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Abstract. Western North Pacific tropical cyclone (TC) model tracks are

analyzed in two large multi-model ensembles, spanning a large variety of mod-

els and multiple future climate scenarios. Two methodologies are used to syn-

thesize the properties of TC tracks in this large dataset: cluster analysis and

mass moments ellipses. First, the models’ TC tracks are compared to observed
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TC tracks’ characteristics and a subset of the models is chosen for analysis,

based on the tracks’ similarity to observations and sample size. Potential changes

in track types in a warming climate are identified by comparing the kernel

smoothed probability distributions of various track variables in historical and

future scenarios using a Kolmogorov-Smirnov significance test. Two track

changes are identified. The first is a statistically significant increase in the

North-South expansion, which can also be viewed as a poleward shift, as TC

tracks are prevented from expanding equatorward due to the weak Corio-

lis force near the Equator. The second change is an eastward shift in the storm

tracks that occur near the central Pacific in one of the multi-model ensem-

bles, indicating a possible increase in the occurrence of storms near Hawaii

in a warming climate. The dependence of the results on which model and

future scenario are considered emphasizes the necessity of including multi-

ple models and scenarios when considering future changes in TC character-

istics.

Keypoints:

• Western North Pacific tropical cyclone tracks’ characteristics in two multi-

model datasets are compared with observed tracks.

• The existence of statistically significant and robust changes in tracks un-

der a warming climate is analyzed.

• Two main track changes are identified: (i) a statistically significant north-

ward shift in the most common track type; (ii) an eastward shift in the clus-
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ter with tracks that can potentially a↵ect Hawaii in one of the multi-model

datasets.
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1. Introduction

There is a large body of research aiming to understand how tropical cyclones’ (TCs)

characteristics are influenced by climate change [Knutson et al., 2010; Walsh et al., 2016].

Most studies have focused on changes in global TC frequency and intensity in a warming

climate [Camargo, 2013; Murakami et al., 2014; Knutson et al., 2015]. As computational

resources have increased and global climate models’ ability to simulate TCs has improved

[Camargo and Wing , 2016], analyses of other aspects of TC characteristics, including

regional studies, have gained momentum in the modeling community [Villarini and Vecchi ,

2012; Scoccimarro et al., 2014; Dwyer et al., 2015].

A TC’s landfall location depends on its track. There is large element of inherent ran-

domness (from a climate perspective) in each TC’s track, as it is a function of the steering

winds, which can be highly variable on a range of time scales. Some tracks can diverge

from the historical record, as in the case of Hurricane Sandy [Hall and Sobel , 2013]. Nev-

ertheless, climatologically there are typical track types that occur in each TC basin. The

possibility that there may be changes in the properties of these typical TC tracks due to

climate change is of great interest, due to the possibility of changes in landfall occurrence.

However, in order for these projections of track changes to be credible, they need to be

statistically significant and robust across a large number of models and climate change

scenarios.

We focus here on TC tracks over the western North Pacific (WNP) basin. The WNP,

climatologically, is the region with the largest number of TCs per year. Typhoons in the

WNP can have large impacts in many Asian countries including the Philippines, China,
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Taiwan, Japan, Vietnam and South Korea. A tragic example of the large impacts of a

landfalling TC in this region was super-typhoon Haiyan, which devastated the Philippines

in 2013 [Lander et al., 2014; Lin et al., 2014].

Over the last several decades, there has been a poleward shift in the average latitude of

TC lifetime maximum intensities globally [Kossin et al., 2014]. This shift is very robust

in the WNP, and is projected to continue through the end of the century [Kossin et al.,

2016]. This poleward shift is expected to cause systematic shifts in the areas at greatest

TC risk in the region. On the other hand, Lin and Chan [2015] noticed a decrease in

the typhoon destructive potential in the Asia Pacific region and linked it to changes in

the Pacific subtropical high, which is strongly related to TC tracks. Mei and Xie [2016]

noticed an increase in the observed intensities of the TCs making landfall in Asia since

late 1970s. More recently, Daloz and Camargo [2017] found a significant poleward shift

in the mean genesis position over the Pacific basins, associated with a poleward shift in

the genesis indices in the region. While Liang et al. [2017] showed a connected poleward

shift in typhoon-induced rainfall over Taiwan.

Currently, there is no clear consensus on the projections of track changes in this region.

While in some models there is a poleward (northward in the WNP) shift [Wu et al.,

2014], in others there is an eastward shift towards the Central North Pacific [Li et al.,

2010; Murakami et al., 2011; Yokoi et al., 2013; Mori et al., 2013], a combination of both

[Zhao and Held , 2012; Murakami et al., 2012; Colbert et al., 2015; Roberts et al., 2015], or

even a southeastward shift [Manganello et al., 2014]. Given these results, it is important

to consider a uniform statistical approach across multi-model datasets to this problem, so
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that we can investigate the robustness and statistical significance of track changes in the

WNP under global warming.

Our analysis here considers the WNP tracks in current and future climates in two multi-

model datasets. The first dataset is the U.S. CLIVAR Hurricane Working Group (HWG),

with contributions from multiple modeling groups. Each modeling group performed high-

resolution (0.25� to 1.25�) global climate model simulations using the same forcings for the

current climate, as well as for highly idealized future climate change scenarios. Various

aspects of the HWG simulations have been analyzed in the literature, and a summary

of these results appeared in Walsh et al. [2015]. Of particular interest are the results of

Daloz et al. [2015], who analyzed the TC tracks over the North Atlantic basin, using a

similar methodology as that applied here to the WNP.

The second multi-model dataset considered here is that from the Fifth Coupled Model

Intercomparison Project (CMIP5) [Taylor et al., 2012]. Fourteen models were analyzed in

the historical and one warming scenario, namely the representative concentration pathway

8.5 (RCP8.5). Most CMIP5 global climate models have low horizontal resolution (1.2�

to 3.0�), and the TC activity climatologies in these models have well known biases, such

as TC intensities lower than observations [Camargo, 2013]. Despite these biases, it is

possible to obtain useful information from the TC projections from the CMIP5 models as

shown in Camargo [2013]; Tory et al. [2013]; Tang and Camargo [2014] and Kossin et al.

[2016].

In addition to the TC tracks obtained by detecting tropical cyclone-like features1 directly

in the model output, we also include in our analysis TC synthetic tracks obtained by a

statistical-dynamical downscaling methodology [Emanuel et al., 2008] using the large-
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scale environmental fields simulated by the models as inputs. Synthetic tracks have been

generated using this method for a subset of the models from the HWG [Daloz et al., 2015]

and CMIP5 [Emanuel , 2013; Dwyer et al., 2015] datasets.

Although there are many papers analyzing possible track changes in the WNP due to

climate change, this is the first time that a comprehensive analysis is performed using the

same methodology in two large multi-model datasets, as well as synthetic tracks generated

from these datasets by statistical-dynamical downscaling.

Our analysis of the TC tracks will be based on two statistical methods. The first

is a cluster analysis, which has been extensively applied to observed [Camargo et al.,

2007a, b, 2008; Kossin et al., 2010] and model tracks [Camargo, 2013; Daloz et al., 2015].

The second is a method previously applied to North Atlantic TC tracks [Nakamura et al.,

2009] which synthesizes multiple track characteristics into a few parameters.

By using these two methodologies across two large multi-model datasets, we determine

which type of track changes occur most robustly under climate change. Before we examine

the climate change question, though, we will use the same methods to determine the

capabilities of these models to reproduce the climatological characteristics of observed

tracks in the WNP.

The observed and model data are described in section 2. Section 3 covers our methods,

sections 4 and 5 present the results for the historical, and future scenarios respectively,

and we summarize those results in section 6.

2. Data and Model Simulations

We analyzed WNP TC tracks from two multi-model datasets. The first is that from

the U.S. CLIVAR HWG intercomparison. The HWG multi-model dataset consists of a
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set of highly idealized experiments using a suite of high-resolution global and regional

climate models with the same forcings, most importantly prescribed CO
2

and sea surface

temperatures (SSTs) [Walsh et al., 2015], inspired by Yoshimura and Sugi [2005] and

Held and Zhao [2011]. These idealized experiments were chosen in order to gain a better

understanding of the response of TC activity to di↵erent forcings. Here we consider

four di↵erent experiments: (i) a control simulation forced with climatological seasonally

varying SSTs and sea ice concentrations (1985-2001) and atmospheric gas concentrations

from 1992 (called “ctl”); three idealized future simulations, consisting of (ii) a uniform

addition of 2K to the control experiment SSTs (plus 2K or “p2K”); (iii) a doubling of the

CO
2

concentration (CO2) with the same SSTs; (iv) 2K added to the SSTs and a doubling

of CO
2

(p2KCO2). A summary of these simulations is given in Table 1. Many aspects of

these simulations have already been examined [Horn et al., 2014; Patricola et al., 2014;

Scoccimarro et al., 2014; Shaevitz et al., 2014; Villarini et al., 2014; Wehner et al., 2014;

Camargo et al., 2016], but their focus was not in the WNP TC tracks, as considered here.

The HWG models included in our analysis are listed in Table 2. The TC tracks were

generated by each modeling group, using their standard tracking routines also given in

Table 2.

In the case of the MRI model (H8), the simulation designs are not exactly the same as

those used in the HWG simulations with the other models, but they are close enough that

we decided to incorporate this model in our analysis nonetheless. The MRI simulations

are similar to those described in Sugi et al. [2012]. For the present climate, the MRI

model is forced with monthly observed SST for the period 1979-2003, instead of monthly

climatological SST, i.e., the SST varies from year to year, instead of having the same
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value in a given calendar month and location in all years. The MRI team defined future

SST (FSST) and future CO
2

(FCO2) scenarios based on the average SST and greenhouse

gas changes projected by phase 3 of the Coupled Model Intercomparison Project (CMIP3)

dataset in the period 2075-2100 for the A1B scenario [Meehl et al., 2007]. The methodology

for the construction of FSST and FCO2 is explained in Sugi et al. [2012]; Murakami and

Wang [2010]; Murakami et al. [2011]. Three future simulations were performed with the

MRI using di↵erent SST and CO
2

forcings as follows: (i) future SST (FSST) and current

climate CO
2

, (ii) present climate SST and future climate CO
2

(FCO2), (iii) 1.83K added

uniformly to the present observed SST and future CO2 (p2KFCO2). These simulations

were constructed to examine the e↵ect of greenhouse gases and CO
2

separately, as done

in the other simulations of the HWG multi-model ensemble.

We also considered fourteen CMIP5 models and simulations. These include the histor-

ical runs and one future scenario, RCP8.5, in which greenhouse gas concentrations reach

relatively high values in the later years of the 21st century. Only one ensemble member

was analyzed for each CMIP5 model and scenario. The models and TCs considered here

are the same as those included in Camargo [2013] and Tang and Camargo [2014]. The

TCs were tracked using the Camargo-Zebiak tracking algorithm [Camargo and Zebiak ,

2002]. The WNP TCs in a subset of these models have already been discussed in Kossin

et al. [2016]. The list of the CMIP5 models included in our analysis is given in Table 3.

The horizontal resolutions in the CMIP5 models are overall much lower than those in

the HWG models. It is well known that low-resolution global climate models are able

to generate TC-like structures with many similarities to those of observed TCs [Manabe

et al., 1970; Bengtsson et al., 1982; Camargo et al., 2005; Camargo and Wing , 2016].
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However, these TC-like structures are weaker and larger than observed storms, or from

high-resolution climate models such as the HWG multi-model dataset. By including the

CMIP5 models, however, we are able to span a broader range of future scenarios and

models in our analysis, and we judged this su�cient motivation to do so.

The tracking routines used in the HWG and CMIP5 are very similar. They look for fea-

tures in the model output with a minimum sea-level pressure, maximum low-level vorticity

and wind speed and a warm-core. All CMIP5 models used the same tracking algorithm,

but with thresholds dependent on model resolution [Camargo, 2013]. In contrast, each

modeling group applied their own tracking scheme to the HWG models [Shaevitz et al.,

2014]. In the case of the HWG models Horn et al. [2014] showed that the di↵erences in

TC frequency due to tracking algorithm decrease as model resolution increases and TC

intensity increases. We examined some specific cases for HWG model tracks, similarly to

what was done in Daloz et al. [2015] and we could not find any dependence of our results

to the tracking routine considered.

In addition to the TC tracks from the explicit simulations from the HWG and the

CMIP5 models, we also analyzed tracks produced by statistical-dynamical downscaling

from a subset of these models. The downscaling uses the method developed by Emanuel

[Emanuel et al., 2006; Emanuel , 2006]. The main benefit of this downscaling technique is

that it can generate a very large number of synthetic TC tracks with realistic intensities

based on environmental fields from reanalyses and climate models. This technique has

been successfully applied to generate TC tracks from both reanalysis [Emanuel , 2010] and

climate models [Emanuel et al., 2008], and has been coupled with storm surge models [Lin

et al., 2012].
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The Emanuel’s downscaling technique is described in detail in Emanuel [2006] and

Emanuel et al. [2006]; here we only give a brief summary. First, synthetic track origin

points are generated by seeding randomly the smoothed space-time observed probability

distribution function of tropical cyclone genesis. The survival of these seeds depends on its

environment. Once the storm is generated, it moves according to the environmental winds

vertically averaged over a deep layer of the troposphere, with a correction for the “beta

drift” [Holland , 1983], similarly to the well known “beta and advection mode”l [Marks ,

1992]. Once the track is generated, the Coupled Hurricane Intensity Prediction System

(CHIPS, Emanuel et al. [2004]) is run along each track and determines the storm intensity,

as well as when the storm dissipates. The environmental fields necessary to generate the

synthetic tracks used here are from the CMIP5 and HWG model simulations.

The CMIP5 synthetic tracks analyzed here have been previously discussed in Emanuel

[2013]; Dwyer et al. [2015]; Kossin et al. [2016] and were generated from a subset of the

CMIP5 models above. Similarly, synthetic TC tracks were generated from a subset of the

HWG models, as discussed in Daloz et al. [2015] for the case of the North Atlantic. The

list of downscaled models is given in Table 4. Tables 5 and 6 show the numbers of TC

tracks in each model and scenario analyzed here.

There are two important caveats in our analysis that should be clearly stated. The first

is that when comparing the CMIP5 and HWG explicit tracks, the di↵erences between

the HWG and CMIP5 simulations are convolved with the di↵erences in model resolution,

which a↵ects TC simulation. The second is that, while the CMIP5 simulations are coupled,

the HWG are forced with fixed SSTs, therefore the HWG experiments cannot enforce

surface energy balance, which could have potential consequences when simulating TCs,
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similarly to the issues due to SST bias in the coupled simulations. Therefore, there is no

reason to expect that the track changes in the HWG experiments should be consistent

with those in the CMIP5 simulations.

We compared the model TC data with WNP observed TC tracks from the Joint Ty-

phoon Warning Center best-track dataset for the period 1950-2013 [Chu et al., 2002;

JTWC , 2017].

3. Methods

3.1. Cluster Analysis

We use a cluster analysis method that has been extensively used to analyze TC tracks,

both in observations [Camargo et al., 2007a, b, 2008; Kossin et al., 2010; Ramsay et al.,

2012] and models [Camargo, 2013; Daloz et al., 2015]. This method is described in detail in

Ga↵ney [2004] and was first applied to extra-tropical cyclone tracks [Ga↵ney et al., 2007].

The cluster technique is based on a mixture of polynomial regression models (quadratic

here), which are used to fit the shape of the TC tracks. The log likelihood is a goodness

of fit metric for probabilistic models. Here the best fit is obtained by maximizing the

likelihood that these polynomials fit the data, in this case the longitude and latitude of

the tracks. Each model is described by a set of parameters, including regression coe�cients

and a noise matrix.

The strength of the cluster analysis technique is that it easily fits tracks of di↵erent

lengths. As is typical in cluster analysis, however, the number of clusters is not uniquely

determined, but must be specified a priori. Here we use the same number of clusters that

was chosen for observed WNP typhoon tracks, i.e. seven [Camargo et al., 2007a, b]. By
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choosing the same number of clusters in models and observations, we can make a direct

comparison.

Each model track is assigned to a specific cluster. In the case of the explicit model

tracks, there are cases in which there are not many storms per model and scenario (a

typical bias of low-resolution models). Therefore, in order to increase the data sample

size used in the cluster analysis in each case, we considered the tracks of all scenarios

simultaneously for each model as an input of the cluster algorithm. Once each track is

assigned to a specific cluster, we can identify to which scenario it belongs.

3.2. Track Moments

A method to distill track shape and length down to a few physically relevant parameters

was developed by Nakamura et al. [2009]. The entire track shape and length are taken

into account to define mass moments of the open curve that defines a storm track. These

moments can be used to summarize the statistical characteristics of the storm tracks. The

centroid is the first mass moment defining the longitude (X) and latitude (Y) of the center

of mass of an individual track or collection of tracks. In the case of an individual track,

this centroid lies in the interior of the curve, but not on the curve itself. This first moment

determines the location of the e↵ective center of gravity of the individual track or group

of tracks. The second mass moments are a measure of the shape of the track or tracks

considered. They are defined by the the variance, or the average squared di↵erences of the

weighted distances from the centroid and can be expressed geometrically as a covariance

ellipse. The variance is then represented by the orientation and length of the principal

axes of the ellipse and is a measure of the extent of the tracks in three directions X, Y

and XY. By analyzing the location of the centroids and the shape of the ellipses, one is
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able to synthesize a large amount of information about the tracks in a very simplified

manner. For instance, a rounded variance ellipse implies that the variance in directions

X and Y are very similar, while the tilt of the ellipse points to the dominant direction of

the track. This method was applied to the North Atlantic hurricane tracks in Nakamura

et al. [2009], where it is described in detail.

Here we use the ellipses for two purposes: first to compare the model tracks to the

observed ones; second to determine the existence of shifts in model tracks under climate

change scenarios. The strength of this method is that it uses a simple feature to represent

the characteristics of the tracks, either for the whole basin or in each cluster, which makes

the comparison with observations and analysis of tracks’ shifts simpler than using many

tracks or track density.

3.3. Statistical Significance of Track Changes

We tested various characteristics of the tracks to determine if their di↵erences are sta-

tistically significant in present and future climates. In order to do that, first a kernel

smoothing function estimator (KE) was applied to the distributions of variables in the

analysis. KE can increase the signal to noise ratio by making visible the signal that

matches the size and shape of the KE. We used the Matlab2012 default KE which em-

ploys a normal kernel with an optimized bandwidth. Use of the KE before testing ensures

that the continuous distribution of a variable is tested rather than a di↵erence in sam-

pling. Future distributions are estimated at the same points along the axis of the 20C

distributions. The future distributions are then re-normalized by multiplying by the ratio

of the future KE by the 20C KE.
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The Kolmogorov-Smirnov (KS) test is then applied to the control and future scenar-

ios to determine if they are from the same underlying probability distributions at the

0.1-level. The KS test is non-parametric and compares the location and shape of the em-

pirical cumulative distribution functions of the two samples. Once statistical significant

changes in the full PDF are identified, the type of the change (e.g. westward/eastward, or

larger/smaller) across the multi-model ensembles is examined based on the distribution

mean. In order for a track change to be considered statistically significant and robust at

least half of the models in each of the multi-model datasets are required to have the same

type of statistically significant shift.

4. Present Climate Tracks

4.1. Observations

In Camargo et al. [2007a, b] cluster analysis was applied to the observed WNP TC

tracks for the period 1950-2005. Here we summarize an updated version of their analysis

for the period 1950-2013. The tracks (in grey), genesis positions (red circles) and track

ellipses (in black) for all clusters (panels (a) to (g)) and all TCs (panel (h)) are shown in

Fig. 8.

The clusters were originally labeled in order of occurrence [Camargo et al., 2007a, b],

from the most populated cluster A (361 TCs) to the least populated cluster G (117 TCs).

Clusters D and E had a very similar number of storms in the original analysis, 178 and

175 TCs, respectively. In the updated version, cluster D (207 TCs) has slightly fewer

TCs than cluster E (216 TCs). Clusters A, C, and E are dominated by recurving TCs,

while clusters B, D, and F TCs are mostly straight moving, and G has a combination of

both. These clusters depend strongly on the storms’ genesis positions. Some track types
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are modulated by the El Niño-Southern Oscillation (ENSO): Cluster E TC tracks occur

more often in eastern Pacific El Niño events, Cluster G in central Pacific or Modoki El

Niño seasons, and Cluster A in La Niña events [Camargo et al., 2007b]. Furthermore, TC

tracks in clusters A, B, and E occur more often when the Madden-Julian Oscillation is

active over the western North Pacific basin.

The slopes and sizes of the variance ellipses, as well as their centroid locations, emphasize

the characteristics of the di↵erent clusters in Fig. 8. Straight-moving clusters D and F

have very elongated ellipses, while recurving clusters ellipses are more rounded. The slopes

of the ellipses di↵er among the recurving clusters as well. The ellipse of cluster C has a

centroid North of 20�N and a northeastward slope, while the ellipses of cluster E and G

have centroids south of 20�N and tilt in the northwestward direction.

4.2. Present Climate

The first question we want to examine is whether the models are able to reproduce the

observed tracks in the current climate. Given the high number of models, it is impossible

to show the tracks of all models and scenarios here, so only the tracks of a few chosen

models are shown in Fig. 1. On the left are tracks from the explicit models, while on

the right are the tracks of the corresponding downscaled models. Panels (a) and (c) show

HWG model tracks, with CMIP5 model tracks in panels (e) and (g) for the control and

historical simulations respectively. The centroid of the observed tracks is located near

138�E and 20�N and the models of each type reproduce this well. The explicit models

match the slight Southeast to Northwest tilt of the observed tracks, while the downscaled

tracks have a distinct Southwest to Northeast tilt. In the tracks this tilt is reflected as

a predominately eastward vs. westward movement. For instance, model dH2 in (d) has
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more downscaled tracks above 30�N than the corresponding explicit tracks (H2) in (c),

enhancing the Southwest to Northeast tilt of the recurving tracks. The explicit model

ellipses are smaller both because of the shorter lifetime of tracks as in the case of model

H2, as well as the much smaller sample size of the data. There are many more tracks of the

downscaled models (see Tables 5 and 6), allowing a wider variance, as the ellipses’ variance

increases with frequency. Ideally, we would have similar sample sizes, however given

the huge computational resources necessary to generate more explicit tracks, this is not

possible, and we consider in our analysis all tracks available from all cases. Furthermore,

the di↵erences between the explicit and downscaled ellipses could include a contribution

from their di↵erent termination criteria, as the downscaled tracks allow for extra-tropical

transition taking the storms to higher latitudes than the explicit tracks.

We compare the mass moments ellipses of all the models’ tracks (shown in Fig. 2)

with the observations (Fig. 8(h)). The explicit HWG models have higher horizontal

resolution and are more closely grouped than are the CMIP5 explicit models. Some of

the CMIP5 explicit models have mass moments that are significantly di↵erently shaped

than those in observations, indicating tracks that are not realistic, as was seen for the

Atlantic and eastern North Pacific in Camargo [2013]. This indicates, in general, that the

higher horizontal resolutions of the HWG models lead to more realistic tracks, or could

be a result of the inexistence of SST biases, as the HWG simulations are forced with fixed

climatological SSTs. It is interesting to notice, though, that the downscaled HWG and

CMIP5 models have ellipses with very consistent sizes and shapes. The Southwest to

Northeast tilt in the downscaled tracks ellipses occurs in all but one of the models (dH1).
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Some of the models have an unrealistically low number of tracks in the present and/or

future climates. We need a reasonable sample size in order for the cluster analysis to yield

statistically significant results. Similarly to what was done in Camargo [2013] and Kossin

et al. [2016], we exclude the models with very few tracks from the analysis.The models

that fall in this category are: MIROC-ESM (M10, total of 43 tracks), NorESM1 (M14,

total of 51 tracks), and CAM5.1 LR (H1L, total of 115 tracks) (see Table 6).

We performed a few sensitivity tests on subsets of the model tracks as well. The first

test was to examine the role of horizontal resolution in the WNP tracks of the HadGEM3

model, which were available in three di↵erent resolutions: H6L, H6M and H6 (see Table 2).

There were no significant di↵erences in the mass moments ellipses among these di↵erent

versions (not shown). Therefore, for the rest of our analysis we considered only the version

with the highest horizontal resolution (H6). Even the lowest resolution version of this

model has a higher resolution, though, than all the CMIP5 models. This seems to indicate

that models with resolutions as low as the CMIP5 models tend to have unrealistic tracks,

as indicated by the comparison of panel (c) and panels (a), (b) and (d) in Fig. 2. Once

the model resolution is above a certain threshold (in this case 1 deg.), using even higher

resolutions will not lead to further improvements in the track characteristics. This issue

should be further investigated using more models with multiple horizontal resolutions.

We also compared the tracks obtained by di↵erent tracking routines for the model

CMCC/ECHAM5 (H2T and H2; not shown). Although the number of tracks generated

in each case is di↵erent, the overall characteristics of the tracks do not depend on the

tracking routine, similar to the result obtained in Daloz et al. [2015] for the North Atlantic

tracks. Therefore, in the rest of our analysis we will only consider model H2.
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We applied the cluster analysis to the remaining models, i.e. excluding M10, M14, H1L,

H2T, H6L, H6M. A test to judge model fitness is the similarity of the model tracks to

the seven observed clusters. For a model to be considered well-suited for this analysis,

identification of at least four of the seven observed clusters was required. In order to

do that, we compared the ellipses of the models’ and observed clusters. Primarily, the

maximum overlapping area of the observed and model ellipses was used to determine to

which observed cluster the model cluster corresponded. Secondly, geographic location and

ellipse tilt were taken into consideration. Of the twelve explicit CMIP5 models considered

here, only six models passed these criteria, namely models M1, M2, M3, M7, M10, and

M11. In constrast, all HWG models examined and all of the downscaled CMIP5 and

HWG models passed this test. These results corroborate our previous conclusion that

high-resolution models generate more realistic model tracks.

The resulting clusters can be seen in Figures 3, 4, 5 for tracks from one model of each

type, i.e., explicit CMIP5, explicit HWG and downscaled (from CMIP5). As could be

expected from our discussion above, the CMIP5 clusters have some track types that do

not occur in reality, e.g. clusters B, D and G (Fig. 3). Both the HWG (Fig. 4) and

the CMIP5 downscaled (Fig. 5) clusters tracks are more realistic and more similar to

observations, even though some clear biases and di↵erences with observed clusters can

still be noted. For instance, both models have problems reproducing the South China Sea

storms (straight moving tracks in observed clusters B and D) (Fig. 8). In any case, the

large improvement that can be achieved in model tracks by using either higher horizontal

resolution or downscaling techniques is very clear in these figures.
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5. Future Climate

5.1. Cluster occurrence

The next question we examine is whether there are statistically significant changes in

the tracks in the future climate scenarios compared to the historical climate. In addition

to assessing statistical significance, we want to determine which changes are robust across

many models. We first consider changes in the occurrence of a cluster in the future. Do

specific track types become more or less common in the future, and if so, are these changes

robust across models?

No statistically significant changes in frequency in the future scenarios were found for

the HWG explicit model tracks using the rank sum test at the 0.1 level for all clusters.

The rank sum test was chosen as it can be used for testing significance of small populations

of unknown distributions. We repeated the same statistical test with the CMIP5 explicit

model tracks and the HWG and CMIP5 downscaled tracks. None of these models showed

a statistically significant change in the cluster assignment occurrence in future climates,

as shown in Fig. 6. We also examined whether the total number of storms in the WNP

in each model was statistically di↵erent in the future and present climates and again,

no model passed the rank sum significance test, even though there is an increase in the

number of tracks in the downscaled CMIP5 models as was shown in Emanuel [2013].

5.2. Track changes

Next we examine possible changes in the characteristics of the tracks in the future.

These changes could be related to shifts in the tracks, or tracks’ shape or length. In

order to test those possibilities we applied a Kolmogorov-Smirnov (KS) test in present

and future climate distributions for each characteristic of the tracks (e.g., longitude of the
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ellipse centroid), to determine if they belong to di↵erent probabilistic distributions. For a

change on a specific direction, e.g. northward or eastward, to be considered statistically

significant for a specific cluster or the whole basin, it needs to pass the KS test at the 0.1

level for at least half of the models available for that type of model (HWG or CMIP5)

for that cluster, or six or more models for the whole basin. The number six was chosen

as it corresponds to half of the number of CMIP5 models (explicit and downscaled) and

HWG models (explicit and downscaled) considered in our analysis. However, as discussed

above, we could not identify all clusters in all models, therefore, the number of models

necessary for significance test in specific clusters, needs to take that into account.

As an example, we show in Fig. 7 the ellipse centroid X kernel distributions for cluster

E in the CO2 and control simulations in selected HWG models, as well as cluster F in

the RCP85 and historical simulations in selected CMIP5 and downscaled CMIP5 models.

Eastward and westward shifts in the means of the distributions can be clearly seen. Some

distributions show shifts of the peak westward (model H1), while in others shifts occur

in the tails of the distribution (model H7), and in still others shifts are found in both

peak and tails (model H6). A similar analysis was performed for all models, clusters

and scenarios for various characteristics of the distributions, namely the locations of the

centroid ellipses (centroids X and Y), the variances of the ellipses (variance X, Y and XY),

their seasonalities, and track lengths.

The variance in the direction X is a measure of the West to East extent of the tracks.

The variance in direction Y is a measure of the South to North extent, and the variance

in the direction XY is a measure of the tilt, described as a Southwest to Northeast or

positive tilt and as Southeast to Northwest or negative tilt extent. These three directional
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variances have by far the most number of significant changes in the future distributions

when compared with the control or historical simulations. As an example of our analysis,

Figure 8 shows that there are changes in cluster A, with significant changes in the variances

of Y.

When all tracks in the basin are considered together, there is a net northward move-

ment, in particular in the RCP85 scenario, and a net eastward movement of the straight

moving tracks. However, only in one scenario the changes in ellipse characteristics are

statistically significant, namely all tracks in p2K scenario (variance X and variance Y),

with no statistically significant change for the other scenarios. This could potentially be

because changes in one track type cancels changes in other track types. Therefore, in

order to examine this possibility, we need to consider track changes in specific clusters.

Given the very large number of models, clusters and scenarios analyzed, only the sta-

tistically significant and robust results from our analysis will be discussed here. The most

dominant recurving track type (cluster A) has an increase in the variance of Y, which is

statistically significant in two HWG scenarios (p2K and CO2) and in the RCP85 CMIP5

scenario. This is consistent with the northward movement noticed for all the tracks in the

basin noted above, given that TCs do not form very close to the Equator. Table 7 shows

the models and scenarios that have a significant increase in variance of Y for the recurving

clusters A, C, E and G. In contrast, the straight moving cluster D has a smaller variance in

Y in the HWG scenarios, as well as the straight moving cluster F in the RCP85 scenario.

Overall, significant changes in the N-S direction of the tracks were the most frequent in

our analysis, though not always consistent across the the HWG and CMIP5 datasets.
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Another interesting result is that the tracks in cluster F, which are westward straight

moving and can originate in the central Pacific, have an eastward shift in centroid X for

the CMIP5 RCP85 scenario (5 out of 11 models), as well a shorter lifespan (5 out of 11

models), as shown in Table 8. Furthermore, some of the HWG models have a decrease of

variance in X (6 out of 11 models) and a decrease in the lifespan (6 out of 11 models).

As cluster F tracks are straight moving from west to east, both these changes would also

result in a net eastward displacement of these tracks. Taking all three changes (centroid

X, variance in X and lifetime) into account, the eastward shift in cluster F is clear, though

not statistically significant when only considering centroid X changes. As cluster F has

genesis locations very close to the date line, this eastward shift would lead to a higher

occurrence of central Pacific storms in the future, as previously discussed in the literature

[Li et al., 2010; Murakami et al., 2011, 2012; Yokoi et al., 2013; Mori et al., 2013; Colbert

et al., 2015; Roberts et al., 2015; Zhang et al., 2017]. This track type is also modulated by

the central Pacific or Modoki ENSO. In recent years, there have been very active central

Pacific seasons (e.g., Sobel et al. 2016), perhaps with a contribution from anthropogenic

climate change [Murakami et al., 2015, 2017]. Cluster G, which can also a↵ect Hawaii, is

also the only cluster which has consistent and statistically significant changes for X and

Y variances for HWG and CMIP5 scenarios.

In the WNP the variance of XY plays a large role in landfall potential. The main

landmass in the basin is located to the West and Northwest. The recurving track shapes

of A, C, E, and G tilt toward land when moving from Southeast to Northwest (negative

tilt) and away from land when moving Southwest to Northeast (positive tilt). In two of

the HWG scenarios (p2K and p2KCO2), there is an eastward shift in cluster A, the most
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dominant track type. In contrast, in the CMIP5 models, there is a larger tilt (variance

XY) in the RCP85 scenario in three of the clusters (A B and F), with the corresponding

tracks, therefore, having a tendency for moving away from land. While the types of shifts

are di↵erent in both multi-model groups, they lead to a similar consequence.

The location of lifetime maximum intensity (LMI) is another metric of interest. Kossin

et al. [2014] showed that in observations this metric is less sensitive to non-meteorological

data issues. In observations there is a poleward shift in the LMI in some regions, in

particular the WNP [Kossin et al., 2014, 2016] and this poleward shift in the WNP is

projected to continue in the future under anthropogenic climate change [Kossin et al.,

2016].

In the case of the dominant cluster A in CMIP5 there were five models with a statistically

significant LMI eastward shift. This eastward shift in the CMIP5 models’ cluster A is

coherent with the ellipses’ eastward shift discussed above. Furthermore, in our analysis

overall (including significant and non-significant cases) there were 24 cases (cluster and

scenario) of a LMI northward shift out of 47 possible cases, including all of the CMIP5

cases. However, in spite of being a clear dominant shift in the northward direction, very

few were statistically significant, including when all tracks in the basin are considered.

This northward LMI shift is in qualitative agreement withKossin et al. [2016]. It should be

noted tough that the chosen subset of CMIP5 models in Kossin et al. [2016] is di↵erent

from the one here, as di↵erent criteria were applied. Secondly, here we used a kernel

smoother prior to constructing a probability distribution function and KS statistical test,

while in Kossin et al. [2016] the probability distribution functions of the latitude of LMI

were constructed with the raw model output.
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5.3. Environmental field changes

In the previous section we found two primary robust track changes: a poleward shift and

an increase in Central Pacific tracks. Both of these changes are coherent with large-scale

environmental changes in the models.

There is large body of literature discussing projections of a poleward shift in multiple

aspects of the climate system under global warming, mainly in extratropical clouds and

storm tracks (e.g., Yin [2005]; Chen and Held [2007]; Barnes and Polvani [2013]; Tse-

lioudis et al. [2016]), associated with the weakening and poleward expansion of the Hadley

cell under global warming [Lu et al., 2007; Vecchi and Soden, 2007]. Kossin et al. [2014]

showed that the observed LMI poleward shift could be related to changes in the large-scale

environment over the past 30 years. Kossin et al. [2014] found that changes in vertical

wind shear and potential intensity — the latter being the theoretical maximum intensity

that a TC can achieve under specified environmental conditions [Emanuel , 1988] — have

resulted in an expansion in the regions most favorable for TC development. Similarly,

in the CMIP5 multi-model mean there is an increase in potential intensity in the whole

northern hemisphere, a decrease in the vertical wind shear in the northern part of the

basin and an increase in the genesis potential index [Emanuel and Nolan, 2004; Camargo

et al., 2007c] in the northern part of the basin (see Figs. 12, 13 and 14 in Camargo

[2013]), which leads to a poleward expansion of the region favorable for TC genesis and

intensification. This favorable region also expands into the central North Pacific, making

that region more prone to the occurrence of TCs.

Similar analysis of the HWG multi-model ensemble environmental fields is currently in

progress and will be the topic of a future publication. Results from the GISS model show
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that there is an increase in the potential intensity in the western and central North Pacific

for the p2K and p2KCO2 scenarios, accompanied by a decrease of the vertical wind shear

and an increase in the tropical cyclone genesis index [Tippett et al., 2011; Camargo et al.,

2014] in the eastern part of the basin, leading to an expansion of the area that is favorable

for TC occurrence poleward and eastward (Figs. 10, 11, and 13 in Camargo et al. [2016]).

Another metric of the environment’s favorability for TC occurrence and intensification

is the ventilation index, which combines vertical wind shear (between 850 and 250hPa),

potential intensity and entropy deficit (defined using the ratio of the di↵erences of the

saturated and moist entropy value at 700hPa, and the sea surface and boundary layer)

[Tang and Emanuel , 2012].

In the CMIP5 models there is a general tendency towards an increase in the seasonal

ventilation index with warming in most basins, including the deep tropical region of the

western North Pacific, which would inhibit both tropical cyclogenesis and intensification

[Tang and Camargo, 2014]. In the CMIP5 multimodel mean this increase has a maximum

around 10�N and 160�W, decreasing poleward and eastward of there. This change pattern

would lead to a reduction of TC activity in the southern part of the basin and an increase

poleward. There is also a decrease in the ventilation index in the central North Pacific,

helping to explain the increase of TC activity near Hawaii. In summary, the large-scale

environment in the CMIP5 projections and in the HWG GISS model simulations are

coherent with the poleward and eastward track shifts discussed above.

6. Conclusions

We analyzed TC tracks in the Western North Pacific (WNP) basin in two large multi-

model ensembles. These ensembles span a variety of model types (low and high horizontal
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resolution models, models forced with fixed SST and coupled models) and tracks (explicit

and downscaled). We used two primary methodologies to examine the tracks’ charac-

teristics: a cluster analysis and mass moment ellipses. We applied these methods first

to compare the model tracks with observed tracks, and second to examine if there are

changes in the tracks in a warming climate that are statistically significant and robust

across the ensembles. The impact of tracking methodologies on our analysis was explored

and our results do not depend on the tracking method for the cases analyzed. Further-

more, it should be noted that changes in genesis locations cannot be separated from the

track changes by this methodology, as the genesis locations are inherently part of the

detected tracks and the thresholds used in the di↵erent tracking algorithms.

The HWG models’ explicit tracks are much more similar to observed tracks than are

the CMIP5 explicit tracks. This indicates that, all else equal, higher horizontal resolution

yields more realistic tracks. However, an improvement with resolution was not apparent

when comparing the tracks from three versions of an HWG model in three resolutions2,

with no additional modifications in the model. The downscaled tracks have a north-

eastward bias which is present in both the HWG and CMIP5 downscaled model tracks,

indicating that these biases were not dependent on the models’ large-scale environments,

but rather appear to be features of the downscaling methodology.

We examined many characteristics of WNP tracks to determine if there were statistically

significant and robust changes in future scenarios. There is an increase in variance of Y,

or South to North extent of the range over which the tracks occur for several models and

clusters. As WNP tropical cyclones are bound on the southern end by the vanishing of

the Coriolis parameter at the equator, this can be interpreted as a northern shift of the
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WNP TC tracks. This northern shift is not statistically significant at a particular point,

such as the mean (centroid) or the LMI, but is very robust in the variance or extent of

the model tracks.

There were also many models and scenarios that show eastern and northeastern shifts.

As the WNP basin is bound on the west side by the Asian landmass, an extension in the

variance of X can be interpreted as an eastern movement and an extension in the variance

of XY as a northeastward movement. However, in most cases, the shifts in the centroid

location are too small to be statistically significant, even when the variance shifts are

statistically significant.

Some of the track changes described here have been previously noticed in the literature,

to the extent that they are apparent in the statistics of the set of all WNP tracks. Here

we pinpoint which track types, as defined by cluster analysis, are involved in specific track

shifts. In some clusters, there is an increase in the variance in the latitudinal direction,

while in others there is an eastward shift.

For the most frequent track type, recurving cluster A, while the centroid shifts are small,

there is an increase in the South-North extent of the tracks with warming in both the

HWG and CMIP5 simulations, e↵ectively corresponding to a northward shift in the tracks.

This is an important result, as cluster A has impacts throughout the region and occurs

more commonly in La Niña events. Shifts in cluster A tracks could lead to significant

changes in the landfall occurrences, as discussed in Kossin et al. [2016].

Another interesting case is the straight moving Cluster F, which has an eastward mean

shift in the centroid for CMIP5 models, which could lead to more storms in the Central

Pacific and Hawaii. The other cluster with potential influence in Hawaii is the recurving
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cluster G. While there was no significant mean centroid location change for cluster G,

the variance in both longitudinal and latitudinal directions increased in two of the HWG

scenarios, which could be interpreted as an eastward (towards Hawaii) shift in the storms’

preferred formation region accompanied by a poleward shift in recurvature when compared

to the 20th century control simulation.

Changes in the large-scale environment in the CMIP5 multi-model mean and in the

GISS model in the HWG dataset are coherent with the statistically significant and robust

changes in track properties in the WNP. These were, for instance a poleward expansion

of the areas with high potential intensity, and increased values of the ventilation index

in the CMIP5 models. Our results highlight the complexity of potential track changes

in future climates, with di↵erent shifts occurring simultaneously for di↵erent track types.

Furthermore, these track shifts are model- and scenario-dependent, highlighting the value

of considering multiple models and scenarios when inferring robust changes in TC tracks

in future climates. The upcoming multi-resolution multi-model simulations planned for

CMIP6 will be a good opportunity to explore robust the future track changes using high-

resolution coupled models [Haarsma et al., 2016].
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Notes

1. Tropical cyclone-like structures are defined by a local minimum in sea-level pressure, a local maximum in low-level relative

humidity and a warm core.

2. Even the lowest resolution of this model has a finer resolution than the CMIP5 models
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Table 1. Model simulations analyzed. The HWG simulations are forced with fixed SST

(climatology or climatology plus 2K) and CO
2

values (present climate or twice present climate),

for the present (Control) and idealized future simulations (plus 2K, 2⇥ CO
2

, plus 2K and 2⇥ CO
2

.

The CMIP5 historical and future projection RCP8.5 are coupled simulations. These simulations

are described in detail in Walsh et al. [2015] and Taylor et al. [2012], respectively.

Type Name Abbreviation SST CO
2

HWG Control ctl climatology present
HWG plus 2K p2K clim. + 2K present
HWG 2⇥CO

2

CO2 climatology 2⇥ present
HWG plus 2K & 2⇥CO

2

p2KCO2 clim. + 2K 2⇥ present
MRI HWG Present pres present present
MRI HWG A1B SST FSST future present
MRI HWG A1B CO2 FCO2 present future
MRI HWG plus 1.83K & A1B CO2 p2KFCO2 pres. + 1.83K future
CMIP5 Historical hist coupled observed
CMIP5 RCP8.5 RCP85 coupled 8.5W by 2100
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Table 2. HWG models’ characteristics, references for models and tracking schemes, and

number of simulation years in each scenario. Definitions: LR: Low Resolution, MR: Medium

Resolution, HR: High Resolution. References: Wehner: [Wehner et al., 2015]; Prabhat: Prabhat

et al. [2012]; Rockner/Scoccimarro: Roeckner et al. [2003] and Scoccimarro et al. [2011]; Walsh:

Walsh [1997]; LaRow: LaRow et al. [2008]; Vitart: Vitart et al. [2003]; Saha: Saha et al. [2014];

Zhao: Zhao et al. [2009]; Schmidt: Schmidt et al. [2014]; Camargo & Zebiak: Camargo and

Zebiak [2002]; Walters: Walters et al. [2011]; HB: Hodges [1995] and Bengtsson et al. [2007a, b];

Mizuta and Murakami: Mizuta et al. [2012] and Murakami et al. [2012]; Murakami: Murakami

et al. [2012].

Model Name Resolution Reference Tracking Scheme # Years
CAM5.1 LR H1L 1� Wehner Vitart/Prabhat 24
CAM5.1 HR H1 0.25� Wehner Vitart/Prabhat 16

CMCC/ECHAM5 H2T 0.75� Rockner/Scoccimarro Vitart/Walsh 9
CMCC/ECHAM5 H2 0.75� Rockner/Scoccimarro Vitart/Zhao 9

FSU H3 1� LaRow Vitart/Zhao 5
GFS H4 1� Saha Vitart/Zhao 20
GISS H5 1� Schmidt Camargo & Zebiak 20

HadGEM3 LR H6L 1.87� Walters Hodges/Bengtsson 20
HadGEM3 MR H6M 0.83� Walters Hodges/Bengtsson 20
HadGEM3 HR H6 0.35� Walters Hodges/Bengtsson 10

HiRAM H7 0.5� Zhao Vitart/Zhao 20
MRI H8 1.25� Mizuta/Murakami Murakami 25
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Table 3. List of the CMIP5 models analyzed, including references, their horizontal resolution.

TCs are tracked using the Camargo-Zebiak tracking routine [Camargo and Zebiak , 2002], as

described in Camargo [2013].

Model Name Resolution Reference
CanESM2 M1 2.9� von Salzen et al. [2013]
CCSM4 M2 1.2� Gent et al. [2011]

CSIRO-Mk3.6.0 M3 1.9� Rotstayn et al. [2012]
FGOALS-g2 M4 3.0� Bao et al. [2013]
GFDL-CM3 M5 2.5� Donner et al. [2011]

GFDL-ESM2M M6 2.5� Donner et al. [2011]
HadGEM2-ES M7 1.9� Jones et al. [2011]
INM-CM4.0 M8 2.0� Volodin et al. [2010]

IPSL-CM5A-LR M9 3.7� Voldoire et al. [2013]
MIROC-ESM M10 2.8� Watanabe et al. [2011]
MIROC5 M11 1.4� Watanabe et al. [2010]

MPI-ESM-LR M12 1.9� Zanchettin et al. [2013]
MRI-CGCM3 M13 1.2� Yukimoto et al. [2012]
NorESM1-M M14 2.5� Zhang et al. [2012]

c�2017 American Geophysical Union. All Rights Reserved.



Table 4. Downscaled models from the HWG and CMIP5 multi-model ensembles using

Emanuel’s technique [Emanuel et al., 2006; Emanuel , 2006]. The downscaled models are the same

as in Daloz et al. [2015] and Emanuel [2013]. The names of the downscaled models correspond

to the original model names (Tables 2 and 3).

Name Type Original Model
dH1 HWG CAM5.1 LR
dH2 HWG CMCC/ECHAM5
dH5 HWG GISS
dH7 HWG HiRAM
dM2 CMIP5 CCSM4
dM5 CMIP5 GFDL-CM3
dM7 CMIP5 HadGEM2-ES
dM11 CMIP5 MIROC5
dM12 CMIP5 MPI-ESM-LR
dM13 CMIP5 MRI-CGCM3
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Table 5. Number of WNP storms (or tracks) in each model and scenario for the HWG

multi-model ensemble. Models in boldface were selected to be used when comparing present and

future climates using two criteria: number of storms available and similarity of the storm tracks

by clusters with observations. In cases that more than one version of tracks were available per

model type (using di↵erent model resolution or tracking scheme) only one version of the model

tracks was considered. See text for more details of the selection criteria. For the explicit models,

the median number of storms per year is shown in <ctl>, as well the median number of named

storms per year in observations for the period 1981-2010.

Name Type ctl p2K CO2 p2kCO2 Total <ctl>
H1L HWG 24 29 33 29 115 1
H1 HWG 153 105 169 157 584 9
H2T HWG 482 404 436 418 1740 48.2
H2 HWG 354 272 343 313 1282 35.4
H3 HWG 145 133 135 105 518 29.0
H4 HWG 92 80 83 80 335 3.7
H5 HWG 579 528 681 637 2425 28.9
H6L HWG 190 175 218 – 583 8.6
H6M HWG 138 109 119 – 366 13.8
H6 HWG 128 100 126 – 354 16
H7 HWG 677 648 591 482 2398 33.8

pres FSST FCO2 p2KFCO2 Total <ctl>
H8 HWG 747 627 528 728 2630 6.2

ctl p2K CO2 p2kCO2 Total
dH1 downs. HWG 2987 2267 2434 2184 9872
dH2 downs. HWG 2858 2744 2764 2738 11104
dH5 downs. HWG 2799 2979 2888 2997 11663
dH7 downs. HWG 2575 2576 2711 2705 10567

Observed climatology per year: 28.5
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Table 6. Number of WNP storms (or tracks) in each model and scenario for the CMIP5

multi-model ensemble. Models in boldface were selected to be used when comparing present and

future climates using two criteria: number of storms available and similarity of the storm tracks

by clusters with observations. See text for more details of the selection criteria. For the explicit

models, the median number of storms per year is shown in <hist>, as well the median number

of named storms per year in observations for the period 1981-2010.

hist RCP85 Total <hist>
M1 CMIP5 346 443 789 17.3
M2 CMIP5 62 144 206 3.1
M3 CMIP5 1009 1568 2577 50.4
M4 CMIP5 252 140 392 12.6
M5 CMIP5 697 903 1600 34.8
M6 CMIP5 1520 1258 2778 76.0
M7 CMIP5 255 344 599 12.7
M8 CMIP5 13 111 124 0.6
M9 CMIP5 85 297 382 4.2
M10 CMIP5 27 16 43 1.3
M11 CMIP5 354 402 756 17.7
M12 CMIP5 974 991 1965 48.7
M13 CMIP5 2330 832 3162 116.5
M14 CMIP5 20 31 51 1.0

hist RCP85 Total
dM2 downs. CMIP5 10413 18241 28654
dM5 downs. CMIP5 8748 14966 23714
dM7 downs. CMIP5 7332 13641 20973
dM10 downs. CMIP5 7006 11950 18956
dM11 downs. CMIP5 9004 14808 23812
dM12 downs. CMIP5 7253 13064 20317

Observed climatology per year: 28.5
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Table 7. Statistical significant changes (0.1 level) in variance in Y in future scenarios with

a northward (N) shift, compared with the present climate in the recurving clusters A, C, E and

G. Future scenarios p2K, CO2, p2KCO2, RCP85 are indicated as 1, 2, 3 and 4 in the table.

Model A C E G
H1 1N 2N 3N 1N 2N
H2 1N 2N 3N 2N
H3 1N 2N 1N
H4 1N 2N 3N 1N 2N 3N 1N 2N 1N 3N
H5 2N 1N
H6 1N 2N 1N 1N
H7 3N 3N
dH1 2N 3N
dH2 1N 3N
M1 4N
M2 4N
M3 4N 4N
M7 4N
M11 4N 4N
M12 4N 4N
dM2 4N
dM5 4N 4N
dM7 4N
dM12 4N 4N
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Table 8. Statistical significant changes (0.1 level) in centroid X, variance of X and lifespan in

future scenarios compared with the present climate in cluster F. Variance of X and lifespan are

labeled B for bigger and S for smaller. Centroid of X is labeled E for East and W for West. Also

shown in the table with a ? are the models for which cluster F could not be identified.

Model Variance X Lifespan Model Centroid X Lifespan
H1 1S 2S 3S 1S 2S 3S M1 4S
H2 1S 2S 3S 1S 3S M2 4E 4B
H3 3S 1B 2S 3S M11 4E 4S
H5 1S 3S M12 4E
H6 1B 2B 1B 2B dM2 4E
H7 1B 2B 1S 2S 3S dM5 4W 4S
H8 1S 2S 3B 2S 3B dM7 4E 4B
dH1 2S dM11 4W
dH5 1S 3S dM12 4S

dM13 4W 4S
H4 ? ? M7 ? ?
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Figure 1: Western North Pacific observed tracks for the period 1950-2013. Panels
(a) to (g) show the tracks (in grey) in individual clusters based in the classification
of Camargo et al. [2007a,b]. The initial positions are marked in red circles. The
mean mass moments ellipses are shown in black, with the centroids marked with
a black x.
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Figure 1. Western North Pacific model tracks (grey), genesis (red circles) and mass mo-

ments ellipses and centroids (black) for the current climate in selected models. The left panels

show tracks from the explicit models, the right panels the corresponding downscaled models.

HWG (CMIP5) models are shown in panels (a) and (c) ((e) and (g)) in the control (historical)

simulations. Two hundred randomly selected tracks are shown in each panel.
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Figure 2. Western North Pacific mass moment ellipses for the current climate in all models.

The left panels show the ellipses from the explicit models, the right panels from the downscaled

models.
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Figure 3. Western North Pacific model tracks in individual clusters for CMIP5 model M12 in

the historical simulation. Model clusters that do not correspond to any of the observed clusters

are marked with an asterisk (⇤).
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Figure 4. Western North Pacific model tracks in individual clusters for HWG model H7 in

the present climate simulation. Two hundred randomly selected tracks are shown in each panel.
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Figure 5. Western North Pacific model tracks in individual clusters for the downscaled CMIP5

model dM12 in the present climate simulation. Two hundred tracks are shown in each panel.
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Figure 6. Percentage of storms assigned to each cluster per model and scenario for the HWG

explicit tracks. Clusters not corresponding to observed clusters are marked with a star. None

of the models showed a statistically significant change in the cluster assignment occurrence in

future climates.
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Figure 7. Kernel smoothed centroid X probability distributions estimates (PDE) as function

of longitude for (i) cluster E for ctl and CO2 scenarios for selected HWG models (panels (a)-(f));

(ii) cluster F for hist and RCP85 scenarios for selected CMIP5 and downscaled CMIP5 models

(panels (g)-(l)). The vertical lines mark the median in each probability distribution.
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Figure 8. Track ellipses in cluster A for selected models that have a statistically significant

increase in the variance of Y, for HWG (panels (a)-(d)) and CMIP5 models (panels (e)-(j)).
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