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Abstract We present and apply a novel method of describing and modeling com-
plex multivariate datasets in the geosciences and elsewhere. Data-adaptive harmonic
(DAH) decomposition identifies narrow-banded, spatio-temporal modes (DAHMs)
whose frequencies are not necessarily integer multiples of each other. The evolu-
tion in time of the DAH coefficients (DAHCs) of these modes can be modeled us-
ing a set of coupled Stuart-Landau stochastic differential equations that capture the
modes’ frequencies and amplitude modulation in time and space. This methodology
is applied first to a challenging synthetic dataset and then to Arctic sea ice con-
centration (SIC) data from the U.S. National Snow and Ice Data Center (NSIDC).
The 36-year (1979–2014) dataset is parsimoniously and accurately described by our
DAHMs. Preliminary results indicate that simulations using our multilayer Stuart-
Landau model (MSLM) of SICs are stable for much longer time intervals, beyond
the end of the 21st century, and exhibit interdecadal variability consistent with past
historical records. Preliminary results indicate that this MSLM is quite skillful in
predicting September sea ice extent.
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1 Data-adaptive harmonic (DAH) decomposition

The DAH decomposition introduced in [CK17] is a signal processing method-
ology that allows for a data-adaptive decomposition of power and phase spec-
tra by adapting the time embedding approach to the study of time series intro-
duced in [BK86, VG89, ET96] and its multivariate extensions. However, unlike
other methodologies that rely on time embedding — such as Multichannel Singu-
lar Spectrum Analysis (M-SSA) [GAD+02] or Laplacian spectral analysis [GM12]
— DAH uses integral-operator techniques that help decompose the original signal
into narrow-banded signals; while data-adaptive, these elementary signals remain
narrow-banded for each separate, discrete Fourier frequency.

At a practical level, the key feature of the DAH method is that it relies on the
construction of matrices that exploit cross-correlations in a different way than found
in standard statistical methods, such as in Principal Component Analysis (PCA)
[Pre88]. As explained in [CK17] and discussed below, the eigenmodes associated
with the matrices constructed by DAH exhibit a data-adaptive feature that shows up
in their phase rather than in their shape. To wit, these modes form an orthogonal
set of oscillating functions within the embedding window that is characterized by
an interlacing of their zeros, as is the case for the eigenfunctions of Sturm-Liouville
boundary-value problems for ordinary differential equations (e.g., [Har86]). While
this interlacing property is intrinsic to the modes obtained by the DAH approach,
the location of their zeros depends on the dataset at hand.

It is for this reason, that these modes are referred hereafter as data-adaptive har-
monic modes (DAHMs). As a result, the elementary signals come in pairs, which
are composed—as far as permitted by the available information and resolution—
by such modes in exact phase quadrature. This property allows one to extract the
aforementioned narrow-banded but amplitude-modulated time series, whose sum
represents the original signal, as time series of DAH coefficients (DAHCs) obtained
by projecting the input dataset onto the DAHMs. These features are at the core of
identifying spatio-temporal oscillatory modes in the noisy synthetic dataset intro-
duced in Sec. 2, as well as in the DAH analysis of a dataset of Arctic Sea Ice extent
[FSHCC10] performed in Sec. 3; finally they permit the DAH-enabled nonlinear
stochastic modeling of Sec. 4. Numerical details appear in Appendices 1 and 2.

2 DAH identification of spatio-temporal oscillatory modes

Here we evaluate our DAH methodology by applying it to a synthetic dataset de-
signed as a testbed for the classical Prony problem of identifying “hidden period-
icities” in a noisy environment (e.g., [Mar87]). Pisarenko harmonic decomposition
[Pis73] is a well-known method of frequency estimation by using time-lagged cor-
relations, and it assumes that a signal x(n) consists of p complex exponentials super-
imposed on white noise. However, the algorithm is restricted to the univariate case,
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and its practical usefulness is somewhat limited due to the white-noise assumption
and to the fact that p must be known a priori.

The M-SSA methodology [GAD+02] also relies on time-lagged correlations,
and it can be applied for identifying oscillatory modes without the limitations in-
herent in [Pis73]. A challenge for M-SSA, however, is the degeneracy problem
in discriminating between oscillatory modes having similar energy but distinct
temporal frequencies and spatial patterns; A. Groth and M. Ghil [GG11] intro-
duced a suitably modified varimax rotation of the M-SSA modes that helps to deal
with this shortcoming. To demonstrate the DAH capabilities for mode identifica-
tion, we will rely on the synthetic dataset provided at http://www.atmos.
ucla.edu/tcd/ssa/guide/mssa/mssarot.html, as part of the SSA-
MTM Toolkit for time series analysis, https://dept.atmos.ucla.edu/
tcd/ssa-mtm-toolkit; this dataset is used in the freeware Toolkit to illus-
trate the varimax-rotated M-SSA algorithm introduced in [GG11].

We thus consider a short and noisy spatio-temporal dataset describing the time
evolution of a d-dimensional vector y(tn) := (y1(tn), ...,yd(tn)) over the interval
n = 1, ...,N; here d = 6 and N = 130. The full dataset shown in Fig.1f consists
of a coherent component s(t) embedded into temporally correlated, albeit spatially
uncorrelated noise r(t):

y(tn) = (1−ν)1/2 s(tn)+ν
1/2 r(tn) . (1)

The coherent component s(t) in Fig.1e is the sum of the four oscillatory modes
xi

k(t) with varying amplitude and phase across the six spatial channels, as shown in
Figs.1(a–d):

sk(tn) =
4

∑
i=1

xi
k(tn), k = 1, · · · ,6; (2)

these modes are given by

xi
k(t) =

(
α i

k
2

)1/2
sin(2π fit +Φ

i
k), k = 1, · · · ,6, i = 1, · · · ,4, (3)

and each phase Φ i
k is obtained independently as a random variable uniformly dis-

tributed in [0,2π].
The periodicities of the four oscillatory modes are not integer multiples of the

sampling time nor of each other, while the respective frequencies f1 = 1/7.5, f2 =
1/6, f3 = 1/2.8 and f4 = 1/2.3 (in sampling units) are located in both the low-
frequency and high-frequency part of the power spectrum. The amplitudes α

j
i are

prescribed across the spatial channels so that 3 distinct modes contribute to each
channel, albeit with different amplitudes; see Table 1. The random choice of the
phases Φ i

k in Eq. (3) results in arbitrary phase shifts across the spatial channels; see
Fig. 1. The coefficient ν = 0.7 in Eq. (1) guarantees that the noise component has
larger variance than the signal; this fact is obvious from a comparison of the “clean”
Fig. 1e with the “noisy” Fig. 1f), and it makes the identification problem that much
more challenging.

http://www.atmos.ucla.edu/tcd/ssa/guide/mssa/mssarot.html
http://www.atmos.ucla.edu/tcd/ssa/guide/mssa/mssarot.html
https://dept.atmos.ucla.edu/tcd/ssa-mtm-toolkit
https://dept.atmos.ucla.edu/tcd/ssa-mtm-toolkit
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Fig. 1 Multivariate spatio-temporal dataset representing six channels in space and 130 points in
time: (a–d) four harmonic modes {xi(t) : i = 1, . . . ,4} having fixed temporal frequencies but dif-
ferent amplitudes and phases in each of the six channels; see Eq. (3). Their sum s(t) defines the
coherent component given by Eq. (2) shown in panel (e); (f) total dataset representing the sum
of the coherent component s(t) and of the temporal red noise rk(t) in each of the {k = 1, . . . ,d}
channels; see text for details.

.

Table 1 Amplitude modulation of the four oscillatory modes across six spatial channels; see
Eq. (3). The index k is for the channels, while the index i is for the modes.

α i
k i = 1 i = 2 i = 3 i = 4

k = 1 0.4 0.0 0.3 0.3
k = 2 0.4 0.2 0.4 0.0
k = 3 0.3 0.3 0.0 0.4
k = 4 0.0 0.4 0.4 0.2
k = 5 0.2 0.4 0.0 0.4
k = 6 0.3 0.0 0.4 0.3
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The block-Hankel matrix C of the DAH decomposition (see Appendix 1) has
d = 6 blocks of dimension M′×M′, where M′ is the embedding dimension. The
choice of M′ is based on two competing goals: (i) to obtain reliable estimates
of autocorrelations from noisy and short datasets; and (ii) to resolve the dataset’s
frequency domain for identification purposes with sufficient accuracy. We chose
M′ = 119, which results in a total number dM′ = 714 of DAH eigenvalues λ j and
eigenvectors E j, i.e. 1≤ j ≤ dM′.

Each of the DAH eigenvectors represents a data-adaptive spatio-temporal pattern
associated with a fixed temporal frequency; the latter are equally spaced at intervals
of 1/(M′−1) in the Nyquist interval [0,0.5]. Moreover, each temporal frequency is
associated with d pairs of DAH eigenvalues that are opposite in sign but equal in
absolute value, except at f = 0, where there is only one eigenvector per eigenvalue.

Figure 2 shows the DAH spectrum composed of the values |λ j| (red full circles),
and obtained here for the synthetic dataset in Fig. 1f. The frequencies of the os-
cillatory modes that make up the coherent component are identified by eigenpairs
located above the noisy background, and marked by the black arrows.

The time-embedded structure of these eigenvectors is shown in Fig. 3, with each
pair (E j,E ′j) plotted by red and blue lines, respectively. This structure conveys in-
formation about the amplitude modulation across spatial channels, and the figure
demonstrates that indeed the eigenvectors for each pair, except at zero frequency,
are in phase quadrature, i.e. shifted by one quarter of the associated period.

The latter property is reminiscent of Fourier decomposition, based on sine and
cosine pairs with the same periodicity, as well as of the similar property of oscilla-
tory SSA eigenpairs [GAD+02]. The k-th spatial channel E j

k of a particular multi-
variate DAHM — i.e., for a DAH with d ≥ 2 — that is associated with a frequency

ω` =
2π(`−1)

M′−1
, `= 1, · · · , M′+1

2
. (4)

can be analytically expressed—for each 1≤ j ≤ dM′—as an oscillatory function in
the embedding time-window variable τ as follows:

E j
k(τ) = B j

k(ω`)sin(ω`τ +φ
j

k (ω`)), 1≤ k ≤ d, 1≤ τ ≤M′ ; (5)

here both amplitudes B j
k(ω`) and phases φ

j
k (ω`) are data-adaptive [CK17].

Moreover, the theory shows that the phases φ
j

k (ωl) for the modes in each pair
are shifted by one fourth of the period, i.e. DAHMs are in exact phase quadrature,
as for sine–cosine pairs, but in a data-adaptive fashion, encapsulated into the phase.
Indeed, as proved in [CK17], in the case of univariate time series, the DAH modes
provide the phase spectrum contained in each frequency ω` (given in (4)) via the
analytical formula:

Φ(ω`) = arg(λ jÊ j(ω`))− arg(Ê j(ω`)), 1≤ j ≤ dM′, (6)
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Fig. 2 DAH spectrum of the noisy dataset in Fig. 1f. Each red full circle corresponds to a pair±|λ j|
with distinct eigenvectors (E j,E′j); the latter represent the same temporal frequency f j but are time-
shifted so as to be in phase quadrature, cf. Fig. 3 below. Arrows point to the temporal frequencies
of four oscillatory modes that do correspond to those shown in Figs. 1(a–d). The frequencies of
the DAH eigenvectors are equally spaced between 0 and 0.5, and the total number of DAH pairs in
each frequency bin is equal to the number of channels d = 6 in the dataset. The data-adaptive DAH
modes describe amplitude and phase modulation between the spatial channels and are shown in
Fig. 3; they do permit the faithful reconstruction of the reference modes in Figs. 1(a–d), as shown
in Figs. 4(a–d) below.

where Ê j and Ê j denote respectively the Fourier transform of E j and its complex
conjugate.

The precise information about amplitude and phase modulation of the oscillatory
modes captured by the DAHMs allows one to perform highly accurate reconstruc-
tions in the space-time domain, cf. Eq. (14) in Appendix 1 below.Figure 4 shows
the space-time patterns of the harmonic reconstruction components (HRCs) given
by Eq. (15); these patterns are obtained using all the DAH pairs in the frequency bins
that contain the target periodicities f1, f2, f3 and f4. These patterns match quite well
in frequency and phase those of the reference coherent components in Figs. 1a–d,
although they do underestimate their amplitude as a consequence of the large noise
level. In fact, the normalized root-mean-square (rmse) error, averaged over time and
space, is roughly 0.5 for all four modes.



Data-adaptive Harmonic Decomposition and Stochastic Modeling of Arctic Sea Ice 7

0 100 200 300 400 500 600 700
-0.1

-0.05

0

0.05

0.1
(a)

0 100 200 300 400 500 600 700
-0.1

-0.05

0

0.05

0.1
(b)

0 100 200 300 400 500 600 700
-0.1

-0.05

0

0.05

0.1
(c)

0 100 200 300 400 500 600 700
-0.1

-0.05

0

0.05

0.1
(d)

Fig. 3 Eigenvectors (E j,E′j) of the leading spectral DAH pairs for the four frequencies that are
closest to those of the four spatio-temporal oscillatory modes in Figs. 1(a–d), i.e. f1, f2, f3 and f4,
respectively; see Eq. (3). The x-axis represents the embedding dimension dM′, while the vertical
dashed lines mark six M′-long segments that correspond to d = 6 spatial channels. For each spatial
channel, the eigenvectors of a given frequency convey different phases and are shifted by a quarter
of the associated period, i.e. they are in exact phase quadrature.
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Fig. 4 DAH reconstruction associated with the frequencies of the four dominant oscillatory DAH
pairs, as marked by the arrows in Fig. 2, and obtained by using the DAH pairs in the correspond-
ing frequency bins. The resulting patterns match reasonably well the reference patterns shown in
Figs. 1(a–d).

These results show that DAH does correctly detect the temporal frequencies of
distinct oscillatory modes in a very noisy multichannel dataset. Moreover, it also
captures fairly well their distinct phase and amplitude across the spatial channels.

3 DAH decomposition of Arctic sea ice concentrations (SICs)

Decline in Arctic Sea ice extent is an area of active scientific research with profound
climatic and socio-economic implications, both negative—on global temperatures—
and positive—by facilitating navigation in polar waters [SRF+16]. The key variable
of interest to study Arctic Sea ice dynamics is so-called sea ice concentration (SIC),
which measures the relative amount of reference area covered by ice at a given lo-
cation; SIC is given in percentage points (0% – 100%). An important indicator of
Arctic sea ice conditions is the so-called Sea Ice Extent (SIE), defined as the total
surface area of the Arctic region having SIC greater than 15%.

The widely used Sea Ice Index (SII) from the National Snow and Ice Data Center
(NSIDC) relies exclusively on passive microwave measurements, which provide a
35-year–long dataset of daily SICs from 1979 to the present. The satellite observa-
tions are automatically processed by the National Aeronautics and Space Adminis-
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tration (NASA) Team [CPGZ96] and Bootstrap [Com14] algorithms to create daily
SIC maps; both algorithms have their own biases and limitations.

We have used the monthly NSIDC dataset for SIC over the Jan. 1979–Dec. 2014
interval, available on a 25 km× 25 km polar stereographic grid; this dataset is based
on the Bootstrap algorithm [Com14]. The data version used has been coarse-grained
onto a 2◦×0.5◦ grid, representing 7400 spatial degrees of freedom each month and
N = 432 monthly maps.
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Fig. 5 Monthly time series for sea ice concentration (SIC) anomalies in key Arctic regions; see
text for details. (a–d) Bering Sea (182◦E–192◦E, 58◦N–62◦N); Baffin Bay (298◦E–304◦E, 61◦N–
66◦N); Barents Sea (34◦E–54◦E, 76◦N–80◦N); and Chuckhi Sea (190◦E–210◦E, 72◦N–76◦N).
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First, we removed the seasonal cycle by computing SIC anomalies with respect
to each calendar month. Figure 5 shows that the dynamics of SIC anomalies is very
different in key Arctic regions, namely the Bering Sea, Baffin Bay, Barents Sea,
and Chuckhi Sea. In particular, SIC anomalies in the Baffin Bay and Chuckhi Sea
are dominated by the seasonal cycle and a strong downward trend, while internal
dynamics is more prominent in the Bering and Barents Seas.

Figure 6a shows that the variability of SIC anomalies is mostly concentrated in
the marginal seas of the Arctic Ocean, while it is very small over the North Pole,
where the sea remains ice-covered at all times. To extract the dominant modes of SIC
variability, empirical orthogonal function (EOF) decomposition [Pre88] was applied
to the dataset. The 12 leading EOFs account for 82% of SIC anomaly variance:
excluding the Bering Sea, which is only in very limited contact with the Arctic
Ocean, these EOFs capture most of the variance in the marginal seas, cf. Fig. 6b.

Fig. 6 Spatial distribution of SIC variability. (a) Standard deviation of SIC anomalies; and (b)
fraction of SIC variance captured by the 12 leading EOFs of SIC anomalies. Color bars are in
percentage units and nondimensional, in (a) and (b), respectively.

Figure 7 shows the corresponding time series of principal components (PCs). The
trend component is most prominent in the leading pair of PCs, although it is present,
to a lesser extent, in other PCs as well. Moreover, the trend component strongly de-
pends on the calendar month, being more pronounced in fall than in winter; hence
there is also strong annual variability in the 1st and 2nd PC, superimposed on the
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trend. To summarize, SIC PCs exhibit a complex mixture of annual cycle, intrasea-
sonal, interannual and long-term time scales; this complexity represents a serious
challenge for data-driven analysis and modeling techniques, but will be successfully
addressed by DAH decomposition.

Figure 8 shows the multivariate DAH spectrum of d = 12 PCs for the SIC dataset,
with an embedding dimension of M′ = 59 months. Each full circle in this figure is
associated with a pair of DAHMs, except at zero frequency, where the modes are
not paired, cf. Eq. (5). The seasonally dependent trend is clearly isolated by the
pairs associated with annual-cycle harmonics and located well above the continuous
background.

The spatio-temporal patterns of the DAH modes shown in the left and center
panels of Fig. 9 reveal useful dynamical information on the combined evolution and
mutual influence of SIC’s PCs in particular frequency bands. For example, the dom-
inant variability patterns— i.e. those corresponding to the pair having the largest
|λ j| at a particular frequency—convey in-phase, out-of-phase and time-lagged in-
fluences between different PCs. The DAHMs associated with the same frequency
and ranked top-to-bottom by their DAH spectral value behave in a similar fashion,
as shown in Fig. 10 for the 12-month periodicity. Note that the DAHMs are always
in phase-quadrature, except at zero frequency.

On the other hand, although the DAH coefficients A j are not formally orthogonal
in time — see Eq. (13) and its discussion in Appendix 1 — they also exhibit a certain
phase-quadrature relationship that depends on whether the window M is sufficiently
large to resolve the decay of temporal correlations of a given dataset. Typically,
the larger M (subject to the length of the record), the more apparent is the phase
quadrature between a pair of DAHCs associated with the same frequency.

Shown in the right panels of Figs. 9 and 10, the DAHCs constituting a given A j-
pair account for narrow-band temporal information contained at the characteristic
frequency associated with the respective E j-pair. The latter pairs are shown in the
left and center panels of these two figures, respectively, and they reflect differences
in amplitude and a shift of, approximately, a quarter of a period. As we can see, the
phase-quadrature property of the DAHCs is satisfied to a reasonable degree, which
bodes well for the success of the stochastic-modeling approach described in the next
section.

4 Stochastic modeling of Arctic SICs

The recent Multilayer Stochastic Model (MSM) framework introduced in [KCG15]
emphasizes the key role of nonlinear, stochastic and non-Markovian effects in de-
riving data-driven closure models. Such models have been shown to posses consid-
erable skill in simulating and predicting the main dynamical features of a targeted
spatio-temporal field, given either as the output of a high-end geophysical model or
as a set of observations. The MSM approach generalizes various multilevel inverse
models, including Empirical Model Reduction (EMR) [KKG05, KKG09]: it allows
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for greater flexibility in the choice of the nonlinear predictors, while ensuring stable
asymptotic behavior, such as the existence of a global random attractor [CSG11];
see Theorem 3.1 and Corollary 3.2 in [KCG15].

However, if the input dataset is not large enough and exhibits a mixture of sev-
eral time scales, this approach may propose numerous predictors that require one
to estimate too many model coefficients, a situation that makes accurate and stable
estimates quite difficult. Alternative algorithms are thus called for, and DAH decom-
position provides such an alternative. We show here, in the context of Arctic sea ice
modeling, that an appropriate change of the basis—in a data-adaptive manner—
reduces the data-driven modeling effort to elemental MSMs stacked by frequency,
and requires only estimating a fixed and much smaller number of coefficients.

These elemental models fall into the class of networks of linearly coupled Stuart-
Landau oscillators [ZLS+16], which may include memory terms [SLD+12] and are
described below. Given a sequence of partial observations of a dynamical-model
simulation, the DAHCs allow one to recast these observations so that they can be
reproduced by a simple stochastic model. Such a model can be inferred within a
universal parametric family, provided, roughly speaking, that the window whether
the window M is sufficiently large to resolve the decay of temporal correlations of
a given dataset, as discussed in Appendix 1.

Stuart-Landau (SL) models with additive noise form a generic class of models
that capture (i) the frequency f and (ii) the amplitude modulations of the A j’s cor-
responding to a given narrow-band DAHC pair, denoted by (x(t),y(t)):

ż = (µ + iγ)z− (1+ iβ )|z|2z+ εt , z ∈ C ; (7)

here z(t) = x(t)+ iy(t) (i2 =−1) and the real parameters µ,γ and β , as well as the
properties of the driving noise εt = (εx

j ,ε
y
j ), are estimated from the time history of

z(t) by the aforementioned MSM approach. To reproduce the global phase coher-
ence of the collective behavior of d DAH pairs (x j(t),y j(t)), at a given frequency
f 6= 0, requires an appropriate dynamical coupling between individual SL oscilla-
tors, along with taking into account the temporal and spatial cross-pair correlations
in the driving noise εt ; see Appendix 2 and Eq. (MSLM) there.

Thus, for each frequency f , the 12 associated pairs of temporal DAHCs are
modeled by Eq. (MSLM). First, the model coefficients can be estimated in par-
allel for each frequency, i.e. by successive pairwise regressions, subject to linear
constraints on β j( f ),α j( f ) and σ j( f ) that impose the necessary model structure in
Eq. (MSLM) for each (x j,y j) pair; these constraints entail antisymmetry for the
linear part, without the coupling terms, as well as equal and nonpositive values
σ j( f ) ≤ 0 to ensure asymptotic stability. Hence the overall number of independent
coefficients to estimate is fixed and relatively small for each (x j,y j) pair; e.g., the
main layer of Eq. (MSLM) involves estimation of 3+4(d−1)= 47 coefficients from
the 2N′ = 748 DAH-processed Arctic SIC observations, over the full time interval
1979–2014; see Appendix 1 for the definition of N′ = N−M′+1, with the window
width M′ = 59 months. Extra layers are added as needed until the regression residu-
als for the last layer can be approximated by white noise, according to the stopping
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test described in [KCG15, Appendix A]; these layers convey temporal correlations
in the stochastic forcing εt on the main layer of the model for (x j,y j).

Second, the DAH-MSLMs are run in parallel across the frequencies by the same
white-noise realization in the last layer of the model, which represents a dynamical
mechanism for coupling between different frequencies. Finally, the simulated time
series of the temporal DAHCs are converted back to the phase space of the SIC
dataset’s PCs, by convolution with the spatio-temporal DAHM’s.

Despite the limited amount of available data and their nonstationarity, Figs. 11
and 12 show very good modeling skill in reproducing the complex structure of
the autocorrelation functions (ACFs) of the SIC dataset’s PCs, as simulated by the
optimal DAH-MSLM model with M′ = 59 and having three additional layers in
Eq. (MSLM) to model the noise εt . The model also captures sufficiently well skew-
ness & kurtosis of the probability density functions (PDFs), although it is more
challenging to capture the bumps in the PDFs’ “tails,” due to the record’s shortness.

Figures 13 and 14 show the evolution in time of the leading PCs of two stochas-
tic ensemble members, as simulated by our DAH-MSLM model and initialized in
January 1979. These extended, 129-year–long simulations demonstrate that our op-
timized stochastic-dynamic model agrees well with the existing 36-year–long SIC
record, is numerically stable for much longer times, and displays interesting dynam-
ical behavior such as multidecadal variability in PC-1. Such variability has been
documented by J. Walsh and W. Chapman [WC15] in their reconstruction of sea ice
extent anomalies from historical records.

One reason for the success of our model’s simulations relies on the ability of the
DAH approach to extract modulated time series of DAHCs that are narrow-banded
in the frequency domain and exhibit phase quadrature in the time domain. Another
important reason is that the class of MSLMs introduced herein is intrinsically well
adapted to the modeling of such time series.

It is worth mentioning that the less narrow-banded the DAHCs, the worse their
modeling using MSLM. For the Arctic Sea Ice dataset of [Com14], as represented by
the SIC PCs, the DAH decomposition provides just the right time series of DAHCs
for the MSLM modeling approach to be efficient; see Figs. 9 and 10.

Our DAH-MSLM model is able to produce a remarkable near-synchronization of
the simulations with observations during the first four years that start with January
1979. This approximate synchronization holds for almost every noise realization, as
shown, for instance, in Fig. 15 for one ensemble member, using a particular noise
realization: plotted in the figure are September SIC anomalies for 1979–1982 in
gridded physical space, with the maps of the observations in the left column and
the simulations in the right one. The match between simulation and observation is
visually excellent and only starts deteriorating in September 1982. The potential
predictive skill of our DAH-MSLM model suggested by these plots, implies highly
promising potential of developed approach for real-time forecasting of September
SIE.

Indeed, this potential forecast skill has been tentatively confirmed by the present
authors in [KCG17] by using the Multisensor Analyzed Sea Ice Extent (MASIE)
dataset [FSHCC10] for the Sea Ice Prediction Network (SIPN, http://www.

http://www.arcus.org/sipn
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arcus.org/sipn). Our DAH-MSLM model’s real-time SIE forecast for Septem-
ber 2016 [SBWG+15, HS16] outperformed most other statistical models and physics-
based models in the SIPN network. In 2016, the multimodel-median September
SIPN estimate in August was 4.4 ·106 km2, with a quartile range of 4.2− 4.7 ·
106 km2, vs. the actual observed value of 4.72 ·106 km2. The real-time DAH-MSLM
August prediction for SIPN’s 2016 September Outlook was 4.79 ·106 km2.
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Appendix 1. Details on the DAH decomposition

The DAH modes (DAHMs) are obtained as follows. First, we estimate from a
given d-channel time series X(tn) = (X1(tn), . . . ,Xd(tn)), n = 1, · · · ,N, the cross-
correlation coefficient (CCF) ρ

(p,q)
τ at lag τ between channels p and q, where

−M+1≤ τ ≤M−1. In spectral analysis, it is common to refer to M as the window
width.

Next, we form the following Hankel matrix:

H(p,q) =



ρ
(p,q)
−M+1 ρ

(p,q)
−M+2 · · · ρ

(p,q)
0 ρ

(p,q)
1 · · · ρ

(p,q)
M−1

ρ
(p,q)
−M+2 . . . . . . . . . . . . . . . ρ

(p,q)
−M+1

... . . . . . . . . . . . . . . . ρ
(p,q)
−M+2

ρ
(p,q)
0 . . . . . . . . . ρ

(p,q)
−M+1 . . .

...

ρ
(p,q)
1 . . . . . . . . . ρ

(p,q)
−M+2 . . . ρ

(p,q)
0

... ρ
(p,q)
M−1 ρ

(p,q)
−M+1 . . . . . . . . .

...
ρ
(p,q)
M−1 ρ

(p,q)
−M+1 ρ

(p,q)
−M+2 . . . ρ

(p,q)
0 · · · ρ

(p,q)
M−2


. (8)

Equivalently, this matrix can be viewed as a left circulant matrix formed from the
(2M−1)-dimensional row r = (ρ

(p,q)
−M+1, · · · ,ρ

(p,q)
0 , · · · ,ρ(p,q)

M−1 ), i.e.:

H(p,q) = l-circ(ρ(p,q)
−M+1, · · · ,ρ

k,k′)
−1 ,ρ

(p,q)
0 ,ρ

(p,q)
1 · · · ,ρ(p,q)

M−1 ) ; (9)

in other words, the rows of H(p,q) are obtained by successive shifts to the left by one
position, starting from r as a first row. Finally, we consider the block-Hankel matrix
C formed by d2 blocks of size (2M−1)× (2M−1), each given according to

http://www.arcus.org/sipn
http://www.arcus.org/sipn
http://www.atmos.ucla.edu/tcd/ssa/guide/mssa/mssarot.html
http://www.atmos.ucla.edu/tcd/ssa/guide/mssa/mssarot.html
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C(p,q) = H(p,q), if 1≤ p≤ q≤ d,

C(p,q) =
(

H(q,p)
)
, otherwise.

(10)

Note that C is symmetric by construction due to symmetry of its building blocks
H(p,q), i.e. C(p,q) = C(q,p), and hereafter we use M′ = 2M−1 for concision, reindex-
ing the string {−M+1, . . . ,M−1} from 1 to M′ as necessary.

The DAH eigenpairs (λ j,E j), with 1 ≤ j ≤ dM′, reveal useful information
about the variability contained in the multivariate time series. In contrast to other
data-adaptive methods built from cross-correlations, each of the DAH eigenvectors
E j represents a data-adaptive spatio-temporal pattern naturally associated with a
Fourier frequency ωl given by

ω` =
2π(`−1)

M′−1
, `= 1, · · · , M′+1

2
. (11)

These frequencies are equally spaced within the Nyquist interval [0,0.5] with a res-
olution of 1/(M′−1), essentially given by the embedding dimension M.

Each temporal frequency ω` is associated with d pairs of DAH eigenvalues ±λ j
that are opposite in sign but equal in absolute value, except at zero frequency, where
there is only one eigenvector per eigenvalue, for a total of 2d(M−1)+d eigenval-
ues. The association between a particular frequency and a given DAHM is obtained
by counting zero-crossings δ j across the window width M for all channels:

δ j =
d

∑
k=1

M′−1

∑
τ=1

(
1− sign(E j

k(τ)E
j
k(τ +1))

)
, 1≤ j ≤ dM′ . (12)

One can thus assign a frequency that is in one-to-one correspondence to δ j. In
Eq. (12), E j

k denotes the k-th spatial component of the DAHM, E j. One can then
rank the DAHMs from the lowest to the highest frequency by simply looking at
their number of sign changes. As shown in [CK17], the corresponding fraction of
the energy they capture is given by |λ j|, up to a scaling factor.

By analogy with M-SSA [GAD+02], the multivariate dataset X can be projected
onto the orthogonal set formed by the E j’s, to obtain the DAH expansion coefficients
(DAHCs):

A j(t) =
M′

∑
τ=1

d

∑
k=1

Xk(t + τ−1)E j
k(τ), (13)

where t varies from 1 to N′ = N−M′+1.
Although the DAHCs are not formally orthogonal in time, they also exhibit a

phase-quadrature relationship that depends on whether the window M is sufficiently
large to resolve the decay of temporal correlations of a given dataset. Typically,
the larger M (subject to the length of the record), the more apparent is the phase
quadrature between a pair of DAHCs associated with the same frequency.

Furthermore, any subset B ⊂ A of DAHCs, as well as the full set A, can be
convolved with associated E j’s, for partial or full reconstruction of the original data,
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respectively. The transformation between X and A is unitary, i.e., there is no loss of
variance. Thus, the jth RC at time t for channel k is given by:

R j
k(t) =

1
Mt

Ut

∑
τ=Lt

A j(t− τ +1)E j
k(τ). (14)

The normalization factor Mt equals M′, except near the ends of the time series
[GAD+02], and the sum of all the RCs recovers the original time series.

It is also useful to consider harmonic reconstruction components (HRCs), namely
a sum of d RC pairs corresponding to a particular frequency ω` 6= 0:

Rω`
k (t) = ∑

j∈J`

R j
k(t), (15)

where J` denotes the set of all the indices j associated with the frequency ω`. By
construction, for each nonzero frequency, this set is constituted by 2d elements.

Appendix 2. Details on the MSLM modeling

As discussed in Sec. 4, the DAHMs extract harmonic components of variability
that allow for a reduction of the data-driven modeling effort to a simple class of
elemental multilayer stochastic models (MSMs: [KCG15]); these MSMs are stacked
by frequency and only coupled at different frequencies by the same noise realization.

In the simplest case of one layer for the modeled noise, this construction leads to
stochastic models of the form:

ẋ j = β j( f )x j−α j( f )y j +σ j( f )x j(x2
j + y2

j)+
d

∑
i 6= j

bx
i j( f )xi +

d

∑
i 6= j

ax
i j( f )yi + ε

x
j ,

ẏ j = α j( f )x j +β j( f )y j +σ j( f )y j(x2
j + y2

j)+
d

∑
i 6= j

ay
i j( f )xi +

d

∑
i 6= j

by
i j( f )yi + ε

y
j ,

ε̇
x
j = L j

11( f )x j +L j
12( f )y j +M j

11( f )εx
j +M j

12( f )εy
j+

Q j
11( f )Ẇ j

1 +Q j
12( f )Ẇ j

2 +
d

∑
i 6= j

2

∑
k=1

Qi
1k( f )Ẇ i

k ,

ε̇
y
j = L j

21( f )x j +L j
22( f )y j +M j

21( f )εx
j +M j

22( f )εy
j+

Q j
21( f )Ẇ j

1 +Q j
22( f )Ẇ j

2 +
d

∑
i 6= j

2

∑
k=1

Qi
2k( f )Ẇ i

k .

(MSLM)
In (MSLM), the index j varies in the set of indices J f associated with a single
frequency f , determined by the zero-crossings of the corresponding E j’s. When
f 6= 0, this set consists of d elements. In practice f = ω`/(2π) is determined by a
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Fourier frequency ω` given in Eq. (11). The W j
k ’s with k in {1,2} and j in {1, · · · ,d}

form 2d independent Brownian motions.
We call these models multilayer stochastic Stuart-Landau models (MSLM). At a

given frequency f , the d pairs are linearly coupled as indicated by the terms in the
sums apparent in the x j- and y j-equations. In (MSLM) and for a given pair indexed
by j, the noise term (εx

j ,ε
y
j ) is modeled by means of linear dependencies involving

only (εx
j ,ε

y
j ), on the one hand, and the j-th pair (x j,y j), on the other.

Obviously, for a given pair, and following [KCG15], more layers can be added
as needed to (MSLM), when the noise term (εx

j ,ε
y
j ) at the first level is not white. In

this case, the extra layers will depend linearly on the j-th pair (x j,y j), and on the
noise residuals from the previous layers. The sums in the εx

j - and ε
y
j -equations take

into account “spatial” correlations between the pairs, at the level of the noise. Note
that for the null frequency, f ≡ 0, there are exactly d modes that are not paired, and
they are modeled by a linear multilayer stochastic model as in [KCG15].

Note that equations (MSLM) can be generalized further by allowing coupling
of (x j,y j) pairs at neighboring frequencies, which can be useful for certain appli-
cations where cross-frequency interactions are important. Equations (MSLM) are
discretized in time and integrated numerically forward from initial conditions that
respect the initialization procedure described in [KCG15, Appendix B].
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Fig. 7 Time series of the 12 leading principal components (PCs) of SIC anomalies. The seasonally
dependent trend component is very prominent in the 1st and 2nd PC.
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Fig. 8 DAH spectrum of the 12 leading PCs of the SIC dataset, using an embedding window of
M′ = 59 months.
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Fig. 9 Left and center columns: Spatio-temporal DAH modes (DAHMs) that correspond to the
leading DAH pair (1,2) in the SIC dataset’s spectrum at selected frequencies: x-axis – embed-
ding dimension, y-axis – PC index. Right column: Corresponding temporal DAH coefficients
(DAHCs). The four selected frequencies, f = 0.0,0.052,0.103 and f = 0.155, appear in the cap-
tion of each panel.
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Fig. 10 Same as Fig. 9, except for showing the four leading pairs at the 12-month periodicity,
f = 0.086. The DAHMs (1,2), (3,4), (5.5) and (7.8) appear in the caption of each panel.
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Fig. 11 The autocorrelation functions (ACFs) of the SIC dataset’s PCs: red – observations, black –
ensemble mean of stochastic-dynamic simulations by the DAH-MSLM approach; blue – standard
deviation of the ensemble.



24 Dmitri Kondrashov, Mickaël D. Chekroun, Xiaojun Yuan, and Michael Ghil

-2000 -1000 0 1000 2000 3000

10 -5

PC-1

-2000 -1000 0 1000 2000

10 -5

PC-2

-1000 -500 0 500 1000

10 -5

PC-3

-1500 -1000 -500 0 500 1000

10 -5

PC-4

-1000 -500 0 500 1000

10 -5

PC-5

-1000 -500 0 500 1000

10 -5

PC-6

-1000 -500 0 500 1000

10 -5

PC-7

-1000 -500 0 500 1000

10 -5

PC-8

-1000 -500 0 500 1000

10 -5

PC-9

-1000 -500 0 500 1000

10 -5

PC-10

-1000 -500 0 500 1000

10 -5

PC-11

-1000 -500 0 500 1000

10 -5

PC-12

Fig. 12 Same as Fig. 11, except for the probability density functions (PDFs): the blue lines now
represent individual ensemble members.
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Fig. 13 Extended simulation of the Arctic SIC conditions. Red – observational dataset of the 12
leading PCs for 1979–2014 (36 years); blue – 129-year–long stochastic simulation by the DAH-
MSLM approach.
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Fig. 14 Same as in Fig. 13, but for another stochastic realization.
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Fig. 15 Simulations of September SICs by using our DAH-MSLM approach. Left – observed
September SIC anomalies; right – hindcast of the DAH-MSLM model, initialized in January 1979.
Caption of each panel indicates the particular September being compared, OBS vs. MSLM, for
1979, 1980, 1981, and 1982.
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