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ABSTRACT

Six recurrent thermal regimes are identified over continental North Amer-

ica from June to September through a k−means clustering applied to daily

maximum temperature simulated by ECHAM5 forced by historical SSTs for

1930-2013 and validated using NCEP-DOE II reanalysis over the 1980-2009

period. Four regimes are related to a synoptic wave pattern propagating

eastwards in the midlatitudes with embedded ridging anomalies that trans-

late into maximum warming transiting along. Two other regimes, associated

with broad continental warming and above average temperatures in the north-

east US, respectively, are characterized by ridging anomalies over America,

Europe and Asia that suggest correlated heat waves occurrences in these re-

gions. Their frequencies are both mainly related to La Niña and warm con-

ditions in the North Atlantic. Removing all variability beyond the seasonal

cycle in the North Atlantic in ECHAM5 leads to a significant drop in the

occurrences of the regime associated with warming in the northeast US. Su-

perimposing positive (negative) anomalies mimicking the AMV in the North

Atlantic translates into more (less) warming over the US across all regimes,

and does alter regime frequencies but less significantly. Regime frequency

changes are thus primarily controlled by Atlantic SST variability on all time-

scales beyond the seasonal cycle, rather than mean SST changes, whereas the

intensity of temperature anomalies are impacted by AMV SST forcing, due to

upper-tropospheric warming and enhanced stability suppressing rising motion

during positive phase of the AMV.
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1. Introduction40

Extreme heat episodes are considered to be one of the most deadly weather-related disasters with41

dramatic impacts on health, agriculture and the economy across the US (Peterson et al. 2013).Their42

increasing severity in the recent decades, together with more frequent occurrrences in future pro-43

jections over the US and Europe (Meehl and Tebaldi 2004), have heightened concerns. In addition,44

a significant increase in the percentage of global land areas subject to extreme temperatures has45

been observed from both historical records and coupled models from CMIP5 (Coumou and Robin-46

son 2013), further stressing the need for skillful predictions. While at global scale anthropogenic47

forcing has been related to trends in extreme heat events (Christidis et al. 2005; Field et al. 2012;48

Peterson et al. 2013), its effects are not strong enough to offset the influence of natural variability49

on continental scales (Brown et al. 2008). Hence, there is a need to improve our knowledge of50

the influence large-scale recurring patterns of variability on heat waves and underlying physical51

processes in order to improve projection scenarios and understand better the role anthropogenic52

forcing may play in the future. Thus, the goal of this study is to examine recurrent thermal regimes53

conducive to warming over North America in summer and their relationship to large-scale patterns54

of climate variability, in particular the Atlantic Multi-decadal Variabiliy (AMV) using historical55

and forced multidecadal Atmospheric General Circulation Model (AGCM) simulations.56

Among the known physical drivers, previous case studies emphasized the substantial con-57

trols exerted by quasi-stationary Rossby waves on the development of quasi-permanent ridges58

or blocking-highs prevailing over North America during heat wave events (Lyon and Dole 1995;59

Schubert et al. 2011). Recently, Teng et al. (2013) have identified a wave number-5 pattern arising60

mainly from internal atmospheric dynamics and generally found to precede heat waves by 15-2061

days. The Madden-Julian Oscillation or MJO (Madden and Julian 1971) modulates tropical heat-62
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ing and is also a potential trigger for the development of extreme heat events over North America63

(Lau and Waliser 2011). In addition, a circulation pattern of semistationary ridging anomalies at64

500 hPa conducive to observed heat waves over North America and Europe and intensified under65

increasing greenhouse gases concentrations (Meehl and Tebaldi 2004), is projected to increase66

heat waves intensity, frequency and persistence by the end of the 21st century with an upward67

trend that should even become apparent in the early decades (Lau and Nath 2012).68

At local scale, a soil moisture deficit from the previous season leading to less evapotranspiration69

but higher sensible heat flux to the atmosphere, can create a positive soil moisture-rainfall feed-70

back (Betts and Ball 1998; Eltahir 1998; Trenberth 1998; Small and Kurc 2003), which may play71

a substantial role in the development of extreme droughts in North America (Saini et al. 2016) and72

temperature anomalies during heat waves, as noted over western Europe (Stefanon et al. 2013).73

Large-scale patterns of weather conducive to heat waves can be affected by variations in sea sur-74

face temperatures (SSTs) in the world oceanic basins (Namias 1982; Lyon and Dole 1995) and75

Arctic sea-ice concentration (Watanabe et al. 2013). For example, McKinnon et al. (2016) have76

showed that significant predictability can be derived from midlatitude Pacific SSTs and antecedent77

rainfall, at 50-day lead for heat waves developping over the eastern US during summer. At inter-78

annual time-scales, La Niña events in the tropical eastern Pacific are conducive to dry conditions79

in the southwest US (Schubert et al. 2004a,b; Seager et al. 2005) that may lead to increased heat80

conditions. Eastern North America climate is also subject to the influence from the summer North81

Atlantic Oscillation (NAO) (Folland et al. 2009), the northerly-shifted counterpart of the winter82

NAO (Barnston and Livesey 1987; Hurrell and van Loon 1997; Hurrell and Folland 2002; Hurrell83

et al. 2003). It is a principal mode of climate variability in the North Atlantic-European summer84

that shows also significant correlations with climate in northeast North America where higher-85

than-average temperatures are related to positive phases of the summer NAO (Folland et al. 2009).86
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Folland et al. (2009) also evidenced partial relationships such that when the AMV is in its warm87

phase, the summer NAO tends to be in its negative phase. In their recent review Grotjahn et al.88

(2016) found that the influence from low frequency variability associated with ENSO and the NAO89

on warm episodes over North America are simulated with useful fidelity by global climate models.90

At multi-decadal time-scales, North American climate is influenced by the AMV (Enfield et al.91

2001; Sutton and Hodson 2005; Knight et al. 2006; Ting et al. 2009, 2011) but also the Pacific92

Decadal Oscillation (PDO) in boreal winter (Kenyon and Hegerl 2008). During summer, rela-93

tionships between weather patterns related to quasi-permanent ridges conducive to heat waves94

over North America and multi-decadal variability in the North Atlantic basin have been examined95

(Knight et al. 2006) but are not yet fully documented. Because the AMV is potentially predictable96

(Yang et al. 2013; Hermanson et al. 2014), summer climate in Europe and America might also be97

predictable on decadal time-scales (Kirtman et al. 2013; Seager and Ting 2017), thus motivating98

further investigation of potential linkages between recurrent heat wave-conducive weather patterns99

and North Atlantic SST fluctuations.100

Heat waves are commonly seen as the result of subseasonal atmospheric variability (Teng et al.101

2013) and are generally associated with large scale meteorological patterns which are well resolved102

by global models (Grotjahn et al. 2016). Thus, our understanding of the underlying atmospheric103

dynamics at subseasonal time-scales and how these interact with large-scale climate modes of vari-104

ability is crucial to improve their prediction. This study diagnoses surface temperature variability105

during Jun-Sep (JJAS) over North America through a clustering of daily continental maximum106

temperature (Tmax) observed over the last 30 years, as well as simulated by historical and forced107

multi-decadal AGCM experiments in order to identify potential controls from the North Atlantic108

and specifically the AMV. The method and modeling experiments are presented in more detail109

in the next section. Results from the cluster analysis are then discussed in section 3 alongside110
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associated atmospheric circulation anomalies and large-scale teleconnections. In section 4, forced111

AGCM experiments are used to demonstrate the influence of the AMV on heat waves over the US.112

Discussion and conclusions are presented in section 5.113

2. Data and Methods114

a. Atmospheric and land surface data115

1980-2009 daily atmospheric fields from NCEP-DOE II reanalysis (NCEP2), produced by the116

National Centers for Environmental Prediction (NCEP) and the US Department Of Energy (DOE),117

at 2.5◦x2.5◦ horizontal resolution (Kanamitsu et al. 2002), are used for model validation.118

The relationships between each regime obtained from the clustering presented in the next section119

and sea surface conditions is assessed using the NOAA Extended Reconstructed SST version 3b120

(ERSST) with daily values at a quarter of a degree aggregated for JJAS seasons from 1980 to 2009.121

b. Modeling experiments122

The ECHAM5 AGCM used in this study is a spectral model with a triangular truncation at123

wavenumber 42 (T42) and 19 unevenly spaced hybrid sigma-pressure vertical layers (Simmons124

and Burridge 1981). A complete description of the model can be found in Roeckner (2003).125

ECHAM5 is forced with prescribed historical global ERSSTs for the 1930-2013 period (ECHAM5126

GOGA). Prescribed sea ice concentrations are derived from the observational surface boundary127

forcing dataset for uncoupled simulations with the Community Atmosphere Model based on Hur-128

rell et al. (2008) that is a merged product of the monthly mean Hadley Centre sea ice and SST129

dataset version 1 (HadlSST1, Rayner et al. (2003)) and version 2 of the NOAA weekly optimum130

interpolation (OI) SST analysis (Reynolds et al. 2002). Greenhouse gases concentrations are kept131

at the year 2000 value and there is no aerosol forcing. Sixteen ECHAM5 GOGA members are132
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generated using perturbed initial conditions to isolate the SST-driven signals by ensemble aver-133

aging which reduces internal atmospheric variability. Moreover, ECHAM5 has also been forced,134

over the same 84-year period, by observed SSTs in all oceanic basins except in the North Atlantic,135

where climatological SSTs computed over the 1930-2013 period (ECHAM5 CLM) and anoma-136

lous postitive/negative SSTs mimicking the AMV phases (ECHAM5 AMV+/-) are prescribed to137

determine the impact of AMV SST patterns on continental warming. The AMV SST pattern is138

derived from linear regression of the standardized AMV index defined by Ting et al. (2009) onto139

North Atlantic SSTs for the period 1930 to 2013. The amplitude of regressed AMV SST anoma-140

lies is multiplied by 2.5 to obtain a robust response. Sixteen members are generated for CLM and141

AMV+/- using perturbed initial conditons.142

c. Dynamical clustering and significance testing143

Daily variability in maximum temperatures (Tmax) is examined through an objective classifi-144

cation based on the k−means clustering (Cheng and Wallace 2003; Michelangeli et al. 1995;145

Fereday et al. 2008) of continental daily Tmax anomalies (obtained by subtracting the mean an-146

nual cycle) from both NCEP2 and ECHAM5 modeling experiments over North America between147

0-60◦N. To reduce the dimensionality of the problem and to ensure linear independence between148

input variables, an EOF analysis is first performed on the data correlation matrix and the first 11149

PCs explaining 69.6% of the variance for NCEP2 and 69.8% for ECHAM5 are retained for clus-150

tering analysis. The long-term trends are not removed from daily data, however, detrending does151

not lead to any difference in regime behavior (not shown), since the long-term trend contribution152

to Tmax variability over North America can be neglected at daily time-scale. The Euclidean dis-153

tance is then used to measure similarities between daily Tmax patterns and a given regime. To test154

the robustness of the regime partitions, 100 different partitions of daily Tmax anomaly patterns155
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are performed, each time with a different randomly drawn initialization (Michelangeli et al. 1995;156

Moron and Plaut 2003; Vigaud et al. 2012). The dependence of the final partition on the initial157

random draw is evaluated by comparing several final partitions for a given number of regimes k.158

The average similarity within the 100 sets of regimes is then measured by a classifiability index159

(Cheng and Wallace 2003), which evaluates the similarity within the 100 sets of regimes (i.e. its160

value would be exactly 1 if all the partitions were identical), and is compared to confidence limits161

from a red-noise test (applied to Markov-generated red-noise data) based on 100 samples of the162

same length. This operation provides 100 values of the classifiability index and is repeated for163

k varying from 2 to 10. Fereday et al. (2008), who applied a similar k−means clustering but to164

mean sea level pressure over the North Atlantic-European sector, argue that this approach might165

not provide a suitable choice of the number of clusters. Nevertheless, the authors note that a com-166

promise as to be made and the 6-cluster partition we have chosen here using red-noise test (i.e.,167

the classifiability index discussed above) satisfy the condition that there are not too few clusters,168

so that the cluster centroids do not effectively span the space of data, but not so many so that the169

similarity between neighboring cluster centroids is not too great (Fereday et al. 2008).170

All composites are statistically tested with Student′s t-test and correlations with a resampling171

Monte-Carlo bootstrap test based on 100 random permutations (Livezey and Chen 1983).172

3. Maximum summer temperature variability over North America173

a. Recurring patterns174

The k−means classifiability index corresponding to the clustering of JJAS daily Tmax anoma-175

lies from a single member of ECHAM5 GOGA experiments (Fig. 1), here chosen randomly to176

illustrate the behavior in the model, exhibits the first index that is above red noise at k=6 selected177
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for the analysis. Significance is not increased much for larger partitions as indicated by the respec-178

tive spread and median values, while no significance is found for k=8. Tmax anomalies are shown179

in Figure 2a to f for each regime. For validation purposes, these patterns are compared to those180

obtained from a similar clustering applied to NCEP2 reanalysis (Fig. 2g-l). Spatial pattern corre-181

lations between ECHAM5 and NCEP2 patterns for regime 1 to 6 are 0.90, 0.56, 0.93, 0.66, 0.76182

and 0.91, when computed over the respective 1930-2013 and 1980-2009 periods. Correlations of183

similar magnitude were obtained for the common 1980-2009 period.184

Most patterns capture alternating warming/cooling centers over the US with contrasting posi-185

tive/negative Tmax anomalies. For example, regime 5 is characterized by warming north of 40◦N186

and weak cooling in the northwest and southeast, while regime 6 shows maximum positive anoma-187

lies over the northeast US resembling the pattern from McKinnon et al. (2016), and strong negative188

anomalies in the northwest. By contrast, regime 2 consists of broad warming across the US.189

Regime transitions, which are defined as the number of event transitions from one regime to190

another, are illustrated in Table 1. The highest counts are found along the diagonal suggesting191

the persistence of each regime at the daily time-scale. In particular, maximum probabilities for192

regimes 2 (67%) and 5 (64%) reflect their prevalence and persistence, while related warming over193

most of the US and the northeast respectively suggest links to heat waves.Significant transition194

probabilities compared to chance indicate that regime 6 is generally followed by regime 1, which195

preferentially preceeds regimes 3 and 4, while regime 3 tends to be followed by regime 5, which is196

consistent with the southeastwards transit of positive/negative anomalies seen from Figure 2f, a, c197

and e for ECHAM5 (l, g, i and k for NCEP2). Other regimes (2 and 4) are relatively independent198

from one another. .199
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b. Related atmospheric circulation anomalies200

Regimes 6, 1 and 3, which tend to happen in sequence, as well as regime 4, are characterized201

by ridge-trough anomalies in the midlatitudes shown in 200 hPa geopotential heights composites202

(Fig. 3l, g, i and j) that extend to the surface (Fig. 3f, a, c and d), suggesting relationships to203

propagating synoptic waves potentially associated with baroclinic instability. The locations of the204

ridge embedded in this wave train correspond with positive Tmax anomalies for each regime (Fig.205

2f, a, c and d) and their transition eastwards over the US from regime 6, 1, to 3 or 4 is concomitant206

with the shift of high pressure anomalies further inferring relationships to westerly waves.207

Regimes 2 and 5 are related to positive geopotential anomalies at upper levels over America,208

Europe and Asia (Fig. 3h and k), with maximum over the US, suggesting possible correlated heat209

waves occurrences in these regions of the Northern Hemisphere. Upper-tropospheric patterns are210

larger than the typical wave number 6 synoptic scale wave pattern, and could thus be associated211

with teleconnections, as reflected by the persistence of both regimes and no significant pattern tran-212

sition (Table 1). Regime 2 also displays low pressure anomalies north of the northeast/northwest213

US at both surface and upper-tropospheric levels (Fig. 3b and h). Regime 5 is related to a circum-214

polar pattern of positive anomalies with highest values over America at both upper-tropospheric215

levels and surface, with simultaneous low pressure anomalies over the northwest US and central216

North Atlantic at upper-tropospheric level (Fig. 3e and k). These translate at surface in a dipole217

pattern of high/low pressure anomalies in the southern/northern parts of the North Atlantic (Fig.218

3e) that resembles the positive phase of the summer NAO related to above average temperatures219

in northern Europe and northeast North America (Folland et al. 2009).220
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c. Year-to-year variability and teleconnections to large-scale SSTs221

To determine the year-to-year variability of Tmax over the US and potential links to SSTs,222

NCEP2 and ECHAM5 ensemble mean JJAS Tmax anomalies are averaged for North America be-223

tween 21-55◦N and plotted in Figure 4 alongside the annual AMV index, defined as the detrended224

SSTs averaged over [0◦N-65◦N;0-80◦W]. Tmax anomalies are also reconstructed from the yearly225

frequencies of each regime, that are multiplied by associated Tmax anomalies and averaged spa-226

tially over the same North American domain, for each Jun-Sep season within the 1980-2009 and227

1930-2013 periods for NCEP2 and ECHAM5 ensemble mean, respectively. Spatially averaged228

Tmax anomalies are significantly correlated with those reconstructed from regime frequencies229

and mean Tmax anomalies in NCEP2 (0.88). Similarly, ECHAM5 ensemble mean Tmax anoma-230

lies are significantly related to reconstructed anomalies when averaged across ECHAM5 members231

(0.96), further indicating that Tmax variability is well represented by thermal regimes. In addi-232

tion, the five warmest seasons identified from NCEP2 and ECHAM5 JJAS Tmax indices (Fig. 4)233

generally coincide with less frequent regimes 1 and 3 but increased occurrences of regimes 2 and234

5 episodes, the opposite being true for coolest years, while relationships are less clear for other235

regimes (not shown).236

Tmax anomalies are significantly correlated with the AMV for both NCEP2 (0.35) and237

ECHAM5 (0.44). For ECHAM5, correlations are less consistent before (0.23) than after (0.58,238

99% level significant) 1960, which might also reflect the lesser reliability of SST data. Moreover,239

higher (lower) number of regime 2 (1, 3 and 5) occurrences in 1930-60 when the AMV is positive240

compared to 1966-96 when the AMV is negative (Table 2), further suggest AMV controls and241

agree with the relationship between positive AMV phases and warming in the US (Sutton and242
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Hodson 2005; Ting et al. 2009, 2011).243

244

For each regime separately, correlation patterns between the number of occurrences of each ther-245

mal regime (with the long term climatological mean removed) and seasonal JJAS SST anomalies246

(Fig. 5) bear some similarities when computed from 1980-2009 NCEP2 and averaged across 1930-247

2013 ECHAM5 GOGA members, the latter exhibiting more spatially coherent patterns which248

could be attributed to the filtering of internal variability in the model when aggregating across249

ensemble members. Overall, regime frequencies are mainly influenced by El Niño/La Niña and250

Pacific extratropics, the Atlantic and the tropical western Pacific/Indian basins, and their combina-251

tion. Interestingly, the regimes (1, 3 and 4) associated with synoptic wave patterns exhibit opposite252

relationships in both the Pacific and Atlantic compared to regimes 2 and 5 potentially associated253

with teleconnections. Regimes 2 and 5 are related to La Niña and warm conditions in the Atlantic254

basin, consistent with warming in the US for La Niña episodes (Schubert et al. 2004a,b; Seager255

et al. 2005) and positive AMV phases (Ting et al. 2009, 2011). Moreover, both regimes are also256

associated with warming in the west Pacific midlatitudes, in a pattern similar to the Pacific Ex-257

treme Pattern (PEP) from McKinnon et al. (2016) that has skill in predicting summer heat waves258

in the northeast US over the last 30 years.259

4. Impact of the North Atlantic in idealized ECHAM5 experiments260

Superimposing AMV+/- SST anomalies in ECHAM5 experiments modulates maximum tem-261

peratures over North America, in particular over the central and western US (Fig. 6c). For AMV+262

experiments, in addition to warm air advection towards the central US at surface levels (Fig. 6a),263

warmer SSTs in the tropical Atlantic increase convection there and in the Intra-American Seas or264

IAS (Fig. 6c), leading to upper-tropospheric warming that extends beyond the North American265
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land mass (Fig. 6d). Warming at upper levels increases static stability in turn inhibiting rising266

motions most particularly over the western US (Fig. 6c and d), where stronger ridging anomalies267

in the upper-troposphere translate into warmer conditions compared to AMV-.268

To investigate further potential controls from the North Atlantic, the clustering presented269

in the previous section for ECHAM5 GOGA has been replicated for ECHAM5 CLM and270

AMV+/- experiments (see section 2c) by applying k−means to daily Tmax anomalies from271

their corresponding ensemble member forced with the same perturbed initial conditions as those272

used for the GOGA member clustered in section 3a. Maximum classifiability is obtained for all273

experiments for a 6-cluster partition (not shown) and minimal Euclidean distances to ECHAM5274

GOGA clusters (not shown) suggest close correspondances between the pattern of anomalies275

typical of each regime. For each ECHAM5 experiments (CLM and AMV+/-), daily Tmax276

patterns from each ensemble member are next classified as a single regime occurrence for which277

Euclidean distance is minimized across the respective ECHAM5 clusters, hence allowing a direct278

evaluation of subsequent regime sequences across each ensemble experiments (i.e., CLM and279

AMV+/-). The anomalies averaged across all ECHAM5 AMV+ and AMV- ensemble members280

(Fig. 7 left and middle panels) are identical in structure to those from ECHAM5 GOGA (Fig. 2),281

only the magnitude of anomalies differs across experiments. Differences between mean Tmax282

patterns for ECHAM5 AMV+ and AMV- (Fig. 7 right panels) indicate that, for all regimes,283

warmer/cooler conditions imposed in the North Atlantic result in warmer/cooler anomalies most284

pronounced over the central and western US and western Canada, where highest differences for285

regimes 2 and 5 further suggest increased heat waves conditions for warm phases of the AMV.286

287

The proportions in the frequencies of occurrences of each regime are similar between NCEP2288

and when averaged across ECHAM5 GOGA ensemble members (Fig. 8a). The contrasting 30-289

13



and 84-year periods pertaining to ECHAM5 GOGA and NCEP2 does not account much for the290

differences in regime frequencies as indicated by comparable ECHAM5 GOGA counts for the291

1980-2009 period (not shown); nevertheless, ECHAM5 GOGA displays more occurrences of292

regime 2 and 6 but less for the other regimes compared to NCEP2. A similar count to Figure293

8a is shown in Figure 8b across ECHAM5 CLM and AMV+/- sixteen members over the 1930-294

2013 period. The proportion of occurrences in all forced experiments are on average similar to295

ECHAM5 GOGA (Fig. 8a) and the spread amongst ensemble members is small compared to the296

mean frequencies. The differences between the regime frequencies averaged across ECHAM5297

CLM and GOGA ensemble members (Fig. 8c) show a significant increase (reduction) in the fre-298

quency of regimes 1, 2, 3 and 4 (5 and 6) in ECHAM5 CLM members compared to those from299

ECHAM5 GOGA. Increases in regimes 1, 2 and 3 frequencies are consistent with their greater300

relationships to ENSO than with the Atlantic basin (Fig. 5a, c and d), however modulations of301

regimes 4 and 6 frequencies are less easy to explain. While modulations for most regimes are be-302

low 20%, a reduction of up to 60% of regime 5 occurrences suggests that removing all variability303

except the seasonal cycle in the North Atlantic directly inhibits its development, which indicates304

primary influences from the Atlantic basin for that mode (Fig. 5e) and agrees with atmospheric305

circulation anomalies at surface resembling the positive summer NAO, itself partly related to the306

AMV (Folland et al. 2009). It emphasizes that interannual and higher variability in the basin exert307

controls on conditions favorable to the development of heat waves over North America.308

Differences in yearly continental Tmax anomalies across ECHAM5 experiments when spatially309

averaged between 21-55◦N are significantly correlated to those reconstructed from the frequencies310

and average Tmax anomalies of each regime (0.93, 0.95 and 0.94 for CLM minus GOGA, and311

AMV+/- minus CLM respectively), thus suggesting that Tmax differences over the US across312

ECHAM5 experiments are well represented by changes in thermal regimes and their frequencies.313

14



Imposing AMV+/- anomalies in the North Atlantic increases/decreases the frequencies of314

regime 2 compared to ECHAM5 CLM (Fig. 8d), which is favored/inhibited with warming/cooling315

conditions in the North Atlantic (Fig. 5b-h). On average, AMV+ members have also more (less)316

frequent regime 4 (3, 5 and 6), while those for AMV- have less (more) frequent regime 1 (6).317

However, these differences remain small compared to those between ECHAM5 GOGA and CLM318

(Fig. 8c) and suggest that warmer SSTs in the North Atlantic act to increase anomalous warming319

in the central and western US across all regimes (Fig. 7), and influence their frequencies but less320

significantly. Regime 5 is inhibited in all forced ECHAM5 CLM and AMV+/- experiments, indi-321

cating that Tmax variability over the US is significantly influenced by the North Atlantic, however,322

the AMV contribution is not as strong as those from all time-scales beyond the seasonal cycle.323

5. Discussions and conclusions324

This study aimed at examining recurrent thermal regimes conducive to warming over North325

America during summer in order to identify how these are related to large-scale modes of climate326

variability, in particular the Atlantic Multi-decadal Variabiliy (AMV). To this end, a dynamical327

clustering approach (k−means) was applied to ECHAM5 simulated daily Tmax in GOGA-like328

multidecadal experiments based on prescribed historical ERSSTs from 1930 to 2013, but also329

for validation purposes to NCEP2 reanalysis (1980-2009). This analysis allowed to identify six330

thermal regimes associated with significant Tmax anomalies over North America. Four regimes331

(1, 3, 4 and 6) are associated with a synoptic wave pattern propagating eastwards in the mid-332

latitudes, embedded ridging anomalies translating into maximum warming transiting along. Two333

other regimes, characterized by anomalous ridging over America, Europe and Asia, resemble more334

planetary waves potentially associated with teleconnections and are related to warming over the335
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whole of North America (regime 2) and the northeast US (regime 5), with potentially correlated336

heat waves in Europe and Asia.337

At interannual time-scales, warmest/coolest years systematically coincide, as expected in both338

NCEP2 and ECHAM5, with increased/reduced occurrences of regimes 2 and 5, whose frequencies339

are increased for combined La Niña conditions in the Pacific and warming in the Atlantic, but340

also in the Pacific midlatitudes resembling the Pacific Extreme Pattern (McKinnon et al. 2016),341

consistent with the relationships of both basins to warmer conditions in North America (Schubert342

et al. 2004a,b; Seager et al. 2005; Ting et al. 2009, 2011; McKinnon et al. 2016). By contrast,343

the other regimes with stronger relationships to westerly waves are associated with opposite SST344

patterns in both basins. In particular, El Niño-like conditions tend to promote regimes 1, 3 and345

4, which tend to occur in sequence with regime 6. The latter is related to cooling in the tropical346

Pacific, thus warm ENSO conditions will tend to suppress regime 6 and could, in turn, alter347

regime sequences at subseasonal time-scales.348

349

Suppressing all variability beyond the seasonal cycle in the North Atlantic in ECHAM5 inhibits350

the frequency of regime 5 favorable to warming over the northeast US, in agreement with its351

primary relationships to Atlantic SSTs and surface circulation anomalies resembling the positive352

summer NAO partly related to the AMV (Folland et al. 2009). Superimposing positive/negative353

SST anomalies mimicking the AMV in the North Atlantic (ECHAM5 AMV+/-) translate in354

exacerbated/reduced warm conditions over the US observed across all regimes. Warmer SSTs in355

the tropical Atlantic for ECHAM5 AMV+ experiments increase convection locally, but also in356

the IAS, and lead to upper-tropospheric warming stretching over the North American land mass,357

which in turn increases static stability and suppresses rising motions most particularly over the358

western US, where warmer conditions prevail compared to AMV-. Positive/negative AMV SST359
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anomalies influence regime frequencies but less significantly compared to the magnitude of their360

associated Tmax anomalies, and thus systematically increase/decrease anomalous warming in the361

central and western US across all regimes, consistent with drought conditions and enhanced heat362

waves over North America during positive AMV phases (Mo et al. 2009; Schubert et al. 2009).363

Such controls from the North Atlantic contrast with the rather limited remote forcing from ENSO364

and the PDO on summer extreme temperatures events due to the relative inactivity and spatial365

extent of these climate modes during the warm season (Grotjahn et al. 2016). Despite different366

underlying mechanisms, AMV controls on ridging anomalies over North America resemble the367

impact of increasing greenhouse gases concentrations leading to upward trends in heat waves368

frequency and persistence in future projections through the intensification of a similar blocking369

ridge pattern (Meehl and Tebaldi 2004; Lau and Nath 2012).370

371

The results presented here are based on coarse spatial resolution Tmax data suggesting that a372

similar set of regimes could be identified and used as a diagnostic of GCM forecast products. In373

this respect, this analysis provides a useful framework for heat wave predictability with dynamical374

evidence for significant relationships to thermal regimes reproducible in AGCM ensembles. The375

fact that some of the hottest episodes developed with recurrent thermal regimes over North Amer-376

ica, with potentials for correlated heat waves in Asia and Europe, is a direct motivation to examine377

their predictability in state-of-the-art forecast systems and benefit ongoing prediction efforts.378
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TABLE 1. Contingency tables between the six daily Tmax classes from ECHAM5 GOGA. In parentheses are

indicated the respective transition probabilities (in %) obtained by dividing separate class counts by the sum of

the columns of each row. Stars (*) indicate significance at 99.9% level using a χ2 test.

516

517

518

From\To Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 635* (42) 95 (6) 403* (27) 317* (21) 29 (2) 25 (2)

Class 2 71 (4) 1309* (67) 68 (3) 118 (6) 196 (10) 205 (10)

Class 3 42 (3) 64 (5) 787* (56) 256 (18) 250* (18) 3 (0)

Class 4 182 (11) 150 (9) 79 (5) 924* (54) 105 (6) 258 (15)

Class 5 126 (6) 199 (11) 65 (3) 31 (2) 1250* (64) 272 (14)

Class 6 454* (26) 150 (8) 2 (0) 50 (3) 116 (7) 999* (56)
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TABLE 2. Mean total number of occurrences of the daily Tmax classes in ECHAM5 GOGA experiments aver-

aged over 16 ensemble members during the 1930-60/1966-96 historical AMV positive/negative phases alongside

their differences. Stars (*) indicate significance at 95% significance level using a Student t-test.

519

520

521

ECHAM5 GOGA Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

1930-60 AMV+ 490 945 392 539 719 574

1966-96 AMV- 529 867 451 563 770 599

AMV+ minus AMV- -39* +78* -59* -24 -51* -25
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FIG. 2. Mean Tmax anomalies (in ◦C) for each regime simulated by ECHAM5 GOGA (a to f) and from

NCEP2 reanalysis (g to l) during JJAS over the 1930-2013 and 1980-2009 periods respectively. Only the grid-

points for which anomalies are significant at 95% level using a Student t-test are displayed.
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FIG. 3. Mean daily 850 hPa geopotentials (shadings in m, contours starting at and every +/-5mb) with winds

anomalies (vectors in m/s) and 200 hPa geopotentials anomalies (shadings in m, contours starting at and every

+/-10mb) for each Tmax regime simulated by ECHAM5 GOGA (a to f and g to l) during JJAS over the 1930-

2013 period. Only the grid-points for which anomalies are significant at 95% significance level are displayed

(for vectors at least one component).
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Yearly	JJAS	ECHAM5	&	NCEP2	TMAX	anomalies	over	North	America	[21-55N]	

FIG. 4. Yearly JJAS Tmax anomalies (ECHAM5 GOGA ensemble mean in bars, NCEP2 plotted in blue)

over North America between 21-55◦N (in ◦C) together with the AMV index (green line). Tmax anomalies

reconstructed from regime frequencies and average Tmax anomalies in NCEP2 are plotted in thick blue and

those averaged across ECHAM5 GOGA ensemble members in thick black.
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a)	CLASS1	ECHAM5	SST	 b)	CLASS2	ECHAM5	SST	

c)	CLASS3	ECHAM5	SST	 d)	CLASS4	ECHAM5	SST	

e)	CLASS5	ECHAM5	SST	 f)	CLASS6	ECHAM5	SST	

g)	CLASS1	ERSST	(1980-2009)	 h)	CLASS2	ERSST	(1980-2009)	

i)	CLASS3	ERSST	(1980-2009)	 j)	CLASS4	ERSST	(1980-2009)	

k)	CLASS5	ERSST	(1980-2009)	 l)	CLASS6	ERSST	(1980-2009)	

FIG. 5. Mean correlations (shadings) between each regime frequencies of occurrences averaged across

ECHAM5 GOGA ensemble members and prescribed SSTs (a to f) for the 1930-2013 period. Similar corre-

lations are presented between NCEP2 Tmax regime frequencies of occurrences and ERSSTs (g to l) during the

1980-2009 period. The black lines indicate correlations significant at 90% level of significance using Monte-

Carlo simulations.
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a)	(GPH,U,V)	850hPa	 b)	GPH	200hPa	

d)	(Omega,T)	21-50N	c)	TMAX,Omega	500hPa	

FIG. 6. Mean differences in (a) 850 hPa geopotentials (shadings in m, contours starting at and every +/-5

m) and winds (vectors in m/s), (b) 200 hPa geopotentials (shadings in m, contours starting at and every +/-10

m), (c) Tmax (shadings) and 500 hPa vertical velocities (contours starting at and every +/-0.004 Pa/s), and (d)

tropospheric temperatures (shading in Celsius) and vertical velocities (contours starting at and every +/-0.004

Pa/s) between AMV+ and AMV- ECHAM5 ensemble mean during JJAS over the 1930-2013 period. Blue and

red contours of vertical velocities correspond to rising and sinking motions, respectively, and the zero line is

plotted in black. Only the grid-points for which differences are significant at 95% level of significance using

Student t-test are displayed (for vectors at least one component).
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FIG. 7. Mean ECHAM5 AMV+ (left) and AMV- (center) Tmax anomalies for each class and their differences

(right) averaged across all ensemble members over the 1930-2013 period (in ◦C). Only the grid-points for which

anomalies and differences are significant at 95% level of significance using Student t-test are displayed.
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FIG. 8. Relative number of occurrences of Tmax classes in NCEP2 over the 1980-2009 period (blue) and av-

eraged across ECHAM5 GOGA ensemble members over the 1980-2009 (orange) and 1930-2013 (red) periods

(a), together with these for ECHAM5 CLM and AMV+/- ensemble experiments (b) and differences between

ECHAM5 CLM and GOGA (c) as well as AMV+/- and CLM (d) averaged across all ensemble members ex-

pressed as a percentage of total occurrences for each regime over the 1930-2013 period. Note that all differences

in (c) are statistically significant at 90% level of significance using a Student t-test, while significant differences

are indicated by a star (*) in (d).

598

599

600

601

602

603

604

35




