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ABSTRACT

This review paper presents an assessment of the current state of knowledge and capability in seasonal climate
prediction at the end of the 20th century. The discussion covers the full range of issues involved in climate forecasting,
including (1) the theory and empirical evidence for predictability; (2) predictions of surface boundary conditions, such
as sea surface temperatures (SSTs) that drive the predictable part of the climate; (3) predictions of the climate; and
(4) a brief consideration of the application of climate forecasts. Within this context, the research of the coming
decades that seeks to address shortcomings in each area is described. Copyright © 2001 Royal Meteorological
Society.
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1. INTRODUCTION

Research over the last century, and particularly in the last couple of decades, has shown that, in many
regions of the world, the seasonal climate is potentially predictable. Useable predictions are possible under
certain conditions: when the boundary conditions that force the atmosphere (e.g. sea-surface temperatures
(SSTs) and land surface characteristics) are strongly perturbed, significant shifts are produced in the
probabilities of different weather regimes that occur over a season (Palmer and Anderson, 1994). To the
extent that the relevant boundary conditions and their associated climate impacts are predictable, skilful
seasonal forecasts are possible.

Climate prediction efforts have existed for many hundreds of years. Very early approaches sought to
identify environmental indicators that could suggest likely shifts in next season’s climate (Inwards, 1994).
Certain plants or animals may be sensitive to evolving climate patterns, for example, and the appearance
of a flowering plant or the tendency of birds to build nests on a particular side of the tree may indicate
that the next rainy season will be good or bad. Within some villages of Andean South America,
predictions of summer rainfall and autumn harvests are based on changes in the visibility of stars in the
Pleiades constellation. Recently, such changes in visibility have been attributed to changes in cloud cover
over the tropical Pacific as a result of developing El Nifo conditions (Orlove et al., 2000). Today, the
physics behind such climate—environment relationships are better understood, and the tools for predicting
them are more sophisticated. Similarly, our recognition of which elements of the climate system greatly
affect future seasonal climate has grown considerably through the 20th century, as modelling and
observational studies continue to add to our understanding.
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Progress in diagnosing, modelling and predicting seasonal climate variability represents a major
scientific advancement of the 20th century; however, progress in the effective utilization of forecasts has
lagged behind. Until recently, the burden rested on the user community to learn what prediction
information was available, and how it might be applied. While this is still largely the case, there are now
increasing efforts to engage systematically the user communities in actively voicing their needs, and
participating in the development of forecast products and applications. For example, certain users might
be interested more in the prediction of the duration of dry spells than the standard average 3-month
rainfall anomaly. The prediction community is increasingly considering user requests when planning its
research. At the other end of the prediction spectrum, the requirements for observations become better
defined when users identify what prediction information they find most useful. This is an exciting time,
as the view of climate variability across the disciplines becomes more coherent, and researchers from
seemingly disparate disciplines begin to understand each other better.

The primary objective of this paper is to offer a comprehensive view of seasonal to interannual climate
prediction—what methods are currently used, what information they provide, how they are typically
judged, and their generally recognized advantages and disadvantages. No one approach is endorsed. In
fact, benefits are likely gained from considering a variety of approaches. In practice, the method chosen
will vary according to the type and use of information desired from the prediction, and also according to
the resources available to produce the prediction. Much, but not all, attention is given to El
Nino-Southern Oscillation (ENSO) because it has such a large global impact, and because so much of
our forecasting efforts and skill derive from it. Given the rapid evolution during the recent few years in
the understanding and techniques behind climate forecasting, it seems appropriate to stand back and
assess what we know and what we need to know at this time, as society prepares to put this information
to use.

2. THEORY OF PREDICTABILITY OF SEASONAL-TO-INTERANNUAL CLIMATE

2.1. Sources of predictability

Boundary conditions versus initial conditions. In the atmosphere, memory is short. An instantaneous
realization of the weather will exert influence on future realizations only 5—10 days into the future. It has
long been recognized that accurate observations of the initial atmospheric state are crucial for short and
medium-range weather forecasts (Thompson, 1957; Lorenz, 1963, 1984, 1990; Shukla, 1981; Reinhold,
1987; Somerville, 1987; Murphy, 1988; Palmer et al., 1990; Mureau et al., 1993; Palmer and Anderson,
1994). For seasonal time scales, although atmospheric initial conditions do have a detectable influence,
their importance is considerably weakened (Brankovic et al., 1990; Barnett, 1995; Brankovic and Palmer,
2000). The relatively longer time scales of variability in the surface boundary layer allows for
predictability of climate that potentially extends for many seasons—far beyond the predictability limit for
the atmosphere alone (Charney and Shukla, 1981). Even simple thermal inertia of the upper ocean and
persistence of land surface characteristics provide a degree of predictability out to a few months
(Frankignoul, 1985). When other elements of the climate system, such as the upper ocean or the land
surface, are dynamically coupled to the atmosphere and are allowed to evolve, even longer time scales of
predictability are attainable (Rosati et al., 1997; Zeng et al., 1999). However, because these elements have
differing intrinsic time scales, the issue of initialization in each of the air—sea—land components becomes
far more complex (Larow and Krishnamurti, 1998; Pielke, 1998). At this time, most dynamical climate
prediction involves only the atmosphere (as is discussed in Subsection 3.2), and it is assumed that
atmospheric initial conditions are secondary to predictions of land and sea surface conditions.

Sea surface versus land surface boundary conditions. The decorrelation time scale of SST variability is
about 1 year over much of the tropical Pacific Ocean, where El Nifio and La Nifia events dominate the
variability. These events are extreme phases in the SST manifestation of the coupled ocean—atmosphere
phenomenon, ENSO, which represents the single most prominent mode of climate variability at seasonal
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to interannual time scales. These slowly evolving boundary conditions exert an influence on the tropical
atmosphere by redistributing the surface heating, and thus, the low level wind fields, tropical convection
and subsequent atmospheric heating that drives the global atmospheric circulation.

The land surface potentially provides additional sources of extended predictability for climate. The
intrinsic time scales for land surface processes, though considerably longer than those of atmosphere-only
processes, are typically less than the time scales of the ocean. Land surface variability is also fundamentally
less dynamic than the atmosphere or ocean. Accordingly, much less research has focused on the impacts
of land—atmosphere interactions, or the role of land surface initialization in forecasting. This is now
changing, as recent studies (Fennessey and Shukla, 1999, and references therein; Zeng et al., 1999; Douville
and Chauvin, 2000; Koster et al., 2000) are highlighting a potentially important role for the land surface.

2.2. ENSO predictability

The current understanding of ENSO has developed substantially over the past two decades (Neelin ez
al., 1998), but rests heavily on earlier contributions. During an El Nifio event (see Figure 1), the central
and eastern tropical Pacific warms as the warm upper ocean waters of the western Pacific extend eastward.
This reduces the equatorial SST gradient, and results in an eastward migration of active convection and
rainfall, a slackening or even reversal in near-surface easterly winds, and a decrease (increase) in atmospheric
surface pressure in the eastern (western) Pacific (the Southern Oscillation (SO) proper) (McPhaden et al.,
1998). The changes in near-equatorial winds allow even more of the warm western Pacific waters to move
eastward. As the changes in the ocean lead to changes in the atmosphere, and vice versa, positive feedback
is established. During the opposite extreme, now commonly called La Nifia, anomalies of the opposite sign
are observed to grow through analagous positive feedback. The period for a complete El Nifio/La Nifia
cycle is typically 3—7 years.

In the 1960s, Bjerknes (1966, 1969, 1972) postulated that variability in ocean surface temperatures, and
in tropical Pacific surface winds, were fundamentally coupled, and mutually reinforcing. He highlighted
the role of equatorial oceanic upwelling and of SST gradients in modulating the meridional (Hadley) and
zonal (Walker) overturning atmospheric circulations. These ideas have proven substantially correct, though
incomplete as a theory for the quasi-oscillatory nature of ENSO.

Theory behind ENSO’s cyclic behaviour developed during the 1970s and early 1980s as substantial
progress was made in understanding the dynamics of the equatorial oceans. Of particular importance to
current understanding was the description of how wind-forced equatorial Kelvin and Rossby waves, together
with meridional boundary reflections, determine much of the observed variability in sea level and upper
ocean circulation (Godfrey, 1975; Wyrtki, 1975; McCreary, 1976; Hurlburt ez al., 1976; Cane and Sarachik,
1977, 1981; Busalacchi and O’Brien, 1980, 1981; Philander and Pacanowski, 1981). In parallel, Gill (1980)
proposed a simple mechanistic model for describing the heat-induced overturning circulations of the tropical
atmosphere, which was then used to describe equatorial wind changes in response to SST variations
associated with El Nino (Zebiak, 1982, 1986; Lindzen and Nigam, 1987; Harrison and Larkin, 1998). These
complementary theories of how the ocean and atmosphere affect each other provided the essential elements
for the first coupled models of ENSO (McCreary, 1983; Cane and Zebiak, 1985; Philander and Seigel, 1985;
Zebiak and Cane, 1987).

The Zebiak and Cane (1987; hereafter ZC) model was the first to describe self-sustained, continuously
coupled oscillations arguably like the real ENSO. ZC also produced the first successful prediction of El
Nino by forecasting the 1986—1987 event 12 months in advance (Cane et al., 1986). ZC argued for the role
of oceanic heat content, and in turn, equatorial ocean dynamics, in setting the intrinsic time lags that could
sustain an oscillation. Independent analyses (Battisti, 1988; Suarez and Schopf, 1988; Battisti and Hirst,
1989) presented a more complete theory, known as the ‘delayed-oscillator’ theory, which ascribes a critical
role for oceanic adjustment (in the form of equatorial waves) in the evolution of the ENSO cycle. Elaboration
and variations of this theory have been proposed more recently (e.g. Jin and Neelin, 1993a,b; Neelin and
Jin, 1993; Jin, 1997a,b; Picaut et al., 1997; Neelin et al., 1998; Wang and Weisberg, 2000), although the
essential contributions of oceanic wave dynamics and strong air—sea coupling remain.
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Figure 1. Schematic of normal and El Nifo conditions in the equatorial Pacific, illustrating the important components of the
coupled air—sea system. Under normal conditions, the thermocline, which separates the warm upper ocean from the colder abyssal
ocean, is drawn towards the surface in the east, as the zonal winds blowing from east to west cause divergence in the oceanic surface
currents away from the equator and colder sub-surface water is brought to the surface. This creates a zonal gradient in SSTs, colder
in the east and warmer in the west, that reinforces the easterly winds. The atmospheric circulation, together with the pattern of SSTs
places the deep convection over the western Pacific. Significant perturbations to any one of these components can potentially lead
to a chain-reaction of positive feedback, developing into an ENSO event. See Subsection 2.2 for more details (reproduced from MJ
McPhaden, AJ Busalacchi, R Cheney, RW Reynolds, N Smith and K Takeuchi, The Tropical Ocean—Global Atmosphere observing
system: a decade of progress, in Journal of Geophysical Research, 103: 14169-14240, 1998, copyright (1998) by the American
Geophysical Union)

Over the past 10 years numerous groups have developed increasingly complex and comprehensive
general circulation models in an attempt to simulate ENSO better (e.g. Lau et al., 1992; Nagai et al., 1992;
Latif er al., 1993; Roeckner et al., 1996; Frey et al., 1997; Shukla, 1998). Although important challenges
still exist (Latif et al., 1998), notable progress has been made in simulating ENSO in many models
(Stockdale et al., 1998a). These new results substantiate the theories derived from the simpler predecessors
that indicate a degree of determinism, and thus, potential predictability, in the coupled climate system that
extends to several seasons.
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SEASONAL-TO-INTERANNUAL CLIMATE PREDICTION 1115

2.3. Climate predictability

2.3.1. ENSO teleconnections. Progress in collecting routine weather observations and the growth of
scientific curiosity converged at the beginning of the 20th century, allowing scientists to perform the first
investigations of the global climate and its year-to-year variability (Allan et al., 1996). Through
investigations of the Indian Summer Monsoon rainfall, Sir Gilbert Walker and colleagues documented
various modes of seasonal climate variability (Walker, 1924; Walker and Bliss, 1932). Walker is credited
with discovering and naming the SO, the vacillation of sea level pressure spanning the tropical Pacific
basin that is associated with the changes in tropical Pacific SST during El Nifio and La Nifia extremes.
However, other researchers had also discovered and discussed this tropical Pacific variability
(Hildebrandson, 1897; Lockyer and Lockyer, 1902, 1904; Brooks and Braby, 1921). Their early studies
were able to link some modes of climate variability, principally the SO, with seasonal rainfall patterns.
These statistical relationships between regional rainfall or temperature patterns with larger scale modes of
climate variability are often called ‘teleconnections’.

Much of the early work by Walker and others fell from favour from the late 1920s to the 1950s, largely
because many of the teleconnections failed to hold during this period. Many present-day researchers
suspect that decadal and longer-term climate variability, which Walker’s limited data could not take into
account, can affect ENSO teleconnections (Rodo et al., 1997; Gershunov and Barnett, 1998; Krishna
Kumar et al., 1999a,b; Power et al., 1999; Rajagopalan et al., 2000). After World War II, a network of
weather stations was fostered by the World Meteorological Organization (WMO), and continues to form
the backbone of weather and climate observations into the present. Much of the more recent empirical
work documenting the relationships between ENSO and precipitation and temperature are based on these
data.

With increased understanding of ENSO in recent decades came a renewed interest in ENSO
teleconnections. Several studies since the 1980s documented the large-scale patterns of rainfall associated
with ENSO based on observed data. Ropelewski and Halpert (1987, 1989) highlighted broad regions in
which precipitation anomalies exhibited a discernible response to the phase of ENSO. Correlation-based
analyses (e.g. Lau and Sheu, 1988; Kiladis and Diaz, 1989) also show patterns of relatively strong
relationships between ENSO and rainfall. The composite relationships between ENSO and regional
rainfall or temperature variability do not occur in every ENSO event, however. As discussed in Subsection
3.3, the changes in SST boundary forcing shift the distribution of possible climate outcomes, making
certain scenarios (such as above-normal rainfall) more likely, but not guaranteed. Rainfall or air
temperature anomalies of the opposite sign to the most typical ENSO response can occur in even the
strongest teleconnection regions (Figure 2). The degree to which ENSO events shift the range of climate
outcomes locally depends on the region, season, and also the strength and spatial distribution of the
ENSO-related SST anomalies. Two examples of how the rainfall anomalies expected during an El Nifio
event might be presented are shown for South America in Figure 3. The upper panel gives the information
as a composite category (wetter or drier than average for December, January and February (DJF));
whereas, the lower panel indicates how frequently the ‘expected outcome’ occurred in previous El Nifo
events, also known as conditional probabilities. The conditioned probabilistic climate anomalies suggest
the relative robustness of regional teleconnections associated with ENSO (Mason and Goddard, 2001). In
addition to differences between events in tropical Pacific SST forcing and internal variability of the
atmosphere, some studies suggest that extra-tropical SST anomalies may influence (Gershunov and
Barnett, 1998) or be influenced by (Bladé, 1999) ENSO teleconnections. ENSO teleconnections are also
affected by SST anomalies in the tropical Indian and Atlantic Oceans that produce their own regional
climate variations.

2.3.2. The influence of other ocean basins. Atlantic Ocean influence. Despite ENSO’s widespread
influence, the importance of the tropical Atlantic sector in affecting regional climate variability has been
recognized since the 1970s. Relatively small changes in tropical Atlantic SSTs, particularly changes in the
meridional gradient of SST, can shift the seasonal position of the Inter-Tropical Convergence Zone
(ITCZ), directly impacting local climate. The average position of the ITCZ over the tropical Atlantic
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Figure 2. PDFs based on observed precipitation during the period 1890-1989. Three distributions are shown in each plot: 20
warmest El Nifio events (heavy solid line); 20 coldest La Nifna events (dashed line), and 20 years for which NINO3.4 was closest
to zero anomaly (light solid line, with light gray shading), based on ranked anomalies for the season indicated at the top of each
panel. Regions and associated seasons are based on identified ENSO teleconnection patterns from Ropelewski and Halpert (1987)
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Figure 3. Expectations of anomalous rainfall during El Nifio events for the December, January and February season, based on
historical observations. (a) Composite expectations (reproduced from Global and regional scale precipitation patterns associated
with eth El Nifio/Southern Oscillation, Monthly Weather Review, 115: 1606—1626, by CF Ropelewski and M Halpert, 1987, by
permission of the American Meteorological Society); (b) Conditional probabilities of rainfall being in the wettest (dark shading,
positive numbers) or driest (light shading, negative numbers) tercile during the 10 strongest El Nifio events since 1950

Ocean basin is oriented west—southwest to east—northeast, and typically, spans the deep tropics from
northeastern Brazil to western Africa. The annual cycle of rainfall from northern Brazil to western Africa
reflects the annual north and south excursions of the ITCZ. Thus, SST anomalies in the equatorial
Atlantic Ocean, by varying the seasonal mean position of the Atlantic ITCZ, lead to interannual
variability of rainfall over northern Brazil (Hastenrath and Lamb, 1977; Markham and McLain, 1977
Moura and Shukla, 1981; Hastenrath, 1984) and western Africa (Folland et al., 1986; Semazzi et al., 1988;
Lamb and Peppler, 1991; Rowell et al., 1995; Ward, 1998).

The anomalous meridional SST gradient, which is sometimes referred to as the Atlantic Dipole (Weare,
1977; Hastenrath, 1978; Moura and Shukla, 1981), although perhaps erroneously (Houghton and Tourre,
1992; Enfield et al., 1999), is not independent of ENSO (Penland and Matrovosa, 1998; Latif and
Groétzner, 2000). In the months following the peak of an El Nifio event, it is common for the northeast
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trade winds over the Atlantic to weaken, and warm SST anomalies to develop in the Caribbean and northern
tropical Atlantic Ocean (e.g. Folland e al., 1986; Wolter 1987; Aceituno, 1988; Marengo and Hastenrath,
1993; Enfield and Mayer, 1997). Because of this relationship between tropical Atlantic SST variability and
ENSO events, it may be difficult to separate ENSO teleconnections from the local tropical Atlantic
teleconnections. Over the past decade, however, a number of studies have identified the relative influence
of the eastern Pacific (ENSO) and equatorial Atlantic SSTs on rainfall over the Caribbean and northern
South America (Hastenrath, 1995; Enfield, 1996; Enfield and Mayer, 1997; Enfield and Alfaro, 1999;
Giannini et al., 2000).

A second mode of variability exists in the tropical Atlantic, which appears to be independent of the
variability in the northern tropical Atlantic described above. This mode evolves similarly to ENSO with
SST variability focused along the equator and coupling between the SST and wind stress anomalies (Hirst
and Hastenrath, 1983; Philander and Pacanowski, 1986; Reverdin and McPhaden, 1986; Richardson and
Walsh, 1986; Servain and Legler, 1986; Colin and Garzoli, 1987; Zebiak, 1993). However, direct connection
between this equatorial Atlantic variability and ENSO has not been established. This mode, which is most
pronounced in boreal summer, can affect rainfall anomalies in the Gulf of Guinea region (Wagner and da
Silva, 1994), and parts of central (Hirst and Hastenrath, 1983; Nicholson and Entekhabi, 1987) and southern
Africa (Jury, 1996).

Indian Ocean influence. It is even more difficult to separate Indian Ocean teleconnections from tropical
Pacific teleconnections than is the case for the Atlantic sector. SST variability in the Indian Ocean correlates
highly with that of the tropical Pacific, with the tropical Pacific leading by approximately 3 months (e.g.
Nicholson and Nyenzi, 1990; McCreary et al., 1993; Nicholson, 1997; Tourre and White, 1997; Goddard
and Graham, 1999; Klein et al., 1999; Reason et al., 2000). Modelling studies show evidence that the
atmospheric changes induced by ENSO events are capable of affecting the Indian Ocean as observed (Lau
and Nath, 1996; Venzke et al., 2000).

The strong relationship between the Indian Ocean and the Pacific raises questions about which ocean’s
SST variability is actually responsible for the observed ENSO teleconnections in the Indian Ocean sector.
Over southern and eastern equatorial Africa, where rainfall variability is correlated significantly with ENSO
events (Figure 4(a)—(c)), attempts have been made to identify the relative contribution of the Pacific and
Indian Ocean, and results suggest that the Indian Ocean contributes more to the regional variability
(Tennant, 1996; Rocha and Simmonds, 1997; Goddard and Graham, 1999). Thus, many statistical
approaches to forecasting seasonal rainfall over southern and eastern Africa consider conditions in the
Indian Ocean (Hastenrath et al., 1995; Mason, 1998; Landman and Mason, 1999a; Thiaw et al., 1999).
Modelling studies have demonstrated that the Indian Ocean drives the climate variability over eastern Africa
(Figure 4(d); Goddard and Graham, 1999). Tropical Pacific forcing, applied in isolation, actually produces
rainfall variability opposite to that observed over eastern equatorial Africa (Figure 4(e); Goddard and
Graham, 1999). In contrast, rainfall variability over the Indian sub-continent correlates better to tropical
Pacific variability than to local Indian Ocean variability (Shukla and Misra, 1977; Weare, 1979; Pant and
Parthasarathy, 1981; Ropelewski and Halpert, 1987).

Figure 4. Results from GCM experiments showing the importance of the Indian Ocean for simulating observed precipitation
response over eastern and southern Africa during the November, December and January season (reproduced from Goddard and
Graham, 1999, courtesy of the American Meteorological Society). The top panel (a) shows the 1st mode of SST (homogeneous
predictor maps) from CCA analysis between the Indian Ocean SSTs and observed African precipitation anomalies and between the
Pacific Ocean SSTs and African precipitation anomalies. Shading indicates positive temperature anomalies, with 0.2°C contour
levels. The subsequent panels show the African precipitation anomalies (heterogeneous predictand maps) related to Indian Ocean
SSTs (left column: bl, cl, d) and those related to Pacific Ocean SSTs (right column: b2, c2, e), using rainfall anomalies from
observations (bl, b2); a GCM forced with global observed SSTs (GOGA) (cl, c2); a GCM forced with observed SSTs only in the
Indian Ocean (IOGA) and annual cycle of SSTs elsewhere (d); and a GCM forced with observed SSTs only in the tropical Pacific
Ocean (POGA) and annual cycle of SSTs elsewhere. Shading and solid contours imply positive rainfall anomalies, with contours at
starting at 4 0.5 mm/day and an interval of 1.0 mm/day above magnitudes of 1.0. Notice that the IOGA experiment (d) replicates
the rainfall pattern seen in the analysis of the observations (bl, b2) and the GOGA experiments (cl, ¢2), but the pattern of rainfall
anomalies in the POGA experiment (e) is quite different. (Figure modified from L Goddard and NE Graham, The importance of
the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa, Journal of Geophysical Research, 104:
6335-6352, 1999, copyright (1999) by the American Geophysical Union)
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The physical mechanisms associated with SST variability in the tropical Atlantic and Indian Oceans are
not as well understood as those of ENSO. Most of the Atlantic SST forecast methods in common use are
statistical. Similarly, whether the Indian Ocean’s response to ENSO results from dynamics or
thermodynamics is currently in debate (Saji et al., 1999; Venzke et al., 2000). The PIRATA program
(Servain et al., 1998) may provide the observational data necessary for better understanding of Atlantic
Ocean variability. A similar observing system in the Indian Ocean is clearly needed. In addition, a newly
launched global system of ‘sounding buoys’ under the ARGO program (Argo Science Team, 1999) may
eventually contribute to further understanding and improved modelling for all the global tropical oceans.
Until then, prediction of Indian and Atlantic SST is likely to remain in the realm of statistical/empirical
techniques.

3. PREDICTING THE OCEAN-ATMOSPHERE SYSTEM

3.1. Predicting boundary conditions

3.1.1. SST prediction. Observations. Current predictions of the ocean boundary layer depend on several
key observations that have been available in real-time since the 1980s. By far, the most developed
observing system for the global oceans is the Tropical Atmosphere—Ocean (TAO) buoy array, which
consists of more than 70 moorings in the tropical Pacific (8°N-8°S, 137°E—-95°W; see Hayes et al., 1991
and McPhaden et al., 1998 for comprehensive summaries). These buoys make detailed measurements of
surface winds, humidity, and temperature, and subsurface temperature and salinity, and continuously
relay the information via satellites. The establishment of this observing system has allowed a more
detailed understanding of processes surrounding ENSO, and it has provided critical information to
initialize ocean models for seasonal predictions (Latif et al., 1998; Stockdale et al., 1998a; Wallace et al.,
1998). Another important data source for subsurface thermal conditions, particularly outside the tropical
Pacific, is measurements from merchant ships that measure depth profiles of temperature and sea surface
salinity. Observing ships also contribute to data sets of surface wind stress and surface air pressure. Other
in situ measurements include a network of tide gauge stations that have been in place for decades (Wyrtki,
1985; Mitchum et al., 1994). Relatively recently, satellite-based data for SST, winds, and sea level
topography have become available (e.g. Fu et al., 1994; Liu et al., 1996). The potential usefulness of this
data is great, as satellite products have the capability to offer higher resolution and more uniform
coverage in both space and time than other systems.

The best observed oceanic field is SST. Quality SST observations are important for all aspects of
prediction. First, having access to such data provides the ability to monitor closely ENSO and other
variability. Second, timely access to SST data allows for continuous verification of SST predictions that
are used to forecast climate (see Subsection 3.2). Third, having reliable SST observations may reduce
uncertainty in predictions of climate that are based on observed SSTs. And finally, some climate-based
decisions are tied directly to these oceanic observations, such as for the fishery industry (Lehodey et al.,
1997; Carr and Broad, 2000), in which case high resolution, accurate, and current observations are crucial
(GOOS, 1998). The most commonly used products are obtained from a blending of in situ observations
from ships of opportunity and buoys, and satellite observations (Reynolds and Smith, 1994). The
relatively uniform coverage of the satellite measurements, and the large-scale bias correction of the
satellite signal based on in situ measurements, provides for a high-quality analysis on weekly time scales.
Prior to the satellite era (early 1980s) SST data are acceptably good in many areas since the mid-1950s.

For prediction of SSTs, especially through the use of dynamical models, other physical components of
the air—sea system must be well measured and easily accessible. Crucial to all ocean model simulations or
forecast initializations are surface fluxes, especially momentum fluxes. The first ENSO prediction schemes
used only surface wind stress to generate oceanic initial conditions, and even in the presence of
considerable ocean data, wind forcing remains an extremely important quantity for initializing ocean
models. Sea-surface elevation is increasingly being considered in prediction, although in the initialization
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of the more complex models, the use of sea level data remains exploratory (Chen et al., 1998; Ji et al.,
2000; Segschneider et al., 2000). A current, major problem is the decomposition of sea level into the
separate contributions from temperature and salinity. In the absence of significant subsurface salinity
measurements, the decomposition requires statistical estimates of inherently limited accuracy. Oceanic
velocity data are also valuable, particularly as sources of validation for ocean models. Such data are
provided routinely by drifting buoys and moored current meters, although the latter are available only at
a very few sites.

Statistical forecasting methods. Most statistical forecasts of SSTs focus on the ENSO phenomenon and
involve prediction of a field of tropical Pacific SSTs, or a simple area-average over representative regions
of the equatorial Pacific, such as the NINO3 (SST anomaly (SSTa) averaged over the region 5°S—5°N;
150°-90°W), NINO3.4 (5°S—5°N; 170°-120°W), or NINO4 (5°S-5°N; 160°E—150°W) areas. These
ENSO predictions are frequently derived from previously observed in situ sea temperatures, surface
pressure, and/or wind stress anomalies, although relationships with atmospheric anomalies outside of the
tropical Pacific sector are sometimes considered (Xu and von Storch, 1990; Barnett ez al., 1991). The most
commonly used statistical methods describe linear deterministic relationships between the predictor and a
single predictand index, and include regression (Knaff and Landsea, 1997), method of analogues (Van den
Dool, 1994), and singular spectrum analysis (Keppenne and Ghil, 1992). Linear multivariate methods for
forecasting ENSO in which the predictand is a field, most often SST, are widely used also. One class of
such models keys on autoregression, either through Markov modelling (Xue et al., 1994, 2000) or through
linear inverse methods optimized to fixed lead-times (Penland and Magorian, 1993; Penland and
Sardeshmukh, 1995). The second class of models uses covariance or correlation between multiple fields,
at fixed lead-times. The most commonly used algorithm is canonical correlation analysis (CCA) (Barnston
and Ropelewski, 1992; Graham et al., 1997a,b), although other methods such as singular value
decomposition (SVD), and combined empirical orthogonal functions (EOFs) have also been used
(Bretherton et al., 1992). Recent attempts to use non-linear methods have been made (Tangang et al.,
1997, 1998a,b; Hsieh and Tang, 1998), but do not provide significant improvements in skill over linear
methods (Tang et al., 2000). Although probabilistic methods of statistical prediction have been used in
climate forecasts (as discussed in Subsection 3.2), their application in forecasting SSTs has been minimal.

Outside the tropical Pacific, there are fewer examples of statistical forecasts of SSTs. However, some
recent attention has been given to forecasts of global SSTs using autoregressive models (Navarra et al.,
1998) and CCA (Mason et al., 1999; Landman and Mason, 2001). Also, tropical Atlantic temperatures are
now regularly forecast using linear inverse modelling (Penland and Matrovosa 1998) and CCA (Pezzi et
al., 1998; Repelli and Nobre, 2001).

Dynamical forecasting methods. A spectrum of dynamical models, ranging from the relatively simple
(so-called intermediate) models initially used to predict ENSO, to comprehensive coupled general
circulation models, are used routinely for SST prediction (Latif ez al., 1994, 1998; Stockdale et al., 1998a).
Intermediate models currently are run only in a regional context, focusing on the tropical Pacific and
ENSO (e.g. Kleeman et al., 1995; Chen et al., 1999, 2000). Both atmospheric and oceanic components are
represented dynamically, but simplified to the level of equatorial, linear, shallow-water equations.
Parameterizations of the thermodynamics of both atmosphere and ocean are more complex, and
non-linear. Outputs are predicted winds and SST over the coupled domain.

The commonly used hybrid models involve a statistical atmosphere model, coupled to either an
intermediate ocean model (Kang and Kug, 2000) or to an ocean general circulation model (GCM)
(Barnett et al., 1993). In all cases, the atmosphere model is derived from either SVD or CCA, based on
observed SST and surface wind (stress). Outputs are surface wind stress and SST predictions over the
coupled domain, typically, the tropical Pacific.

In recent years, development efforts have been focused towards relatively comprehensive coupled
models for SST prediction. One approach employs a full ocean GCM and a global atmospheric GCM,
but air—sea coupling occurs only in the limited domain of the tropical Pacific, and either climatology or
persistence of SST anomalies is prescribed elsewhere (Ji er al., 1996, 1998; Kirtman et al., 1997). The
additional assumption of so-called anomaly coupling is often made; that is, the coupling fields (i.e. heat
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fluxes and wind stress) are computed from the simulated anomalies of each component model (relative to
a forced, uncoupled climatology), and added to the appropriate observed climatology. Anomaly coupling
minimizes errors associated with simulating aspects of the observed mean climate or mean annual cycle,
but at the possible expense of introducing incorrect parameter sensitivities under certain conditions
(Neelin and Dijkstra, 1995).

The outputs of fully coupled, and global domain GCMs (e.g. Rosati et al., 1997; Stockdale et al.,
1998a.,b; Segschneider et al., 2000) include the full state space of both atmosphere and ocean (and land
surface). Varying approaches are taken for the treatment of sea-ice in the polar regions: in some cases,
sea-ice is simply specified, in others, an interactive sea-ice model is included. Sometimes, the models are
used in a one-tier approach, directly forecasting climate, as well as SST (Stockdale et al., 1998b), but more
typically, the coupled GCMs are used to forecast SST only. In that case, the coupled models are
configured at a moderate resolution of 3—-4° (adequate to resolve many of the critical tropical air—sea
interactions), and then higher resolution atmosphere-only AGCMs (AGCMs) are used with the predicted
SSTs to forecast climate (see Subsection 3.2 below), an example of the two-tiered approach.

Apart from these global ocean modelling efforts, dynamical modelling of the Atlantic Ocean has
received increasing attention over recent years (Philander, 1986; Zebiak, 1993; Chang et al., 1997). Very
recently, some studies have been directed towards the Indian Ocean sector as well (Saji et al., 1999;
Webster et al., 1999). Yet the level of understanding of coupled climate variability in these oceans is
extremely limited in comparison with that of the Pacific (i.e. ENSO). Central to the problem is the fact
that the variability is weaker in these sectors, and most likely, impacted remotely by ENSO, and perhaps
other factors. Additional basic research is needed, with continuing efforts to improve model simulations
and predictions. In the extratropics, the situation is also very uncertain. To date, there has been no
convincing demonstration of significant local air—sea coupling in the extra-tropics operating at seasonal
time scales, and involving the sub-mixed layer ocean. This too continues as an area of active research.

Forecast performance. Since the first prediction of the 1986—1987 El Nifo (Cane et al., 1986), steadily
intensifying efforts in statistical, dynamical, and hybrid model prediction have led to more than a dozen
forecast systems that are currently being used to make regular predictions (many available through the
Experimental Long Lead Forecast Bulletin: http://www.iges.org/ellfb; Kirtman, 2000). Owing to the
known dominance of ENSO in global climate variability, forecast skill for ENSO indices such as NINO3,
NINO3.4, NINO4 are important measures of performance. Comparisons among different forecast
methods have been made for different ENSO events over the past decades (Barnett et al., 1988; Barnston
et al., 1994, 1999a; Landsea and Knaff, 2000). Figure 5 shows forecasts for the period covering mid-1996
to late 1998 from three dynamical and three statistical models; this is a subset of models from an extensive
comparison study by Barnston et al. (1999a). It must be noted that the period shown is very limited, and
the apparent skill of any one tool may not be representative of its true ability. However, the magnitude
of the 1997-1998 El Nifio event, and its associated climate impacts, make it an important case study for
ENSO prediction tools. This comparison, shown in Figure 5, reveals that, at present, forecasting methods
of all types are generally competitive. During the 1997-1998 El Nino event, the GCM-based forecasts
with active ocean data assimilation did perform better than simpler models without ocean data
assimilation (for example, compare NCEP coupled model against the COLA coupled model, Figure 5).
However, some statistical forecasts did as well as any dynamical model in predicting NINO3 (Barnston
et al., 1999a; Landsea and Knaff, 2000). The approximately equal skill of the different forecast methods
is not too surprising: the deterministic processes that the dynamical models describe explicitly lead to
systematic patterns in the data, extractable and useful for statistical prediction. However, dynamical
models have an inherent, but yet unrealized advantage; namely, that with improved and more
comprehensive representations of the real physics, there is room for further improvements in prediction
skill. The only comparable means to improve statistical models is to increase the volume of observational
data, a task fundamentally more limited. Thus, considerable energy is now being invested in improved
dynamical prediction at many centres worldwide.

High skill in forecasting ENSO events with lead-times of 12 months or more has been claimed (Cane
et al., 1986; Latif et al., 1998). However, operational skill estimates, which provide the only truly unbiased
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Figure 5. Plots of tropical Pacific SST forecasts (dashed lines) and observations (solid lines) over the June 1996—September 1998
period for six models projecting the state of ENSO at lead times of 3.5, 6.5, and 9.55 months. The specific predicted regions and
SST units vary by model as shown in the upper-right corner, and by the vertical axis label, respectively. Dotted lines connect the
observation centred at the approximate start time to the earliest (3.5 month lead) forecast. This is done for the readers’ convenience
only; the beginning of the dotted line does not represent the model’s actual initialization, nor its forecast at very short lead times.
The 3-month periods shown on the abscissa are denoted by their middle month. The first three panels show the performance of the
statistical models (indicated above each panel), the next three the dynamical models. Figure reproduced by permission of the
American Meteorological Society from, Predictive skill of statistical and dynamical climate models in forecasts of SST during the
1997-98 El Nifo episode and the 1998 La Nifa onset, by AF Barnston, MH Glantz and Y He, 1999, Bulletin of the American
Meteorological Society, 80, 217-244
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indications of forecast skill, suggest that some ENSO events can be forecast qualitatively only a few
months in advance (Barnston ef al., 1999a; Landsea and Knaff, 2000), and occasionally, only after an
event has begun (Chen et al., 1997). The difficulty in predicting ENSO phase-changes has been attributed
to seasonal variability in the predictability of the equatorial Pacific. A ‘springtime barrier’ has been noted,
as lower skill is generally observed for predictions that extend through boreal spring. (Blumenthal, 1991;
Goswami and Shukla, 1991; Latif and Fliigel, 1991; Latif and Graham, 1992; Webster and Yang, 1992;
Balmaseda et al., 1995; Webster, 1995; Davey et al., 1996; Moore and Kleeman, 1996; Fliigel and Chang,
1998; Latif et al., 1998). The assumed reason for such a barrier is that the ENSO signal (year-to-year
variance in SST anomalies) is a minimum in March—May, but the noise of the tropical Pacific air—sea
system is nearly constant (Xue et al., 1994). Thus the signal-to-noise ratio in the equatorial Pacific is small
during boreal spring, and causes the forecast evolution through this season to be more sensitive to
random variability. The spring barrier is most well defined during decades of relatively poor predictability
(Balmaseda et al., 1995), but is not evident in all ENSO-prediction models, and so, may not be an
inherent feature of the ENSO phenomenon (Chen et al., 1995).

In addition to being a function of the ENSO phase, skill levels have varied inter-decadally, with
relatively higher skill in the 1980s, and lower skill in the 1970s and 1990s (Balmaseda et al., 1995; Chen
et al., 1995; Ji et al., 1996; Kirtman and Schopf, 1998). This low-frequency variability in the predictability
of ENSO events may be a reflection of changes in the role of the delayed-oscillator mechanism in
equatorial Pacific ocean-atmosphere dynamics (Goddard and Graham 1997).

Skill comparisons beyond the tropical Pacific and ENSO are few, as few predictions extend to the
broader domain. Some statistical schemes target the tropical Atlantic and Indian Oceans (as discussed
above), and near global domain coupled GCM forecasts exist already. Performance has been evaluated
generally with temporal correlations between observed and forecast SST (Penland and Matrovosa, 1998;
Repelli and Nobre, 2001), but robust validation of many of the current coupled GCM forecasts is
presently limited by sample sizes. The expense of running these models often limits the number of
retrospective forecasts conducted, and further work is needed. Those skill measures that are available
indicate that forecast skill outside the tropical Pacific is distinctly lower than that for ENSO. As global
SST forecasts are required for two-tiered forecasting systems (Hunt, 1997; Mason et al., 1999), the need
to improve skill beyond the tropical Pacific represents a major challenge for future forecast research.

3.1.2. Land-surface prediction. The land surface also serves as a boundary condition on the atmosphere,
but it is often treated differently than SSTs. Prediction, or even persistence of anomalous conditions of the
land surface, such as snow or soil moisture, are rarely incorporated into climate prediction. A major
limitation is that there is no global observational analysis of soil moisture (wetness) with which to validate
or initialize models. Even climatological soil moisture is generally estimated using a model (Mintz and
Serafini, 1992). Currently, weather forecast models are typically run with interactive land surface
parameterizations, and the atmospheric data assimilation process results in estimates of soil moisture that
can be utilized for climate purposes (Fennessey and Shukla, 1999). However, land-surface analyses are not
commonly used to initialize seasonal climate forecasts.

Until recently, the physics contained in the land surface component have been very crude and simplistic.
The first interactive land surface models followed the so-called ‘bucket’ approach; i.e. a simple
one-dimensional system that includes a reservoir, a precipitation source, and calculated fluxes at the
surface (Manabe, 1969). A more recent class of models includes explicit vegetation, and its impacts on
surface energy, water, and momentum transfer (Sellers et al., 1986; Dickinson et al., 1998). This class of
model has been further developed, and can be considered state-of-the-art at present. A new class of model
under development will go further in attempting to account for sub-grid scale variability, and the effects
of topography on runoff (Koster et al., 2000).

Numerous studies using these land surface models have investigated and identified important impacts
of land surface processes on climate and its variability (see reviews in Dirmeyer and Shukla, 1993; Eltahir
and Bras, 1996). Studies focusing on seasonal prediction impacts are suggestive of important land surface
initialization impacts under some conditions (Fennessey and Shukla, 1999; Douville and Chauvin, 2000).
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For example, the importance of initializing the soil moisture for simulations of drought and flood events
at seasonal or longer time scales has been demonstrated (Brankovic et al., 1990; Fennessey et al., 1994).
However, initializing a climate model with observations that are not dynamically consistent with that
particular model may degrade rather than enhance the model’s performance (Anderson and Ploshay, 2000).
But given the potential importance of anomalous land surface conditions on the overlying climate,
operational centres are beginning to assimilate land surface observations into dynamical climate models
(Douville et al., 2000). A number of new research initiatives under development will address this issue
further, and can be expected to occupy an important position in the future research agenda.

3.2. Predicting climate

Observations. Routine observations of temperature and rainfall at selected locations have been taken for
centuries. These observations are essential to diagnostics and process studies, for building statistical climate
models, for understanding and improving dynamical climate models, and for validating both statistical and
dynamical models. Routine real-time monitoring of the current climate, such as drought and flood
conditions, is also important to provide the appropriate context for interpretation of climate forecasts.

Temperature measurements have been taken at sufficient spatial resolution to provide estimates of
seasonal and annual global air temperatures over land from the mid-19th century to the present (Jones,
1994). While observations at less than 200 adequately spaced locations are sufficient for global temperature
estimates, far more observations are necessary for the study and specification of regional and seasonal to
interannual variability. Europe, North America and Australia have fairly good records extending back 100
years or more, but much of the remaining land areas of the world have had adequate regular temperature
observations only from the 1950s onwards. The availability of good monthly station data in the latter half
of the 20th century are partly owing to efforts of the World Meteorological Organization to coordinate
the regular international exchange and archiving of monthly temperature and rainfall data. Some 1600
weather stations have been designated official climate stations and have agreed to exchange monthly climate
summaries, called CLIMAT records, on a routine basis. However, the global observing network has thinned
in the last two decades. A number of efforts are underway to arrest the recent decline in climate networks,
such as the designation of a surface observing network of about 1000 stations under the Global Climate
Observing System (GCOS). While these observing networks and the exchange of these data is an
achievement, climate variability on decadal and longer temporal scales limit the use of this 50-year record
in some seasonal climate prediction problems.

The observational record for precipitation generally parallels that of temperature. However, the smaller
spatial and temporal scales of variability exhibited by precipitation make global seasonal patterns of rainfall
more difficult to classify. As with temperature, some regions, again mainly Europe, Australia and parts
of North America, have reasonable historical precipitation records back to the beginning of the 20th century.
The advent of satellite precipitation estimates (Xie and Arkin, 1997) has provided high spatial resolution
data sets for the study of global rainfall, including over the world’s oceans, albeit with limitations in
accuracy.

The simplest methods for seasonal climate prediction are based purely on local observations of past and
current climate. The use of the climatological average as the ‘prediction’ is a valid starting point, or one
can assume that a recent seasonal to multi-year climate anomaly will persist through the upcoming season(s)
(Huang et al., 1996). These methods have been used for centuries, and are used implicitly today by many
people on a regular basis. The development of prediction methods that are superior to these simple
approaches is the goal of most climate prediction research.

Statistical models. Implicit in any statistical model is that antecedent, current, or expected future values
of predictor variables can be used to predict the future state or evolution of the predictand based upon
historical observations of mathematical relationships between the predictors and predictands. With the
development of global observing networks that measure air temperature, sea temperature, precipitation,
and some aspects of the atmospheric circulation, statistical prediction methods have evolved considerably
through the 20th century.
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Regression models, including CCA, are the most commonly used statistical techniques for forecasting
climate anomalies. Most models for the Indian monsoon use multiple linear regression, and this method,
together with CCA, has been adopted extensively in Africa also. Auto-regressive approaches have received
attention recently (Elfandy er al., 1994; Chu et al., 1995; Mentz et al., 2000), as have probabilistic
methods, most notably discriminant analysis (Ward and Folland, 1991; Casey, 1995; Carter and Elsner,
1997; Lehmiller et al., 1997, Mason, 1998; Mattes and Mason, 1998; Mutai er al., 1998; Mason and
Mimmack, 2001).

In most cases, statistical forecasts of seasonal climate anomalies depend heavily upon the SST boundary
forcing, which is the fundamental source of predictability in two-tiered dynamical modelling approaches.
Antecedent or forecast SSTs form the sole, or at least dominant, predictors of models for the Sahel (Bah,
1987; Folland et al., 1991; Barnston et al., 1996; Ward, 1998; Thiaw et al., 1999), eastern Africa (Mutai
et al., 1998), southern Africa (Klopper et al., 1998; Landman and Klopper, 1998; Mason, 1998; Mattes
and Mason, 1998; Landman and Mason, 1999a; Mason and Tyson, 2000), northeast Brazil (Ward and
Folland, 1991; Uvo et al., 1998), the Pacific Islands and Alaska (Barnston and He, 1996; Yu et al., 1997),
Australasia (Casey, 1998), Europe (Johansson et al., 1998; Colman and Davey, 1999), the United States
(Barnston, 1994), and Canada (Shabbar and Barnston, 1996). Most predictability is associated with the
tropical Pacific. The skill of seasonal climate forecasts may be minimal in non-ENSO years (Barnston et
al., 1999b; Landman and Mason, 1999a), but important exceptions include central Africa and the Indian
monsoon areas (Yang et al., 1998). The simplest models include only a single ENSO index (Hutchinson,
1992), and simple average responses to ENSO events do provide seasonal forecasters with valuable initial
guidance (Ropelewski and Halpert, 1996). A slightly more sophisticated approach, that relates seasonal
climate to ENSO, uses both the present phase and the recent trend in ENSO indices (such as the Southern
Oscillation Index (SOI), a measure of the pressure changes across the tropical Pacific basin) to indicate
likelihood of above or below median precipitation (Stone and Auliciems, 1992). However, inter-El Nifio
differences in atmospheric circulation exist, and these differences may be inherently unpredictable in some
cases (Kumar and Hoerling 1997). Thus, the probabilistic nature of such ENSO-teleconnection
relationships should be emphasized (Mason and Goddard, 2001).

Some improvements in skill have been claimed when, in addition to SSTs, atmospheric predictors are
included (Hastenrath et al., 1995; Makarau and Jury, 1997; Francis and Renwick, 1998; Jury, 1998; Jury
et al., 1999a; Philippon and Fontaine, 1999). The addition of atmospheric predictors forms an important
component of analogue techniques (Livezey and Barnston, 1988; Wagner, 1989). In most cases, however,
these predictors are aspects of the atmospheric ENSO signal, and so, do not imply that the atmosphere
has sufficient memory of its own to provide predictability at seasonal time scales. Included with this class
of statistical models are those for the Indian Monsoon, where precursors indicate either some aspect of
ENSO (Shukla and Paolino, 1983; Shukla and Mooley, 1987; Krishna Kumar et al., 1995), despite a
relatively weak ENSO-signal (Yang et al., 1998), or provide a measure of the pre-monsoon thermal
conditions over the Asian land mass (Hastenrath, 1987; Vernekar et al., 1995; Sankar Rao et al., 1996;
Webster et al., 1998), in both cases, implying that predictability is derived from boundary forcing.

All linear statistical prediction schemes suffer from similar instabilities in precursor—predictand
relationships (Hastenrath, 1995; Francis and Renwick, 1998). Over India, for example, interdecadal
variability in associations between ENSO and atmospheric precursors of the monsoon, which are likely
related to interdecadal variability in ENSO variance, have led to interdecadal variability in monsoon
predictability (Parthasarathy et al., 1991; Hastenrath and Greischar, 1993; Annamalai, 1995; Krishna
Kumar et al., 1999a,b; Sahai et al., 2000). This lack of robustness in predictor—predictand relationships
may reflect an absence of explicit references to physical processes in the construction of statistical models
for seasonal climate prediction. Given the enormous pool of potential predictors, and limited temporal
degrees of freedom of most geophysical data, statistical models require rigorous testing in operational
settings to ensure significance. Even cross-validated estimates of skill can be biased (Barnston and van den
Dool, 1993; Hastenrath, 1995), and so, careful retro-active skill testing should be encouraged (Wilks,
1995) using a variety of skill score measures (Zhang and Casey, 2000).
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Seasonal climate forecasts predominantly focus on mean temperatures or total rainfall; little progress
has been made in forecasting more detailed variability, such as rainfall onset (Ahago, 1992; Briggs and
Wilks, 1996). Notable exceptions include attempts to forecast frequencies and tracks of tropical cyclones.
The main focus has been on North Atlantic hurricanes (Gray et al., 1992, 1994; Hess et al., 1995;
Lehmiller et al., 1997; Mielke and Berry, 2000), but some attention has been given to the northwest Pacific
(Chan et al., 1998), the southwest Indian Ocean (Jury et al., 1999b), and the southwest Pacific (Basher and
Zheng, 1995). Looking beyond forecasts of seasonal conditions, very few efforts have been made to
forecast climate at interannual time scales (White, 2000). In most cases, such long-lead forecasts depend
on the extrapolation of trends and cycles (Dyer and Tyson, 1977; Tyson and Dyer, 1978, 1980; Currie,
1993).

Numerical models. Two types of numerical models are currently used for climate prediction: AGCMs
and coupled ocean—atmosphere general circulation models (CGCMs). Both are based on the full physical
equations of motion. The atmospheric equations in these models can be solved either on model grid points
or spectrally, where the highest spectral wave number resolved determines the effective grid resolution of
the model. These models are not entirely free of statistical assumptions, however. Because of the relatively
coarse resolution used in GCMSs, physical processes occurring on scales smaller than the model’s grid can
resolve are parameterized empirically. Mathematical relationships, based on observed data, describe the
larger-scale aggregate behaviour of fundamentally small-scale processes, such as convection and radiative
transfer.

A ‘two-tiered’ climate prediction approach is used with AGCMs (Hunt, 1997; Bengtsson et al., 1993),
in which the boundary conditions are predicted first, and are then used to force the overlying atmosphere.
The atmosphere is a slave to the prescribed boundary conditions in the two-tiered approach. The
prescribed SST boundary conditions can be obtained from statistical or dynamical predictions, as
described in Subsection 3.1.1, or more simply from persisting the most recent observed SST anomalies on
top of the climatological annual cycle. At short lead times (i.e. predicting one season into the future)
persistence of SST anomalies constitutes a viable estimate of the boundary forcing (Graham et al., 2000)
owing to the typically slow evolution of SSTs. At longer lead times, or during the development of an El
Nifio/La Nifia event, evolving SST anomalies are required.

In CGCMs, both the atmosphere and the boundary conditions are allowed to evolve freely and
influence each other. This free, coupled evolution is one advantage of the CGCM (or one-tiered
approach). A primary drawback of the current generation of CGCMs is that the SST field tends to ‘drift’
away from realistic values as the integration proceeds, thus forcing unrealistic patterns in the atmospheric
anomalies. Drift may occur rapidly, because of an imbalance in initial conditions, or slowly, because of
internal parameterization in one of the component models or from the coupling itself (i.e. flux errors)
(Delecluse et al., 1998). Consequently, CGCMs are most often employed to predict only the SST field
(Subsection 3.1.1). Model output statistics (MOS) corrections are sometimes applied to these predicted
SST fields to bring the amplitude and/or spatial pattern into better agreement with the observed character
of the variability before they are used to force the atmospheric anomalies. Owing to these coupled model
weaknesses, AGCMs are still more commonly used than CGCMs (Hunt, 1997; Mason et al., 1999);
however, CGCMs are beginning to emerge in the arena of operational climate forecasting (Stockdale et
al., 1998b).

Because numerical models are capable of outputting a full range of atmospheric variables (winds,
humidity, cloudiness, heat fluxes etc.), they are useful to climate research for process or diagnostics
studies, as well as prediction. Until recently, most emphasis had been placed on the prediction, analysis,
and diagnosis of anomalous geopotential heights (700 hPa—important level for moisture transport; 500
hPa—important steering level for mid-latitude storms; 200 hPa—important diagnostic of upper level
divergence and thus convective activity in the tropics). Through the early 1990s, researchers were still
inquiring whether or not GCMs were even suitable for seasonal climate prediction (Palmer and Anderson,
1994; Kumar and Hoerling, 1995; Stern and Miyakoda, 1995; Kumar et al., 1996). Clearly, if a model is
incapable of simulating the large-scale atmospheric circulation, it will not be able to simulate
regional-scale variability, such as rainfall. It is now accepted that GCMs can replicate much of the
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large-scale flow, including anomalous patterns in geopotential fields, although the correlation between a
GCM’s geopotential height fields and that from observations is generally higher in times of strong SST
forcing (Kumar and Hoerling, 1998). Today, the typical variables examined for prediction purposes are
those variables that concern society most: near-surface air temperature and precipitation.

The GCM seasonal predictions consist of an ensemble of integrations, i.e. a set of forecasts that verify
at the same time (Sivillo et al., 1997). The ensemble members can differ in their boundary conditions,
initial atmospheric conditions, and/or model physics (see Subsection 3.5 on multi-model ensembles). An
ensemble approach allows for separation between the repeatable portion of the anomalous climate signal
owing to boundary layer forcing and the portion that is owing to internal variability or chaos in the
atmosphere. Ensemble-based predictions lead naturally to probabilistic climate forecasts (as discussed in
Subsection 3.3).

The detail in space and time that many users of forecast information claim is necessary has driven
research into better resolving seasonal predictions for temperature and precipitation. Methods for
increasing spatial and temporal resolution (downscaling) of the global predictions and the research needed
to apply those methods in a prediction setting are discussed in Subsection 3.7.2.

Dynamical versus statistical tools. Recently, researchers have begun to question the degree to which the
added expense and complexity of GCMs compared with statistical models is justified, but detailed
comparisons of statistical and dynamical model skill are still rare. Statistical predictions of the Indian
monsoon rainfall do provide an example of a region in which statistical models continue to out-perform
dynamical model predictions (Hastenrath, 1995). The dynamical predictions suffer from a consistently
large ensemble spread (Webster et al., 1998), which is compatible with the theory that chaotic weather
systems in the Southern Hemisphere may trigger breaks in the Asian monsoon, providing short-term
predictability, but limited seasonal predictability (Rodwell, 1997). Nevertheless, the statistical models have
identified robust atmospheric precursors, and demonstrate useful skill over independent retro-active
testing periods (Parthasarathy et al., 1991, 1993; Prasad and Singh, 1992; Singh et al., 1995; Yang et al.,
1996; Thapliyal, 1997; Venkatesan et al., 1997; Singh and Chattopadhyay, 1998).

Over southern Africa, the dynamical models appear to be slightly better (Landman er al., 2001),
possibly because of instability in important SST—climate associations that are likely to weaken the skill
of linear statistical models for the region (Landman and Mason, 1999b). Over North America, the
multi-year results from a statistical model are found to outperform some AGCMs (Anderson et al., 1999).
However, at certain times, such as when ENSO is changing phase, the statistical response in climate over
North America may not be robust and AGCMs may better simulate the appropriate climate shifts
(Kumar et al., 2001) owing to the full global patterns of anomalous boundary conditions.

One advantage of numerical climate models over statistical models is that an extensive observational
database is not required to generate a prediction. However, in order to make a meaningful forecast,
observational data is crucial for both the assessment of the model’s historical simulations or retrospective
forecasts, and also for the validation of current operational forecasts. Another advantage of numerical
models is that they are not limited by non-stationarity of climate, or by extreme or unusual outcomes that
may not have occurred in the available historical record. However, numerical models are complex, and
can be expensive to run. Most importantly, the regions where numerical models exhibit skill vary with
season and variable, and even different GCMs vary in where and when they show skill. The choice of
whether to use a numerical or statistical model for seasonal prediction ultimately depends on the focus
and resources of the forecast producer(s) and users. There are advantages to using both approaches in
parallel.

3.3. Estimating forecast uncertainty

Owing to the chaotic nature of the atmosphere, it is impossible to know exactly how the atmosphere
will evolve beyond a few days. Thus, medium and long-range weather forecasts and seasonal climate
forecasts are usually presented in probabilistic terms (Murphy, 1990; Tracton and Kalnay, 1993; Déqué
et al., 1994; Palmer and Anderson, 1994; Barnett, 1995; Dix and Hunt, 1995; Harrison, 1995; Anderson,
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1996; Molteni et al., 1996; Sivillo et al., 1997; Murphy, 1998; Stockdale et al., 1998b; Mason et al.,
1999). Forecast uncertainty derives not only from model weaknesses, but also from the inherent
unpredictability of the precise state of the atmosphere. Even with a perfect model, atmospheric
internal variability would still impose finite uncertainty on the most likely climate outcome.
Probabilistic forecasting provides a means of addressing both sources of forecast uncertainty by
indicating the probability distribution of expected possible outcomes (Kumar et al., 2000). Statistical
and dynamical methods have been developed for estimating the probability distribution function
(PDF) for climate outcomes for a coming season.

A climatological PDF of seasonal precipitation, for example, indicates the relative frequency with
which accumulated precipitation of differing amounts were observed for that season over a historical
period. In the case of forecasts of seasonal precipitation, a PDF indicates the probability with which
different accumulated totals are estimated to occur. Simple statistical approaches to estimating the
seasonal PDF for a region are based on conditional probabilities, indicating the relative frequency
with which a particular climate outcome was observed under certain boundary forcing, such as El
Nino or La Nifa conditions (Mason and Goddard, 2001). Shown in Figure 2 are observed PDFs
conditioned on ENSO phase for several regions with documented ENSO teleconnections (Ropelewski
and Halpert, 1987). The gray shaded areas represent the neutral distribution, which is defined as the
distribution of rainfall anomalies that occurred when the tropical Pacific SSTs were close to normal.
The solid and dashed lines indicate the distributions of rainfall anomalies during El Nifio and La
Nifia conditions, respectively. For most of the regions presented in Figure 2, the distributions during
ENSO events are shifted positively or negatively, relative to the neutral distribution. In some cases,
such as central castern Africa (Figure 2(e)), La Nina forcing does not lead to a shift in the PDF
relative to neutral ENSO conditions, but El Niflo conditions greatly enhances the probabilities for
above-average rainfall, even though below-average rainfall occurred during several El Nifio events.
Over India, the rainfall distribution during El Nifio events does not seem that different from the
distribution during normal years; however, the driest years in the record were observed to occur
during El Nifio events. The PDFs shown in Figure 2 illustrate that during years of anomalous
boundary condition forcing, such as El Nifio and La Nifia events, both the mean and the spread of
the distribution may change relative to the neutral distribution. Furthermore, the alterations to the
distributions are not necessarily linearly affected by the boundary forcing (Hoerling et al., 1997). If it
is assumed that these statistics are minimally affected by lower frequency variability, then the observed
conditional probabilities, such as those shown in Figure 2, may be used in predictions of the future.
The main problem with this approach, besides the assumption of climate stationarity, is that each El
Nino and La Niha event is unique in amplitude, spatial structure, and evolution, all of which may
lead to uniqueness in the associated climate response.

More sophisticated statistical methods of defining forecast probabilities have been implemented
(Ward and Folland, 1991; Casey, 1995; Carter and Elsner, 1997; Lehmiller ef al., 1997; Mason, 1998;
Mattes and Mason, 1998; Mutai et al., 1998; Mason and Mimmack, 2001), but generally, maintain the
assumption of climate stationarity. Regression-based forecasting approaches can provide confidence
intervals (Wilks, 1995), but these, while being indications of average model uncertainty, are poorly
related to the inherent unpredictability of a particular forecast period.

Dynamical approaches use an ensemble of GCM predictions to sample the seasonal PDF (Murphy,
1990; Tracton and Kalnay, 1993; Brankovic et al., 1994; Déqué et al., 1994; Palmer and Anderson,
1994; Barnett, 1995; Dix and Hunt, 1995; Harrison, 1995; Anderson, 1996; Molteni et al., 1996;
Brankovic and Palmer, 1997; Sivillo et al., 1997, Murphy, 1998; Stockdale et al., 1998b; Mason et al.,
1999). It is known, however, that GCMs have varying degrees of systematic biases in the pattern,
amplitude, and variance of their climate variability (Anderson, 1996; Smith and Livezey, 1999).
Furthermore, the effect of climate uncertainties introduced by uncertainties in the evolution of the
boundary conditions (Barnett, 1995) are rarely quantified in the predicted PDFs. Recalibration of
forecast probabilities is, therefore, required.
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3.4. Forecast reliability and recalibration

Because there is no guarantee that an ensemble distribution of possible outcomes will provide a reliable
indication of forecast uncertainty, an important aspect of forecast skill is the reliability or calibration of
forecast probabilities (Murphy and Winkler, 1987; Murphy, 1993, 1997; Wilks, 1995). The frequency of
particular observed outcomes should match the relative frequency with which they are predicted.
However, the fact that a forecast is ultimately matched against a single realization of nature introduces
conceptual difficulties in verifying individual probabilistic forecasts. Probably, the only fair assessment of
probabilistic forecasts is to judge whether the forecaster is systematically over- or under-confident over a
period of time by comparing the frequency of an outcome relative to the confidence of the forecast
probabilities (Wilks, 1995, 2000a,b; Murphy, 1997). In a reliable forecast system, the observations should
fall between the 25th percentile and 75th percentile bounds of the forecast PDF 50% of the time, for
example. Reliability and attributes diagrams (Hsu and Murphy, 1986; Wilks, 1995; Hamill, 1997) provide
useful indications of the reliability of forecast probabilities, and can be supported by scores obtained from
a decomposition of the half-Brier score (Brier, 1950; Murphy, 1973; Wilks, 1995). The area under a
relative operating characteristics (ROC) curve is becoming a common indicator of forecast quality (Swets,
1973; Mason, 1982; Harvey et al., 1992). However, it should be emphasized that the ROC area can be
maximized without requiring the forecast probabilities to be perfectly reliable (Mason and Graham, 1999).
Thus, the ROC area does not penalize if the forecast probabilities are systematically over- or
under-confident, and this does not encompass all aspects of forecast quality.

Reliability of forecast probabilities can be achieved by issuing perpetual forecasts of the climatological
probability of an event, and so reliability is a necessary, but not sufficient aspect of forecast skill. Other
commonly used verification measures account for the importance of sharpness by penalizing forecasts that
do not deviate from the climatological probability (Murphy, 1993, 1997; Wilks, 1995). For example, the
Ranked Probability Skill Score (RPSS) (Epstein, 1969; Murphy, 1971; Wilks, 1995) and LEPSPROB
(probabilistic version of the linear error in probability space score) (Ward and Folland, 1991; Potts et al.,
1996) reach their highest values when the climate variability is correctly predicted with high probabilities.

Proper assessment of the reliability of a prediction tool can reveal biases in the tool’s representation of
the forecast probabilities. Methods, such as the binned probability ensemble technique (Anderson, 1996;
Hamill and Collucci, 1998), can indicate errors in the spread of an ensemble, but such methods do not
indicate errors in the central tendency of the predicted PDF that may depend on the magnitude of the
predicted climate anomaly (Mason et al., 2001) (Figure 6). Once model biases are identified, the forecast
can be recalibrated, such that the predicted PDF is more representative of the true uncertainty in the
seasonal climate-state being forecast, and the errors of the forecast tool are minimized.

Forecast probabilities of seasonal climate anomalies, including those from statistical models (Mason
and Mimmack, 2001), appear to be less reliable than for short- and medium-term weather forecasts
(Wilks, 2000b). The short history for which seasonal forecasts are available is an important reason for the
lack of research into their reliability. Most measures of reliability, such as the Murphy (1973)
decomposition of the half-Brier score and reliability and attributes diagrams (Hsu and Murphy, 1986;
Wilks, 1995; Hamill, 1997), require a long history of forecasts to ensure that the conditional relative
frequencies of an event can be estimated with minimal sampling error for each forecast probability bin
(Wilks, 1995). However, methods are being developed to indicate reliability from shorter histories of
forecasts (Mason et al., 2001).

Some forecast recalibration methods can also be used to obtain a more complete description of the
entire PDF (Wilks and Eggleston, 1992; Briggs and Wilks, 1996; Mason and Graham, 1999; Wilks,
2000a). Typically, most seasonal forecasts are expressed in terms of probabilities of positive or negative
anomalies of seasonally averaged conditions, or in terms of tercile probabilitics (Mason et al., 1999), but
statistical methods can be used to estimate additional forecast detail. The lack of a sufficient history of
forecasts precludes a more detailed description of the PDF with any confidence. As most user
requirements are for more detailed information, methods for increasing the information content of
seasonal climate forecasts promise to be important research foci in the future.
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Figure 6. Conditional errors in the simulation of area-averaged September—November 2 m air temperature over eastern Africa
(10°N-10°S, 30°-50°E), 1950—1994. The thick solid line shows the cumulative distribution of observed standardized temperatures,
while the thin solid line indicates the conditional exceedence probabilities (CEPs), showing how the probability that the ECHAM3.6
ensemble-mean simulation of air temperature exceeded the observed temperature varies as a function of the ensemble-mean
temperature. In a model that simulates the central tendency of the seasonal PDF perfectly, the CEP should be independent of the
ensemble-mean temperature (dashed horizontal line). In a model with no skill, the CEP will be equal to the climatological
probability (dotted line). The CEPs can be defined using generalized linear regression (Mason et al., 2001)

3.5. Combining predictions

That the combination of predictions from different models can result in improvements in forecast skill
has been long recognized in the weather forecasting field (Thompson, 1976; Clemen and Murphy, 1986;
Clemen and Winkler, 1987; Fraedrich and Leslie, 1987). The combination of forecasts has also been a
topic of lively debate in economics (Clemen, 1989; Granger, 1989; Winkler, 1989). Objective forecast
combination schemes have been applied to seasonal climate forecasts only recently (Fraedrich and Smith,
1989; Casey, 1995; Krishnamurti et al., 1999; Doblas-Reyes et al., 2000; Palmer et al., 2000; Pavan and
Doblas-Reyes, 2000). A very straightforward approach to combining predictions from different tools that
retains characteristics of the predicted PDF, and retains skill, is through pooling ensembles from different
models. The skill of the pooled super-ensemble is not measurably higher or lower than that of the best
tool included (Graham et al., 2000) (Figure 7). The advantage gained by creating a super-ensemble in this
way is that higher skill can be obtained for larger regions because the best tool will vary with season and
region. However, equal weighting of forecasts from models with both good and poor skill leads to a loss
of sharpness, or refinement in forecast probabilities, often reducing the information from the predicted
PDFs (Zhang and Casey, 2000). Reductions in regional forecast error have been demonstrated by
combining weighted model predictions on the basis of previous model performance. The weighted
combinations typically outperform simple averages of model predictions as greater weight is given to
models with better historical performance. This improved performance results more from the appropriate
combination of different models rather than the increase in number of ensemble members (Pavan and
Doblas-Reyes, 2000). However, increasing the number of ensemble members through forecast
combination usually leads to a decrease in mean squared-errors (Doblas-Reyes et al., 2000). The impacts
of increasing ensemble sizes, within and among different prediction tools, on the reliability of forecast
probabilities will need to be considered carefully. More comprehensive validation is required to ensure
that objectively combined predictions yield improvements in forecast quality and value (Palmer et al.,
2000). Forecast combination constitutes an important direction for future research (Epstein, 1988), but
needs to draw on experience from other applications.
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Figure 7. ROC scores (area under ROCs curve) for below-normal 850 hPa temperature. ROC scores for above-normal temperature
are identical. Results are from all four participating PROVOST models (grey bars) and the multiple-model configurations: JT2, JT3,
JT4 (solid bars). UM = UKMO Unified Model; T63 = ECMWF T63 model; AP1 = Météo France ARPEGE T42 L31 model;
AP2 =the ARPEGE T63 L31 (run at Electricite de France (EDF)—DIJF season only); JT2=UM + T63 (18 members);
JT3=UM 4+ T63 + APl (27 members); JT4=UM + T63 + AP1 + AP2 (36 members, DJF only; from Graham et al., 2000,
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Subjective forecast combination has become an important area of development with the advent of
the regional forecast fora (e.g. Drought Monitoring Centre, 1998; Buizer er al., 2000), and is used in
the construction of the International Research Institute (IRI) ‘net assessments’ (Mason et al., 1999),
and the NCEP seasonal forecasts (Van den Dool et al, 1998). The subjective process of blending
forecasts for adjacent areas and of combining different forecasts for the same regions is known as
‘consensus forecasting’. Although the subjective process could, in theory, be improved upon by
implementing some objective combination techniques, the consensus forecasting approach has some
practical value, in that it permits a simple combination of all available forecasts when full or
compatible verification data are unavailable. The risk is that forecasts with minimal or no skill can
affect the consensus adversely, but the approach is supportable on the basis that a simple averaging of
forecasts is often an improvement on any one forecast product.

3.6. Examples from 1997—-1998

The exceptional El Nifio event of 1997-1998 provided an excellent test bed for climate prediction
tools, and many successes were advertised (Shukla, 1998). The evolution of tropical Pacific SST
anomalies associated with the 1997-1998 El Nifio event were well forecast by both numerical and
statistical means (Barnston e al., 1999a), but the timing of the initial onset was not well predicted by
any of the tools (Landsea and Knaff, 2000).

At its peak, the 1997-1998 warm event exhibited a magnitude and spatial structure very similar to
the 1982-1983 El Nifio event (Figure 8); these two El Niflos are the strongest warm episodes
experienced in the 20th century. Overall, the SSTs throughout the tropics were warmer during
1997-1998 than during 1982-1983. The northern tropical Atlantic warmed in response to El Nifio in
the tropical Pacific, as often happens (Enfield and Mayer, 1997), and the southern tropical Atlantic,
which has little relation to the variability in the Pacific, was also over 1°C warmer than usual. By the
end of 1997, the response of the atmospheric circulation over the Indian Ocean region was so strong
that the local air—sea system actually developed La Nifa-like conditions through coupled instability
(Chambers et al., 1999; Webster et al., 1999). On the ocean side, this feature appeared as a cold
tongue in the eastern Indian Ocean accompanied by warm anomalies in the central/western Indian
Ocean. On the atmosphere side, unusually strong and persistent easterly wind anomalies were observed
along the equatorial Indian Ocean, enhancing the anomalous convergence over eastern Africa that
typically occurs when the central/western Indian Ocean warms (Goddard and Graham, 1999) and
leading to record rainfall over Kenya. The 1997-1998 evolution in the Indian Ocean has led to
considerable debate over whether coupled instability is a primary or anomalous mechanism for the
warming of the central and western tropical Indian Ocean associated with El Nifio events (Saji et al.,
1999; Reason et al., 2000). The magnitude of the warming in the Indian Ocean was atypical and was
not captured by statistical predictions.

Although the strong SST forcing of El Nifio resulted in climate anomalies in many areas that could
have been predicted using simple linear statistics, a few regions, with robust climate associations to El
Nifo, did not experience the expected anomalies during the 1997-1998 event. Such examples invite
investigation into whether differences between the deterministic prediction and the observed outcome
are owing to inherent uncertainty represented in the seasonal PDF, or are owing to errors or
omissions in the modelled climate. Queensland, Australia is a prime example of such climate surprises
observed during the 1997-1998 El Nifo event (Goddard et al., 1998). During El Nifo, this region
typically experiences lower seasonal totals over their rainy season (October—February). Based on the
conditional probabilities of observed rainfall during the 20 warmest October, November and December
(OND) values of the NINO3 index from 1890-1989, the OND season has seen rainfall in the upper
tercile ( > 67th percentile) of the climatological PDF during only one El Nifio case (Figure 2(d)). The
observations for OND 1997 (Figure 9) clearly indicate well-above average rainfall over parts of
Queensland, although the apparent extent of the coverage is highly dependant on the resolution of the
observations. Statistical deterministic rainfall predictions for this area failed.
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(a) December 1982

Figure 8. SST anomalies from NOAA'’s Climate Prediction Center (Reynolds and Smith, 1994) at the peak of the two strongest El

Nifio events of the 20th century. Units are degrees celsius. Light shading (values less than — 0.5°C) and dashed contours (1°C

interval) indicate negative anomalies, and darker shading (values greater than 0.5°C) and solid contours (1°C interval) indicate
positive anomalies

Dynamical deterministic predictions for Queensland did not perform any better. The question pondered
is whether dynamical probabilistic predictions were accurate as it is impossible to assess probabilistic
forecasts for an individual season. Several of the models used by the IRI have statistically significant
ensemble-averaged skill in simulating rainfall variability in this region for the OND season, but these
models were not suggesting above-normal rainfall for OND 1997.

These AGCMs were unanimously indicating high probabilities of below-normal rainfall over
Queensland under a selection of SST scenarios. Even when forced with observed SSTs for the period, high
probabilities of widespread below-normal rainfall are simulated. In the previous one occasion on record
that above-normal rainfall had been experienced during an El Nifio event in the region, similar SST
anomalies had occurred off the eastern coast of Australia, but again, the models continued to simulate
below-normal rainfall. Possibly, with improved models, it may be possible to generate more accurate
ensemble forecasts under such conditions, but the possibility that the observed rainfall was simply an
unlikely event cannot be ruled out.

Copyright © 2001 Royal Meteorological Society Int. J. Climatol. 21: 1111-1152 (2001)



SEASONAL-TO-INTERANNUAL CLIMATE PREDICTION 1135

3.7. Future directions

3.7.1. Improved GCM physics and parameterizations. Current predictions are limited by very obvious
systematic errors in atmosphere, ocean and land models, and especially, coupled models. These errors
result in incorrect model climatologies and ‘climate drift’, which compromise forecasts at even modest
lead-times of a few months. Diagnosing and rectifying errors in such complex models is extremely
difficult, as many of the processes interact strongly, and can mask the true source of error. Still, it is
possible to identify a number of important common problems with current models. For the atmosphere,
parameterizations of convective and marine stratus clouds are extremely important, and are in need of
improvement. Likewise, improvements are necessary for boundary layer parameterizations, which control
fluxes that govern coupling with the land surface and oceans. For the oceans, a primary concern is
correctly parameterizing mixing processes in the surface layers, and more generally above the main
thermocline. Arriving at more general mixing schemes that can cope with the wide range of conditions
encountered in the equatorial and higher latitude oceans is a key problem of relevance to seasonal
prediction.

3.7.2. Data assimilation. In every dynamical forecast system, it is necessary to initialize the ocean and
atmosphere components. The methods used for initialization may be at least as important a limitation on
current forecasts as model flaws (Chen et al., 1995, 1998; Behringer et al., 1998). The primary problem lies
in the ocean because the ocean contains the ‘memory’ for time scales longer than a few weeks, and the
observations are much more limited for the ocean in most regions. The schemes that are currently used
at operational centres involve optimum interpolation or three-dimensional variational methods (Derber
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and Rosati, 1989; Smith ez al., 1991; Ji et al., 1995), which are quite simple methods, typical of those used
for atmospheric assimilation more than a decade ago. More sophisticated methods have been introduced,
involving Kalman filter and adjoint approaches (e.g. Cane et al., 1996; Bennet et al., 1998), but are still
experimental. At present, only thermal data is assimilated in ocean models used for prediction.
Experiments have been done with altimeter data (Ji ef al., 2000; Segschneider et al., 2000), and efforts are
underway to include such data in prediction systems in the near future. Much more work is needed, not
only in developing methodologies, but also in applying additional data sources that are presently
available, such as satellite scatterometry. A major advancement now being proposed is in situ monitoring
of upper-ocean temperature and salinity via programmable buoys. This or other enhanced real-time
monitoring of the upper ocean is of fundamental importance in improving predictions, especially outside
the tropical Pacific.

3.7.3. Increased spatial and temporal resolution. As the use of climate predictions increases, the demand
for more detailed information also increases. Very localized predictions, often made using statistical tools,
can be tailored to any spatial and temporal resolution desired. Dynamical predictions on regional and
global scales, however, typically provide seasonally averaged climate at spatial scales on the order of
hundreds of kilometres. In fact, the GCMs run operationally by most centres use an effective grid
resolution of approximately 2 x 2° (approximately 200 km grid spacing). A few approaches to gaining
spatial and temporal resolution exist. One may increase the resolution of the global model, or if a specific
region is of concern, one may choose a method of statistical or dynamical downscaling. Spatial
downscaling may also have the added benefit of improving temporal information, such as the daily
statistics of the weather within the seasonal climate. Rainfall in GCMs is generally considered to represent
an average quantity over the grid box (Osborn and Hulme, 1998). As a result, GCMs generally
overestimate the daily rainfall frequency and underestimate the rainfall variance relative to point
observations.

Denser grid spacing in dynamical models obviously improves the resolution of the terrain, which can
influence the large scale atmospheric circulation and also local orographically forced precipitation. In
addition, the parameterized model physics, such as cloudiness, precipitation, and surface energy fluxes,
may exhibit strong sensitivity to increasing horizontal resolution (Giorgi and Marinucci, 1996). For
example, Figure 10 shows the climatology of precipitation over the United States for observations at 0.5°
resolution (New et al., 1999) compared with that from an AGCM run at T42 spectral truncation
(approximately 2.8 degrees resolution) and at T106 (approximately 1.2 degrees resolution). Not only are
orographically related features improved such as the separation in rainfall maxima over the Sierra and
northern Rocky Mountains, but also features related to the strength and placement of the large scale flow
are improved, such as the local rainfall maximum in the southeast. Certain gains of higher resolution
global models are obvious, but they come at a price: the amount of computer time needed to run a model
at high resolution, and the amount of storage space needed to archive the results are enormous.
Furthermore, increasing the resolution of an AGCM 1is not trivial. Because the sub-grid scale
parameterizations, such as convection, may be not be optimized for the higher resolution version, the
results may actually be worse in some places (Boyle, 1993).

Alternatively, if increased resolution is required only over a specific area, one may nest a higher
resolution limited area regional model within the global GCM. The regional model is driven by the
time-dependant large-scale fields that are produced by the GCM. Inside the regional model domain, the
terrain is better resolved and the physical equations are integrated on the higher resolution grid. The
GCM drives the regional model by flow through the lateral boundaries (Giorgi, 1990) or by specifying the
large scale flow structure throughout the domain which is then refined by the regional model (Juang and
Kanamitsu, 1994). The most common problems with nested models are boundary effects resulting from
the abrupt change in spatial scale and parameterizations that are not tuned for the region or high spatial
resolution of the limited area model. Of course, propagation of errors is also a concern, as the regional
model will add detail, and possibly even amplitude to errors in the large-scale circulation coming from the
GCM. Indeed, almost all aspects of regional modelling including domain selection, physical
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Figure 10. Observed precipitation from University of East Anglia (New et al., 1999) at 0.5 degrees resolution. T42, AGCM

simulated precipitation from model run at approximately 2.8 degrees resolution. T106, AGCM simulated precipitation from model

run at approximately 1.1 degrees resolution. Units are mm/day. Shading contours at 0.25, 0.5, then every 1.0 over 1.0 mm/day,
superimposed are contour lines at 2.0 intervals over starting at 2.0 mm/day

parameterizations, and resolution must be carefully investigated on a case by case basis before the merits
of regional modelling can be determined for seasonal climate variability (Giorgi and Mearns, 1999).
Assessment of gains from this approach is judged over multi-year, preferably ensemble, integrations of the
regional model forced by the global model. When this approach succeeds, great improvements can be
achieved not only in the details of the surface climate, but in spatial coverage of simulation skill and its
level of statistical significance (Sun and Graham, 2001).
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Using a regional model for prediction has yet another level of issues to consider. One must still have
a multi-year integration so that anomalous behaviour can be properly recognized relative to the model’s
time-averaged behaviour. One must also consider how to treat the problem probabilistically. If the
predictions are meant to refine potential climate scenarios, how should the ensemble member(s) from the
global model be chosen? Should the treatment of the highly detailed prediction ensemble differ from that
of the global prediction ensemble, because the downscaling process may produce locally stronger signals
leading to locally larger uncertainty over the ensemble. The main scientific argument against dynamical
downscaling using nested models is the physical inconsistencies introduced by the one-way flow of
information from the global model to the regional model. There also exist global GCMs that have been
designed with stretched or telescoping grids, which gradually increase resolution over the area of interest,
avoiding the boundary problems and the inconsistent information flow problems possible in nesting
experiments (Fox-Rabinovitz et al., 1997). The other issues of assessment and prediction are not avoided.
The main practical argument against dynamical downscaling is the expense of computer time needed to
run the historical simulations and predictions and the amount of storage space needed to archive the
output. Again, the existence of a good observational network is crucial for validating the data from high
resolution models. For validation of higher order statistics of seasonal climate especially, such as
characteristics of the daily rainfall, the observations must be available at a scale comparable to that of the
model.

Several less complex and less costly approaches exist that currently may give comparable or even better
results than dynamical downscaling for some cases. The simplest is statistical downscaling, in which local
patterns of climate and the associated weather statistics are conditioned on some larger mode of the
climate, such as ENSO, or more generally recent observations of global SSTs and/or atmospheric
circulation. The larger scale SST or atmosphere patterns are often filtered to a lower dimensional space
using EOFs, for example, to focus on the dominant patterns of the variability. The main caveat in using
statistical downscaling, as with any purely empirical method, is that the past climate on which the tool is
based may not be representative of future variability.

A compromise exists between the empirical approach and the dynamical approach. Hybrid downscaling
follows a similar methodology to statistical downscaling, but the downscaled climate is conditioned on the
SST or atmospheric circulation prediction from a dynamical model for the same season, as opposed to the
previous season’s observations. A review comparing various statistical downscaling methods applied to
GCM output can be found in Wilby and Wigley (1997). For some applications, and in some regions,
hybrid downscaling may show marked improvement over purely statistical downscaling, and may be
comparable with dynamical methods (Gershunov et al., 2000), for temporal as well as spatial downscaling.
A dense network of observations is assumed in the statistical and hybrid approaches as these tools could
not be constructed without them.

To date, most of the successes of downscaling, through whatever method, have focused on improved
spatial patterns and climatologies. It is not currently clear what additional predictability exists at time
scales higher than the seasonal average. Forecasts of quantities, such as rainy season onset, relative
frequencies of extreme rainfall events, dry spells, cold outbreaks and heat waves, or even monthly rather
than seasonal averages would be of great value to society. Forecasts for such quantities will be more
impacted by the unpredictable noise component of atmospheric variability, and thus, significant levels of
predictability will likely exist for very few regions and under particular seasonal or interannual
circumstances. A few empirical studies for the western United States suggest some potential predictability
of variability of weather characteristics with ENSO events (Cayan et al., 1999; Robertson and Ghil, 1999).
Empirical methods can be employed to determine how certain weather characteristics may change
conditioned on the seasonal climate forecast. However, for a region where different weather
characteristics (e.g. changes in rainfall frequency versus changes in rainfall intensity) can lead to the same
seasonal outcome, empirical methods conditioned only on the seasonal forecast and not considering other
potential environmental predictors will combine rather than distinguish these possibilities. Further,
research on weather within the climate is needed to quantify the extent to which information beyond the
seasonal aggregate is potentially predictable through dynamical or hybrid methods.
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4. APPLICATION OF CLIMATE PREDICTIONS

4.1. Rationale, impediments, approaches

The primary motivation for public support of climate prediction science is the desire to reduce the
enormous socio-economic costs of climate fluctuations, especially of the major floods and droughts to
which less developed countries are so vulnerable (Glantz ef al., 1991; NOAA, 1994; Glantz, 1996; Moura
and Sarachik, 1997; Stern and Easterling, 1999; WMO, 1999; Agrawala et al., 2001). However, the
presence of a skilful forecast product does not guarantee that benefits will accrue; these can only be
realized through the parallel development of application science and the ongoing institutionalization of
the lessons learned. This short section rounds out the paper’s discussion of climate prediction science with
a brief introduction for climate scientists to the issues involved in the application of climate predictions.

An application of climate prediction information may be defined as a conscious effort to use that
information in decision making, in the expectation of benefits such as reduced risk, reduced costs, or
increased production or profits. Decisions can range from simple choices about the priorities for a
farmer’s workday to million-dollar decisions about seasonal operating strategy for a hydro-electricity
reservoir. Intrinsic to the decision process is a system that is sensitive to climate, a model of that system
in the mind or computer of the user, and a range of decision options. The wide public interest in El Nino
implies that countless day to day decisions are influenced by seasonal climate outlooks, but beyond this,
progress in the systematic application of climate forecasts has been rather slow, being mainly limited to
specific research-based projects in areas having very strong ENSO signals (Hammer et al., 2000).

Impediments to the application of climate forecasts arise from several causes. First, the climate exhibits
only limited predictability and skilful forecasts are available only for some seasons and regions (as
discussed in Subsection 3.2)—unlike the case of weather forecasts, where useable forecasts are available
for all times of the year and all regions of the world. Climate forecasters do not always make the
predictability limitations transparent, or provide adequate useable guidance on the accuracy or reliability
of the forecasts. Second, the uncertainty and probabilistic nature of climate forecast information is often
difficult for the user to understand and to incorporate into their decision processes (Nicholls, 1999).
Probabilistic forecasts are too often wrongly communicated or interpreted as deterministic forecasts, and
the simplistic use of such deterministic forecasts may neglect the chance of costly failures. For other users,
the risk of such failures may negate the potential long-run value of the probabilistic forecasts. Third,
current forecast products generally lack the spatial, temporal and element specificity that users seek for
their particular decision making needs—forecast are generally made for 3-month seasons, large regions
over 1000 km in width, and mean temperature and rainfall totals only. Fourth, users may not have
sufficient understanding of their system or acceptable options for using a skilful forecast. Fifth, the huge
diversity of user circumstances, and the lack of familiarity of the producer and the user with the basic
knowledge and language of each other’s world compound the above difficulties. Because there is a cost
to learning and communication, the investment by the user may exceed the potential benefits to them of
the forecast information.

In addition, the application of climate prediction information necessarily spans a range of disciplines in
the climatic, biophysical/ecological and socio-economic fields, and will usually need to be well grounded
in knowledge of the situation of a particular region, country, sector and user group. The goal of
developing applications thus involves considerable complexity. At the most quantitative, technically
sophisticated extreme, there are simulation models or decision support systems that can be driven by
observed or model simulated historical data to explore retrospectively and test complex decision options.
Farm system models that incorporate details of soils, crops and management options are a particular
focus for such applications research (Messina et al., 1999; Hammer, 2000; Jones et al., 2000). In public
health, models of disease vectors are being studied (Bouma et al., 1997; Linthicum et al., 1999), while in
water resources, reservoir management is a focus (Georgakakos et al., 1997, 1998) A major issue in this
research is how to downscale the spatially and temporally coarse output of global climate prediction
models to meet the needs of crop models, which focus on specific fields or districts and are driven by daily
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weather data (Hansen, 2000). Generally, decision support systems studies have concentrated on the
biophysical and economic parts of the spectrum, with little work on social systems modelling.

The application of climate forecasts has been explored largely by top-down approaches, by seeking uses
for existing forecast information, and less commonly by a bottom-up approach, by examining a decision
situation to identify niches and needs for climate forecasts (Stern and Easterling, 1999). It is also possible
to take an ‘end-to-end’ approach (NOAA, 1994), which emphasizes that the effective application of
climate predictions requires consideration of the full span of factors and their interactions, including
social behaviour, institutional constraints, sector system models (e.g. crop-climate models), the design and
communication of forecast products, the choice of prediction models, and the adequacy of observational
data (Figure 11). The end-to-end approach applies to both the research stage, and to the operational
stage. Both cases require transdisciplinary collaboration and close interaction between users, producers,
their intermediaries, and the applications scientists.

4.2. The user and societal perspective

If societal benefit is the goal of climate prediction, then it is clear that a strong orientation towards
users, the decision-making process, and the social setting is required in applications research. There is a
wealth of related information in the fields of development studies, global change, technology transfer, and
weather forecast application upon which to draw. Furthermore, experience with users forms a critical
basis for guiding the priorities for prediction research, as well as justifying the funding for such research.
As an example, user demand for predictions of extreme seasonal rainfall has led to the development of an
85%-ile seasonal rainfall forecast at the IRT (Mason et al., 1999).

Whether or not a formal quantified decision model exists, there will always be some qualitative mental
model in the mind of the user, based on custom, direct experience and hearsay. These may incorporate
traditional or evolving coping strategies, for example, water harvesting and storage practices, and
diversification of crop types. Such mental models filter the incoming information and shape the
interpretation, and hence, degree of effectiveness of forecast use, depending on the source, form, mode
and language of the communication. Typically, people want a forecast to be set in a context of their past
and recent experience, for example, by comparing with the previous year’s situation, or with a particular
extreme event. Such mental analogues are valuable because they contain a vast richness of information on
the behaviour of the whole system with which the user is concerned (e.g. for a farmer this might include
patterns of weeds, pests, animal health, harvesting problems, produce quality and prices, damage to farm
roads, debt status, credit availability, community confidence, government policy shift etc.) However, from
the climate perspective, individual analogues can be misleading, as the climate outcome in any particular
year is only one realization (possibly even an unlikely one) from a distribution of possibilities.

Usually, a user will face a cascade of multiple decision possibilities, some being of the ‘no regret’ type,
such as advancing the maintenance of machinery, where the cost of the marginal action and the potential
for losses are small, and some involving very high costs, or the potential for intolerable losses, such as
bankruptcy or the total loss of the family’s animal herd. In principle, a decision situation can be described
by utility or cost—loss functions for the distribution of possible decisions and outcomes. In the simple
binary case (event occurring or not, event forecast or not), a 2 x 2 matrix can be used to represent net

Figure 11. Schematic representation of the end-to-end concept, which indicates that desired outcomes require attention to all
processes throughout the chain—physical, biological, socio-economic. An application involves a complex web of interactions,
transformations and multiple feedbacks along the whole chain

Copyright © 2001 Royal Meteorological Society Int. J. Climatol. 21: 1111-1152 (2001)



SEASONAL-TO-INTERANNUAL CLIMATE PREDICTION 1141

economic consequences of a single decision, as well as its component costs and gains (see Katz and Murphy,
1997). This approach can be useful to help users conceptualize and assess the potential consequences of
decisions, such as the trade-offs between long-term average gains versus short-term risks, though ordinarily,
the user will have more that just two options to consider and accurate cost/loss data will not be available.
It should also be recognized that users face a multiplicity of decisions and that, relative to the effects of
prices, social or political expectation, imposed regulations etc, a forecast of the season’s climate may form
only a minor component of most decisions. For these and other reasons, even a technically skilful forecast
is not necessarily a useful forecast for the decision maker.

The design and communication of prediction information to users is an active subject of research.
Typically, the forecast information is communicated to the end-user or decision-makers by an intermediary,
such as a journalist, agricultural extension worker, government officer, or climate consultant, and end-users
are likely to have more than just one source of information, including web sites, advisors, the media,
acquaintances and community leaders. There are often several steps in the information wholesaling process,
in which each intermediary interprets and transforms the information to suit the intended recipient, possibly
with the aid of a system model. Dissemination by rural radio and the use of local languages is being explored
in parts of Africa (J. Phillips, N. Ward, personal communication). The media is a valuable channel for timely
broadcast of basic information, but it may distort the message to make it simpler or more sensational or
owing to lack of expertise (Nicholls and Kestin, 1998) Institutions may be externally constrained, structurally
unable or unwilling to hear, learn or apply new climate prediction methods (Rayner ez al., 2000).

The justification of an application ultimately lies in the benefits it generates. Public expenditures on climate
prediction research and operational forecasting are rightly argued for on the grounds of the potential benefits
but, as yet, there is relatively little detailed understanding and quantification of these benefits and how they
might be distributed in the community. In less developed tropical countries that are particularly vulnerable
to climatic stresses, the primary benefits being sought are those of increased resilience of livelihoods and
of land use—such things are difficult to measure even over long periods. Some studies in developed countries
have reported good benefit/cost ratios at a macroeconomic level though many assumptions are involved
(Katz and Murphy, 1997; Solow et al., 1998). There will be winners and losers. For example, any increased
agricultural production resulting from widespread use of climate prediction-based farming strategies will
act to drive down prices bringing benefits to consumers but not necessarily to farmers (Mjelde ez al., 1998;
Mjelde et al., 2000). A study of the use of climate information by the main actors in Peru’s fisheries (artisanal
fishers, factory fishing companies, company labor, and fisheries conservators/regulators) showed that the
design of forecast products and dissemination strategy plays an important role in determining the actors’
options for action and the participation by actors and others in the resulting benefits and detriments (Pfaff
et al., 1999; Broad et al., 2001).

4.3. Demonstration and implementation

Finally, in order to achieve lasting benefits of climate prediction information, it is necessary for
applications researchers to go beyond basic research, to undertake progressively pilot and demonstration
projects and associated capacity building for the people and institutions expected to carry out the
applications in individual countries (NOAA, 1999; Stern and Easterling, 1999). It is also necessary for the
climate operations community to provide an operational infrastructure that fosters the generation and
exchange of appropriate climate data and forecast products between countries, together with initiatives to
enhance the user—producer interface. These implementation activities are an integral part of the end-to-end
concept.
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