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ABSTRACT

Canonical correlation analysis (CCA) is evaluated for paleoclimate field reconstructions in the context of

pseudoproxy experiments assembled from the millennial integration (850–1999 C.E.) of the National Center for

Atmospheric Research Community Climate System Model, version 1.4. A parsimonious method for selecting

the order of the CCA model is presented. Results suggest that the method is capable of resolving multiple (3–13)

climatic patterns given the estimated proxy observational network and the amount of observational uncertainty.

CCA reconstructions are compared to those derived from the regularized expectation maximization method

using ridge regression regularization (RegEM-Ridge). CCA and RegEM-Ridge yield similar skill patterns that

are characterized by high correlation regions collocated with dense pseudoproxy sampling areas in North

America and Europe. Both methods also produce reconstructions characterized by spatially variable warm

biases and variance losses, particularly at high pseudoproxy noise levels. RegEM-Ridge in particular is subject

to significantly larger variance losses than CCA, even though the spatial correlation patterns of the two methods

are comparable. Results collectively indicate the importance of evaluating the field performance of methods

that target spatial climate patterns during the last several millennia and indicate that the results of currently

available climate field reconstructions should be interpreted carefully.

1. Introduction

A concerted research effort over the last decade has

focused on reconstructing global or hemispheric climate

during the last millennium using networks of climate

proxies (e.g., Folland et al. 2001; Jansen et al. 2007; North

et al. 2006; Jones and Mann 2004; Jones et al. 2009). These

efforts are in many ways an outgrowth of earlier studies

that developed reconstructions on regional scales,

particularly pioneering work in dendroclimatology that

extends back to the 1960s and 1970s (e.g., Fritts et al. 1971).

Recent efforts have employed single-proxy (e.g., Cook

et al. 1994, 2004; Briffa 2000; Briffa et al. 2001; Esper et al.

2002; Evans et al. 2002; D’Arrigo et al. 2006, 2009) or

multiproxy statistical approaches (Mann et al. 1998, 1999,

2005, 2007a, 2008; Jones et al. 1998; Crowley and Lowery

2000; Rutherford et al. 2005; Moberg et al. 2005; Hegerl

et al. 2007) to calibrate proxy records on observational

data during their period of overlap and subsequently to

reconstruct past climate variability using derived climate–

proxy relationships. Various efforts have demonstrated

the promise of these approaches (Cook et al. 1994, 2004;

Mann et al. 1998, 1999; Evans et al. 2002; Luterbacher

et al. 1999; Rutherford et al. 2005; Casty et al. 2005;

Pauling et al. 2006; Hegerl et al. 2007), but in some cases

results and methodologies have been vigorously debated
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(Broecker 2001; Huang et al. 2000; Harris and Chapman

2001; Esper et al. 2002; Beltrami 2002; González-Rouco

et al. 2003, 2006; von Storch et al. 2004, 2006; Pollack and

Smerdon 2004; Rutherford and Mann 2004; McIntyre

and McKitrick 2005; Xoplaki et al. 2005; von Storch and

Zorita 2005; Bürger and Cubasch 2005; Huybers 2005;

Wahl et al. 2006; Bürger et al. 2006; Zorita et al. 2007;

Lee et al. 2007; Smerdon and Kaplan 2007; Smerdon

et al. 2008b; Wahl and Ammann 2007; Ammann and Wahl

2007; Mann et al. 2003, 2005, 2007a,b,c, 2008, 2009;

Moberg et al. 2005, 2008; Hegerl et al. 2007; Küttel

et al. 2007; Christiansen et al. 2009). One of the principal

issues of this debate surrounds the magnitude of re-

constructed temperature variability during the last mil-

lennium on decadal and longer time scales, particularly as

it relates to the magnitude, phasing, and ubiquity of the

putative Medieval Climatic Anomaly and Little Ice Age

(e.g., Hughes and Diaz 1994; Broecker 2001; Mann 2002;

Bradley et al. 2003; Mann et al. 2003, 2005, 2007a,b,c,

2009). Although a great deal of progress has been made to

understand how various reconstructions may accurately

represent the characteristics of these past epochs, there

remain important unanswered questions about recon-

struction uncertainties. These questions are tied to under-

standing, for example, the impact of proxy distributions

and abundance, the connections between climate and

proxy responses across different spectral domains, the

response of proxies to multiple environmental vari-

ables, and the role of teleconnections and noise in the

calibration data—questions that are ultimately fundamen-

tal to the success of efforts to reconstruct past climatic

variability (e.g., North et al. 2006; Jansen et al. 2007).

An additional element of uncertainty in climate recon-

structions that has recently gained more attention is the

degree to which specific reconstruction methodologies

impose their own error and biases on derived recon-

structions. Here we focus specifically on the uncertainties

in hemispheric-scale temperature reconstructions of the

past millennium that arise principally from the applied

methodology. Reconstruction methods for this purpose

generally can be divided into two groups: one in which

individual indices are targeted (see discussion in Mann

et al. 2005) and climate field reconstruction (CFR) meth-

ods (Evans et al. 2001). Index methods target mean hemi-

spheric or global temperature time series as a predictand,

therefore yielding reconstructions of only these individual

indices (e.g., Groveman and Landsberg 1979; Esper et al.

2002, 2005; Crowley and Lowery 2000; Moberg et al. 2005;

Hegerl et al. 2007; D’Arrigo et al. 2006; Mann et al. 2007a,

2008). Although index methods have the disadvantage

of offering no spatial information, they have the benefit

of being more straightforward, robust, and likely re-

quire no more than a few tens of predictors for skillful

reconstructions of hemispheric or global temperature

variability (e.g., Crowley and Lowery 2000; Hegerl et al.

2007). In contrast to index approaches, CFR methods

attempt to reconstruct spatial patterns of temperature

variability, which is the fundamental promise of these

methods (e.g., Cook et al. 1994; Mann et al. 1998, 1999,

2005, 2007a, 2009; Rutherford et al. 2005; Evans et al. 2002;

Luterbacher et al. 2004; Xoplaki et al. 2005). CFR methods

can be complicated, however, by the ill-conditioned nature

of the problem, are more dependent on the stability of

climate–proxy connections and climate teleconnections,

and require more extensive distributions of proxies than

index reconstructions.

In spite of the differences between index and CFR

methods, the debate surrounding temperature recon-

structions of the last millennium has almost exclusively

been limited to comparisons between mean Northern

Hemisphere (NH) or global time series (e.g., Briffa and

Osborn 2002; Jones and Mann 2004; North et al. 2006;

Folland et al. 2001; Jansen et al. 2007); in the case of

CFRs, these mean time series are computed from the

underlying reconstructed fields. Consequently, there

have been few assessments of the robustness of spatial

patterns in the collection of available CFRs. Some field

comparisons of CFRs have been done on regional scales.

Cook et al. (1994) compared two CFR techniques applied

to dendroclimatic series in western Europe and eastern

North America and found them to produce similar results.

Similarly, Zhang et al. (2004) investigated two methods

for drought reconstructions over the continental United

States and also found their performance comparable. A

more recent study has compared the field skill of two

temperature field reconstruction methods over the North

Atlantic and the European continent (Riedwyl et al.

2009). At global and hemispheric scales, however, proxy

distributions are more diffuse, predictor networks com-

prise multiple proxies, and teleconnection patterns are

likely more essential to the skill of the reconstruction. It

therefore is crucial to evaluate not only the mean global

or hemispheric characteristics of CFRs but also the spatial

skill of the fields derived from these methods.

A significant challenge for CFR comparisons is that

researchers must use proxy networks of opportunity and

thus of variable composition in proxy type, location, and

temporal extent. Uncertainty in any given reconstruction

is therefore the combination of uncertainties in the

method used, the spatial sampling of the proxy network,

and the actual climate–proxy connection of each of the

proxy series used in the network. If the objective is to

isolate the impact of one of these factors, it is difficult to

do so from comparisons between these real-world CFR

results. The advent of pseudoproxy experiments (Mann

and Rutherford 2002) has circumvented some of these

1286 J O U R N A L O F C L I M A T E VOLUME 24



challenges, however, by granting a consistent test bed on

which to test reconstruction methodologies (González-

Rouco et al. 2006; von Storch et al. 2004, 2006; Mann et al.

2005, 2007a; Hegerl et al. 2007; Smerdon and Kaplan

2007; Smerdon et al. 2008b; Lee et al. 2007; Küttel et al.

2007; Riedwyl et al. 2009; Christiansen et al. 2009; Tingley

and Huybers 2010a,b).

Pseudoproxy experiments have typically employed

millennial integrations from general circulation mod-

els (GCMs) that only recently have become available

(González-Rouco et al. 2003, 2006; Ammann et al. 2007).

These experiments are generally performed with the

following steps: 1) the complete GCM field is subsampled

to mimic the availability of instrumental and proxy in-

formation in real-world climate reconstructions of the last

millennium; 2) the time series that represent proxy in-

formation are perturbed to simulate the spatial and

temporal noise characteristics present in real-world

proxies; 3) reconstruction algorithms are applied to the

model-sampled pseudo ‘‘instrumental data’’ and pseu-

doproxy series to derive a reconstruction of the climate

simulated by the GCM; and 4) the derived reconstruction

is compared to the known model target. There are, in-

deed, some open questions associated with these experi-

ments, such as whether the adopted noise models in the

pseudoproxy network are realistic and how well the model

statistics represent real-world climate characteristics that

affect reconstruction skill (e.g., teleconnections). Never-

theless, the utility of pseudoproxy experiments lies in their

ability to provide an objective dataset on which to test

reconstruction methods. While future improvements in

the implementation of pseudoproxy tests will undoubtedly

be made, much insight into the performance of multiple

reconstruction methods has already been gained from this

approach (von Storch et al. 2004, 2006; Mann et al. 2005,

2007a; Smerdon and Kaplan 2007; Lee et al. 2007; Küttel

et al. 2007; Hegerl et al. 2007; Riedwyl et al. 2009; Moberg

et al. 2008; Smerdon et al. 2008b; Christiansen et al. 2009;

Tingley and Huybers 2010a,b).

Here we investigate skill and uncertainty in CFRs aris-

ing from the application of a reconstruction algorithm

using canonical correlation analysis (CCA). CCA is a

well-established method within the climate sciences

(e.g., Anderson 1984; Barnett and Preisendorfer 1987;

Bretherton et al. 1992; Cook et al. 1994; Wilks 1995; von

Storch and Zwiers 1999; Luterbacher et al. 2000; Tippett

et al. 2003, 2008), but it has not been widely applied for

the purpose of deriving large-scale temperature CFRs.

[CCA is mentioned briefly in Mann et al. (1998) as being

unsuitable for their purposes and has more recently been

applied by Christiansen et al. (2009) as one of a number

of methods tested in the context of reconstructed NH

means.] Our purposes herein are to evaluate in detail the

application of CCA for reconstructing NH temperatures

during the last millennium and to specifically focus on the

field characteristics of the derived CFRs.

In addition to investigating the performance of CCA,

we compare CCA-derived results to those obtained us-

ing the regularized expectation maximization (RegEM)

method (Schneider 2001). RegEM is a recently favored

method for temperature reconstructions (e.g., Rutherford

et al. 2005; Mann et al. 2005, 2007a, 2008, 2009), but

pseudoproxy experiments also have shown some im-

plementations of RegEM to be susceptible to warm

biases and variance losses (Smerdon and Kaplan 2007;

Smerdon et al. 2008b; Riedwyl et al. 2009; Christiansen

et al. 2009). These findings are consistent with previous

pseudoproxy experiments that have demonstrated simi-

lar behavior associated with the Mann et al. (1998, 1999)

CFR method (von Storch et al. 2004, 2006). Because the

application of CCA requires selection of only three

model dimensions, it is straightforward to assess the skill

of the method and computationally cheap to construct all

possible models. This latter characteristic is in contrast

to the iterative and more computationally expensive

RegEM algorithm. Hence, comparison of the two methods

can help elucidate the strengths and weaknesses of each.

2. Data

We use pseudoproxies derived from the millennial sim-

ulation (850–1999 C.E.) of the National Center for Atmo-

spheric Research (NCAR) Community Climate System

Model (CCSM), version 1.4, a coupled atmosphere–ocean

GCM that has been driven with natural and anthropo-

genic forcings (Ammann et al. 2007). The simulated

model field of annual surface temperature means has

been interpolated to a 58 longitude–latitude grid using

bilinear interpolation (Smerdon et al. 2008a; Rutherford

et al. 2008). Multiple previous studies have used this field

with an incorrect geographic orientation and thus sam-

pled pseudoproxies from unintended locations (Smerdon

et al. 2010). Here we use the correct field orientation and

the intended pseudoproxy locations as represented in

Fig. 1. These 104 pseudoproxies were sampled from the

58 gridbox locations that approximate the actual proxy

locations of the Mann et al. (1998) multiproxy network.

White noise at four different levels was added to model

temperature time series from these selected locations

to produce pseudoproxy time series with signal-to-noise

ratios (SNRs), by standard deviation, of infinity (noise

free), 1.0, 0.5, and 0.25.

We also used a subsampling of the CCSM mean an-

nual temperature field to approximate the availability

of instrumental temperature data. Grid points missing

more than 30% of the annual data between 1856 and
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1998 C.E. in the Jones et al. (1999) dataset were excluded

from use as target data as described by Mann and

Rutherford (2002). This restriction limits the total

number of grid cells to 669 in the 08–708N region (the

target region). Also in keeping with instrumental data

restrictions, the subsampled instrumental (calibration)

data are constrained to 1856–1980 C.E.—all the annual

temperature values within this period are retained for

each targeted temperature grid. Note that the afore-

mentioned error regarding the incorrect geographic

orientation of the CCSM temperature field also affected

the applied instrumental data mask in previous studies

(Smerdon et al. 2010); our experiments herein have

applied the correct mask as intended by these earlier

studies.

3. Methods

a. Least squares CFRs as multivariate linear
regression

Multivariate linear regression is the underlying for-

malism of most CFR methods used to date. The funda-

mental approach relates a matrix of climate proxies to

a matrix of climate data during a common time interval

(generally termed the calibration interval) using a linear

model. For instance, let P be an m 3 n matrix of proxy

values and T be an r 3 n matrix of instrumental tem-

perature records, where m is the number of proxies, r is

the number of spatial locations in the instrumental field,

and n is the temporal dimension corresponding to the

period of overlap between the proxy and instrumental

data. We write the regression of T columns on P columns

for time-standardized matrices (T9 and P9) with rows

that have means of zero and standard deviations of one:

T 5 M
t
1 S

t
T9, P 5 M

p
1 S

p
P9,

where Mt is a matrix of identical columns obtained by

averaging T in its row direction, and St is a diagonal

matrix with elements that are the standard deviations of

the rows of matrix T; Mp and Sp are similarly defined for

matrix P. In these terms,

T9 5 BP9 1 «, (1)

where B is a matrix of regression coefficients with di-

mensions r 3 m, and « is the residual error. The error

variances of all the elements of « in (1) are simulta-

neously minimized if B is chosen as

B 5 (T9P9T)(P9P9T)�1, (2)

where the superscript T denotes the matrix transpose.

Temperature thus can be predicted, or ‘‘reconstructed,’’

using this regression matrix during periods in which

proxy data are available:

T̂ 5 M
t
1 S

t
BS�1

p (P�M
p
), (3)

where T̂ denotes a matrix of reconstructed temperature

values.

While the above formalism is straightforward, it works

best when the system is overdetermined; that is, the time

dimension n is much larger than the spatial dimension m

FIG. 1. Map of gridcell locations for the pseudoproxy network chosen to approximate the Mann et al. (1998)

proxy locations.
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because the covariances are more reliably estimated. The

challenge for CFR methods involves the manner in which

B is estimated in practical situations when this condition

is not met. It is often the case in climate applications that

the number of target variables exceeds the time di-

mension, yielding a rank-deficient problem. For instance,

in most global or NH CFRs, the number of grid cells in

the climate field is typically on the order of many hun-

dreds or a few thousands, while the observational record

usually contains 150 annual fields or less. The number of

proxies is typically on the order of a few tens to hundreds,

which may exceed or at least be comparable to the time

dimension. In such cases, the cross-covariance matrix

hT9P9Ti and covariance matrix hP9P9Ti cannot be well

estimated. The inversion in (2) therefore requires some

form of regularization. Published linear methods for

global temperature CFRs vary primarily in the form of

this regularization. In the following sections, we discuss

CCA and RegEM as the two regularization approaches

considered in this manuscript.

b. Canonical correlation analysis

For the purposes described herein, we outline the

Barnett and Preisendorfer (1987) version of CCA for-

malism as presented by Tippett et al. (2003, 2008). This

formalism as applied to the CFR problem is presented in

detail in the appendix and summarized below. Two el-

ements of the CCA application involve the eigenvalue

decomposition and subsequent truncation of the proxy

and temperature matrices. Both of these reductions are

helpful in real-world applications where the tempera-

ture and proxy fields each contain noise or small scale

features that cannot be reliably calibrated. Retaining

a subset of empirical orthogonal functions in both fields

can therefore guard against the possibility of calibrating

modes dominated by noise or local variability. CCA in

particular can be susceptible to random sampling fluc-

tuations when the number of temporal observations is

significantly less than the number of spatial locations in

the target field (e.g., Barnett and Preisendorfer 1987;

Bretherton et al. 1992), as is the case in the present CFR

context. Over short time intervals, these random fluc-

tuations can cause artificially high correlations between

patterns that account for very little variance in either

field, causing instabilities in the solutions due to sam-

pling variability. Prefiltering the proxy and temperature

matrices by retaining only a few leading modes there-

fore can improve the stability of CCA solutions. With

regard to the reduction of the temperature field spe-

cifically, there are examples in the literature of CFR

approaches that choose to either neglect or adopt a re-

duction of the field (e.g., Luterbacher et al. 2004; Mann

et al. 2007a). Although we build the potential for reduction

of the temperature field into the CCA formalism, the de-

gree of reduction is determined from a cross-validation

scheme that does not a priori require truncation. This

scheme is discussed later in the manuscript and provides an

objective means of determining whether reduction is

warranted and by how much.

Decomposition of the standardized proxy matrix P9

during the calibration interval using singular value de-

composition (SVD) (Golub and Van Loan 1996) is

written as

P9 5 U
p
S

p
VT

p , (4)

where the columns of Up represent spatial patterns

(EOFs) and the principal components (PCs) SpVp are

mutually orthogonal time series that combine with the

EOF patterns to produce the original dataset. The di-

agonal matrix Sp contains the nonnegative singular values,

with squares proportional to the variance captured by the

corresponding EOF–PC pairs. If the diagonal elements of

Sp decrease quickly, as is often the case in climatological

data where leading climate patterns dominate over many

more weakly expressed local patterns or noise, a reduced-

rank representation of P9 using only a few leading EOF–

PC pairs is a good approximation of the full-rank version.

Thus, we employ a reduced-rank representation of P9 such

that dp EOF–PC pairs are retained,

Pr 5 Ur
pSr

pVrT
p . (5)

Here Pr denotes the reduced-rank representation of P9,

and matrices with the superscript r are the truncated

versions of the SVD factors corresponding to the retained

number of dp singular values. Similarly, the reduced-rank

version of T9 is written as

Tr 5 Ur
t S

r
t V

rT
t , (6)

where Tr only uses dt singular values and the correspond-

ing number of singular vectors. Note that rank(Pr) 5 dp

and rank(Tr) 5 dt, whereas rank(P9) 5 min(m, n 2 1) and

rank(T9) 5 min(r, n 2 1), in the general case.

The above decompositions can be substituted into (2),

and the corresponding matrix of regression coefficients

written as

B
cca

5 Ur
t S

r
t V

r T
t Vr

p(Sr
p)
�1

Ur T
p

5 Ur
t S

r
t Or

t Sr
ccaOrT

p (Sr
p)
�1

UrT
p ,

where Or
t S

r
ccaOrT

p is the truncated SVD of the cross-

covariance matrix Vt
rTVp

r in which dcca leading canonical
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coefficients have been retained. From the formal deri-

vation in the appendix, the above expression for Bcca

takes a simple form:

B
cca

5 C
t
Sr

ccaWT
p , (7)

where Ct 5 Ur
t S

r
t O

r
t has the CCA temperature patterns

in its columns, and Wp 5 Ur
p(Sr

p)�1Or
p is the CCA proxy

weighting matrix.

Applying Bcca to P9 so as to reconstruct T9 is therefore

equivalent to a three-step procedure:

(i) use the weighting patterns Wp to convert P9 into the

CCA time series,

QT
p 5 WT

p P9;

(ii) scale these time series by the canonical correla-

tions, that is, the diagonal elements of Sr
cca, to pro-

duce the CCA time series for temperature,

Q̂T
t 5 Sr

ccaQ̂T
p ;

(iii) use the Ct patterns to reconstruct a standardized

version of the temperature fields,

T̂9 5 C
t
Q̂T

t .

Note that in our formulated pseudoproxy experiments

the actual CCA temperature time series,

QT
t 5 WT

t T9,

during the reconstruction period can be directly com-

pared with their prediction on the basis of the proxies in

item (ii) above. The use of these statistics is illustrated

further in section 4b(1).

For the nonstandardized version of temperature fields

and proxies given in (3), the CCA temperature CFR

becomes

T̂ 5 M
t
1 S

t
B

cca
S�1

p (P�M
p
). (8)

Performing this reconstruction thus requires the de-

termination of five matrices: two in which all columns

contain the mean vectors for the temperature field and

the proxies, Mt and Mp; the two diagonal matrices of the

temperature and proxy standard deviations, St and Sp;

and the CCA low-rank regression matrix Bcca. Under

the assumption of stationarity between the mutual proxy

and climate statistics, (8) can be used to reconstruct

temperatures in any temporal interval, including those

outside of the calibration period. The only formal

change is in the number of columns in matrices Mt and

Mp, which of course change to match the length of the

given reconstruction period.

The operator Bcca is a reduced-rank (rank(Bcca) 5

dcca) representation of the standard multivariate regres-

sion operator. Given calibration interval datasets T and

P, the matrix Bcca is completely determined upon the

selection of three parameters for truncated ranks, dcca,

dp, and dt. Note that traditional applications of CCA did

not involve rank reductions of the predictor and pre-

dictand matrices and thus only depended on dcca (see the

discussion in Bretherton et al. 1992). Steps for reducing

these matrix ranks by selecting dp and dt parameters

prior to estimating the CCA time series and maps were

added by Barnett and Preisendorfer (1987)—termed the

BP method by Bretherton et al. (1992). Tippett et al.

(2003) and Christiansen et al. (2009) used and referred to

this latter BP version as CCA, as we do in this study. For

some special subsets of dimensional selections, the CCA

formalism reduces to other specialized forms of mul-

tivariate regression. For instance, CCA reduces to PC

regression if the target field rank is not reduced and

dcca 5 min(dp, dt). PC regression has been applied in

multiple paleoclimate contexts (e.g., Luterbacher et al.

2004), and further research on the relative performance

of CCA and PC regression is warranted. Cogent dis-

cussions about the connection between CCA and mul-

tiple multivariate regression methods can be found in

Barnett and Preisendorfer (1987), Bretherton et al.

(1992), Cherry (1996), von Storch and Zwiers (1999),

and Tippett et al. (2008).

c. CCA model–dimension selection

Appropriate selections of the dcca, dp, and dt dimen-

sions are crucial for the application of the CCA method.

Previous CCA applications have proposed various forms

of model selection. Christiansen et al. (2009) set dp and dt

by maintaining a specific level of retained variance in T

and P and imposing the additional constraint that dcca

be equal to the minimum of dp and dt. Barnett and

Preisendorfer (1987) used principal component trun-

cation rules to determine dp and dt as proposed by

Preisendorfer et al. (1981). The number of canonical co-

efficients (dcca) was then estimated using jackknife cross-

validation statistics computed for a set of withheld single

time samples (‘‘leave one out’’). Tippett et al. (2003)

employed a similar approach but used a jackknife

cross-validation scheme to optimize all three truncation

dimensions. Our approach is similar to the latter appli-

cation, except we use a much cheaper ‘‘leave half out’’

approach to cross validation to reduce computational

costs. This procedure produces cross-validation statistics

by calibrating independently on either the first or second
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halves of the target data and using the left-out half for

validation. In an application using proxy data series with

annual resolution, this approach is also more conservative

with respect to validation of the reconstructed decadal–

centennial time scale variations.

To perform the leave-half-out cross-validation pro-

cedure, the instrumental period is split into two temporal

halves: 1856–1917 and 1918–80 C.E. We generate two sets

of reconstructions using (8) and calibrate using each half

of the target data to estimate the Bcca matrix, as well as

the means and standard deviation fields for the proxy and

temperature data (Mp, Sp, Mt, St). The reconstructions are

verified on the left-out halves of the instrumental data.

Two cross-validation statistics are used: 1) the area-

weighted root-mean-square error (RMSE) of the recon-

structed field relative to the target and 2) the correlation

between the reconstructed and target area–weighted

mean NH time series [NH mean correlation (NHMC)].

These validation statistics from both experiments are

combined to determine the statistics for the entire in-

strumental data interval from 1856–1980 C.E.

Using the above cross-validation scheme, we compute

the RMSE and NHMC for a range of dcca, dp, and dt

combinations. The optimal selection of dcca, dp, and dt

is based on the cross-validated reconstruction skill in

terms of either small RMSE or large NHMC. After this

selection, all matrix parameters of (8) are computed for

the entire calibration interval (1856–1980 C.E.) and used

for reconstructions in the preinstrumental period. Using

the definitions

B
f
5 S

t
B

cca
S�1

p , M
f
5 M

t
�B

f
M

p
, (9)

the reconstruction in (8) can be rewritten in the final

form of a linear transform with a constant:

T̂ 5 M
f
1 B

f
P. (10)

All columns of the matrix Mf are identical and specify

offsets for all r locations of the predicted temperature

fields; therefore, Mf contains r independent parameters.

The linear-transform matrix Bf has the dimensions r 3 m

and thus contains rm 5 669 3 104 5 69 576 elements.

This number is about one-third smaller than the number

of elements in the target temperature data during the

calibration period (rn 5 669 3 125 5 96 625) from which

the elements of Bf must be determined. Fortunately,

not all elements in Bf are independent parameters be-

cause of the CCA rank reduction. Since Bcca has rank

dcca and Bf is obtained in (9) by multiplying Bcca by non-

singular diagonal matrices, Bf has the same size (r 3 m)

and rank (dcca) as Bcca. Such a matrix has dcca nonzero

singular values and as many left and right singular vectors

corresponding to these values. Using the nonzero singular

values of Bf in nonincreasing order to form a diagonal

matrix S and arranging the corresponding singular vec-

tors as the columns of matrices U and V, we can uniquely

(up to the reordering of the columns in U and V corre-

sponding to identical singular values) present Bf as

B
f
5 USVT. (11)

The first column of U, as a unit vector in the r-dimensional

space, has r 2 1 degrees of freedom. The second column,

subject to an additional constraint of orthogonality to the

first column, has r 2 2 degrees of freedom, etc. Therefore,

the entire matrix U, consisting of dcca orthonormal vec-

tors, has

N(U) 5 �
dcca

i51
(r � i) 5 rd

cca
�

d
cca

(d
cca

1 1)

2

5 d
cca

r �
d

cca
1 1

2

� �
.

Similarly, the number of independent parameters in V is

N(V) 5 d
cca

m�
d

cca
1 1

2

� �
,

and N(S) 5 dcca. In the general case, nonzero singular

values of a matrix Bf are different, the decomposition

(11) is unique, and therefore

N(B
f
) 5 N(U) 1 N(S) 1 N(V) 5 d

cca
(r 1 m�d

cca
).

Together with the constant offset parameters, the num-

ber of independent parameters that have to be deter-

mined so as to produce the reconstruction in Eq. (10) is

N
tot

5 N(B
f
) 1 N(M

f
) 5 d

cca
(r 1 m�d

cca
) 1 r. (12)

Substituting the values of r and m specific to the present

pseudoproxy scenario (r 5 669 and m 5 104), the number

of independent parameters in the CCA temperature field

reconstructions are

N
tot

5 669 1 773d
cca
� d2

cca. (13)

The number of independent parameters in the CCA re-

constructions therefore depends only on dcca, the number

of CCA modes retained. The number does not depend on

dp and dt, that is, the numbers of retained EOF modes for

the proxy and temperature data, respectively. The actual

values of Bf and Mf in (10), of course, do depend on the dp

and dt choices, but the underlying number of parameters
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that need to be specified to determine these values does

not. Furthermore, when dcca� r 1 m 5 773, the d2
cca term

in (12) and (13) is negligible compared to (r 1 m)dcca 5

773dcca. Analyses we will present suggest that reasonable

values of dcca are well below 50. Therefore, Ntot grows

nearly linearly with dcca, and 773 additional parameters

need to be specified in the coefficients of (10) when dcca

increments by 1. Considering the relative shortness of the

dataset available for calibration and cross-validation,

choosing a reconstruction model that requires a smaller,

rather than larger, number of free parameters (i.e., value of

dcca) becomes especially important. In section 4a, we

demonstrate a practical means of selecting the smallest dcca

that produces a reconstruction with cross-validated RMSE

practically indistinguishable from the absolute minimum

of RMSE over all combinations of dcca, dp, and dt. Thus,

the above arguments underlie the dimensional selection

strategy that we employ throughout the remainder of

the manuscript.

d. RegEM

Application of the RegEM method to the problem of

NH CFRs has been discussed in detail within the litera-

ture (Schneider 2001; Rutherford et al. 2005, 2010; Mann

et al. 2005, 2007a,c, 2008; Smerdon and Kaplan 2007; Lee

et al. 2007; Smerdon et al. 2008b; Riedwyl et al. 2009;

Christiansen et al. 2009, 2010; Tingley and Huybers

2010a,b). Although RegEM is an iterative method, the

underlying formalism is based on a linear regression

model that, for a given time step, reconstructs missing

data Xm from available data Xa and can be written as

X
m

5 M
m

1 S
m

BS�1
a (X

a
�M

a
). (14)

The notation here is analogous to (3), except the subindices

a and m denote available and missing data, respectively,

and are consistent with the notation adopted by Schneider

(2001).

For the conventional expectation maximization (EM)

algorithm, in which regularization is not employed, the

estimate of the regression matrix B is given, in full

analogy to (2), by the standard multivariate regression

formula for standardized datasets X9m and X9a:

B 5 (X9
m

X9Ta )(X9
a
X9Ta )�1. (15)

Similar to CCA, however, regularization is required for

application to CFRs of the last millennium. Multiple

regularization approaches for the expectation maximi-

zation algorithm have been discussed (Schneider 2001;

Rutherford et al. 2005, 2010; Mann et al. 2005, 2007a,c;

Smerdon and Kaplan 2007; Christiansen et al. 2009,

2010), but the differences between reconstructions de-

rived from these approaches have not been sufficiently

explored (Smerdon et al. 2008b). For our purposes herein

we employ the more widely applied ridge regression re-

gularization, in which the inverse covariance matrix in

(15) is replaced by

(X9
a
X9Ta )�1 ! (X9

a
X9Ta 1 h2I)�1, (16)

where h is a positive number called the ridge parameter

(see Schneider 2001 for a detailed derivation and dis-

cussion of these equations). In keeping with the re-

constructions performed by Rutherford et al. (2005) and

Mann et al. (2005), h is chosen herein by minimization

of the generalized cross validation (GCV) function. In

general, the RegEM algorithm allows the set of missing

data locations to vary arbitrarily with time, thus making

all matrices appearing in (14) time variable. Neverthe-

less, in cases where the missing values in the data matrix

take the form of a block submatrix (i.e., Xm now denotes

the estimate for this submatrix and Xa is a submatrix of

available data for the time period corresponding to Xm),

the final RegEM reconstruction takes the form of (14)

for a simple specific choice of Ma, Sa, Mm, Sm, and B

(Smerdon et al. 2008b)—such is the case in the present

millennial CFR context. Moreover, if the proxy data in P

are substituted for the available data Xa and the missing

data Xm are taken to be temperature T during the re-

construction interval, then the RegEM reconstruction in

(14) essentially becomes (3) and is comparable to the same

form given for the CCA reconstruction in (8). In fact, both

of these reconstruction formulas can be brought to the

form in (10) that uses one offset and one matrix trans-

formation.

The main difference between (8) and (14)–(16) is of

course the form of regularization used for the regression

matrix B and the iteratively computed estimates of

RegEM. Several relative advantages of the RegEM

method using ridge regression regularization (RegEM-

Ridge) have been noted (Schneider 2001). In typical

climatological applications where only a few principal

components are retained based on often weak separa-

tions of the leading elements in the eigenvalue spectrum,

the continuous filtering of the spectrum in ridge re-

gression may provide advantages over regularizations,

like CCA, that use finite eigenvalue truncation. The it-

erative EM procedure also allows the use of all data in

the data matrix, as opposed to only the predictand and

predictor data during their period of overlap in the

calibration interval. In the specific type of paleoclimatic

application considered herein, however, this advantage

is limited principally to the precalibration period of the

proxy matrix because the target data are completely
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missing prior to the mid-nineteenth century (cf. Smerdon

et al. 2008b).

4. Reconstruction results

a. Selected model dimensions

We select dcca, dp, and dt values for the collection of

CCA reconstructions that calibrate the 104 pseudo-

proxies on the instrumental period from 1856–1980 C.E.

and compute CFRs during the interval 850–1855 C.E.

In all cases, P and T are standardized over the calibration

period prior to estimating the regression matrix Bcca using

Eq. (7); reconstructions during the validation period are

performed using (8).

Following the approach described in section 3c, the

CCA model was calibrated on each half of the instru-

mental data and tested on the other half using all com-

binations of dcca, dp, and dt between 1 and 50 modes

such that dcca # min(dp, dt) [yielding d2
cca triplets (dcca,

dp, dt) for each dcca value between 1 and 50 and thus a

total of 12 1 22 1 � � �1 502 5 50(50 1 1)(2 3 50 1 1)/6 5

42 925 reconstruction models]. The cross-validation sta-

tistics for early and late calibration halves are given in

Table 1. These results for both halves of the instrumental

period were combined to produce cross-validation sta-

tistics for the entire interval and a given set of dimensions.

RMSE values were combined as the square root of the

mean residual sum of squares in the two intervals, and

NHMCs were calculated as the average correlation co-

efficients for the two intervals.

Table 2 gives the minimum RMSE and maximum

NHMC values among all dcca, dp, and dt combinations

used, as well as the dimensional combinations that achieve

these extrema. Results are tabulated for each pseudo-

proxy noise level. Although the two statistics are opti-

mized at somewhat similar dimensional combinations, the

results are not identical—the alternative statistic for each

optimization is also provided in Table 2.

The RMSE and the NHMC statistics are plotted in

Fig. 2 for an SNR of 0.5, showing that the former generally

decreases as the latter increases. More importantly, the

range of possible NHMCs decreases as the RMSE be-

comes smaller. The reciprocal constraint, however, is

much weaker: increases in NHMCs are not accompanied

by nearly as large a decrease in the range of RMSE. This

suggests that RMSE is a more robust statistic for opti-

mizing the CCA reconstructions than the NHMC. Fur-

thermore, the colors of the circles in Fig. 2 denote the

values of dcca, that is, they correspond to the number of

independent parameters in the reconstruction model that

is being validated. While particularly small dcca (less than

10) correspond to reconstructions that are both poor in

RMSE and NHMC performance, high dcca (larger than

30) correspond to high NHMC but the full range of

RMSE values. RMSE performance is especially poor for

reconstructions with the largest dcca values. We therefore

use RMSE as the principal basis for our selection crite-

rion in subsequent dimensional selections. There are of

course alternative cross-validation statistics that could be

TABLE 1. Early (1856–1917 C.E.) and late-half (1918–80 C.E.)

cross-validation statistics for CCA; all statistics and dimensions

represent those achieved for the minimum RMSE in the two re-

spective cross-validation periods.

Early-half calibration Late-half calibration

SNR RMSE dcca dp dt NHMC RMSE dcca dp dt NHMC

Infinity 0.54 19 24 39 0.84 0.58 16 33 30 0.77

1.0 0.62 16 23 21 0.57 0.65 16 24 20 0.64

0.5 0.70 10 40 19 0.54 0.71 7 26 11 0.53

0.25 0.74 9 40 39 0.21 0.76 3 48 32 20.02

TABLE 2. CCA reconstruction statistics using the absolute min-

imum RMSE or maximum NHMC criteria during the calibration

interval (1856–1980 C.E.).

Absolute minimum RMSE Absolute maximum NHMC

SNR RMSE dcca dp dt NHMC RMSE dcca dp dt NHMC

Infinity 0.57 22 35 46 0.77 0.59 25 29 50 0.83

1.0 0.64 15 23 20 0.59 0.69 16 37 47 0.67

0.5 0.71 6 22 10 0.52 0.74 5 21 26 0.61

0.25 0.76 3 30 4 0.26 0.79 6 50 48 0.33

FIG. 2. Cross-validation statistics during the calibration interval

(1856–1980 C.E.) for the ensemble of CCA reconstructions at an

SNR of 0.5. Colors in the figure indicate the value of dcca, which

ranges from 1 to 50. The symbols in the figure correspond to the

following CCA solutions: the absolute minimum RMSE (black

dot), the maximum NHMC (pink square), and the preferred so-

lution based on RMSE (black star), which overlays the black dot

for this particular noise realization.
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adopted. The coefficient of efficiency (CE) and reduction

of error (RE) statistics are often used in paleoclimate

literature as statistical validation measures. Advocates of

these statistics point out that RE and CE measure the ro-

bustness of both the resolved variance and reconstructed

mean in derived reconstructions (e.g., Wahl and Ammann

2007). This advantage is shared by the RMSE statistic

adopted in this study, indicating that all three skill mea-

sures would be expected to produce similar results. Nev-

ertheless, we adopt RMSE in the present application given

its readily interpretable characteristics.

As mentioned earlier, the total number of combina-

tions used to determine the optimized dimensions given

in Table 2 is 42 925. This collection of models was tested

for their cross-validated performance on only 125 annual

fields of target data, thus some combinations might cor-

respond to low RMSE simply by chance and yield opti-

mal reconstructions impacted by artificial skill. To guard

against this likelihood, we adopt a conservative selec-

tion strategy that seeks to find the most parsimonious

of acceptable models by minimizing the number of free

parameters in the final reconstruction model, which is

equivalent to minimizing dcca without deviating sig-

nificantly from the absolute minimum RMSE. Figure 3

plots RMSE versus dcca for all tested combinations of

the CCA dimensions at each pseudoproxy noise level;

the black dashed line connects the RMSE minima for

each value of dcca:

RMSE*(d
cca

) 5 min
d

p
,d

t

RMSE(d
cca

, d
p
, d

t
).

FIG. 3. RMSE as a function of dcca for all reconstructions spanning the collection of dimensional combinations

between 1 and 50. Colors in the figure indicate the value of dp chosen for the derived RMSE value. Yellow lines in

each of the RMSE plots indicate the minimum RMSE achieved when dt is held constant at 50. Black dots correspond

to the absolute minimum RMSE and the values of dcca, dp, and dt are given in the parentheses next to each dot. The

locations of the preferred solutions based on RMSE are also shown with a black star; the dimensional combinations

for these values are also given in parentheses.
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If d
p
*(d

cca
) and d

t
*(d

cca
) are the values of dp and dt that

respectively minimize RMSE(dcca, dp, dt) for a given dcca,

then the triplet (d
cca

, d
p
*(d

cca
), d

t
*(d

cca
)) defines the op-

timal (by the cross-validated RMSE criterion) CCA re-

construction among all models with a fixed number of

independent parameters. Figure 3 demonstrates that

RMSE (dcca) decreases steeply for all noise levels at small

values of dcca. Beginning at a given dcca value, however,

this drop is replaced by a rather flat plateau. For all noise

levels except the highest one, the absolute minimum

(identified by the closed circle) is rather far from the be-

ginning of this plateau. Alternatively, using the dcca value

corresponding to the beginning of the plateau yields a so-

lution with an RMSE performance that is similar to the

absolute RMSE minimum but corresponds to a model

with a much smaller number of independent parameters.

We identify the beginning of the plateau by selecting

the minimum dcca at which an increase by one does not

reduce RMSE*(dcca):

d
cca
* 5 min[d

cca
: RMSE*(d

cca
) # RMSE*(d

cca
1 1)].

Optimal solutions [dcca* , dP*(dcca* ), dt*(dcca* )] are identified

by stars in the panels of Fig. 3 and are listed in Table 3

along with the corresponding values of RMSE and NHMC

cross-validation statistics. At any noise level, RMSE*(d
cca
* )

does not exceed min
dcca

(RMSE*) by more than 1.5%. In

subsequent presentations herein, we use these ‘‘beginning

of the plateau’’ solutions [d
cca
* , d

P
*(d

cca
* ), d

t
*(d

cca
* )] as our

preferred choices of the CCA dimensions (termed the

preferred solutions hereafter).

Note that in the preferred solutions the values of dp

and dt are chosen as those corresponding to the absolute

minimum of RMSE for the preselected value of dcca.

Relatively fluid color transitions in the panels of Fig. 3

suggest smooth but significant dependence of RMSE on

dp. This impression is borne out in a more detailed il-

lustration of the RMSE dependence on the CCA pa-

rameters (dcca, dp, dt): Fig. 4 presents two-dimensional

fields of the RMSE minima with respect to the in-

dividual dimensions for a SNR 5 0.5. The area of the

RMSE minimum is quite wide, therefore, changes in dp

or dt by a few units should not affect the reconstruction

quality very much. The dependence of RMSE on dt is

particularly poorly constrained by the data; for all dcca in

the range between 5 and 30, a value of dp could be se-

lected so that RMSE is quite close to the absolute mini-

mum for any value of dt exceeding dcca. Nevertheless,

reductions in the dimensions of the temperature field are

warranted. The yellow lines in Fig. 3 plot the minimum

TABLE 3. CCA reconstruction statistics for the preferred solu-

tions in which parsimonious dimensional combinations have been

chosen as the first local minimum of the RMSE statistic.

Preferred solutions

SNR RMSE dcca dp dt NHMC

‘ 0.57 13 34 26 0.74

1.0 0.65 10 23 12 0.60

0.5 0.71 6 22 10 0.52

0.25 0.76 3 30 4 0.26

FIG. 4. Minimum RMSE values for each pairing of the dcca, dp, and dt dimensions at an SNR of 0.5. The absolute minimum RMSE value

is plotted as a white dot; the preferred solution value is plotted as a white star (which overlays the white dot for this particular noise

realization).
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RMSE values in the subset of solutions when dt is held

constant at 50 (close to 62 or 63, the full rank of the

temperature field in the two halves of the instrumental

period). At all noise levels, the preferred solutions display

reduced RMSE when the dimension of the temperature

field is truncated. Moreover, in real-world reconstruc-

tions, which involve predictand fields that contain noise

or calibration intervals that can be shorter than the ones

used herein, improvements in calibration errors due to

the reduction of the predictand matrix would likely be

more significant (Bretherton et al. 1992).

b. CCA reconstructions

1) ASSEMBLY OF THE CCA RECONSTRUCTIONS

To demonstrate the individual elements of the CCA

reconstruction, we plot in Fig. 5 the homogeneous co-

variance maps (Ct and Cp) and the associated time series

(Qt) for the first three canonical patterns of the no-noise

reconstruction (see section 3b and Appendix A). In the

case of Qt, we plot both the true time series from the target

data, as well as the estimated time series from the pseu-

doproxy matrix (SccaQT
p ).

The three temperature covariance maps plotted in Fig. 5

take on dynamically interpretable characteristics rep-

resenting the variability in the CCSM versions of the

global (hemispheric) mean, the North Atlantic Oscilla-

tion, and the El Niño–Southern Oscillation, respectively.

This demonstration illustrates the physical interpret-

ability of the derived covariance maps, which ultimately

can be evaluated in terms of the reconstruction skill as-

sociated with individual dynamical patterns in the field.

As demonstrated in step (ii) of the 3-step procedure in

section 3b, the time series of the temperature covariance

maps are estimated during the reconstruction interval by

the product of the canonical coefficients and the time

series of the proxy covariance maps. These time series are

plotted in Fig. 5 and compare closely to the true time

series of the temperature covariance maps. Correlations

between the true and estimated time series for these first

three patterns are all above 0.99 in the calibration interval

and above 0.98 in the reconstruction interval (see Table 4

for these statistics at all noise levels). As dictated by the

CCA formulation, correlations within the calibration in-

terval progressively decrease from the maximum of the

first pattern for all noise levels (Table 4). This is inter-

estingly not the case in the reconstruction interval when

some of the correlations for higher-order patterns exceed

those of the lower-order patterns.

Figure 5 also plots the relative values of the proxy

covariance maps for the first three canonical patterns.

These maps scale location markers for the 104 pseudo-

proxies by their relative loadings and also designate

where the loadings are positive or negative using the

color of the markers. Upon inspecting the two sets of

temperature and pseudoproxy covariance maps one can

see that the proxy maps effectively reflect local sampling

from the temperature maps. For instance, the leading

canonical pattern associated with predominant warming

is reflected in the proxy map that contains nearly all

positive loadings. In the other two patterns, the positive

and negative loadings are roughly collocated with the

areas of positive and negative temperature anomalies in

the temperature covariance maps. These maps also in-

dicate relatively balanced loadings of the pseudoproxies

in which no single record is weighted heavily in a given

pattern. Equivalent maps in real-world CFR applica-

tions would similarly be useful for evaluating the impact

of specific proxies in the derived reconstructions.

2) NORTHERN HEMISPHERE MEANS

Corresponding temperature covariance maps and proxy-

estimated time series as represented in Fig. 5 are combined

to yield a complete field reconstruction for each of the

investigated noise levels. The total number of combined

patterns is of course dictated by the number of retained

dcca values, which were determined for the preferred so-

lutions in section 4a to range from 13 in the no-noise case

to 3 at an SNR of 0.25 (see Table 3). Complete CCA

reconstructions are assembled from these collections of

patterns and time series. We first plot the area-weighted

mean NH time series associated with these complete re-

constructions in Fig. 6a.

The correlations between the reconstructed mean NH

time series and the model target are all significant, even

though they reduce with increasing noise levels (Table 5).

These correlations are interestingly less than those de-

termined for the first three canonical patterns at all noise

levels given in Table 4. This is indicative of the fact that

the leading individual patterns are reconstructed more

skillfully than the mean of the combined field containing

the full range of scaled canonical patterns.

Although the determined correlations are all signifi-

cant, the time series in Fig. 6a suffer from warm biases

and variance losses during the reconstruction interval,

both of which increase with higher noise levels. This be-

havior is not associated with the difference between the

dimensions chosen for the preferred solutions in section

4a and those for the absolute minimum RMSE—Fig. 6b

plots the mean time series from the reconstructions using

the latter-derived dimensions and the results still suffer

from the observed effects. These absolute-minimum time

series correlate with the preferred solution reconstruc-

tions at levels of r 5 0.98 or better during the recon-

struction interval. The robustness of the achieved results

and the prevalence of the observed warm biases and
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variance losses in the NH means are thus illustrated by the

strong similarities between Figs. 6a and 6b. Local cor-

relations also reflect a strong consistency between the

absolute minimum and preferred reconstructions: the

area-weighted mean field correlations from 850–1855 C.E.

between the two reconstructions are 0.92 and 0.97 for

SNR 5 infinity and 1.0, respectively. (Note that the

dimensional selections for the SNR 5 0.5 and 0.25 cases

were the same for both the absolute minimum and

preferred solutions, thus no correlation statistics are

necessary for those noise levels.) These comparisons

demonstrate a spatial consistency between the two di-

mensional choices and suggest that the large-scale

features are well captured for different sets of CCA

dimensions (assuming the RMSE is held close to the

absolute minimum).

TABLE 4. Correlation statistics between the true canonical temperature time series Qt and those predicted by the proxy PCs, that is,

S
cca

QT
p . Statistics are shown for both the reconstruction (Recon) and calibration (Cal) intervals.

SNR infinity SNR 1.0 SNR 0.5 SNR 0.25

CCA rank Cal Recon Cal Recon Cal Recon Cal Recon

1 0.997 0.987 0.956 0.909 0.901 0.831 0.734 0.399

2 0.996 0.991 0.938 0.915 0.849 0.707 0.688 0.430

3 0.994 0.981 0.914 0.868 0.801 0.599 0.577 0.266

4 0.992 0.963 0.908 0.835 0.764 0.412 — —

5 0.986 0.953 0.828 0.706 0.678 0.655 — —

6 0.969 0.891 0.797 0.421 0.659 0.347 — —

7 0.959 0.904 0.768 0.635 — — — —

8 0.953 0.919 0.651 0.573 — — — —

9 0.948 0.888 0.619 0.519 — — — —

10 0.933 0.777 0.473 0.273 — — — —

11 0.915 0.822 — — — — — —

12 0.905 0.792 — — — — — —

13 0.853 0.654 — — — — — —

FIG. 6. Area-weighted NH time series for the CCA reconstructions using dcca, dp, and dt values associated with:

(a) the preferred solution (Table 3) and (b) the absolute minimum RMSE values (Table 2). Time series have been

smoothed using a decadal low-pass filter. (c),(d) The box plots associated with the two combinations of the of dcca,

dp, and dt values. These plots were calculated from the distribution of the individual annual means in each NH time

series during the reconstruction interval.
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The box plots in Figs. 6c and 6d are calculated from

the distribution of the individual annual means in each

NH time series during the reconstruction interval. The

plots further demonstrate the warm biases and variance

losses in the reconstructed NH time series, as well as the

reduced number of extreme events in the reconstructed

time series relative to the known model target. These

extrema are typically associated with volcanic events in

the model-simulated NH mean, and are manifest as cold

outliers in both the model target and the reconstructed

time series. The number and extent of the outliers is

diminished in the reconstructed time series, however,

and indicates that the reconstructions have the potential

to miss the characterization of these important annual

events in the model-simulated climate.

3) RECONSTRUCTED FIELDS

Figure 7 shows the spatial distributions of validation

statistics for the preferred CCA reconstructions at SNRs

of 1.0 and 0.5; statistics are computed during the re-

construction interval and summary statistics for all noise

levels are given in Table 5. Field correlations of course

reduce with increased noise, but Fig. 7 illustrates the

spatial variability of the local correlation coefficient. In all

reconstructions, regions containing the largest correla-

tions are over North America and Europe. These regions

FIG. 7. Field comparisons between derived CCA reconstructions (using the preferred solution values of dcca, dp, and dt) and the known

CCSM model field: (top) correlation, (second row) standard deviation ratios, (third row) mean biases, and (bottom) RMSE. Standard

deviation ratios are computed between the reconstruction and model, and mean biases are computed as reconstruction minus model, that

is, negative (positive) biases indicate a colder (warmer) reconstruction mean. Results are shown for SNRs of (left) 1.0 and (right) 0.5.

Summary statistics for all noise levels are given in Table 4. All statistics are computed over the reconstruction interval (850–1855 C.E.).
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correspond to the areas with the largest density of pseu-

doproxies (see Fig. 1), that is, the reconstructions perform

best where the field is sampled the most. Similarly, re-

gions that are not sampled in the pseudoproxy network

have comparatively low verification correlations. Corre-

lations fall to particularly low values over some important

regions (e.g., subtropical and midlatitude ocean basins or

the Asian continent) at high-noise levels.

The warm biases and variance losses observed in the

mean NH time series (Fig. 6) are also manifest in the

reconstructed fields, but their spatial patterns show im-

portant regional distinctions (Fig. 7). Standard deviation

ratios (sample standard deviation of the reconstruction

divided by the corresponding model value) indicate that

variance is most strongly preserved in areas where field

correlations are high, whereas variance losses are largest

over the ocean basins where the lowest field correla-

tions are observed; note that, although standard de-

viation ratios expressed in this manner cannot serve as a

reasonable estimate of the system variance, they do serve

as a convenient measure of the skill of the reconstruction

(Smerdon et al. 2008b). Overall, significant variance losses

are observed for all noise levels: the area-weighted mean

standard deviation ratio is respectively 0.58 and 0.44 for

the SNR cases of 1.0 and 0.5 shown in Fig. 7, wheras the

ratio drops to 0.29 at a SNR of 0.25 (Table 5). Addition-

ally, large variance losses can accompany reconstructions

with relatively high correlations in the field: standard

deviation ratios drop below 0.5 in many regions of the

reconstruction for an SNR of 1.0 (Fig. 7).

Mean biases also display regional variations, although

they appear more spatially uniform than observed for the

local correlations or standard deviation ratios. Although

most regions of the reconstructions are warmer than the

actual model field, means are colder in a few areas (e.g.,

North America and parts of the Pacific and Atlantic

Oceans). The proportion of colder to warmer regions is

reduced with increasing noise levels and is reflected in the

average mean biases calculated for the fields (see Table 5);

therefore, high-noise reconstructions are dominated by

warm-biased regions.

The bottom panels in Figure 7 show the RMSE of the

fields, which combine errors associated with variance losses

and mean biases. The RMSE patterns follow most closely

the patterns in the mean biases, indicating that the error is

dominated by differences between the reconstructed and

actual means. Contrary to the correlation patterns, it is

also important to note that the RMSE is in some cases

largest over regions where the pseudoproxy network is

densest. Mean biases, and therefore RMSE, do not ap-

pear to be as strongly tied to the distribution of the

pseudoproxy network as the correlation and standard

deviation ratios.

c. Comparison of CCA and RegEM reconstructions

We have used the same pseudoproxies from the above

CCA experiments to compute corresponding nonhybrid

(Rutherford et al. 2005) RegEM-Ridge reconstructions.

The derived reconstructions employ a standardization

scheme realistically confined to the calibration interval

(Smerdon and Kaplan 2007) during which no detrending

has been applied—all reconstructions have used a stag-

nation tolerance of 5 3 1024. Figures 8a and 8b compare

the mean NH time series computed from the CCA and

RegEM-Ridge reconstructed fields at SNRs of 1.0 and

0.5. The time series at all noise levels compare very

closely, as reconstruction interval correlations between

the CCA and RegEM-Ridge time series are 0.94, 0.98,

0.97, and 0.87 for SNR 5 ‘, 1.0, 0.5, and 0.25, respec-

tively. The reconstructed NH means also correlate with

the true model mean at comparable levels (Table 5).

There is, however, an indication that the RegEM-Ridge

method performs slightly better given that the correla-

tions increase by a few hundredths above those observed

TABLE 5. Validation statistics computed during the reconstruction interval (850–1855 C.E.) for the CCA and RegEM-Ridge re-

constructions. Reconstructions from each method were derived with the same set of pseudoproxies at all noise levels. All field statistics

were weighted by the cosine of the midlatitude for each grid cell.

SNR NHMC Mean field correlation Mean STD ratio Mean bias (K) Mean RMSE (K)

CCA

‘ 0.91 0.70 0.77 0.03 0.49

1.0 0.84 0.58 0.58 0.09 0.59

0.5 0.76 0.44 0.44 0.17 0.67

0.25 0.43 0.23 0.29 0.27 0.77

RegEM-Ridge

‘ 0.91 0.68 0.52 20.01 0.52

1.0 0.85 0.60 0.38 0.11 0.60

0.5 0.78 0.47 0.24 0.20 0.69

0.25 0.49 0.24 0.15 0.28 0.76
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for CCA. The variance losses are larger in the RegEM-

Ridge reconstructions, however, and can be clearly seen

in the box plots in Figs. 8c and 8d. These losses are also

manifest in the failure to reconstruct extreme events,

which is also slightly more apparent in the RegEM-

Ridge reconstructions as illustrated in the latter panels

of Fig. 8.

The correlation fields between the CFRs derived from

the two methods are plotted in Fig. 9, again showing re-

sults for SNRs of 1.0 and 0.5. Correlations between the two

reconstructions depend on location, but overall the area-

weighted mean field correlations in the reconstruction

interval are 0.89, 0.91, 0.84, and 0.61 for SNR 5 ‘, 1.0, 0.5,

and 0.25, respectively. As discussed in section 3, CCA and

RegEM-Ridge select regression coefficients in two dis-

tinctly different ways; however, the widespread high

field correlations between the results from both methods

indicate that they reconstruct similar patterns of vari-

ability in the target field (note that the exact same pseu-

doproxies have been used for each of these experiments).

Validation fields for the RegEM-Ridge reconstructions

are shown in Fig. 10. These are directly comparable to the

CCA validation fields shown in Fig. 7. The close corre-

spondence between the two figures further attests to the

similarities between the results derived from both meth-

ods. Summary statistics for the RegEM-Ridge field cor-

relations, standard deviation ratios, mean biases, and

RMSE are given in Table 5. The mean field correlations

associated with the two methods are very similar, yet in-

dicate RegEM-Ridge to have slightly more correlation

skill at increased noise levels. The RegEM-Ridge mean

biases also have spatial patterns very similar to CCA but

indicate that RegEM-Ridge produces larger biases at in-

creased noise levels. The most notable difference between

FIG. 8. As in Fig. 6 but for comparisons between the area-weighted NH time series for CCA and RegEM-Ridge

reconstructions. Results are shown for SNRs of 1.0 and 0.5. Summary statistics for all noise levels are given in Table 5.

FIG. 9. Correlation fields between the CCA and RegEM-Ridge reconstructions. Results are shown for SNRs of (left) 1.0 and (right) 0.5

and are computed over the reconstruction interval (850–1855 C.E.).
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the two methods is associated with their standard de-

viation ratios. RegEM-Ridge standard deviation ratios

have patterns similar to the CCA reconstructions and also

maintain the most variance where the field correlations

are highest. The variance loss in RegEM-Ridge, however,

is much more pronounced than in the CCA reconstruc-

tions: mean standard deviation ratios are only 68% of

those achieved for the CCA reconstructions at a SNR of

infinity and fall to 52% of the CCA counterpart at a SNR

of 0.25. These variance losses are manifest in the higher

RMSE values associated with the RegEM-Ridge fields,

but they result in only modest increases in the mean field

errors (Table 5) relative to CCA. Two factors con-

tribute to the similar RMSE fields in spite of the larger

variance losses in the RegEM-Ridge CFRs: 1) the mean

biases dominate the error fields and 2) the slightly higher

correlations associated with the RegEM-Ridge recon-

structions offset the errors associated with variance losses.

5. Discussion

Comparisons between CCA and RegEM-Ridge show

that the methods produce very similar results, with the

exception of the larger variance losses observed in the

RegEM-Ridge reconstructions. The source of variance

losses is likely associated with the manner in which the

eigenvalue spectra are truncated in the two methods.

Ridge regression filters the eigenvalue spectrum using a

continuous filter function; that is, there is no abrupt ei-

genvalue truncation like that used in CCA where modes

that cannot be reliably calibrated are simply set to zero.

This was indeed one reason why RegEM-Ridge was

FIG. 10. As in Fig. 7 but for the RegEM-Ridge reconstructions.
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originally proposed as a potentially advantageous method

in CFR contexts (Schneider 2001). A consequence of the

continuous filtering function, however, is the fact that

leading modes may be overly dampened if only a small

number of them carry a large percentage of the total var-

iance, as in the case of the CFR application presently con-

sidered [cf. discussion surrounding Eq. (19) in Schneider

(2001)]. By contrast, the finite truncation of the CCA

method yields leading modes that are unaffected by the

truncation. To demonstrate this fact, Fig. 11 plots the ei-

genspectra for the true model field and for the RegEM-

Ridge and CCA CFRs at SNR levels of 1.0 and 0.5. The

magnitudes of the RegEM-Ridge eigenvalues are strik-

ingly reduced in comparison to those of CCA. Apart from

their scaling, however, Fig. 9 and the similarity of the

correlation statistics for both methods shown in Figs. 7

and 10 indicate that the two methods are reconstructing

similar patterns, and differ primarily by the dampened

variability of the leading modes in the RegEM-Ridge

spectrum. Regarding the smaller differences between the

CCA and RegEM-Ridge reconstructions, there are addi-

tional methodological choices that are likely contributors,

for example, differences in the cross-validation and pa-

rameter choices that the two methods employ. Exploring

further differences between the CCA and RegEM-Ridge

methods would be insightful for understanding the small

differences in the reconstructions that they generate and

should be the subject of further research. Nevertheless, the

results provided herein indicate that the methods produce

broadly consistent reconstructions, except for the larger

variance losses observed for RegEM-Ridge.

The above discussion is relevant to the important and

yet to be explained difference between pseudoproxy

CFRs derived using RegEM-Ridge and RegEM using

truncated total least squares (RegEM-TTLS) (Mann

et al. 2007a). This latter method has been shown to per-

form well in one pseudoproxy context (Mann et al.

2007a), particularly in terms of its ability to reproduce the

NH mean index, whereas the former has not (Smerdon

and Kaplan 2007). The original explanation for the dif-

ferences between the performance of RegEM-Ridge and

RegEM-TTLS was tied to the selection of the ridge pa-

rameter by means of GCV in RegEM-Ridge (Mann et al.

2007a,c). Because GCV was not used within RegEM-

TTLS, Mann et al. (2007a,c) concluded that the problem

was specific to RegEM-Ridge. Smerdon et al. (2008b),

however, demonstrated that the mean biases and vari-

ance losses in RegEM-Ridge were not associated with the

GCV selection of the ridge parameter, making the Mann

et al. (2007a,c) explanation implausible. The similarity

between the CCA and RegEM-Ridge results presented

herein further indicate that mean biases and variance

losses in currently employed CFR methods are not tied to

a specific methodological choice. Moreover, the similar

shortcomings observed for the Mann et al. (1998) CFR

method noted by von Storch et al. (2004, 2006) support

the idea that the effects cannot be connected to something

specific in RegEM-Ridge. It is therefore unlikely that

differences in the reported performance of multiple CFRs

can be specifically associated with the method of eigen-

value truncation or filtration, pointing to the need for an

improved understanding of why the differences exist.

It is also important to highlight the observed concen-

tration of the highest field correlations (and preserved

variance) in areas with high pseudoproxy concentrations,

a feature of both the CCA and RegEM-Ridge CFRs.

Although this result may seem intuitive, it is not neces-

sarily an expected characteristic of either the CCA or

RegEM-Ridge methods. Both of these techniques at-

tempt to reconstruct large-scale climate patterns by dis-

carding smaller-scale modes of variability and noise.

Despite this emphasis on large-scale patterns, the ob-

served correlation distributions demonstrate that the

methods perform best where dense sampling exists. This

suggests that addition of low-noise proxy data outside of

existing highly sampled regions should be an important

priority for improvement of regional-scale CFR skill.

Given the above observation, it is important to better

understand the origin of the observed skill concentrations

and their dependence on the underlying character of

the target field. In the case of the reported pseudoproxy

experiments, the skill patterns are dependent on the

FIG. 11. Eigenspectra computed from the true model tempera-

ture field and the CCA and RegEM-Ridge reconstructed temper-

ature fields during the reconstructed interval (850–1855 C.E.). The

CCA spectra have the characteristic truncation to zero at the se-

lected rank, whereas the RegEM-Ridge spectra reflect the con-

tinuous filtration constraint applied in ridge regression.
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internal statistics of the model-simulated climate. Pre-

vious experiments have indicated that methodological

performance is not strongly dependent on the employed

model simulation. Integrations from two different GCMs

were used by von Storch et al. (2004, 2006) to test the

Mann et al. (1998) method, and results were consistent

across the simulations in terms of the NH means. The

authors also reported no significant dependence on the

sampling distribution. Similarly, Mann et al. (2007a) in-

dicated no significant sensitivity to the two GCM in-

tegrations or sampling distribution used to test RegEM-

TTLS. Christiansen et al. (2009) used yet another model

integration and method for generating ensemble statistics

and observed mean biases and variance losses in NH

means derived from multiple methods. It is therefore

unlikely that differences in model integrations will af-

fect the gross performance of reconstruction methods

already reported. Nevertheless, the underlying field

performance of CFRs is likely more sensitive to the

spatial statistics of the model simulations and should be

tested on multiple model integrations. More experi-

ments using observational data (e.g., Evans et al. 2001,

2002) are also needed to determine whether the skill

patterns of pseudoproxy experiments are similar to

those estimated from real-world datasets.

The use of pseudoproxy experiments as a research tool

has proceeded under the assumption that modeled cli-

mates and pseudoproxies approximate well the conditions

in real-world reconstruction problems. This assumption

may require the most caution, however, when interpreting

results dependent on the underlying spatial statistics of the

field and the associated teleconnections. Furthermore,

noise structures in real-world proxies are undoubtedly

more complicated than the white noise models used in this

study. While it is appropriate to approach the results

contained herein as a best-case scenario, further work is

necessary to more faithfully capture the nonlinear, mul-

tivariate, and nonstationary noise characteristics that are

likely present in many proxy series (e.g., North et al.

2006). For instance, tree-ring models have been devel-

oped to simulate dendroclimatic series with notable suc-

cess (Evans et al. 2006; Anchukaitis et al. 2006) and can be

used to simulate synthetic tree-ring chronologies for use

in pseudoproxy studies. The seasonal dependencies of

proxy records should also be considered in future work.

Significant variations in field skill have been observed

for multiproxy networks that target individual seasons

(e.g., Pauling et al. 2003) and suggest that the annual

pseudoproxy records used in most studies to date is an-

other important idealization. Incorporating these more

complicated proxy characteristics in pseudoproxy studies

will provide more realistic evaluations of CFR methods.

Recent work also has shown the importance of evaluating

ensembles of reconstructions generated from multiple

noise realizations in both the proxy and target datasets

(Christiansen et al. 2009). Not all differences between

methods tested on individual noise realizations may be

statistically significant when uncertainties due to random

errors are incorporated. Christiansen et al. (2009) have

shown this is the case for NH mean estimates, but such

ensemble work has not been done in the context of re-

construction performance in the field. Future work to

evaluate field skill in ensembles of CFRs is therefore

highly warranted.

6. Conclusions

Successful application of the CCA method to the pro-

blem of reconstructing NH temperature fields during the

last millennium has been demonstrated and evaluated

using pseudoproxies. An element of this application in-

volved the development of a selection procedure for the

three CCA dimensions. We have demonstrated a ‘‘leave

half out’’ cross-validation procedure that selects robust

and parsimonious dimensional combinations while guard-

ing against artificial skill in the reconstruction. Our ex-

periments demonstrate that the CCA method faithfully

reconstructs between 3 and 13 climatic patterns given

a proxy distribution approximating the Mann et al.

(1998) proxy network and a range of observational un-

certainties from no noise to an SNR of 0.25. (The exact

number of resolved patterns will of course vary with

different noise realizations at a given SNR value and is

idealized in the pseudoproxy framework.) Subsequent

application of the CCA method to real-world climate

proxies is thus easily attainable in future work. The

transparency of the CCA method and its well-developed

theoretical basis in the literature is a strong motivation

for its application. These characteristics provide straight-

forward evaluations of the CCA model selection and

the source of skill in derived reconstructions. The results

of our pseudoproxy experiments, however, suggest that

CFRs derived using CCA, just like those derived from

RegEM-Ridge, should be interpreted carefully when ap-

plied to the problem of reconstructing large-scale climate

patterns during the last several millennia.

Field correlations were shown to diminish significantly

with increasing noise, particularly in regions with few or

no pseudoproxies. Given that SNRs in real proxy records

are estimated to be on the order of 0.4 (e.g., Mann et al.

2007a) and typically characterized by more complicated

autoregressive and moving average structures than the

white-noise models adopted herein, the observed skill

reductions should be considered a best-case scenario. In

real-world CFRs derived with CCA, the spatial patterns

of field errors will depend on at least five factors: 1) the
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spatial distribution of the proxies; 2) the magnitude and

character of noise in the proxy network; 3) the spatial

coherence of the target field, that is, the strength and

character of its teleconnections; 4) the true historical

variability of the climate during the reconstruction in-

terval; and 5) the length of the calibration period used for

estimating proxy-climate correlations. The dependence

of the spatial skill associated with the CCA method to

these factors requires further testing. Evaluation of the

method using additional millennial simulations from

GCMs or observational fields should be pursued to de-

termine the robustness of the spatial skill dependencies

that we have identified. More realistic pseudoproxy

networks should also be considered that incorporate

seasonal dependencies, multivariate climate responses,

and autoregressive noise structures. The impact of these

more complicated pseudoproxy characteristics should

be considered specifically with regard to the field char-

acteristics as we have outlined in the present manuscript,

as opposed to the more widely evaluated performance of

the NH mean. Their impact within different calibration

scenarios is also important, particularly with regard to

the length of the calibration interval and the range of

climate variability represented in the calibration in-

terval relative to the reconstruction interval (e.g., Jones

et al. 2009).

Comparisons between reconstructions derived from

CCA and RegEM-Ridge demonstrate strong similarities

between the two methods, both in terms of the derived

mean NH temperatures and the spatial characteristics of

the reconstructed fields. These similarities are encour-

aging regarding the consistency of the two methods, but

are also an indication that there may be problems en-

demic to the present generation of CFR methods used to

reconstruct large-scale temperature patterns during the

last millennium. Therefore, more research is needed to

characterize the performance of multiple CFR methods

in terms of their field performance and to draw distinct

conclusions about the similarities and differences. These

studies are particularly needed in the context of CFRs

derived from real-world proxies as a means of deriving

a better description of the uncertainties in present esti-

mates of late-Holocene temperature variability.

The similarity between the CCA and RegEM-Ridge

results further points to the need to understand the dif-

ferences in the performance of the RegEM-Ridge and

RegEM-TTLS methods. Resolving the origin of these

differences is not only important for studies that have

attempted to reconstruct temperatures over the last mil-

lennium (Rutherford et al. 2005; Mann et al. 2005, 2007a,

2008, 2009) but also for efforts that have applied RegEM

in other contexts (e.g., Zhang et al. 2004; Steig et al. 2009).

This necessity is further supported by the fact that

pseudoproxy experiments have demonstrated differences

between the performance of the two RegEM approaches,

while real-world reconstructions of late-Holocene tem-

peratures derived from the two methods have not been

notably different—at least in their representation of the

NH mean (Mann et al. 2007a). Each of these observations

indicates that the focus within the literature on only NH

means is insufficient for evaluating CFR methods and

their derived results. Explaining the performance differ-

ences between various CFR methods remains an open

research question, but the persistence of similar problems

in now multiple linear reconstruction methods suggests

that caution must be exercised in the interpretation of

published real-world CFR results.
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APPENDIX

Application of CCA to the Climate Field
Reconstruction Problem

Beginning with the SVDs of the proxy and tempera-

ture matrices written in section 3b, we use multivariate

linear regression with a matrix B9

VrT
t 5 B9VrT

p 1 «
y

(«y is the residual error) to predict the prewhitened PCs

of temperature using the prewhitened proxy PCs:

V̂rT
t 5 B9VrT

p .

Because the prewhitened PCs are orthonormal, Vp
r TVp

r 5 I

(i.e., the identity matrix), the expression for B9 simplifies to
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B9 5 (VrT
t Vr

p)(VrT
p Vr

p)�1
5 VrT

t Vr
p.

The last expression for B9 can be decomposed using SVD,

B9 5 VrT
t Vr

p 5 O
t
S

cca
OT

p , (A1)

and can then be truncated by retaining only dcca #

min(dp, dt) leading singular values and corresponding

patterns:

Br 5 Or
t S

r
ccaOr T

p . (A2)

Prediction of the prewhitened temperature PCs using

Br instead of B9, that is,

V̂rT
t 5 Or

t S
r
ccaOrT

p VrT
p ,

transforms into a simple form

Q̂T
t 5 Sr

ccaQT
p (A3)

if written in terms of the CCA time series; these are

projections of the vectors Vt
r and Vp

r onto the sets of

patterns Ot
r and Op

r respectively:

Q
t
5 Vr

t O
r
t , Q

p
5 Vr

pOr
p. (A4)

Similarly, the predicted Q̂
t

corresponds to the predicted

prewhitened temperature PCs V̂r
t :

Q̂
t
5 V̂r

t O
r
t .

To obtain the CCA time series, Qt, and Qp, directly

from the standardized datasets, it is convenient to define

the weight matrices,

W
t
5 Ur

t (Sr
t )
�1Or

t , W
p

5 Ur
p(Sr

p)�1Or
p, (A5)

so that

QT
t 5 WT

t T9, QT
p 5 WT

p P9, (A6)

where Eqs. (5) and (6) and the orthonormality of the

truncated EOF sets of Ut
r and Up

r that is, columns, were

used.

It follows from (A4) that the columns of Qt and Qp are

orthonormal sets. Moreover, inserting (A4) into (A1)

yields

QT
t Q

p
5 Sr

cca.

Hence, the columns of Qt and Qp with different ordering

are orthogonal, while those with the same ordering are

positively correlated. The correlation coefficients of

these latter columns are equal to the diagonal elements

of Sr
cca and are called canonical correlations. Because of

the SVD decomposition in (A1), these are maximized

in the following sense: the correlation coefficient be-

tween the first columns of Qt and Qp is the largest among

the projections of Vt
r and Vp

r on any unit length vectors

(patterns); these maximizing patterns are the first col-

umns of Ot
r and Op

r , respectively. The remaining correla-

tion coefficients are arranged in descending order, that is,

the coefficient between the second columns of Qt and Qp

is the largest among projections of Vt
r and Vp

r on unit

length vectors orthogonal to the first columns of Ot
r and

Op
r , respectively, and the patterns that achieve the latter

correlation are the second columns of Ot
r and Op

r . The

correlation coefficient between the third columns of Qt

and Qp is the largest among projections of Vt
r and Vp

r on

unit length vectors orthogonal to the first and second

columns of Ot
r and Op

r , and so on.

The predictions of the CCA temperature time series

by (A3) amount to a simple multiplication of the CCA

time series of the proxies by the diagonal elements of

Sr
cca. To perform these predictions for the fields of

temperature on the basis of the original proxy data,

however, we require the spatial patterns of their re-

gression on the CCA time series:

T9 5 C
t
QT

t 1 «
t
, P9 5 C

p
QT

p 1 «
p
.

To determine Cp and Ct (the CCA patterns), or the CCA

homogeneous covariance maps, we use the orthonormality

of the CCA time series and the decomposition in (4):

C
p

5 (P9Q
p
)(QT

p Q
p
)�1

5 P9Q
p

5 U
p
S

p
VT

p Vr
pOr

p 5 Ur
pSr

pOr
p, (A7)

and similarly

C
t
5 T9Q

t
5 Ur

t S
r
t O

r
t . (A8)

Thus, the use of the low-rank CCA approximations in

(5), (6), and (A2) in the regression matrix formula given

in (2) results in

B
cca

5 Ur
t S

r
t V

rT
t Vr

p(Sr
p)�1UrT

p

5 Ur
t S

r
t O

r
t S

r
ccaOrT

p (Sr
p)�1UrT

p ,

if the inverse of the proxy covariance matrix is replaced

by the pseudoinverse (Golub and Van Loan 1996):

(P9 P9T)�1! (P9 P9T)1 5 (PrPrT)1 5 Ur
p(Sr

p)�2UrT
p .
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Given the definitions in Eqs. (A5) and (A8), Bcca takes

a simple form:

B
cca

5 C
t
Sr

ccaWT
p . (A9)
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