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ABSTRACT

East Africa has two rainy seasons: the long rains [March–May (MAM)] and the short rains [October–
December (OND)]. Most CMIP3/5 coupled models overestimate the short rains while underestimating the
long rains. In this study, the East African rainfall bias is investigated by comparing the coupled historical
simulations from CMIP5 to the corresponding SST-forced AMIP simulations. Much of the investigation is
focused on theMRI-CGCM3model, which successfully reproduces the observed rainfall annual cycle in East
Africa in the AMIP experiment but its coupled historical simulation has a similar but stronger bias as the
coupled multimodel mean. The historical–AMIP monthly climatology rainfall bias in East Africa can be
explained by the bias in the convective instability (CI), which is dominated by the near-surface moisture static
energy (MSE) and ultimately by theMSE’s moisture component. The near-surfaceMSE bias is modulated by
the sea surface temperature (SST) over the western Indian Ocean. The warm SST bias in OND can be
explained by both insufficient ocean dynamical cooling and latent flux, while the insufficient shortwave ra-
diation and excess latent heat flux mainly contribute to the cool SST bias in MAM.

1. Introduction

East Africa has been undergoing increased frequency
and intensity of droughts in recent decades, raising the
question of whether the drying trend will continue in a
warmer future climate as forced by anthropogenic
emissions of greenhouse gases (GHGs). Some studies
proposed that the recent drying trend can be attributed
to SST anomalies over the Indian Ocean induced by
anthropogenic forcing (Funk et al. 2008; Williams and
Funk 2011), suggesting an extension of the current
drying trend into the near future. However, there is a
strong consensus in model projections from the In-
tergovernmental Panel on Climate Change (IPCC)

Fourth Assessment Report (AR4) and the more recent
phase 5 of the Coupled Model Intercomparison Project
(CMIP5; Taylor et al. 2012) that precipitation over East
Africa will increase (Shongwe et al. 2011; Otieno and
Anyah 2013a,b), implying that the current dry condi-
tions will be, at least partly, ameliorated in the near
future.
The reliability of these optimistic projections on East

African future hydroclimate and their suitability to
serve as the foundation for the development community,
however, depend on the performance of the models in
reproducing past and current East African hydro-
climate. By examining the performance of both SST-
forced (AMIP style) models and the coupled models
used in the CMIP5 historical experiment (CMIP style)
in simulating the East African long rains [March–May
(MAM)], Yang et al. (2014) showed that the SST-forced
models are in general able to capture the observed
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decadal variability of the long rains, which is primarily
driven by the SST variations over the Pacific Ocean. The
coupled models, which are used for the twenty-first
century climate projections, however, generally fail to
capture the correct long rains–SST relationship on de-
cadal or longer time scales. Moreover, the coupled
models misrepresent the East African rainfall annual
cycle by overestimating the short rains [October–
December (OND)] and underestimating the long
rains, which has also been reported for the CMIP3
coupled models (Anyah andQiu 2012). The cause of the
rainfall annual cycle bias in the CMIP5 coupled models
and its implications for the projections from these cou-
pled models are still not clear.
Previous studies have revealed that there are some

global- or tropical-scale biases in the coupled models of
CMIP3 and CMIP5, e.g., the excessive equatorial Pacific
cold tongue and double intertropical convergence zone
(ITCZ) (Li and Xie 2014), weak Atlantic meridional
overturning circulation (AMOC) (Wang et al. 2014),
and an unrealistic mean thermocline slope tilting up-
ward toward the eastern Indian Ocean (Cai and Cowan
2013; Li et al. 2015). These large-scale biases in the
coupled models might potentially affect the pre-
cipitation simulations over East Africa and the linkage
between the two needs to be explored. In explaining the
East African rainfall annual cycle, Yang et al. (2015)
proposed that it is modulated by the near-surface moist
static energy (MSE), which in turn is controlled by the
off-coast SSTs as well as the low-level atmospheric cir-
culation. Here we examine whether the MSE frame-
work can be applied to understand the annual cycle bias
over East Africa in the CMIP5 coupled models.
In this paper, we will analyze the coupled-model-

induced bias of the East African rainfall annual cycle by
comparing the historical and AMIP simulations for each
model, with particular emphasis on the MRI-CGCM3
model, which best simulates the East African rainfall
annual cycle in the AMIP run but has a coupled model
bias typical of the multimodel mean. The paper is or-
ganized as follows: section 2 describes the data and
models used in this study as well as some special treat-
ment of calculations, section 3 shows the historical–
AMIP bias from multimodel statistics and individual
models, detailed analysis of the MRI-CGCM3 is in
section 4, and the main conclusions of the paper and
associated discussion are provided in section 5.

2. Data, models, and methods

For observed precipitation, we use version 6 of the
Global Precipitation Climatology Centre (GPCC)
monthly precipitation (Rudolf et al. 2010), which is a

gauge-based, 0.58 longitude 3 0.58 latitude gridded
global land surface dataset for the period of 1901–2010;
version TS 3.21 of monthly precipitation over global
land areas from the Climatic Research Unit at the
University of East Anglia (CRU; Harris et al. 2014)
covering from 1901 to 2009; version 2.2 of the Global
Precipitation Climatology Project (GPCP) monthly
precipitation dataset from 1979 to 2010 (Huffman et al.
2009), which combines gauge observations and satellite
data into 2.58 3 2.58 global grids; Climate Prediction
Center (CPC)MergedAnalysis of Precipitation (CMAP)
(Xie and Arkin 1997), which is also monthly satellite and
gauge data covering from 1979 to 2011; version 7 of
Tropical Rainfall Measuring Mission (TRMM) daily
precipitation (Huffman et al. 2007) covering from 1998 to
2014; and precipitation from the European Centre for
Medium-Range Weather Forecasts (ECMWF) interim
reanalysis (ERA-Interim) (Dee et al. 2011), which covers
the post-1979 period and is the latest of the ECMWF
reanalyses.
In this study, 21 of the CMIP5 models that have pre-

cipitation available for both the historical and AMIP
experiments are used. (Their names are listed in Fig. 3
and Fig. 4.) Only one run is chosen from each model in
the calculation of the multimodel mean and other sta-
tistics across these models. As most models cover only
the period before 2005 for the historical runs, the base
period we choose to calculate climatology for both ob-
servations and simulations is 1979–2005 except that for
the TRMM daily precipitation data, where 1998–2005 is
used instead. In this study, we focus on the land areas of
East Africa (108S–128N, 308–528E) that show a bimodal
rainfall annual cycle and an arid/semiarid annual mean
climatology by applying the following criteria to the
GPCC precipitation dataset: 1) precipitation rate in
March–May greater than both seasons of January–
February and June–September and 2) annual mean
precipitation rate less than 2mmday21. The first crite-
rion follows Yang et al. (2015) to exclude themonsoonal
areas with a single rainfall peak in local summer and thus
isolates the bimodal annual cycle region. The second
criterion is added here to exclude the active equatorial
convection areas where there are also two rainy seasons
but the annual mean rainfall is much larger than in the
arid/semiarid areas. The resulting areas over East Africa
are shown as gray grids in the mini panel of Fig. 1. Area
average over East Africa in this study is only applied to
these grids unless otherwise stated.

3. CMIP5 multimodel statistics

Figure 1 shows the East African rainfall annual cycles
from different observational datasets: ERA-Interim

9790 JOURNAL OF CL IMATE VOLUME 28



and AMIP runs of the 21 CMIP5 models. The observed
annual cycles are close to each other, whether the ob-
servation is based on gauge (GPCC and CRU) or sat-
ellite (TRMM) or their combination (CMAP and
GPCP), establishing a solid reliability for the observed
rainfall annual cycle over East Africa. The character-
istic bimodal annual cycle is apparent from the obser-
vations, with themajor rainy season duringMAM (long
rains) and the second rainy season during OND (short
rains). Precipitation from ERA-Interim generally fol-
lows the observed annual cycle except for the short
rains where the reanalysis can be 0.5mmday21 greater
than the observed. Because a reanalysis dataset is
influenced both by the assimilated observations and by
the model, reanalyses may share some similar biases
with GCMs especially for precipitation. Rainfall an-
nual cycles from the AMIP runs show some degree of
spread among different models but the multimodel
mean (the blue line) or their median (red horizontal
lines in the boxes) does reproduce the bimodal feature.
However, the multimodel mean overestimates the
rainfall in all months except April and May. The short

rains are positively biased in models such that they are
comparable with the long rains. This bias in AMIP runs
might arise from the AGCM’s excess precipitation re-
sponse to the SST gradient over the western Indian
Ocean as found in previous work (e.g., Bollasina and
Ming 2013) and will not be addressed here. Instead, we
will focus on the bias arising from the atmosphere–
ocean coupling by comparing CMIP5 historical runs to
the AMIP runs.
Figure 2 shows the difference of East African rainfall

annual cycles between the historical coupled runs and
the corresponding AMIP runs from the 21 CMIP5
models. The historical–AMIP rainfall differences are
largely negative from January to May. Moreover, the
historical run is drier than the AMIP for all models
during February–April, with the largest multimodel
mean discrepancy (.1mmday21) occurring in April.
During the summer season of June–September (JJAS),
the historical–AMIP rainfall difference is near zero and
only the September multimodel mean difference is
greater than 0.5mmday21. The multimodel mean dif-
ference of historical–AMIP rainfalls peaks at around

FIG. 1. East African rainfall annual cycles from observations, ERA-Interim, and AMIP runs of 21 CMIP5 models. All of the annual
cycles are averaged over the gray shaded grids as shown in the mini panel, where the red lines are the 1-km elevation contours. Box plots
show the statistics across the 21 models and the blue line is the multimodel mean (MMM).
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1mmday21 in October, the first month of the short
rains, decreases during the following two months, and
falls to a slight negative value in December. Overall, the
historical runs are wetter than theAMIP runs during the
short rains and drier during the long rains.
Figure 3 shows the East African rainfall annual cy-

cles of CMIP5 individual models for the AMIP and
historical runs as compared to the GPCC result. For
most models, the historical runs (red lines) are wetter
than the AMIP runs (blue lines) during OND while
they are drier during MAM especially April, consistent
to the multimodel mean historical–AMIP results in
Fig. 2. For the AMIP run, some models are highly
correlated with the GPCC (e.g., MRI-CGCM3, IPSL-
CM5A-LR, FGOALS-g2, and CSIRO Mk3.6.0) while
somemodels are not [e.g., Institute of Numerical Methods
of the Russian Academy of Sciences, Climate Model,
version 4 (INMCM4), BNU-ESM, and NorESM1-M].
The correlation coefficients with the GPCC, as well
as the root-mean-square errors (RMSE) compared to
the GPCC, for all the CMIP5 AMIP and historical
runs are shown in the scatterplots of Figs. 4a and 4b.
There are five AMIP models with a correlation

coefficient greater than 0.8 and a RMSE less than
0.5mmday21, namely MRI-CGCM3, IPSL-CM5A-LR,
IPSL-CM5A-MR, CMCC-CM, and MPI-ESM-MR
(Fig. 4a). Moving from AMIP to historical runs
(Fig. 4b), all of them have a higher RMSE and four
of them (except MPI-ESM-MR) have a less correla-
tion coefficient. Of all these 21 models, MRI-CGCM3 is
of particular interest. Its AMIP run reproduces
the GPCC annual cycle very well but when coupled,
it dramatically overestimates the OND rainfall and
underestimates the MAM rainfall, similar to the cou-
pled multimodel mean bias. Therefore, MRI-CGCM3
serves as an ideal model to study the bias induced by
turning from SST-forced GCMs into atmosphere–
ocean coupled GCMs.

4. Results from MRI-CGCM3

Figure 5 shows the historical–AMIP monthly clima-
tology rainfall difference of MRI-CGCM3 over East
Africa and surrounding areas. It is largely negative
over East Africa from January to May and the abso-
lute value is greatest in April, consistent with the

FIG. 2. East African historical–AMIP rainfall annual cycles from 21 models of CMIP5 (box plots). The blue line is the MMM, which is
significant from zero at the level 0.1 of the two-sided Student’s t test for months January, February, March, April, and October.
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multimodel mean result in Fig. 2. It is noted that the
January–May negative values over East Africa are ac-
companied by a large-scale pattern of dry north and
wet south over the Indian Ocean, suggesting that the
dry biases might be associated with large-scale dy-
namics and the associated southward shifts of the ITCZ
in the historical runs. Starting from June, a strong wet
bias develops over the western Indian Ocean, abruptly

shifting the biases over the Indian Ocean into a new
pattern of wet west and dry east and keeping this new
pattern until the end of the year. This large-scale shift
of the historical–AMIP precipitation difference has
important impacts over East Africa, turning the pre-
vious negative precipitation biases into positive from
June to November. The positive bias over East Africa
peaks in September and October and turn slightly

FIG. 3. East African rainfall annual cycles in GPCC and CMIP5 individual models for the AMIP and historical experiments.

15 DECEMBER 2015 YANG ET AL . 9793



negative in December, consistent with the multimodel
mean result in Fig. 2.

a. Convective instability and MSE

To understand the historical–AMIP monthly cli-
matology rainfall difference in MRI-CGCM3, we cal-
culate the convective instability (CI) as measured by
near-surface moist static energy minus 700-hPa satu-
rated moist static energy (Yang et al. 2015). The
historical–AMIP monthly climatology of the CIs are
shown in Fig. 6. The CI differences generally agree
well with rainfall in Fig. 5. There is also a large-scale
north–south contrast from January to May over the
Indian Ocean. During this period, the northern Indian
Ocean and East Africa have negative CI differences,
implying that the atmosphere over these regions is
more stable and precipitation is suppressed in the
historical run compared to in the AMIP run, which
explains the dry bias over these regions in Fig. 5. The
CI also develops a positive bias over the western
Indian Ocean starting from June, destabilizing the
atmosphere in the historical run and enhancing pre-
cipitation there and over East Africa. It should be noted
that the evolutions of the CI and rainfall biases are
not synchronous over East Africa after June and the CI
seems to lead rainfall by one month. For example,
the CI bias over East Africa peaks in August and Sep-
tember while the rainfall bias peaks in September and

October. Also, the CI bias turns negative over much
of East Africa in November while the rainfall bias
is still slightly positive and becomes negative in
December.
We decompose the CI into its components of near-

surface moist static energy and 700-hPa saturated moist
static energy and find the former is the dominant term
and the latter is secondary and has a slightly destabiliz-
ing effect over East Africa. Therefore, the dominant
component of the near-surface moist static energy is
further decomposed into components associated with
near-surface temperature, moisture, and geopotential
and it is found that the temperature and geopotential
components are much smaller in magnitude than the
moisture component, which is shown in Fig. 7. It has very
similar spatial patterns to those of CI in Fig. 6. Hence the
change in CI is dominated by the change in low-level
specific humidity, which is also the case for the CI annual
cycle in observations (Yang et al. 2015).
Figure 8 summarizes the relationship between rainfall

biases of historical–AMIP and CI as well as its different
components for MRI-CGCM3. The rainfall bias annual
cycle (black solid line) is very similar to the multimodel
mean (blue solid line in Fig. 2) and characterized by
overall positive values in the short rains but negative
values in the long rains. The rainfall bias can be ex-
plained by the CI bias and the latter in general leads by
one month. Decomposition of the CI shows that the

FIG. 4. Scatterplot of correlation coefficient with the GPCC rainfall annual cycle vs RMSE compared to the GPCC
for the CMIP5 (a) AMIP and (b) historical runs.
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moisture component of the near-surface moist static
energy emerges as the dominant component.

b. Surface temperature and heat flux

The fact that the historical–AMIP CI bias, or
equivalently the near-surface moist static energy bias,
agrees well with the rainfall bias raises the question of
what controls the near-surface moist static energy
anomaly. Yang et al. (2015) proposed that SSTs over
the western Indian Ocean play an important role in
modulating the East African rainfall annual cycle via
controlling the near-surface moist static energy of the
air flowing onto the continent. We therefore examine if
this mechanism can be applied to explain the rainfall
difference between the historical run and the AMIP
run. Figure 9 shows the historical–AMIP monthly cli-
matology surface temperature (which is SST over the
ocean) for the MRI-CGCM3. This is very similar to the
spatial patterns of CI in Fig. 6 or the moisture compo-
nent of near-surface moist static energy in Fig. 7 over
the Indian Ocean. The SST bias has a pattern of cold
north and warm south from January to May, with the
coldest bias over the Arabian Sea. A pattern of warm
west and cold east develops after May and maintains

until October. This new pattern starts to decay from
November and restores to the January–May north–
south pattern in December. Therefore, the SST dif-
ference between the historical and AMIP run can
largely explain the CI and the consequent rainfall bia-
ses over East Africa.
Figure 9 also shows the historical–AMIP surface wind

difference. In general, the winds blow from the north to
the south, owing to the large-scale thermal contrast of
cool north and warm south and the consequent pressure
gradient bias. The pattern of the surface wind biases
implies that the Asian monsoon circulation is strength-
ened in winter but weakened in summer, suggesting that
there might be a strong connection between the bias in
East Africa and that in the large-scale Asian monsoon.
The winds over the equatorial Indian Ocean are domi-
nated by easterlies during the latter half year, which
contributes to the maintenance of the warm SST bias
over the western Indian Ocean (near the coast of
East Africa).
To understand whether the SST annual cycle differ-

ence between the historical and AMIP run arises from
surface heat flux or ocean dynamics, we need to calcu-
late the heat budget of the mixed layer of the ocean. The

FIG. 5. Historical–AMIP monthly climatology rainfall in MRI-CGCM3. The red box outlines the region of 108S–128N, 308–528E. Only
grids significant at the level 0.05 of the two-sided Student’s t test are shaded.
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historical–AMIP form of the ocean mixed layer heat
budget can be written as

rc
p
h
›T 0

›t
5R0

s 1R0
l 1LH0 1 SH0 1D0

o , (1)

where primes denote the historical–AMIP differences;
r, cp, h, and T are the seawater density, specific heat at
constant pressure, mixed layer depth, and mixed layer
average temperature, respectively; the left-hand side is
the heat storage tendency and the right-hand side terms
are the net shortwave radiation, net longwave radiation,
latent flux, sensible heat flux (defined as positive into the
ocean), and the three-dimensional advection and diffu-
sion by ocean dynamics, respectively.
All the surface flux terms are archived for the CMIP5

models and thus can be estimated directly. The ocean
dynamics term can be estimated as a residual in Eq. (1);
that is,

D0
o 5 rc

p
h
›T 0

›t
2 (R0

s 1R0
l 1LH0 1 SH0) . (2)

Figure 10 shows the heat budget annual cycle for
MRI-CGCM3 averaged over the ocean grids within

108S–108N and 308–608E as well as the corresponding
historical–AMIP SST annual cycle difference. The
mixed layer average temperature is approximated by
SST when we estimate its tendency. Based on estimates
of previous studies (Schneider 1996; de Boyer
Montégut 2004), a constant 25-m-deep mixed layer is
selected to estimate the heat storage change in the heat
budget in this region. It can be seen from Fig. 10 that
the sensible heat flux and the longwave radiation are
much smaller in amplitude compared to other terms
and the heat budget is balanced among heat storage
tendency, latent heat flux, shortwave radiation, and
ocean dynamics.
The SST annual cycle (red solid line) is characterized

by warm biases during June–October and cold biases
during the other months and dramatic transitions be-
tween the two phases. The latter is reflected by the
historical–AMIP heat storage tendency (rcphdT 0/dt)
annual cycle (black solid line). During the cold-to-
warm transition from April to June, the heat storage
tendency is dominated by insufficient upward latent
flux and insufficient ocean dynamical cooling. The la-
tent heat flux is larger in magnitude than the ocean
dynamical term in April but smaller in June. In May,

FIG. 6. As in Fig. 5 except for CI measured by near-surface moist static energy (hs) minus 700-hPa saturated moist static energy
(h

700hPa
* )—that is, hs 2h

700hPa
* . Only grids significant at the level 0.05 of the two-sided Student’s t test are shaded.
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the magnitudes of these two terms are comparable. The
insufficient ocean dynamical cooling term maintains
the warm SST bias until October when the SST bias
decays close to zero. The second SST transition, from
warm to cold, peaks in October and November and too
little shortwave radiation (R0

s, blue solid line) domi-
nates the negative heat storage tendency, probably
owing to excess precipitation and clouds (Fig. 5). The
dominant term eventually shifts to the excess latent
heat flux (LH0, green solid line) in January and Feb-
ruary, perhaps arising from stronger Asian winter
monsoon northeasterlies over the Indian Ocean.
Therefore, insufficient ocean dynamical cooling and
latent flux both are responsible for the development of
the warm SST bias, while insufficient shortwave radi-
ation and excess latent heat flux mainly contribute to
the cold SST bias.

5. Conclusions and discussion

In this study, we investigate the coupled-model-
induced bias of the East African rainfall annual cycle
common in CMIP3/5 that overestimates the short rains
(OND) and underestimates the long rains (MAM) by

comparing the historical (CMIP style) and the corre-
sponding AMIP (AMIP style) runs for each model, with
particular emphasis on the MRI-CGCM3. The frame-
work of convective instability (CI) and moist static

FIG. 7. As in Fig. 5 except for the moisture component of the near-surface moist static energy (i.e., Lyq). Only grids significant at the level
0.05 of the two-sided Student’s t test are shaded.

FIG. 8. Rainfall and CI (as well as its different components) of
historical–AMIP for MRI-CGCM3 averaged over East Africa (the
gray shaded grids shown in the mini panel of Fig. 1). The near-
surfacemoist static energy hsrc and and the 700-hPa saturatedmoist
static energy h

700mb
* are shown.. CI is measured as hsfc 2h

700mb
* , and

hsfc(q) and hsrc(T) are the components of hsfc associated with
moisture and temperature, respectively.
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energy (MSE) link this bias to other tropical- or global-
scale biases that have been found in previous studies
(Cai and Cowan 2013; Wang et al. 2014). The following
conclusions have been reached:

d East Africa is wetter in CMIP5 historical runs than
AMIP runs during the OND short rains season but
drier in the MAM long rains season.

d The AMIP run of MRI-CGCM3 reproduces the
observed rainfall annual cycle over East Africa very
well while its coupled historical run has a similar but
stronger bias as the coupled multimodel mean. There-
fore, MRI-CGCM3 serves as an exemplary model to
study the coupled-model-induced rainfall bias over
East Africa.

d The historical–AMIP monthly climatology rainfall
bias can be explained by the bias in CI, which itself is
dominated by the bias in near-surface MSE. The
moisture component is the dominant term in the
near-surface MSE while the temperature component
is secondary.

d The near-surface MSE bias of historical–AMIP is
modulated by SST bias over the western Indian
Ocean.

d Insufficient ocean dynamical cooling and latent flux
both are responsible for the development of the
warm SST bias of historical–AMIP inMRI-CGCM3,
while insufficient shortwave radiation and excess
latent heat flux mainly contribute to the cold
SST bias.

Wang et al. (2014) have shown that there is a global-
scale cold Northern Hemisphere–warm Southern
Hemisphere bias common to the CMIP5 coupled
models, which they propose is linked to the Atlantic
meridional overturning circulation being too weak.
Consistently, in an observational and modeling study,
Kang et al. (2015) found that the Atlantic overturning
was indeed responsible for the Northern Hemisphere
being warmer than the Southern Hemisphere. The cold
north and warm south SST bias over the Indian Ocean
dominant during December–May found in our study
seems to be a local manifestation of this global-scale
bias and can explain the drier long rains season over
East Africa in coupled models. However, during June–
November, the north–south asymmetry over the Indian
Ocean is replaced by a west–east contrast: warmer-than-
observed SSTs in the west and colder-than-observed

FIG. 9. As in Fig. 5 except for surface temperatureTs (shading) and near-surface windsVas (quivers). Only grids significant at the level 0.05
of the two-sided Student’s t test are shaded.
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SSTs in the east. These SST biases in theMRI-CGCM3
coupled model greatly increases rainfall over East
Africa and can explain the wet bias during the short
rains season. The mechanism behind the warm west
and cold east asymmetry might be linked to the un-
realistic mean thermocline slope tilting upward toward
the eastern Indian Ocean as pointed out in Cai and
Cowan (2013), who used it to explain the larger am-
plitude of the Indian Ocean dipole (IOD) in CMIP3/5
models. However, what ultimately causes the ther-
mocline bias and the detailed processes that develop
the bias are less clear and will be explored in the
future.
We also notice that the coupling-induced biases of

East African precipitation and the Indian Ocean SSTs
in the model MRI-CGCM3 (Fig. 5 and Fig. 9) are ac-
companied by dry biases of the Indian summer mon-
soon. Recent studies have shown that SST biases over
the Indian Ocean (Prodhomme et al. 2014), including
the cold bias of the Arabian Sea (Levine et al. 2013),
could contribute to the dry Indian summer monsoon in
coupled models relative to observations or their cor-
responding SST-forced simulations. However, a dry
Indian summer monsoon could impact Indian Ocean
SSTs and East African precipitation via change of the
surface winds over the Indian Ocean. Drier summer
India implies a weak monsoon circulation, including
the low-level winds in the Somali jet region. This could
lead to reduced evaporation and weakened coastal
upwelling over the western Indian Ocean off the coast

of East Africa and warm the SST biases. This is con-
sistent with the analysis of SST biases in the coupled
models. However, this anomalous atmospheric forcing
is most likely a feedback rather than the cause of the
SST bias over the western Indian Ocean, as illustrated
in the surface heat budget difference between theMRI-
CGCM3 AMIP run and the ERA-Interim reanalysis in
Fig. 11. The latent heat flux difference (green solid line)
is negative year round over the western Indian Ocean
and thus is continually cooling the SSTs there. There-
fore, the cause of the western Indian Ocean SST bias is
from the ocean component of the atmosphere–ocean
coupled system.
The warm bias in the west and cold bias in the east

over the Indian Ocean weakens the zonal asymmetry of
the observed SST. This weakening is not unique to the
Indian Ocean but can also be seen over the Pacific and
Atlantic Oceans (Fig. 12a). The annual mean SST zonal
asymmetry bias is weak over the Indian Ocean as a re-
sult of pronounced seasonality but very strong over the
Pacific and Atlantic Oceans because of dramatic
warming over the tropical eastern basins, especially near
the western coasts of South America and Africa. The
warm biases over the tropical eastern Pacific and At-
lantic in coupled climate models have also been re-
ported in previous studies and explained by excess heat
flux into the ocean due to insufficient low-level clouds
(Mechoso et al. 1995; Huang et al. 2007) and insufficient
cooling by ocean dynamical processes (Colas et al.
2012). The general weakening of the zonal SST

FIG. 10. Historical–AMIP SST and the ocean mixed layer heat budget in Eq. (1) in MRI-CGCM3, averaged over the
ocean grids of 108S–108N, 308–608E.

15 DECEMBER 2015 YANG ET AL . 9799



asymmetry over all the tropical ocean basins in coupled
climate models suggests that these coupled models
might have difficulty in capturing the correct ocean
processes that are important in determining the SSTs in

equatorial and coastal upwelling regions. Consequently,
these coupled models might underestimate the ther-
mostat mechanism as proposed by Clement et al. (1996).
Figure 12b shows the change of multimodel mean

FIG. 11. Difference of the surface heat budget terms in Eq. (1) between the MRI-CGCM3 AMIP experiment and
ERA-Interim, averaged over the ocean grids of 108S–108N, 308–608E.

FIG. 12. (a) Annual mean SST climatology of the CMIP5AMIP runs (contours) and its change from the AMIP to the multimodel mean
of the historical runs (colors). (b) Multimodel mean annual mean SST climatology of the CMIP5 historical runs (contours) and its change
from the historical to RCP8.5 runs (colors; the 308S–308N tropical mean change has been removed to emphasize the spatial pattern of the
nonuniform component). The models used to calculate the multimodel mean are the 38 models from the CMIP5 that have surface
temperature available in both the historical and RCP8.5 runs. (The descriptions of these models are from http://kage.ldeo.columbia.edu:
81/expert/SOURCES/.LDEO/.ClimateGroup/.PROJECTS/.IPCC/.CMIP5/.MultiModelMeans/.MMM-v2/.dataset_documentation.
html.) The climatology is estimated based on the period of 1979–2005 for the AMIP and historical runs and 2070–99 for the RCP8.5
runs. The units are 8C.
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annual mean SST from the 1979–2005 historical
runs to the 2070–99 RCP8.5 runs in CMIP5 (colors;
the 308S–308N tropical mean has been removed to
emphasize the nonuniform component). This also
implies a weakening of the zonal SST asymmetry near
the equator over all the ocean basins. The projection
of much faster SST warming off the coast of East
Africa than over the equatorial eastern Indian Ocean
might partly explain the wetting projection in East
Africa. However, if the response of SSTs to anthro-
pogenic forcings in coupled models is biased by
their bias in simulating current tropical zonal SST
asymmetry, then the reliability of these SST pro-
jections and the associated precipitation projections
are questionable.
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