, greatly improves our

ability to explain the eastern Pacific thermocline depth,

but does relatively little to improve the regression of

western Pacific thermocline depth. However, using

FIG. 6. Time series of ENSO forecast 1981–2010 (black) with streamlines (red, blue) showing the 9-month

projected forecast time series initialized each month over this 30-yr period. The VAR(15)–11 (red) forecasts are

plotted against the LIM–23 (blue).

FIG. 7. Percent of explained variance of 208C isotherm explained

by linear regression from SSTA principal components over the

1951–2010 period with 10-fold cross validation. (a) The 208C iso-

therm explained by a single PC of SSTA with no SST history.

(b) The 208C isotherm explained using 23 PCs of SSTA with no

history. (c) The 208C isotherm explained using a single PC of SSTA

with 15 months of SST history.
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only a single principal component of SSTA but including

15 months of SSTA history as in Fig. 7c, improves the

ability to reconstruct both the eastern and western ther-

mocline depths relative to Fig. 7a, but the improvement in

the east is less dramatic than in Fig. 7b. We also see that

the linear SST models have relatively little ability to re-

construct thermocline depth in the central Pacific where

the depth changes are smaller.

7. Conclusions

Both LIM and VAR use only tropical SSTA to predict

future SSTA. The LIM uses only the current (or most

recent) SSTA, but the VAR includes recent historical

SSTA as well. The inclusion of recent historical SSTA is

found to extract meaningful information of subsurface

observation and greatly improve forecasting skill. This is

an alternative approach to extending the LIM to include

subsurface observation directly as investigated by Xue

et al. (2000) and Newman et al. (2011), and allows the

VAR to train using very long observational records prior

to the completion of the TOGA–TAO array.

We find that an SSTA VAR model improves retro-

spective forecast skill by a 3-month lead relative to SSTA

LIM over the 1981–2010 period. VAR also improves

cross-validated hindcast skill of the 1861–1980 period by a

1-month lead. Furthermore, we find that the hindcast

residuals of the VAR model are statistically white con-

taining no discernable autocorrelation. The use of many

months of SSTA history as a proxy for western Pacific

thermocline depth can be justified from a recharge os-

cillator point of view, and we find experimentally that the

history of SSTA PC1 contains proxy information about

the western Pacific thermocline depth.
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APPENDIX

Proof of Equivalence of VAR and Linear EMR

The empirical model reduction (EMR) algorithm of

Kondrashov et al. (2005) is a linear and/or quadratic

ENSO prediction scheme that, using only SSTA, is ca-

pable of capturing the subsurface forcing that remains in

the forecast residual of LIM. EMR is a hierarchical

method designed to reduce this residual autocorrelation

by fitting additional LIM models to an extended state

vector that includes the autocorrelated residual as a

predictor. Although the first term in EMR is quadratic, a

linear version was also analyzed by Kondrashov et al.

(2005) and shown to exhibit comparable forecast skill to

the quadratic version.

Here we present an inductive proof that the linear ver-

sion of EMR is equivalent to the VAR method, in the

sense that any linear EMR model can be algebraically

restructured to a VAR model of equal order. The linear

EMR is an extension of LIM inwhich the residual term � is

replaced by additional LIMmodels using an extended state

vector that includes the autocorrelated residual terms:
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t11
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1 r
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(A1)

Henceforth, we refer to linear EMR simply as EMR.

The square bracket notation refers to the vector con-

catenation of terms and is used to construct an extended

state vector. As the additive white noise term � is iden-

tical in either the EMR or VAR models, for simplicity

we omit this term. It is sufficient to prove equivalence of

the expected value of the forecasts, which for a linear

model is equivalent to the absence of zero-mean noise.

For conciseness, we define an additional term r(1) as an

alias of x [such that r(1) 5 x]. EMR can be written as

follows for all 1 # l # L:

r
(l)
t11 5 �

l

i51

A
l,i
r
(i)
t 1 r

(l11)
t . (A2)

It is clear that EMR and VAR are equivalent in the

case L5 1 [i.e., EMR(1)[VAR(1)]. This is the special

case for which both methods are identical to LIM. It is

less obvious that EMR and VAR are equivalent in the

nontrivial case of L. 1. We will prove this by induction

with the hypothesis: If EMR(L 2 1) [ VAR(L 2 1),

then EMR(L) [ VAR(L).

An EMR(L) model is an EMR(L 2 1) model ex-

tended to include one extra level. This extra level

is implemented by adding the term r
(L)
t11 to the

EMR(L 2 1) model. For induction we have assumed

that EMR(L2 1) is equivalent to VAR(L2 1), yielding

the following:

EMR(L)[VAR(L2 1)1 r
(L)
t11 . (A3)

As any linear combination of VARmodels of orders p

and q yields a VAR model of order max(p, q), it is suf-

ficient to show that r
(L)
t11 is a VAR(L) model. This can be
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proven by strong induction assuming r
(l)
t11 is a VAR(l)

model for any l 2 [1, L2 1]. We work with Eq. (A2) for

the term of order L 2 1 as it draws a relationship to the

term of order L:

r
(L21)
t11 5 �

L21

i51

A
l,i
r
(i)
t 1 r

(L)
t11 . (A4)

According to our inductive hypothesis, the first term

r
(L21)
t11 is a VAR(L 2 1) model. The term r

(i)
t is in fact a

VAR(i1 1). This is because r
(i)
t11 is a VAR(i) model, thus

by backtracking one step in time r
(i)
t is a linear combi-

nation of the i 1 1 terms prior to time step t 1 1. Thus,

Eq. (A4) is rearranged as follows:

VAR(L2 1)2 �
L21

i51

A
l,i
VAR(i1 1)5 r

(L)
t11 . (A5)

Thus, r
(L)
t11 is a VAR(L) model. Therefore, by sub-

stitution back into Eq. (A3), we get

EMR(L)[VAR(L) . (A6)

REFERENCES

An, S.-I., 2009: A review of interdecadal changes in the non-

linearity of the El Niño–Southern Oscillation. Theor. Appl.

Climatol., 97, 29–40, doi:10.1007/s00704-008-0071-z.

Barnston, A. G., and C. F. Ropelewski, 1992: Prediction of ENSO ep-

isodesusing canonical correlation analysis. J.Climate,5, 1316–1345,

doi:10.1175/1520-0442(1992)005,1316:POEEUC.2.0.CO;2.

——, and Coauthors, 1994: Long-lead seasonal forecasts—Where

do we stand? Bull. Amer. Meteor. Soc., 75, 2097–2114,

doi:10.1175/1520-0477(1994)075,2097:LLSFDW.2.0.CO;2.

——, M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt,

2012: Skill of real-time seasonal ENSO model predictions

during 2002–11: Is our capability increasing? Bull. Amer.

Meteor. Soc., 93, 631–651, doi:10.1175/BAMS-D-11-00111.1.

Blumenthal, M. B., 1991: Predictability of a coupled ocean–

atmosphere model. J. Climate, 4, 766–784, doi:10.1175/

1520-0442(1991)004,0766:POACOM.2.0.CO;2.

Box, G. E., G. M. Jenkins, and G. C. Reinsel, 2008: Time Series

Analysis: Forecasting and Control. Wiley Series in Probability

and Statistics, Vol. 734, John Wiley & Sons, 784 pp.

Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental

forecasts of El Niño. Nature, 321, 827–832, doi:10.1038/

321827a0.

Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for

ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829,

doi:10.1175/1520-0469(1997)054,0811:AEORPF.2.0.CO;2.

——, 1997b: An equatorial ocean recharge paradigm for ENSO.

Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–

847, doi:10.1175/1520-0469(1997)054,0830:AEORPF.2.0.CO;2.

Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B.

Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea

surface temperature 1856–1991. J. Geophys. Res., 103, 18 567–

18 589, doi:10.1029/97JC01736.

Kondrashov, D., S. Kravtsov, A. W. Robertson, andM. Ghil, 2005:

A hierarchy of data-based ENSOmodels. J. Climate, 18, 4425–

4444, doi:10.1175/JCLI3567.1.

Kravtsov, S., D. Kondrashov, and M. Ghil, 2010: Empirical model

reduction and the modelling hierarchy in climate dynamics

and the geosciences. Stochastic Physics and Climate Model-

ling, T. Palmer and P. Williams, Eds., Cambridge University

Press, 35–72.

Newman,M., M. A. Alexander, and J. D. Scott, 2011: An empirical

model of tropical ocean dynamics. Climate Dyn., 37, 1823–

1841, doi:10.1007/s00382-011-1034-0.

Penland, C., and T. Magorian, 1993: Prediction of Niño-3
sea surface temperatures using linear inverse modeling.

J. Climate, 6, 1067–1076, doi:10.1175/1520-0442(1993)006,1067:

PONSST.2.0.CO;2.

——, and P. D. Sardeshmukh, 1995: The optimal growth of tropical

sea surface temperature anomalies. J. Climate, 8, 1999–2024,

doi:10.1175/1520-0442(1995)008,1999:TOGOTS.2.0.CO;2.

Stock, J. H., and M. W. Watson, 2001: Vector autoregressions.

J. Econ. Perspect., 15, 101–115, doi:10.1257/jep.15.4.101.

Van den Dool, H., 2006:Empirical Methods in Short-Term Climate

Prediction. Oxford University Press, 240 pp.

Wyrtki, K., 1975: El Niño—The dynamic response of the

equatorial Pacific Ocean to atmospheric forcing. J. Phys.

Oceanogr., 5, 572–584, doi:10.1175/1520-0485(1975)005,0572:

ENTDRO.2.0.CO;2.

Xue, Y., A. Leetmaa, and M. Ji, 2000: ENSO prediction with

Markov models: The impact of sea level. J. Climate, 13, 849–

871, doi:10.1175/1520-0442(2000)013,0849:EPWMMT.2.0.CO;2.

Yule, G. U., 1927: On a method of investigating periodicities in

disturbed series, with special reference to Wolfer’s sunspot

numbers. Philos. Trans. Roy. Soc. London, A226, 267–298.

Zellner, A., 1962: An efficient method of estimating seemingly

unrelated regressions and tests for aggregation bias. J. Amer.

Stat. Assoc., 57, 348–368, doi:10.1080/01621459.1962.10480664.

8520 JOURNAL OF CL IMATE VOLUME 28

http://dx.doi.org/10.1007/s00704-008-0071-z
http://dx.doi.org/10.1175/1520-0442(1992)005<1316:POEEUC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1994)075<2097:LLSFDW>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-D-11-00111.1
http://dx.doi.org/10.1175/1520-0442(1991)004<0766:POACOM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1991)004<0766:POACOM>2.0.CO;2
http://dx.doi.org/10.1038/321827a0
http://dx.doi.org/10.1038/321827a0
http://dx.doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2
http://dx.doi.org/10.1029/97JC01736
http://dx.doi.org/10.1175/JCLI3567.1
http://dx.doi.org/10.1007/s00382-011-1034-0
http://dx.doi.org/10.1175/1520-0442(1993)006<1067:PONSST>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1993)006<1067:PONSST>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2
http://dx.doi.org/10.1257/jep.15.4.101
http://dx.doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2000)013<0849:EPWMMT>2.0.CO;2
http://dx.doi.org/10.1080/01621459.1962.10480664

