
Early Season Hurricane Risk Assessment: Climate-Conditioned HITS Simulation of
North Atlantic Tropical Storm Tracks

JENNIFER NAKAMURA,a UPMANU LALL,b YOCHANAN KUSHNIR,a PATRICK A. HARR,c AND KYRA MCCREERY
d

aLamont-Doherty Earth Observatory, Columbia University, Palisades, New York
bDepartment of Earth and Environmental Engineering, Columbia University, New York, New York

c Jupiter Intelligence, San Mateo, California
dNorth Shore High School, Glen Head, New York

(Manuscript received 15 October 2020, in final form 11 March 2021)

ABSTRACT: We present a hurricane risk assessment model that simulates North Atlantic Ocean tropical cyclone

(TC) tracks and intensity, conditioned on the early season large-scale climate state. The model, Cluster-Based

Climate-Conditioned Hurricane Intensity and Track Simulator (C3-HITS), extends a previous version of HITS. HITS

is a nonparametric, spatial semi-Markov, stochastic model that generates TC tracks by conditionally simulating

segments of randomly varying lengths from the TC tracks contained in NOAA’s Best Track Data, version 2, dataset.

The distance to neighboring tracks, track direction, TC wind speed, and age are used as conditioning variables. C3-

HITS adds conditioning on two early season, large-scale climate covariates to condition the track simulation: the

Niño-3.4 index, representing the eastern equatorial Pacific Ocean sea surface temperature (SST) departure from

climatology, and main development region, representing tropical North Atlantic SST departure from climatology in

the North Atlantic TC main development region. A track clustering procedure is used to identify track families, and a

Poisson regression model is used to model the probabilistic number of storms formed in each cluster, conditional on

the two climate covariates. The HITS algorithm is then applied to evolve these tracks forward in time. The output of

this two-step, climate-conditioned simulator is compared with an unconditional HITS application to illustrate its

prognostic efficacy in simulating tracks during the subsequent season. As in the HITS model, each track retains

information on velocity and other attributes that can be used for predictive coastal risk modeling for the upcoming

TC season.
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1. Introduction

Tropical cyclones (TCs) in the North Atlantic Ocean basin

have immense impacts on the inhabitants, economies, and

environments of Central and North American coastal and in-

land locations. Human, infrastructure, and societal impacts of

TCs far exceed the duration of landfall and can last for years, as

seen recently in the case of Hurricanes Sandy (Comes and Van

de Walle 2014; Sobel 2014), Harvey (Sebastian et al. 2017; Fan

et al. 2018), and Maria (Meléndez and Hinojosa 2017; Zorrilla

2017). The development of statistical and dynamical models

that assess the basinwide level of TC activity, landfall potential,

and complex relationships among North Atlantic TC activity

and various regional and global climatic factors has been an

area of concern for researchers over the past several decades

(Villarini et al. 2010, 2012; Vimont and Kossin 2007; Tang and

Neelin 2004; Mestre and Hallegatte 2009; Kossin et al. 2010;

Hall and Yonekura 2013).

A TC track reflects an interaction of the storm with its am-

bient thermodynamic and dynamic conditions. In turn, these

conditions are affected by direct and indirect, short- and long-

term factors that modulate atmospheric and oceanic con-

ditions to determine patterns of TC activity (Elsner and

Kara 1999). Seasonal large-scale and background climatic

conditions examined in the recent literature in this context

include the atmospheric influence of El Niño–Southern
Oscillation (ENSO; Klotzbach 2010; Hall and Yonekura

2013) and the North Atlantic Oscillation (Elsner and Jagger

2004). Also important are sea surface temperature anoma-

lies (SSTA) in the tropical North Atlantic Ocean, in the TC

main development region (MDR) (Shapiro and Goldenberg

1998; Emanuel 2005; Webster et al. 2005) or by the related,

so-called Atlantic meridional mode (AMM; Vimont and

Kossin 2007).

Numerical, dynamical climate models (Goerss 2000; Vitart

et al. 2007; Knutson et al. 2013) have been used to model North

Atlantic TC activity (occurrence, landfall rates, precipitation)

and their sensitivity to changes in baseline climate conditions,

as part of the evolution of the global climate. However, these

models tend to be of low resolution and are expensive to run

repeatedly as part of achieving a probabilistic risk assessment

(Vitart et al. 1997; Camargo et al. 2005). Climate-conditioned

statistical models have thus been proposed to predict the

properties of an upcoming hurricane season (Elsner and

Jagger 2006; Hall and Jewson 2008; Hall and Yonekura 2013;

Klotzbach et al. 2017). Elsner and Jagger (2006) use May–

June climate indices to predict July–November basinwide

counts of North Atlantic hurricane counts using a Bayesian

approach. Hall and Jewson (2008) and Hall and Yonekura

(2013) create synthetic tracks under different climate condi-

tions with propagation conditioned on sea surface temperature.
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The Colorado State University has issued an annual hurricane

outlook since 1984 that uses a variety of environmental pa-

rameters that have evolved over the years and been shown to

influence seasonal TC activity at varying lead times (Klotzbach

et al. 2017). Seasonal landfall prediction as a function of

background and large-scale climate conditions for the North

Atlantic has been explored by Poisson regression (Elsner and

Schmertmann 1993; Elsner et al. 2001; Elsner 2003; Sabbatelli

and Mann 2007; Kossin et al. 2010).

This paper extends our stochastic model for North Atlantic

TC risk assessment—the previously developed Hurricane

Intensity and Track Simulator (HITS; see Nakamura et al.

2015). Here, we extendHITS to incorporate the dependence of

North Atlantic TC activity on early season large-scale climate

conditions, thereby providing dynamic predictive risk estima-

tion through simulated ensembles of hurricane tracks. HITS

is a machine-learning model developed using the historical TC

tracks maintained by the National Oceanic and Atmospheric

Administration (NOAA; Landsea and Franklin 2013). HITS

simulates new stochastic tracks using a k-nearest-neighbor-

based nonparametric, spatial semi-Markov model that can

preserve the long-range persistence of TC tracks better than

the traditional Markov models, as well as models that seek to

locally parameterize the stochastic track movement. By con-

sidering spatially local information related to track attributes

for conditioning and stochastic simulation of random track

segments for the track conditionally selected, HITS can exploit

information at the current track location as well as the poten-

tial track continuity or memory implied in the historical track

data. HITS was intended to produce a stochastic catalog of

storms for probabilistic risk assessment that uses historical

tracks as a basis for extracting spatiotemporal TC evolution

properties.

HITS has the advantage of carrying all of the track infor-

mation such as sea level pressure at the storm center and wind

speed information provided in the NOAA archive, and rainfall

fields available at landfall from other sources. Here we in-

troduce the Cluster-Based Climate-Conditioned Hurricane

Intensity and Track Simulator (C3-HITS), which conditions

the initial segment of a hurricane track on early season, large-

scale climate conditions or covariates, before the simulation

of the track by HITS. For now, we consider that ocean tem-

perature conditions inform hurricane formation locations and

frequency and that steering of the TC is still dependent on the

distance to, the direction of, and other attributes of neigh-

boring storms. C3-HITS uses a cluster analysis of historical

tracks to sort tracks into groups based on similar track ge-

ometry and other spatial properties. A Poisson regression is

then used to determine the expected number of TCs formed

in each cluster as a function of the large-scale climate co-

variates. The formation locations are selected randomly from

historical storms associated with each cluster. HITS is then

used to evolve each randomly generated storm. A catalog of

stochastic storms fromwhich the risk profile for the upcoming

hurricane season is thus developed.

The TC dataset used is described in the next section along

with the climate indices chosen to represent the remote and local

underlying seasonal background conditions. A description of

C3-HITS is provided next in the methods section. A description

of the simulations and a comparison with observations and the

unconditioned HITS output are given in the results section. The

paper concludes with a summary and thoughts about future

modifications of the model.

2. Data

a. HURDAT2

We use the recently revised, North Atlantic basin historical

hurricane track data (HURDAT2), available from NOAA

(https://oasishub.co/dataset/hurdat-2-atlantic-hurricane-data-

base). Tracks are provided for each TC season, from 1851 to

2016. Each track constitutes sequential storm locations at fixed

time intervals (originally every 6 h), with information on the

time and date, the storm position (latitude/longitude), the

maximum wind speed, and central pressure. HURDAT2 im-

proves on the original HURDAT by the inclusion of non-

synoptic track times for landfalls and maximum intensity

locations and the inclusion of nondeveloping tropical depres-

sions. The original 6-h dataset was linearly interpolated to

every 2 h for clustering purposes. Because of the relatively

small sample size of TC tracks, the full HURDAT2 data were

used in the creation of clusters.

b. Climate indices

To specify the underlying large-scale seasonal climate con-

ditions, we chose indices that specify the major phenomena

governing North Atlantic TC activity as determined by earlier

studies. The North Atlantic TC MDR (108–208N, 808–208W)

is regarded as a prime hurricane formation location for

North Atlantic landfalling TC (Shapiro and Goldenberg 1998;

Goldenberg et al. 2001). Increased SSTAs in the MDR typi-

cally contribute to an increase in North Atlantic TC activity

(Vecchi et al. 2013). The tropical Pacific SSTA in the Niño-3.4
region, (58S–58N, 1708–1208W), is typically utilized as an indi-

cator of ENSO events. El Niño events (defined when the

anomaly exceeds 10.58F for at least 6 months and the at-

mosphere shows a response) typically suppresses hurricane

activity in the North Atlantic basin (Klotzbach 2010). The Niño-
112 index is another ENSO indicator defined in the eastern

Pacific (08–108S, 908–808W). SSTAs in a region of the Gulf of

Mexico (GoM: 208–358N, 1008–808W) are associated with the

formation of several major North Atlantic landfalling TCs.

Increased sea surface temperatures in the Gulf of Mexico are

associated with an increase in North Atlantic TC frequency,

but most researchers contend that ocean–atmosphere inter-

actions in this region depend on a multitude of factors (Vecchi

et al. 2013). The AMM is a large-scale climate pattern that

encompasses the southern Atlantic Ocean and is defined by a

shift in the intertropical convergence zone caused by fluctua-

tions in SSTs and easterly trade winds (Chiang and Vimont

2004). The AMM has been linked to ENSO and other climate

oscillations such as the North Atlantic Oscillation. On inter-

annual time scales, the positive phase of AMM is correlated

with a higher frequency of North Atlantic named storms

(Kossin et al. 2010).
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All of these climate indices were computed from the Kaplan

extended, version 2, SST data, and a combination of Kaplan

et al. (1998) and Reynolds and Smith (1994) SSTAwith respect

to 1950–2016 except for the AMM (which was obtained online

from http://www.aos.wisc.edu/;dvimont/MModes/Data.html).

All indices were calculated for April–June, preceding the

nominal NorthAtlantic TC season. Although the official North

Atlantic hurricane season starts 1 June, very few tropical cy-

clones form in June, so for the purpose of the paper, preseason

is defined as being prior to 1 July. Data for 1950–2016 were

used for the indices to be concurrent with the computed AMM

index and the NCEP reanalysis data in appendix A.

3. Methods

The C3-HITS algorithm consists of three major steps:

(i) clustering of the historical TC tracks; (ii) a nonhomoge-

neous Poisson process model for the probabilities of the

number of TCs formed in each cluster, conditional on pre-

season climate covariates; and (iii) simulating the full track

evolution as in the original HITS algorithm. The conceptual

structure of ourmodel is depicted schematically in Fig. 1, which

summarizes the analysis steps detailed below.

a. TC cluster identification

We first classify the historical TCs using a cluster analysis

procedure based on their full track andmovement information.

The clustering follows our prior work (Nakamura et al. 2009,

hereafter N09), where we classified North Atlantic TC tracks

by their attributes, namely, formation location, duration (or

life), distance covered (or track length), and the actual orien-

tation and curvature (or spatial geometry) of tracks. In

HURDAT2 (as in its predecessor HURDAT) each track is

defined by a collection of TC locations separated by a fixed

time interval. We use this sequence of locations to define the

first and second spatial moments of the track’s trajectory. Thus,

each track is described by five parameters: the location (lati-

tude and longitude) of the track centroid, the variance of track

HURDAT2 2-hourly locations in longitude and latitude with

respect to the centroid, and the cross covariance between them.

These summarize the shape of the track. Tracks consisting of a

single observation were not considered and track locations

eastward of 08 longitude were truncated.

A k-means algorithm with the number of clusters selected

using ‘‘silhouette analysis’’ was used. The details of the re-

sulting clusters are provided in appendix A. Using HURDAT2

we identified five clusters, which are depicted in Fig. 2. In N09,

using the older HURDAT data, six clusters had been identi-

fied. The five clusters differ from one another by formation

location, length, and orientation of the track and by proximity

of the track to the U.S. coast.

Cluster 1 (the west-MDR cluster; Fig. 2a) and cluster 2 (the

subtropical cluster; Fig. 2b) TCs form in the western MDR and

north of 208N, with a larger proportion of cluster 2 storms

forming in the western flank of the North Atlantic subtropical

anticyclone (Fig. A3 of appendix A). Many cluster-2 storms

form close to the U.S. coast. Storms from clusters 1 and 2 can

make landfall along the U.S. East Coast and GoM coastlines.

FIG. 1. Flowchart of the climate-conditioned North Atlantic TC track simulator. North

Atlantic TC tracks from 1851 to 2016 are k-means clustered. The multivariate Poisson re-

gression determines the mean number of initial track segments. The number of TC formed in

each cluster is sampled from the Poisson distribution. The corresponding TC formation lo-

cations are then randomly sampled from the TCs assigned to each cluster for the historical

1950–2016 tracks. The final track length is sampled randomly from the track lengths of the k

nearest neighbors within a 2.58 radius of the formation location. The number of steps taken

along a track is randomly sampled. If track length remains, a jump to a k-nearest-neighbor

track within a 2.58 radius is based on transition probabilities across all tracks in the 1851–2016

database.
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Here landfall is defined as crossing one of many 2.58 contiguous
gates created along the Gulf and East Coasts of the United

States up to 428N. These gates are meridionally oriented on the

East Coast and zonally oriented on the Gulf Coast and are

counted separately. Cluster-1 tracks account for 3% of both

East and Gulf Coast landfalls; cluster 2 accounts for 21% of

East Coast landfalls and 12% of Gulf Coast landfalls.

Cluster 3 (Fig. 2c), which we refer to as the standard MDR

cluster, contains storms that form in the MDR. The TCs in this

cluster are often referred to as Cape Verde hurricanes because

of their formation location, and they move in parabola-shaped

tracks. The Standard MDR cluster is associated with an in-

tensification of the subtropical high (Fig. A3). The tracks are

the longest of any cluster, and they make up 21% of East Coast

landfalls and 9% of Gulf Coast landfalls.

Cluster-4 storms (Fig. 2d; GoM/Caribbean cluster) typically

have short tracks but form close to the Caribbean islands or in

the Caribbean Sea and theGoM andmove northward around a

local anomalous low pressure system (Fig. A3). With their

proximity to land, cluster-4 tracks make landfall more than any

other cluster, accounting for 55% of the East Coast landfalls

and 76% of the Gulf Coast landfalls.

Cluster-5 storms (Fig. 2e, central Atlantic cluster) predom-

inantly drift northward. They can reach the Caribbean islands

but rarely make landfall in the United States or in Central

America.

b. Climate state–based initialization

To initialize the simulation of climate-state dependent

tracks, we hypothesize that the TCs that tend to occur in a

given storm season originate in a preferred set of clusters de-

termined by the preseason state of the large-scale climate as

represented by the value of key climate covariates. From these

preferred clusters, a number of formation locations with their

FIG. 2. Observed formation location (open

circles) and the track (lines) for the five clusters

of k-means clustered North Atlantic TC tracks.

The number of tracks in each cluster is listed

after the name. TheMDR index is the SST in the

main development region of North Atlantic

TCs. The GoM index is the SST in the Gulf of

Mexico. (a) The cluster-1 formation area is the

west-MDR. (b) Cluster 2 has formations in the

subtropics. (c) The cluster-3 formations are in

the MDR region. (d) The cluster-4 formations

are in the GoM area and Caribbean Sea, and

(e) cluster-5 recurves in the central NorthAtlantic.
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corresponding initial track segments are drawn according to a

probability that is set by a multivariate nonhomogeneous

Poisson process, whose rate vector (the mean number of TCs

expected from that cluster) is a function of the covariates. We

applied linear and nonlinear nonparametric local regression

(Loader 2006) Poisson regression models with and without

overdispersion (Coxe et al. 2009). Linear dependence models

with no overdispersion were selected using the Akaike infor-

mation criterion (AIC) and the Schwarz Bayesian information

criterion (BIC). Both AIC and BIC are often used to estimate

the accuracy of the fit of the regression model by providing a

quantitative indication of the balance between the goodness of

the fit and the number of parameters in the model. The re-

gression model that results in the minimization of AIC or BIC

is considered to be superior. In summary, we considered 1)

linear or nonlinear regression, 2) sensitivity to AIC or BIC for

model selection, 3) whether overdispersion is present, and 4)

whether a zero-inflated Poisson process improves the model.

Five SSTA-based indices were considered as predictors

(MDR, Niño-112, Niño-3.4, GoM, and AMM). For the best

subset of regression models, only the MDR and Niño-3.4 in-

dices were retained most often. Nonlinearity, overdispersion,

and zero inflation were indicated as significantly better only

in a small percentage of the experiments, and hence just a

general linear model (glm) with the best subset regression

(bestglm in R) and BIC as the selection criteria was

finally used.

The model can be represented as

f (y
it
jx

t
); Poisson(l

it
), with (1)

l
it
5 x

t
b

i
, (2)

where yit is the number of TCs that form in cluster i in year t, lit
is the corresponding mean of the nonhomogeneous Poisson

process, xt is a vector of predictors for year t, bi is a vector of

regression coefficients for cluster i, and f( j ) refers to a con-

ditional probability distribution.

The Poisson process for the cluster-dependent number of

TCs each season is also correlated across the clusters. To ad-

dress this correlation, two approaches were explored: (i) a

multivariate regression on the climate covariates; and (ii) a

sequential model for cluster Poisson rates that iteratively

considers dependence of the Poisson rate for some clusters on

the climate covariates, and for other clusters, on the rates for

the clusters initially modeled with climate covariates, and

possibly a climate covariate. The latter strategy was found to

perform better. It recognizes the MDR and Niño-3.4 SSTA

climate covariates were not always statistically significant

predictors for the Poisson rate for all clusters, but that the rate

for some of the clusters was well predicted by the rate for

clusters that did have a strong dependence on the climate co-

variates. Thus, a reduced network representation of the mul-

tivariate Poisson process is sought.

An example of the directed acyclic graph (DAG) or causal

dependence network associated with the process is provided in

Fig. 3. Initial candidate DAGs were selected based on explor-

atory Poisson regressions for each cluster TC considering the

climate covariate and other cluster TCs as potential predictors.

The final causal dependence network selected was based on

the best performance from candidate networks based on the

aggregate cross-validated likelihood of the network under

leave one season out at a time cross validation of the Poisson

regressions. A description of the Poisson regression proce-

dure, including a table presenting the regression coefficients

corresponding to the links presented in the DAG (Fig. 3) is

given in appendix B.

Once the rate parameters lit and the final predictors xt
(climate covariates Niño-3.4 and MDR as well as the TC for-

mation in clusters) are selected consistent with the DAG in

Fig. 3, we sequentially simulate the number of TC formed in

each cluster from the associated conditional distributions as

indicated in the DAG. This allows us to maintain the depen-

dence on the covariates and the mutual dependence in the

Poisson process across the clusters.

Given the yit values simulated, the corresponding number of

TC formation locations are selected by randomly drawing the

corresponding number of tracks from the subset of tracks as-

sociated with that cluster in the historical 1950–2016 dataset.

Given these initial TC formation locations and associated track

segments, the HITS model as detailed in Nakamura et al.

(2015) is used to simulate each track to completion. The key

parameters are 1) the total track length, 2) the number of steps

to take along a track (analogous to a renewal process or spell

length), and 3) track similarity as measured by the distance

between tracks, the wind speed, direction-vector of the tracks,

and the age of the tracks. The total track length is simulated

randomly for each track from the track lengths of the

k-nearest-neighbor tracks. The number of steps to take

along a track is sampled randomly between 1 and the re-

maining track length at each state, with uniform probability.

FIG. 3. The DAG or causal dependence network for the North

Atlantic TCs, shown symbolically, with the corresponding factor-

ization of the joint distribution of the variables indicated below.All

arrows indicate a directed conditional dependence. The line be-

tween MDR and Niño-3.4 represents the joint distribution (no

causal direction) of the two variables. The values of both of these

preseason variables are known in the preseason and are not sim-

ulated from a distribution. All other variables are sequentially

simulated using Poisson regression models for each conditional

distribution as indicated by the DAG, accounting for the param-

eter uncertainty distribution for each model.
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At each transition point, one of the tracks that is a k nearest

neighbor in terms of similarity is selected to transition to

using a probability kernel based on distance as described in

Lall and Sharma (1996), and the process is repeated until the

track length simulated is reached. Only k nearest neighbors

that are within a 2.58 radius of the current track location are

considered across all tracks in the 1851–2016 database.

Thus, while the clusters determine the formation locations,

subsequent track evolution relies on the full TC track data.

A single simulation of a hurricane season is completed after

the number of tracks sampled from the DAG model across all

clusters has been simulated. The total number of simulations

for a given season may be as large as the user’s desired reli-

ability of the estimation of the probability of TC attributes, for

example, landfalls in a specific area. In the current version of

C3-HITS, we do not condition the evolution of the tracks be-

yond the first segment on the climate covariates.

4. Results and discussion

Using the Poisson model, we simulated the overall number

of storms in the entire North Atlantic basin, year by year for

1950–2016, based on each year’s preseason, values of the cli-

mate variates. The results of 1000 such simulations are shown

in Figs. 4a–f, separated by cluster and for all clusters together.

In each panel, the area spanned by the range between the 5th

and 95th percentiles of the Poisson model simulations is col-

ored in light blue. The thick blue lines depict the model me-

dian, and the red dots represent the observed number of

formations in each cluster. The Kendall’s tau correlations of

the model medians and observed cluster TC formations per

season are shown in the upper-left-hand corner of each sub-

plot. Significant correlations at the a 0.05 level are given in

boldface font. Most observed TC formed per cluster fall within

the 5th–95th-percentile envelope. The correlation between

observed and model median for clusters 1, 3, 4, and ‘‘all’’

(Figs. 4a,c,d,f) is significant. The relationship between predic-

tions and observed for clusters 2 and 5 (Figs. 4b,e) is weaker

and not significant. The predictive ability of the DAG varies by

cluster (appendix B).

Figure 5 contains a number of plots addressing the quality of

the climate-conditioned model simulation of the total number

of storms in the basin, as a function of the season’s Niño-3.4 and
MDR index values in comparison with observations. Figure 5a

is calculated from the observations and the C3-HITS model

simulation is shown in Fig. 5b. Also shown is a comparison

between the observed number of storms and those generated

by HITS and C3-HITS models, using the metric of RMS dif-

ference. For C3-HITS (in Fig. 5d), the median of the simulated

1000 values each season is used in the comparison. For HITS

(Fig. 5c), where the simulation is not dependent of the climate

variates, the median of a single set of 1000 simulations is used

as a reference. The difference between HITS simulation errors

and the simulation errors of C3-HITS is presented in Fig. 5e,

the black dot indicates the MDR and Niño-3.4 index values in

2018. In Fig. 5f, the difference between the simulation error

variances of HITS and C3-HITS is tested using a paramet-

ric F test.

In observations (Fig. 5a), North Atlantic basin totals are low

when the Niño-3.4 index is positive and high when the Niño-3.4
index is negative or the MDR index is positive. This statement

is true broadly, but the distribution shows pockets of lower or

higher TC activity per year, whichmay be an actual variation or

the outcome of sampling issues due to a small number of data

points in these cases. Open black circles in Fig. 5a indicate

where the data points are. Consistent with its design, the C3-

HITS simulations (Fig. 5b) yield a smooth and robust rela-

tionship as to the sign and magnitude of the response to

Niño-3.4 and MDR indices.

The RMSE differences with observations in both the HITS

(Fig. 5c) and the C3-HITS (Fig. 5d) runs are relatively low

overall, but they are visibly lower in the latter case. This is seen

in the RMSE control—RMSE climate (Fig. 5e), where a

smaller value indicates a smaller error in the climate case.

Thus, the warm (yellow-red) portion of the difference plot

(Fig. 5e) indicates the C3-HITS simulation was closer to ob-

servations than the nonconditioned HITS simulation. Overall,

adding climate information reduces the RMSE error of the

modeled basin total formations per season and adds more

value to the model in the warm Niño-3.4 index and the warm

MDR index cases. The region between the two warm extremes

at the plot edges is a region of transition between increased TC

activity in the MDR index and less TC activity in the Niño-3.4
index. This area has a higher error in both control and climate

runs as shown in Figs. 5c and 5d, which may be due to a low

number of observations in these cases.

Saunders et al. (2020) discussed the 25% above-normal 2018

North Atlantic TC total basin count and found only a 5%

chance of occurrence with knowledge of the preseason envi-

ronmental fields. They state that the above-normal season was

not forecasted because of the lack of skill in statistical seasonal

forecast models of North Atlantic basin total. The year 2018

was run as an independent realization as the Poisson regression

models used in C3-HITS were computed based on data for the

years 1950–2016. We used the MDR and Niño-3.4 2018 pre-

season values in the Poisson regression models to determine

basin cluster totals (illustrated in Fig. 1). The 2018 black dot in

Fig. 5e is in the warm (red) portion of the MDR and Niño-3.4
index space, which indicates skill for including climate infor-

mation. The 2018 observed total of named TC activity in the

North Atlantic basin was 15. The run for 2018 gave a mean

overall TC count of 14.18, a median of 13, and a 75th percentile

of 19. This is a slightly lower total for the mean (0.82 named

TC), but the observed total falls between the 50th and 75th

percentiles. The Colorado State 2018 statistical seasonal fore-

cast of named storms in the North Atlantic basin using several

predictors issued 31 May 2018 was 13. Including the preseason

Subtropical Storm Alberto, this gave 14, near the mean of the

Poisson regression model (https://tropical.colostate.edu/Forecast/

Archived_Forecasts/2010s/2018-06.pdf). With knowledge of pre-

seasonMDR andNiño-3.4 indices, the Poisson regression models

used in C3-HITS thus exhibits visible skill in the 2018 total basin

named TC count.

An F test is used to test the equality of two variances. The

variances compared in this case are both error variances with

respect to observed total basin formations per season. At a 5%
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significance level, the F test is 1 when it rejects the null hy-

pothesis of the same variance and 0 when it cannot reject. Of 67

years (1950–2016), 65 are 1 or 0.97 and 2 of 67 years are 0 or

0.03. In an overwhelming number (97%) of years, HITS and

C3-HITS have significantly different variances (Fig. 5f). These

results show that the newmodel performs significantly better in

predicting the seasonal number of storms than the original

HITS with no climate conditioning.

Figure 6 is the same as Fig. 5, but for U.S. mainland landfall

of North Atlantic TCs (on the East Coast and Gulf coastlines).

Local minimum and maximum pockets are even more preva-

lent in the observed U.S. landfall (Fig. 6a) than basin total

(Fig. 5a), which due to a lower amount of data could be a result

of sampling errors. Themedian of 1000 runs of the C3-HITS is a

function of both the linear Poisson regressions and the transi-

tion probabilities generated by the model and that determine

the landfall probability. The RMSE for the HITS and C3-HITS

are low overall relative to the basin total formations per season

(Figs. 5c,d) and higher in the landfall case (Figs. 6c,d). HITS

transition probabilities were originally selected for success in

representing mainland U.S. landfall correctly.

The 2018MDRandNiño-3.4 index value dot in Fig. 6e is in a
skill area (red) for C3-HITS. The most populous cluster when

running the Poisson regressionmodels for C3-HITS in 2018was

cluster 2, the subtropical cluster (5.02 of 14.18 total named TC).

Cluster 2 has landfalls on the East Coast and is the cluster to

which Hurricane Florence, which made landfall in 2018, would

have belonged. The next most popular cluster in the 2018 run

FIG. 4. A comparison of the historical number of TC formations (red dots) in each k-means

cluster of North Atlantic TC tracks and the 5th and 95th percentile of a Poisson regression

model of basin formations per season. The r value in the upper-left corners is the correlation

coefficient between historical and model median basin TC formations per season by cluster

membership.
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was cluster 4, the GoM/Caribbean cluster (4.38 of 14.18 total

named TC). Cluster 4 has landfalls on the Gulf Coast and is

the cluster to which another 2018 storm, Michael, would

have belonged. The F tests (Fig. 6f) show less certainty in

the significance of the difference between HITS and C3-

HITS than the basin total formations per season with 75%

of the years for landfall (50 of 67) showing a significant

difference.

FIG. 5. The x axis is the Niño-3.4 index, the SST in a region of the tropical Pacific Ocean.

The y axis is the MDR index, the SST in the main development region of TCs in the North

Atlantic Ocean. (a) The observed North Atlantic basin formation total in each year is con-

toured. Open black circles indicate data points. (b) Contours of the C3-HITS model North

AtlanticOcean basin formation total per year; themedian of 1000model runs. (c) TheRMSE

of the HITSmodel and observed TC basin formation total in each year. (d) The RMSE of C3-

HITS with the observed basin total. (e) The difference of (c) minus (d). The black dot is the

Niño-3.4 and MDR value in 2018. (f) A significance test (F test) of the mean-square error of

HITS and C3-HITS compared with observed TC basin totals per year. The F-test results

indicate whether the variances come from the same normal distributions. The F test is 1 if it

rejects the same variance at a 5% significance level and is 0 if it cannot reject at a 5% sig-

nificance level.
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Post–air reconnaissance landfalls (1950–2016) as compared

with the earlier period (1851–1949) were used for Fig. 6 for

improved accuracy. However, large uncertainty is introduced

into the root-mean-square error calculations because of the

very small sample size with the order of magnitude of 1. The

sample size of Fig. 5, basin total formations per season, is an

order of magnitude 10, larger by an order of magnitude than

landfalls (Fig. 6). This makes Fig. 5a more reliable estimate of

the relative error of the two models.

The C3-HITS model gives the ability to examine multihazard

probability, such as the situation of one or more TC landfalls per

season by climate state. Figure 7 shows the probability in the

climate index domain of Niño-3.4 versus MDR index for one

(Fig. 7a) and as many as six and up (Fig. 7f) TCs landfall per

season in C3-HITS. The progression of increasing TC per season

shows a decrease that starts in theNiño-3.4 warm andMDRcold

to the neutral corner and works its way slowly over to Niño-3.4
cold and MDR warm until finally, in six and up (Fig. 7f) TC per

season, there is just an edge of higher probability in the Niño-3.4
cold andMDRwarm space. These panels are very similar to the

diagonal pattern of themedian of theC3–HITSmodel in Figs. 5b

and 6b implying thatwhen there aremore storms in the basin the

chances of multiple landfalls in a season increases.

To compare this model-based landfall assessment to ac-

tual observations of TC activity per season in the years 1950–

2016, 1000 estimates were drawn from the observation-based

FIG. 6. As in Fig. 5, but for the count of TCs landfalling on the East and Gulf Coasts of the

United States.
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estimated Poisson distribution with overdispersion of

these events. Overdispersion allows the fitted distribution

to stray slightly from the exact theoretical values of the

Poisson distribution. The results in Fig. 8 illustrate a

similar diagonal pattern. This pattern is a match to C3-

HITS probabilities in Fig. 7. It is not expected that ob-

served and C3-HITS would be similar in this regard. A

Poisson distribution of landfall was not imposed in the

model and the tracks disperse based on the HITS param-

eters. In all, C3-HITS provides TC tracks and their ac-

companying parameters along with landfalls that have a

similar distribution to the observed TC tracks.

Quantitative comparisons of the probabilities of landfall or

multiple landfalls in the model (Fig. 7) and observed (Fig. 8) at

MDR and Niño-3.4 values per year are computed by Hellinger

distances as defined in Cha [2007, Eq. (26)]:

FIG. 7. The x axis is the Niño-3.4 index, the SST in a region of the tropical Pacific Ocean.

The y axis is the MDR index, the SST in the main development region of TCs in the North

Atlantic Ocean. Shown is the C3-HITS model with climate information: counts of TCs

landfalling on the East and Gulf Coasts of the United States, over the 1000 runs for each year

divided by 1000, giving the probability of landfall in each category as indicated by the sub-

panel titles.
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where dh is the Hellinger distance, n is the number of years,

P is the observed probability of landfall at year i, and Q is the

C3-HITS average model probability over 1000 simulations at

year i.

Values of the Hellinger distance indicate 0 for complete

overlap and 1 for maximum separation. The distances between

themodel and observations for one and up TCs per year and six

and up TCs per year are 0.15 (Figs. 7a,f and 8a,f), two and up

are 0.33 (Figs. 7b and 8b), three and up are 0.43 (Figs. 7c and

8c), four and up are 0.41 (Figs. 7d and 8d), and five and up are

0.30 (Figs. 7d and 8d). Both one and up and six and up per year

are the closest at 0.15—a very close match. Three and up per

year is the farthest at 0.43 but still overlaps in more than half of

the years.

The cluster-based climate-conditioned track simulator uses

clusters to determine the formation location and the first seg-

ment of the simulated track, but what impact does this have on

the resulting tracks? The resulting C3-HITS tracks were sub-

jected to moments-based clustering, as were the observed

tracks, and contrasted in Fig. 9 as a function of the cluster on

which they began. If the answer to the question of the impact of

FIG. 8. As Fig. 7, but for observations rather than model results.

APRIL 2021 NAKAMURA ET AL . 569

Brought to you by Columbia University | Unauthenticated | Downloaded 04/15/21 07:12 PM UTC



resulting tracks were given by cluster 1, the west-MDR cluster,

it would be that the starting cluster has little to do with the final

one. However, cluster 1 is the least populated cluster in the

observed data. The observed clusters 1851–2016, from most

to least populated one, are cluster 4 GoM/Caribbean (669),

cluster 2 subtropical cluster (574), cluster 5 central Atlantic

(263), cluster 3 standardMDR (201), and cluster 1 west-MDR

(92) (Fig. 3). In a small number of tracks (the population of

cluster 1), 92/1799, or 5%, the starting cluster is not im-

portant. In the case of clusters 2 (subtropical cluster), 4

(GoM/Caribbean cluster), or 5 (central Atlantic cluster),

the track will likely stay in that cluster. For cluster 4, the

GoM/Caribbean cluster, tracks predominately stay in clus-

ter 4, and this is also the cluster with the highest percentage

of landfalls (55% of East Coast and 76% of Gulf Coast)

preserving the observed mainland landfall distribution.

Cluster 3, the standard MDR cluster, is an interesting case,

with cluster 5, the central Atlantic cluster, edging out cluster

3 for the most popular resulting cluster. Both clusters 3 and 5

share the MDR formation region (as seen in Figs. 3c,e), and

there is a larger portion of cluster-5 tracks than cluster-3

tracks from which to choose (roughly 1/3 more, 263 as com-

pared with 201). According to our analysis, a random draw

of the region will result in more cluster 5, central Atlantic

cluster tracks. This will result in fewer mainland landfalls,

because cluster-5 tracks tend not to make landfall.

5. Summary and future work

C3-HITS is a data-based model for the stochastic simulation

of North Atlantic hurricane tracks given preseason climate

covariates. It employs machine learning and statistical esti-

mation tools to preserve the spatial continuity and orientation

of the tracks simulated and to account for spatial dependence

in the hurricane formation process. One aim is to aid in the

creation of accurate landfall statistics. The underlying track

simulation model, HITS, is especially effective near land

and in the main development region of North Atlantic

tropical storms, where there is the densest best track data

(Nakamura et al. 2015). We have consistently found it to

perform better than Markovian models that do one-step

conditioning (Nakamura et al. 2015). The trajectories generated

are more realistic and less diffusive than those generated

by Markovian models, and as a result, the simulations

translate into better occurrence statistics. Since all tracks

created are drawn from segments of historical tracks, all

the associated track information is automatically inherited. This

provides a consistent multivariate representation of all historical

track information including latitude, longitude, time, maximum

1-min sustained surface wind, landfall, central pressure from

FIG. 9. C3-HITS model final cluster membership by the starting

k-means cluster based on observed TC tracks.

FIG. A1. (a) A measure of the k-means cluster cohesiveness

(mean silhouette values) and (b) a measure of the number of

misclassified members (number of negative silhouette values), of

clustered observed North Atlantic TC track data.
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1979, and wind radii maximum extent in quadrants at 34, 50, and

64kt (1 kt ’ 0.5m s21) from 2004.

The C3-HITS model adds the impact of the state of the cli-

mate at the beginning of the season on the simulated tracks at

the time of storm formation. Here, we conditioned the sto-

chastic storm-track generation on SST, in the tropical Pacific

and tropical North Atlantic that is known to affect the in-

terannual variability of hurricane tracks. Some statistical

models create index-based runs by selecting years under

those conditions (dividing the data in half or thirds). C3-

HITS is unique in that it can include all data instead of

subselecting. Index-based runs can be set to favor an indi-

vidual index value so that gradual changes in the formation

and track shape can be observed. Also, all the indices can be

run together for covarying traits.

Our simulation results show that adding climate information

(C3-HITS) reduces the RMSE error of the modeled basin total

formations and mainland landfalls per season and adds more

value to the model in the warm Niño-3.4 index and the warm

MDR index cases (Figs. 5 and 6).Model skill was shown using an

out-of-sample hindcast of the 2018 formation total and landfalls

(Figs. 5e and 6e). When examining multihazard probability for

C3-HITS modeled (Fig. 7) and observed (Fig. 8), increasing TC

per season shows a decrease in the probability that starts in the

Niño-3.4 warm and MDR cold to the neutral corner and works

its way slowly over to Niño-3.4 cold and MDR warm. It is no-

table that theC3-HITS probability calculated from the simulated

tracks and the observed probabilities calculated from the

Poisson fit to observations mirror each other even though a

Poisson distribution of landfall was not imposed in the model.

Further development of C3-HITS will bring in surface winds

and precipitation fields associated with the historical data and

use them to generate an analog simulation of the wind and

precipitation fields associated with the HITS tracks. This

would include directional exposure of the track over land, to

provide the key information needed to determine moderate

to extreme flooding in a subsequent application of a hydro-

logic model. The storm-related fields can be pulled from

historical reanalyses and/or gridded station observations.

Uncertainty can be addressed by producing a large number

of track simulations that will generate a distribution of

jointly selected, two-dimensional, storm-related wind, and

precipitation fields.
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APPENDIX A

Cluster Analysis for Initializing Climate-Stated
Dependent Tracks

As indicated in section 2, the new, HURDAT 2 (1851–2016)

was used to identify track families using a k-means clustering

TABLE A1. Observed mean cluster mass moments of k-means clustered North Atlantic TC tracks.

Cluster Centroid X (8E) Centroid Y (8N) Variance X Variance Y Variance XY

1 256.93 35.73 322.81 143.00 162.14

2 261.92 33.42 43.58 32.91 23.25

3 257.64 25.33 148.08 101.80 239.65

4 285.05 24.20 23.31 13.52 23.09

5 247.94 16.51 45.81 9.98 210.36

TABLE B1. Preseason (April–June) Kendall correlation matrix of climate indices and the five clusters (C1–C5) of k-means clustered

North Atlantic TC tracks. The MDR index is the SST in the main development region of North Atlantic tropical cyclones. The Niño-3.4
and Niño-112 indices are regions of tropical Pacific SST. The GoM index is Gulf of Mexico SST, and the AMM is the Atlantic meridional

mode, a climate pattern in the South Atlantic Ocean defined by a shift in the intertropical convergence zone caused by fluctuations in

SSTs and easterly trade winds.

Year MDR Niño-3.4 Niño-112 GoM AMM C1 C2 C3 C4 C5

Year 1.00 0.23 0.22 0.11 20.12 20.26 0.06 20.08 0.19 0.08 0.20

MDR 0.23 1.00 0.38 0.14 20.26 0.79 0.30 20.19 0.37 0.05 20.01

Niño-3.4 0.22 0.38 1.00 0.64 20.10 0.13 0.12 20.16 20.22 20.40 20.09

Niño-112 0.11 0.14 0.64 1.00 20.02 20.01 0.04 0.04 20.13 20.28 20.12

GoM 20.12 20.26 20.10 20.02 1.00 20.18 20.13 0.20 0.03 0.08 20.01

AMM 20.26 0.79 0.13 20.01 20.18 1.00 0.16 20.02 0.32 0.08 20.10

C1 0.06 0.30 0.12 0.04 20.13 0.16 1.00 20.24 0.05 20.16 20.07

C2 20.08 20.19 20.16 0.04 0.20 20.02 20.24 1.0 20.25 0.35 0.10

C3 0.19 0.37 20.22 20.13 0.03 0.32 0.05 20.25 1.0 0.09 20.15

C4 0.08 0.05 20.40 20.28 0.08 0.08 20.16 0.35 0.09 1.0 0.40

C5 0.20 20.01 20.09 20.12 20.01 20.10 20.07 0.10 20.15 0.40 1.0
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procedure. The selection of the appropriate number of clus-

ters is a subjective process. Here we are aided in the selection

by the silhouette (sil) evaluation method (see N09). The

method provides two numbers based on repeated application

of the clustering process. Figure A1a shows the mean ‘‘sil’’

number resulting from 1000 simulations as a function of the

number of clusters. High values indicate a high cohesiveness

of the cluster members and good separation from other

TABLE B2. Coefficients of Poisson model North Atlantic TC formations per season by k-means cluster of the moments of the TC tracks.

Plain text (step 1), boldface type (step 2), and italics (step 3) indicate successive steps in creating a model of all clusters.

Cluster MDR Niño-3.4 Intercept Cluster 2 Cluster 3 Cluster 4

1 0.9903 0 20.3651 0 0 0

2 20.2747 0 1.5168 0 0 0

3 1.0599 20.6943 0.8140 20.0782 0 0

4 0.4538 20.5150 1.2228 0.0729 0 0
5 0 0 0.7624 0 20.0936 0.1025

FIG. A2. Observed mass moment centroid loca-

tions (asterisks) and directional variance (light-gray

ellipses) for the five k-means clusters of North

Atlantic TC track data. The mean centroid value is

markedwith a dark x, and themean variance ellipse is

shown with a dark line. The MDR index is the SST in

the MDR of North Atlantic TCs. The GoM index is

the SST in the Gulf of Mexico. (a) The cluster-1 for-

mation area is the west-MDR. (b) Cluster 2 has for-

mations in the subtropics. (c) The cluster 3 formations

are in the MDR region. (d) The cluster-4 formations

are in the GoM area and Caribbean, and (e) cluster 5

recurves in the central North Atlantic.
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clusters (Kaufman and Rousseeuw 1990). Although two

clusters represent the highest mean sil value, based on an

examination of the degree of physical separation of the tracks

and based on the formation, location, and track length

distributions, a sil of five, which is the next maximum is se-

lected. In Fig. A1b, the occurrence of negative sil number in

1000 clustering attempts is shown. Low values indicate a low

number of misclassified tracks (Kaufman and Rousseeuw

1990). Again, a two-cluster solution is an optimal choice, but

five and seven clusters are also local minima. The combina-

tion of a local maximum in mean sil value and local minima of

negative sil numbers at five show an organization in the data

at five clusters that is cohesive and well classified. Based on

these results, five clusters were selected for both a relative

maximum in mean sil and a relative minimum for negative sil.

Using a similar selection criterion, six clusters were found in

N09, where the earlier, HURDAT (1948–2006) historical

track record was used. Differences in the clustering include a

new expanded dataset, different time periods, 6-h versus 2-h

interpolated data, and exclusion of tracks of single point length.

The resulting X and Y locations of centroid values, depicted

as stars and the three directions of variance values (X, Y, and

covariance XY), depicted as ellipses, are shown in Figs. A2a–e

for each of the five clusters as are the cluster-mean values (dark

x and thick ellipses). Table A1 presents the mean centroid

location and directional variance for each cluster (1–5).

FIG. A3. (a) The average of North Atlantic tropical storm formation day 850-hPa heights

for all clusters showing the location of the subtropical high and the predominant low-level

flow. (b)–(f) Anomalies of 850-hPa heights for each cluster (contours), with significant areas

(to the 5% level using a Student’s t test) indicated by color shades.
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Figure A3a is the average of North Atlantic tropical cyclone

formation day, 850-hPa heights for all clusters showing the

location of the subtropical high and the predominant low-level

flow. In Figs. A3b–f anomalies for each cluster are contoured.

Colors show anomalies significant to the 5% level using a

Student’s t test. Cluster 2, the subtropical cluster (Fig.A3c), has

close contours near the East Coast, and the color indicates a

small intensification of the subtropical high in the west and

steering toward the north along the coast. This agrees with the

formation locations and the tracks for cluster 2. Cluster 3, the

standard MDR cluster (Fig. A3d), is related to an intensifica-

tion of the subtropical high, centered on the east and center of

the climatological feature (Fig. A3a). With that is increased

steering across the basin toward the North American east

coast. The pattern for cluster 4, the GoM/Caribbean cluster

(Fig. A3e), is consistent between the flow around the low

pressure center in the GoM and the low pressure center over

the northeastern United States, and the fact that the cyclones

stay in theGoM and travel northward toward the coast. Cluster

5, the central Atlantic cluster (Fig. A3f), consists of tracks that

predominately drift northward.

APPENDIX B

The Poisson Regression Models

Kendall’s tau correlations for all cluster formations per

season on the select indices are generally weak (Table B1),

with MDR and Niño variables emerging as the highest corre-

lations to the clusters with an average absolute value over all

clusters of 0.18 and 0.20, respectively. The AMM and MDR

indices are highly correlated with each other at 0.79. However,

the MDR index correlates a bit higher with cluster 3 than

AMM (0.37 vs 0.32) and overall for all clusters. MDR andNiño
variables were found to be sufficient, accounting for much or

all of the nonrandom component of the total North Atlantic

basin TC tracks, in Sabbatelli and Mann (2007).

The Poisson regressionmodel chooses identical predictors in

some cases whether AIC or BIC is used as the criterion, and in

some cases AIC leads to additional predictors being selected.

The coefficients of the best models identified (fitting) for each

cluster are shown in Table B2. Then, to estimate (simulate) the

Poisson rate,

l
it
5X

t
b , (B1)

where formations lit are identified for cluster i and year t, Xt is

the matrix of predictors, and b is the coefficient vector.

Since our application considers simulation from the model

that is fit, we simulate the conditional distribution of the

number of TCs for the season for each cluster, considering also

the uncertainty distribution of the regression parameters b.

Recognizing that the AIC and the BIC penalize bias and var-

iance in model fitting to different degrees, we opted to use the

larger model selected by AIC but then consider the additional

uncertainty in fitting that model (which potentially has a lower

bias than the BIC selected model) and use that in the sampling

process for the simulation.

For the multivariate DAG considering both climate indi-

cators and TCs, the following structure that respects the spatial

dependence across the clusters and the dependence on the

climate covariates was identified. Clusters 1 and 2 are functions

of the MDR index (Table B1; step 1); clusters 3 and 4 are

functions of the MDR index, the Niño-3.4 index, and cluster 2

(step 2); and cluster 5 is a function of clusters 3 and 4 (step 3).

Table B2 shows these successive steps in the computation of

predictors with plain (step 1), boldface (step 2), and italic (step

3) text, and Fig. 3 shows the corresponding DAG.

To develop the stochastic catalog for the upcoming season,

we consider N simulations from the DAG identified. For each

simulation, we use the DAG to simulate the number of TCs, hi
for each cluster i. Next, formation locations for hi TCs are

randomly sampled from the historical TCs identified with that

cluster. HITS is then used to simulate tracks starting from each

of those locations.
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